Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20090280600 A1
Publication typeApplication
Application numberUS 12/504,158
Publication dateNov 12, 2009
Filing dateJul 16, 2009
Priority dateMar 12, 2004
Also published asCN102354658A, CN102856390A, CN102867855A, EP1737044A1, EP1737044A4, EP2226847A2, EP2226847A3, EP2246894A1, EP2246894B1, EP2413366A1, US20070194379, US20090278122, US20110101352, US20110201162, US20120012838, WO2005088726A1
Publication number12504158, 504158, US 2009/0280600 A1, US 2009/280600 A1, US 20090280600 A1, US 20090280600A1, US 2009280600 A1, US 2009280600A1, US-A1-20090280600, US-A1-2009280600, US2009/0280600A1, US2009/280600A1, US20090280600 A1, US20090280600A1, US2009280600 A1, US2009280600A1
InventorsHideo Hosono, Masahiro Hirano, Hiromichi Ota, Toshio Kamiya, Kenji Nomura
Original AssigneeJapan Science And Technology Agency
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Amorphous oxide and thin film transistor
US 20090280600 A1
Abstract
The present invention relates to an amorphous oxide and a thin film transistor using the amorphous oxide. In particular, the present invention provides an amorphous oxide having an electron carrier concentration less than 1018/cm3, and a thin film transistor using such an amorphous oxide. In a thin film transistor having a source electrode 6, a drain electrode 5, a gate electrode 4, a gate insulating film 3, and a channel layer 2, an amorphous oxide having an electron carrier concentration less than 1018/cm3 is used in the channel layer 2.
Images(7)
Previous page
Next page
Claims(5)
1. A method of forming a transparent semi-insulating amorphous oxide film, comprising:
depositing a film on a substrate by a vapor-phase growth deposition method using a target of polycrystal of a compound represented by [(Sn1−xM4x)O2]a.[In1−yM3y)2O3]b.[(Zn1−zM2z)O]c,
wherein 0≦x≦1, 0≦y≦1, 0≦z≦1; x, y, and z are not simultaneously 1;
0≦a≦1, 0≦b≦1, 0≦c≦1, and a+b+c=1;
M4 is one or more selected from Si, Ge, and Zr;
M3 is one or more selected form B, Al, Ga, Y and Lu; and
M2 is one or more selected form Mg and Ca,
wherein temperature of the substrate is not intentionally heated, and impurity ions to increase electrical resistance are not intentionally added in the amorphous oxide film, and
atmosphere contains oxygen, oxygen partial pressure being controlled,
electron mobility is 1 cm2/(Vsec) or more and the electron carrier concentration is 1016/cm3 or less.
2. The method of forming a transparent semi-insulating amorphous oxide thin film according to claim 1, wherein the substrate is one of a glass plate, a plastic plate or a plastic film.
3. The method of forming a transparent semi-insulating amorphous oxide thin film according to claim 1, wherein the vapor-phase growth deposition method is either a pulse laser deposition method or a sputtering method.
4. The method of forming a transparent semi-insulating amorphous oxide thin film according to claim 1, wherein the compound is InGaZnO, the vapor-phase growth deposition method is a pulse laser deposition method and the oxygen partial pressure of over 4.5 Pa.
5. The method of forming a transparent semi-insulating amorphous oxide thin film according to claim 1, wherein the compound is InGaZnO, the vapor-phase growth deposition method is a high frequency sputtering method and the oxygen partial pressure of over 310−2 Pa.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This is a divisional application of U.S. patent application Ser. No. 10/592,431, filed on Sep. 11, 2006, currently pending, which is a 371 of International Application No. PCT/JP05/03273, filed on Feb. 28, 2005, which claims the benefit of priority from the prior Japanese Patent Application Nos. 2004-071477, filed on Mar. 12, 2004 and 2004-325938 filed on Nov. 10, 2004, the entire contents of which are incorporated herein by references.

TECHNICAL FIELD

The present invention relates to amorphous oxides and thin film transistors.

BACKGROUND ART

A thin film transistor (TFT) is a three-terminal element having a gate terminal, a source terminal, and a drain terminal. It is an active element in which a semiconductor thin film deposited on a substrate is used as a channel layer for transportation of electrons or holes and a voltage is applied to the gate terminal to control the current flowing in the channel layer and switch the current between the source terminal and the drain terminal. Currently, the most widely used TFTs are metal-insulator-semiconductor field effect transistors (MIS-FETs) in which the channel layer is composed of a polysilicon or amorphous silicon film.

Recently, development of TFTs in which ZnO-based transparent conductive oxide polycrystalline thin films are used as the channel layers has been actively pursued (Patent Document 1). These thin films can be formed at low temperatures and is transparent in visible light; thus, flexible, transparent TFTs can be formed on substrates such as plastic boards and films.

However, known ZnO rarely forms a stable amorphous phase at room temperature and mostly exhibits polycrystalline phase; therefore, the electron mobility cannot be increased because of the diffusion at the interfaces of polycrystalline grains. Moreover, ZnO tends to contain oxygen defects and a large number of carrier electrons, and it is thus difficult to decrease the electrical conductivity. Therefore, it has been difficult to increase the on/off ratio of the transistors.

Patent Document 2 discloses an amorphous oxide represented by ZnxMyInzO(x+3y/2+3z/2) (wherein M is at least one element selected from Al and Ga, the ratio x/y is in the range of 0.2 to 12, and the ratio z/y is in the range of 0.4 to 1.4). However, the electron carrier concentration of the amorphous oxide film obtained herein is 1018/cm3 or more. Although this is sufficient for regular transparent electrodes, the film cannot be easily applied to a channel layer of a TFT. This is because it has been found that a TFT having a channel layer composed of this amorphous oxide film does not exhibit a sufficient on/off ratio and is thus unsuitable for TFT of a normally off type.

Patent Document 1: Japanese Unexamined Patent Application Publication No. 2003-298062 Patent Document 2: Japanese Unexamined Patent Application Publication No. 2000-044236 DISCLOSURE OF INVENTION

An object of the present invention is to provide an amorphous oxide having a low electron carrier concentration and to provide a thin film transistor having a channel layer composed of such an amorphous oxide.

The present invention provides: (1) an amorphous oxide having an electron carrier concentration less than 1018/cm3. In the present invention, the electron carrier concentration of the amorphous oxide is preferably 1017/cm3 or less or 1016/cm3 or less.

The present invention also provides: (2) an amorphous oxide in which electron mobility thereof increases with the electron carrier concentration.

The present invention also provides: (3) the amorphous oxide according to item (1) or (2) above, in which the electron mobility is more than 0.1 cm2/(Vsec).

The present invention also provides: (4) the amorphous oxide according to item (2) or (3) above, exhibiting degenerate conduction. Note that degenerate conduction used herein is defined as a state in which the thermal activation energy for temperature dependency of electrical resistance is 30 meV or less.

Another aspect of the present invention provides: (5) the amorphous oxide according to any one of items (1) to (4) above, in which the amorphous oxide is a compound that contains at least one element selected from Zn, In, and Sn as a constituent and is represented by [(Sn1−xM4x)O2]a.[In1−yM3y)2O3]b.[(Zn1−zM2z)O]c (wherein 0≦x≦1, 0≦y≦1, 0≦z≦1; x, y, and z are not simultaneously 1; 0≦a≦1, 0≦b≦1, 0≦c≦1, and a+b+c=1; M4 is a group IV element (Si, Ge, or Zr) having an atomic number smaller than that of Sn; M3 is Lu or a group III element (B, Al, Ga, or Y) having an atomic number smaller than that of In; and M2 is a group II element (Mg or Ca) having an atomic number smaller than that of Zn).

In the present invention, the amorphous oxide according (5) above may further contain at least one element selected from group V elements (V, Nb, and Ta) M5 and W.

Another aspect of the present invention provides: (6) a thin film transistor including the amorphous oxide according to any one of (1) to (4) above, in which the amorphous oxide is a single compound represented by [(In1−yM3y)2O3(Zn1−xM2x)O]m (wherein 0≦x≦1; 0≦y≦1; x and y are not simultaneously 1; m is zero or a natural number less than 6; M3 is Lu or a group III element (B, Al, Ga, or Y) having an atomic number smaller than that of In; and M2 (Mg or Ca) is a group II element having an atomic number smaller than that of Zn) in a crystallized state or a mixture of the compounds with different values of m. M3 is, for example, Ga, and M2 is, for example Mg.

The present invention also provides the amorphous oxide according to any one of (1) to (6) above formed on a glass substrate, a metal substrate, a plastic substrate, or a plastic film. The present invention also provides a field effect transistor including a channel layer composed of the amorphous oxide described above. The field effect transistor of the present invention is characterized in that the gate insulating film is one of Al2O3, Y2O3, and HfO2 or a mixed crystal compound containing at least two of these compounds.

Another aspect of the present invention provides: (7) a transparent semi-insulating amorphous oxide thin film comprising InGaZnO, in which the composition in a crystallized state is represented by InGaO3(ZnO)m (wherein m is a number less than 6 and 0<x≦1), the electron mobility is more than 1 cm2/(Vsec) and the electron carrier concentration is less than 1018/cm3.

Furthermore, the present invention also provides: (8) a transparent semi-insulating amorphous oxide thin film comprising InGaZnMgO, in which the composition in a crystallized state is represented by InGaO3(Zn1−xMgxO)m (wherein m is a number less than 6 and 0<x≦1), the electron mobility is more than 1 cm2/(Vsec) and the electron carrier concentration is less than 1018/cm3. Moreover, the present invention also provides a method for forming the transparent semi-insulating amorphous oxide thin film in which an impurity ion for increasing the electrical resistance is not intentionally added and the deposition is conducted in an atmosphere containing oxygen gas.

A thin-film transistor according to another aspect of the present invention includes a source electrode, a drain electrode, a gate electrode a gate insulating film and a channel layer, in which the channel layer contains an amorphous oxide having an electron carrier concentration of less than 1018/cm3. Preferably, the electron carrier concentration of the amorphous oxide is 1017/cm3 or less or 1016/cm3 or less. The amorphous oxide is an oxide containing In, Ga, and Zn, in which the atomic ratio In:Ga:Zn is 1:1:m (m<6). Alternatively, the amorphous oxide is an oxide including In, Ga, Zn, and Mg, in which the atomic ratio In:Ga:Z1−xMgx is 1:1:m (m<6), wherein 0<x≦1.

The amorphous oxide is selected from InxGa1−x oxides (0≦x≦1), InxZn1−x oxides (0.2≦x≦1), InxSn1−x oxides (0.8≦x≦1), and Inx(Zn, Sn)1−x oxides (0.15≦x≦1).

In a thin film transistor of the present invention, a material in which the electron mobility increases with the electron carrier concentration can be used as the amorphous oxide.

According to the present invention, an amorphous oxide having a low electron carrier concentration can be provided, and a thin film transistor including a channel layer composed of such an amorphous oxide can be provided.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a graph that shows the relationship between the oxygen partial pressure during the deposition and the electron carrier concentration of an InGaZnO amorphous oxide deposited by a pulsed laser deposition method.

FIG. 2 is a graph that shows the relationship between the electron carrier concentration and electron mobility of an InGaZnO amorphous oxide film formed by a pulsed laser deposition method.

FIG. 3 is a graph that shows the relationship between the oxygen partial pressure during the deposition and the electrical conductivity of an InGaZnO amorphous oxide deposited by a high-frequency sputtering method.

FIG. 4 is a graph showing changes in electron conductivity, electron carrier concentration, and electron mobility of InGaO3(Zn1−xMgxO)4 deposited by pulsed laser deposition against x.

FIG. 5 is a schematic illustration showing a structure of a top gate TFT element.

FIG. 6 is a graph showing a current-voltage characteristic of a top gate TFT element.

FIG. 7 is a schematic illustration showing a pulsed layer deposition device.

FIG. 8 is a schematic illustration showing a sputter deposition device.

BEST MODE FOR CARRYING OUT THE INVENTION

An amorphous oxide of the present invention is characterized in that the electron carrier concentration is less than 1018/cm3. A thin film transistor (TFT) of the present invention is characterized in that an amorphous oxide having an electron carrier concentration less than 1018/cm3 is used in the channel layer.

For example, as shown in FIG. 5, the TFT is made by forming a channel layer 2 on a substrate 1 and a gate insulating film 3, a gate electrode 4, a source electrode 6, and a drain electrode 5 on the channel layer 2. In this invention, an amorphous oxide having an electron carrier concentration less than 1018/cm3 is used in the channel layer.

The structure of the TFT to which the present invention can be applied is not limited to the staggered structure (top-gate structure) shown in FIG. 5 in which a gate insulating film and a gate terminal (electrode) are sequentially stacked on a semiconductor channel layer. For example, the TFT may have an inverted staggered structure (bottom-gate structure) in which a gate insulating film and a semiconductor channel layer are sequentially stacked on a gate terminal. The electron carrier concentration mentioned above is a value measured at room temperature. Room temperature is, for example, 25 C. and, in particular, is appropriately selected from the range of about 0 C. to about 40 C.

The electron carrier concentration of the amorphous oxide of the present invention need not be less than 1018/cm3 all through the range of 0 C. to 40 C. For example, it is sufficient if the carrier electron concentration is less than 1018/cm3 at 25 C. When the electron carrier concentration is reduced to 1017/cm3 or less and more preferably to 1016/cm3 or less, TFTs of a normally off type can be obtained in high yield. The electron carrier concentration can be determined by hall-effect measurement.

In the present invention, amorphous oxide is defined as an oxide that shows a halo pattern in an X-ray diffraction spectrum and exhibits no particular diffraction line. The lower limit of the electron carrier concentration of the amorphous oxide of the present invention is not particularly limited as long as the oxide can be used as the TFT channel layer. The lower limit is, for example, 1012/cm3.

Thus, in the present invention, the starting materials, composition ratio, production conditions, and the like of the amorphous oxide are controlled as in the individual examples described below so as to adjust the electron carrier concentration to 1012/cm3 or more but less than 1018/cm3. Preferably, the electron carrier concentration is adjusted to 1013/cm3 to 1017/cm3, and more preferably 1015/cm3 to 1016/cm3.

The electron mobility is preferably 0.1 cm2/(Vsec) or more, more preferably 1 cm2/(Vsec) or more, and most preferably 5 cm2/(Vsec) or more when measured at room temperature. The amorphous oxide exhibits increased electron mobility as the electron carrier concentration increases. The conductivity thereof tends to exhibit degenerate conduction. Degenerate conduction is defined as a state in which the thermal activation energy for temperature dependency of electrical resistance is 30 meV or less.

(Starting Materials for Amorphous Oxide)

The amorphous oxide of the present invention contains at least one element selected from Zn, In, and Sn as a constituent component and is represented by [(Sn1−xM4x)O2]a.[(In1−yM3y)2O3]b.[(Zn1−zM2z)O]c [0≦x≦1, 0≦y≦1, 0≦z≦1; x, y, and z are not simultaneously 1; 0≦a≦1, 0≦b≦1, 0≦c≦1, and a+b+c=1; M4 is a group IV element (Si, Ge, or Zr) having an atomic number smaller than that of Sn; M3 is Lu or a group III element (B, Al, Ga, or Y) having an atomic number smaller than that of In and M2 is a group II element (Mg or Ca) having an atomic number smaller than that of Zn. The amorphous oxide may further contain at least one element selected from group V elements M5 (V, Nb, and Ta) and W. In this description, the group II, III, IV, and V elements in the periodic table are sometimes referred to as group 2, 3, 4, and 5 elements, respectively; however, the meaning is the same.

The electron carrier concentration can be further decreased by adding at least one element that can form a compound oxide, the at least one element being selected from a group 2 element M2 (M2: Mg or Ca) having an atomic number smaller than that of Zn; Lu and a group 3 element M3 (M3: B, Al, Ga, or Y) having an atomic number smaller than that of In; a group 4 element M4 (M4: Si, Ge, or Zr) having an atomic number smaller than that of Sn; and a group 5 element M5 (M5: V, Nb, and Ta) or W.

The elements M2, M3, and M4 having atomic numbers smaller than those of Zn, In, and Sn, respectively, have higher ionicity than Zn, In and Sn; thus, generation of oxygen defects is less frequent, and the electron carrier concentration can be decreased. Although Lu has a larger atomic number than Ga, the ion radius is small and the ionicity is high, thereby achieving the same functions as those of M3. M5, which is ionized at a valency of 5, strongly bonds to oxygen and rarely causes oxygen defects. Tungsten (W), which is ionized at a valency of 6, strongly bonds to oxygen and rarely causes oxygen defects.

The amorphous oxide applicable to the present invention is a single compound having a composition in a crystallized state represented by [(In1−yM3y)2O3(Zn1−xM2x)O]m (wherein 0≦x≦1; 0≦y≦1; x and y are not simultaneously 1; m is zero or a number or a natural number less than 6; M3 is Lu or a group 3 element (B, Al, Ga, or Y) having an atomic number smaller than that of In; and M2 is a group 2 element (Mg or Ca) having an atomic number smaller than that of Zn] or a mixture of compounds with different values of m. M3 is, for example, Ga. M2 is, for example, Mg.

The amorphous oxide applicable to the present invention is a unitary, binary, or ternary compound within a triangle with apexes of SnO2, In2O3, and ZnO. Among these three compounds, In2O3 has high amorphous formation capacity and can form a completely amorphous phase when In2O3 is deposited by a vapor phase method while adding approximately 0.1 Pa of water into the atmosphere.

ZnO and SnO2 in some cases do not form an amorphous phase by themselves; however, they can form an amorphous phase in the presence of In2O3 as a host oxide. In particular, of binary compositions containing two of the above-described three compounds (compositions located on the side of the triangle), the InZnO system can form an amorphous film when In is contained in an amount of about 20 at % or more, and the SnInO system can form an amorphous film when In is contained in an amount of about 80 at % or more by a vapor phase method.

In order to obtain an InZnO amorphous film by a vapor phase method, about 0.1 Pa of steam may be introduced into the atmosphere. In order to obtain an InSnO-system amorphous film by a vapor phase method, about 0.1 Pa of nitrogen gas may be introduced into the atmosphere. For the ternary composition, SnInZn, containing the three compounds, an amorphous film can be obtained by a vapor phase method when In is contained in an amount of about 15 at % in the above-described composition range. Note that at % herein indicates atomic percent with respect to the metal ions other than oxygen ions. In particular, for example, the InZnO system containing about 20 at % or more of In is equivalent to InxZn1−x (x>0.2).

The composition of the amorphous oxide film containing Sn, In, and/or Zn may contain additional elements as described below. In particular, at least one element that forms a compound oxide, the at least one element being selected from a group 2 element M2 (M2: Mg or Ca) having an atomic number smaller than that of Zn, Lu or a group 3 element M3 (M3: B, Al, Ga, or Y) having an atomic number smaller than that of In, and a group 4 element M4 (M4: Si, Ge, or Zr) having an atomic number smaller than that of Sn may be added. The amorphous oxide film of the present invention may further contain at least one element that can form a compound oxide, the at least one element being selected from group 5 elements (M5: V, Nb, and Ta) and W.

Addition of the above-described elements will increase the stability of the amorphous film and expands the composition range that can give an amorphous film. In particular, addition of highly covalent B, Si, or Ge is effective for stabilization of the amorphous phase, and a compound oxide composed of ions with largely different ion radii can stabilize the amorphous phase. For example, in the InZnO system, a stable amorphous film is rarely obtained at room temperature unless the range of In content is more than about 20 at %. However, by adding Mg in an equivalent amount to In, a stable amorphous film can be obtained at an In content of more than about 15 at %.

An example of the amorphous oxide material that can be used in the channel layer of the TFT of the present invention is described next. The amorphous oxide that can be used in the channel layer is, for example, an oxide that contains In, Ga, and Zn at an atomic ratio satisfying In:Ga:Zn=1:1:m, wherein m is a value less than 6. The value of m may be a natural number but is not necessarily a natural number. This applies to m referred to in other sections of this description. The atomic ratio can be considered as equivalent to a molar ratio.

A transparent amorphous oxide thin film whose composition in a crystallized state is represented by InGaO3(ZnO)m (wherein m is a number less than 6) maintains a stable amorphous state at high temperatures not less than 800 C. when the value of m is less than 6. However, as the value of m increases, i.e., as the ratio of ZnO to InGaO3 increases and the composition approaches to the ZnO composition, the composition tends to be more crystallizable. Thus, the value of m is preferably less than 6 for the channel layer of the amorphous TFT. A desired amorphous oxide can be obtained by adjusting the composition of the target material (e.g., a polycrystalline material) for deposition, such as sputtering deposition or pulsed laser deposition (PLD), to comply with m<6.

In the amorphous oxide described above, Zn in the composition ratio of InGaZn may be replaced by Zn1−xMgx. The possible amount of Mg for replacement is within the range of 0<x≦1. When the replacement with Mg is conducted, the electron mobility of the oxide film decreases compared to a film containing no Mg. However, the extent of decrease is small, and the electron carrier concentration can be decreased compared to when no replacement is conducted. Thus, this is more preferable for the channel layer of a TFT. The amount of Mg for replacement is preferably more than 20% and less than 85% (0.2<x<0.85 in term of x) and more preferably 0.5<x<0.85.

The amorphous oxide may be appropriately selected from In oxides, InxZn1−x oxides (0.2≦x≦1), InxSn1−x oxides (0.8≦x≦1), and Inx(Zn, Sn)1−x oxides (0.15≦x≦1). The ratio of Zn to Sn in the Inx(Zn, Sn)1−x oxides may be appropriately selected. Namely, an Inx(Zn, Sn)1−x oxide can be described as Inx(ZnySn1−y)1−x oxide, and y is in the range of 1 to 0. For an In oxide containing neither Zn nor Sn, In may be partly replaced by Ga. In this case, the oxide can be described as an InxGa1−x oxide (0≦x≦1).

(Method for Producing Amorphous Oxide)

The amorphous oxide used in the present invention can be prepared by a vapor phase deposition technique under the conditions indicated in the individual examples below. For example, in order to obtain an InGaZn amorphous oxide, deposition is conducted by a vapor phase method such as a sputtering (SP) method, a pulsed laser deposition (PLD) method, or an electron beam deposition method while using a polycrystalline sinter represented by InGaO3(ZnO)m as the target. From the standpoint of mass productivity, the sputtering method is most suitable.

During the formation of an In2O3 or InZnO amorphous oxide film or the like, oxygen radicals may be added to the atmosphere. Oxygen radicals may be added through an oxygen radical generator. When there is need to increase the electron carrier concentration after the film formation, the film is heated in a reducing atmosphere to increase the electron carrier concentration. The resulting amorphous oxide film with a different electron carrier concentration was analyzed to determine the dependency of the electron mobility on the electron carrier concentration, and the electron mobility increased with the electron carrier concentration.

(Substrate)

The substrate for forming the TFT of the present invention may be a glass substrate, a plastic substrate, a plastic film, or the like. Moreover, as described below in EXAMPLES, the amorphous oxide of the present invention can be formed into a film at room temperature. Thus, a TFT can be formed on a flexible material such as a PET film. Moreover, the above-mentioned amorphous oxide may be appropriately selected to prepare a TFT from a material that is transparent in visible light not less than 400 nm or infrared light.

(Gate Insulating Film)

The gate insulating film of the TFT of the present invention is preferably a gate insulating film composed of Al2O3, Y2O3, HfO2, or a mixed crystal compound containing at least two of these compounds. When there is a defect at the interface between the gate insulating thin film and the channel layer thin film, the electron mobility decreases and hysteresis occurs in the transistor characteristics. Moreover, leak current greatly differs according to the type of the gate insulating film. Therefore, a gate insulating film suitable for the channel layer must be selected.

Use of an Al2O3 film can decrease the leak current. Use of an Y2O3 film can reduce the hysteresis. Use of a high dielectric constant HfO2 film can increase the field effect mobility. By using a film composed of a mixed crystal of these compounds, a TFT having small leak current and hysteresis and large field effect mobility can be produced. the process for forming the gate insulating film and the process for forming the channel layer can be conducted at room temperature; thus, a TFT of a staggered or inverted staggered structure can be formed.

(Transistor)

When a field effect transistor includes a channel layer composed of an amorphous oxide film having an electron carrier concentration of less than 1018/cm3, a source terminal, a drain terminal, and a gate terminal disposed on the gate insulating film, the current between the source and drain terminals can be adjusted to about 10−7 A when a voltage of about 5V is applied between the source and drain terminals without application of a gate voltage. The theoretical lower limit of the electron carrier concentration is 105/cm3 or less assuming that the electrons in the valence band are thermally excited. The actual possibility is that the lower limit is about 1012/cm3.

When Al2O3, Y2O3, or HfO2 alone or a mixed crystal compound containing at least two of these compounds is used in the gate insulating layer, the leak voltage between the source gate terminals and the leak voltage between the drain and gate terminals can be adjusted to about 10−7 A, and a normally off transistor can be realized.

The electron mobility of the oxide crystals increases as the overlap of the s orbits of the metal ion increases. The oxide crystals of Zn, In, and Sn having large atomic numbers exhibit high electron mobility of 0.1 to 200 cm2/(Vsec). Since ionic bonds are formed between oxygen and metal ions in an oxide, electron mobility substantially comparable to that in a crystallized state can be exhibited in an amorphous state in which there is no directionality of chemical bonding, the structure is random, and the directions of the bonding are nonuniform. In contrast, by replacing Zn, In, and Sn each with an element having a smaller atomic number, the electron mobility can be decreased. Thus, by using the amorphous oxide described above, the electron mobility can be controlled within the range of about 0.01 cm2/(Vsec) to 20 cm2/(Vsec).

In a typical compound, the electron mobility decreases as the carrier concentration increases due to the dispersion between the carriers. In contrast, the amorphous oxide of the present invention exhibits increased electron mobility with the increasing electron carrier concentration. The physical principle that lies behind this phenomenon is not clearly identified.

Once a voltage is applied to the gate terminal, electrons are injected into the amorphous oxide channel layer, and current flows between the source and drain terminals, thereby allowing the part between the source and drain terminals to enter an ON state. According to the amorphous oxide film of the present invention, since the electron mobility increases with the electron carrier concentration, the current that flows when the transistor is turned ON can be further increased. In other words, the saturation current and the on/off ratio can be further increased. When the amorphous oxide film having high electron mobility is used as the channel layer of a TFT, the saturation current can be increased and the switching rate of the TFT can be increased, thereby achieving high-speed operation.

For example, when the electron mobility is about 0.01 cm2/(Vsec), the material can be used in a channel layer of a TFT for driving a liquid crystal display element. By using an amorphous oxide film having an electron mobility of about 0.1 cm2/(Vsec), a TFT that has performance comparable or superior to the TFT using an amorphous silicon film and that can drive a display element for moving images can be produced.

In order to realize a TFT that requires large current, e.g., for driving a current-driven organic light-emitting diode, the electron mobility is preferably more than 1 cm2/(Vsec). Note than when the amorphous oxide of the present invention that exhibits degenerate conduction is used in the channel layer, the current that flows at a high carrier concentration, i.e., the saturation current of the transistor, shows decreased dependency on temperature, and a TFT with superior temperature characteristics can be realized.

EXAMPLES Example 1 Preparation of Amorphous InGaZnO Thin Film by PLD Method

A film was formed in a PLD device shown in FIG. 7. In the drawing, reference numeral 701 denotes a rotary pump (RP), 702 denotes a turbo molecular pump (TMP), 703 denotes a preparation chamber, 704 denotes en electron gun for RHEED, 705 denotes a substrate holder for rotating and vertically moving the substrate, 706 denotes a laser entrance window, 707 denotes a substrate, 708 denotes a target, 709 denotes a radical source, 710 denotes a gas inlet, 711 denotes a target holder for rotating and vertically moving the target, 712 denotes a by-pass line, 713 denotes a main line, 714 denotes a turbo molecular pump (TMP), 715 denotes a rotary pump (RP), 716 denotes a titanium getter pump, and 717 denotes a shutter. In the drawing, 718 denotes ionization gauge (IG), 719 denotes a Pirani gauge (PG), 720 denotes a Baratron gauge (BG), and 721 denotes a deposition chamber.

An InGaZnO amorphous oxide semiconductor thin film was formed on a SiO2 glass substrate (#1737 produced by Corning) by a pulsed laser deposition method using a KrF excimer laser. As the pre-deposition treatment, the substrate was degreased with ultrasonic waves in acetone, ethanol, and ultrapure water for 5 minutes each, and then dried in air at 100 C.

An InGaO3(ZnO)4 sinter target (size: 20 mm in dia., 5 mm in thickness) was used as the polycrystalline target. This target was prepared by wet-mixing the starting materials, In2O3:Ga2O3:ZnO (each being a 4N reagent), in a solvent (ethanol), calcining (1000 C., 2 h) the resulting mixture, dry-milling the calcined mixture, and sintering the resulting mixture (1550 C., 2 h). The electrical conductivity of the target obtained was 90 (S/cm).

The ultimate vacuum of the deposition chamber was adjusted to 210−6 (Pa), and the oxygen partial pressure during the deposition was controlled to 6.5 (Pa) to form a film. The oxygen partial pressure inside the chamber 721 was 6.5 Pa, and the substrate temperature was 25 C. The distance between the target 708 and the substrate 707 for deposition was 30 (mm). The power of the KrF excimer laser entering from the entrance window 716 was in the range of 1.5 to 3 (mJ/cm2/pulse). The pulse width was 20 (nsec), the repetition frequency was 10 (Hz), and the beam spot diameter was 11 (mm square). A film was formed at a deposition rate of 7 (nm/min).

The resulting thin film was subjected to grazing incidence x-ray diffraction (thin film method, incident angle: 0.5), but no clear diffraction peak was observed. Thus, the InGaZnO thin film obtained was assumed to be amorphous. The X-ray reflectance was determined, and the pattern was analyzed. It was observed that the root mean square roughness (Rrms) of the thin film was about 0.5 nm, and the film thickness was about 120 nm. The results of the fluorescence X-ray showed that the metal composition ratio of the thin film was In:Ga:Zn=0.98:1.02:4. The electrical conductivity was less than about 10−2 S/cm. The electron carrier concentration and the electron mobility were presumably about 1016/cm3 or less and about 5 cm2/(Vsec), respectively.

Based on the analysis of the optical absorption spectrum, the energy width of the forbidden band of the amorphous thin film prepared was determined to be about 3 eV. Based on these values, it was found that the InGaZnO thin film had an amorphous phase close to the composition of the crystals of InGaO3(ZnO)4, had fewer oxygen defects, and was a flat, transparent thin film with low electrical conductivity.

Specific description is now presented with reference to FIG. 1. FIG. 1 shows a change in electron carrier concentration of the oxide formed into a film against changes in oxygen partial pressure when an InGaZnO transparent amorphous oxide thin film represented by InGaO3(ZnO)4 in an assumed crystal state is formed under the same conditions as in this EXAMPLE.

As shown in FIG. 1, the electron carrier concentration decreased to less than 1018/cm3 when the film was formed in an atmosphere at a high oxygen partial pressure of more than 4.5 Pa under the same conditions as this example. In this case, the temperature of the substrate was maintained substantially at room temperature without intentional heating. The substrate temperature is preferably less than 100 C. when a flexible plastic film is used as the substrate.

By further increasing the oxygen partial pressure, the electron carrier concentration was further decreased. For example, as shown in FIG. 1, the number of the electron carriers of the InGaO3(ZnO)4 thin film deposited at a substrate temperature of 25 C. and an oxygen partial pressure of 5 Pa decreased to 1016/cm3.

The thin film obtained had an electron mobility exceeding 1 cm2/(Vsec), as shown in FIG. 2. However, according to the pulsed laser deposition method of the present invention, the surface of the film deposited will have irregularities at an oxygen partial pressure of 6.5 Pa or more, and thus, the it is difficult to use the thin film as a channel layer of a TFT. Therefore, by using an InGaZnO transparent amorphous oxide thin film having a composition of InGaO3(ZnO)m (m is less than 6) in a crystal state prepared by a pulsed laser deposition method in an atmosphere having an oxygen partial pressure exceeding 4.5 Pa, preferably exceeding 5 Pa, but less than 6.5 Pa, a normally off transistor can be prepared.

The electron mobility of this thin film was more than 1 cm2/(Vsec), and the on/off ratio thereof was increased to over 103. As is described above, in forming an InGaZn oxide film by a PLD method under the conditions set forth in this example, the oxygen partial pressure is preferably controlled to not less than 4.5 Pa but less than 6.5 Pa. Whether an electron carrier concentration of 1018/cm3 is realized depends on the conditions of the oxygen partial pressure, the configuration of the deposition device, the materials for deposition, the composition, and the like.

Example 2 Formation of Amorphous InGaO3(ZnO) and InGaO3(ZnO)4 Oxide Films by PLD Method

InZnGaO amorphous oxide films were deposited on glass substrates (#1737 produced by Corning) by using polycrystalline sinters represented by InGaO3(ZnO) and InGaO3(ZnO)4 as the targets by a PLD method using KrF excimer laser. The same PLD deposition device as shown in EXAMPLE 1 was used, and the deposition was conducted under the same conditions. The substrate temperature during the deposition was 25 C.

Each film obtained thereby was subjected to grazing incidence x-ray diffraction (thin film method, incident angle: 0.5) for the film surface. No clear diffraction peak was detected. The InZnGaO films prepared from the two targets were both amorphous.

The InZnGaO amorphous oxide films on the glass substrates were each analyzed to determine the x-ray reflectance. Analysis of the pattern found that the root mean average roughness (Rrms) of the thin film was about 0.5 mm and that the thickness was about 120 nm. Fluorescence x-ray analysis (XRF) showed that the ratio of the metal atoms of the film obtained from the target composed of the polycrystalline sinter represented by InGaO3(ZnO) was In:Ga:Zn=1.1:1.1:0.9 and that the ratio of the metal atoms of the film obtained from the target composed of the polycrystalline sinter represented by InGaO3(ZnO)4 was In:Ga:Zn=0.98:1.02:4.

The electron carrier concentration of the amorphous oxide film obtained from the target composed of the polycrystalline sinter represented by InGaO3(ZnO)4 was measured while changing the oxygen partial pressure of the atmosphere during the deposition. The results are shown in FIG. 1. By forming the film in the atmosphere having an oxygen partial pressure exceeding 4.5 Pa, the electron carrier concentration could be decreased to less than 1018/cm3. In this case, the temperature of the substrate was maintained substantially at room temperature without intentional heating. When the oxygen partial pressure was less than 6.5 Pa, the surface of the amorphous oxide film obtained was flat.

When the oxygen partial pressure was 5 Pa, the electron carrier concentration and the electrical conductivity of the amorphous oxide film obtained from the target composed of the polycrystalline sinter represented by InGaO3(ZnO)4 were 1016/cm3 and 10−2 S/cm, respectively. The electron mobility was presumably about 5 cm2/(Vsec). Based on the analysis of the optical absorption spectrum, the energy width of the forbidden band of the amorphous thin film prepared was determined to be about 3 eV. The electron carrier concentration could be further decreased as the oxygen partial pressure was increased from 5 Pa.

As shown in FIG. 1, the InZnGaO amorphous oxide film deposited at a substrate temperature of 25 C. and an oxygen partial pressure of 6 Pa exhibited a decreased electron carrier concentration of 81015/cm3 (electrical conductivity: about 810−3 S/cm). The resulting film was assumed to have an electron mobility of more than 1 cm2/(Vsec). However, according to the PLD method, irregularities were formed in the surface of the film deposited at an oxygen partial pressure of 6.5 Pa or more, and thus it was difficult to use the film as the channel layer of the TFT.

The relationship between the electron carrier concentration and the electron mobility of the InZnGaO amorphous oxide film prepared from the target composed of the polycrystalline sinter represented by InGaO3(ZnO)4 at different oxygen partial pressures was investigated. The results are shown in Table 2. When the electron carrier concentration increased from 1016/cm3 to 1020/cm3, the electron mobility increased from about 3 cm2/(Vsec) to about 11 cm2/(Vsec). The same tendency was observed for the amorphous oxide film prepared from the target composed of the polycrystalline sinter represented by InGaO3(ZnO).

An InZnGaO amorphous oxide film formed on a polyethylene terephthalate (PET) film having a thickness of 200 μm instead of the glass substrate also showed similar characteristics.

Example 3 Formation of InZnGaO Amorphous Oxide Film by SP Method

Formation of a film by a high-frequency SP method using argon gas as the atmosphere gas is described. The SP method was conducted using the device shown in FIG. 8. In the drawing, reference numeral 807 denotes a substrate for deposition, 808 denotes a target, 805 denotes a substrate holder equipped with a cooling mechanism, 814 denotes a turbo molecular pump, 815 denotes a rotary pump, 817 denotes a shutter, 818 denotes an ionization gauge, 819 denotes a Pirani gauge, 821 denotes a deposition chamber, and 830 denotes a gate valve. A SiO2 glass substrate (#1737 produced by Corning) was used as the substrate 807 for deposition. As the pre-deposition treatment, the substrate was degreased with ultrasonic waves in acetone, ethanol, and ultrapure water for 5 minutes each, and then dried in air at 100 C.

An InGaO3(ZnO)4 polycrystalline sinter (size: 20 mm in dia., 5 mm in thickness) was used as the target material. The sinter was prepared by wet-mixing the starting materials, In2O3:Ga2O3:ZnO (each being a 4N reagent), in a solvent (ethanol), calcining (1000 C., 2 h) the resulting mixture, dry-milling the calcined mixture, and sintering the resulting mixture (1550 C., 2 h). The target 808 had an electrical conductivity of 90 (S/cm) and was in a semi-insulating state.

The ultimate vacuum inside the deposition chamber 821 was 110−4 (Pa). The total pressure of the oxygen gas and the argon gas during the deposition was controlled at a predetermined value within the range of 4 to 0.110−1 (Pa), and the oxygen partial pressure was changed in the range of 10−3 to 210−1 (Pa) by changing the partial pressure ratio of the argon gas and oxygen. The substrate temperature was room temperature, and the distance between the target 808 and the substrate 807 for deposition was 30 (mm). The current injected was RF 180 W, and the deposition rate was 10 (nm/min).

The resulting film was subjected to grazing incidence x-ray diffraction (thin film method, incident angle=0.5) for the film surface, but no clear diffraction peak was observed. Thus, the InZnGaO thin film obtained was proved to be amorphous. The X-ray reflectance was determined, and the pattern was analyzed. It was observed that the root mean square roughness (Rrms) of the thin film was about 0.5 nm, and the film thickness was about 120 nm. The results of the fluorescence X-ray showed that the metal composition ratio of the thin film was In:Ga:Zn=0.98:1.02:4.

The electrical conductivity of the amorphous oxide film obtained by changing the oxygen partial pressure in the atmosphere during the deposition was measured. The results are shown in FIG. 3. As shown in FIG. 3, the electrical conductivity could be decreased to less than 10 S/cm by forming the film in an atmosphere at a high oxygen partial pressure exceeding 310−2 Pa.

By further increasing the oxygen partial pressure, the number of electron carriers could be decreased. For example, as shown in FIG. 3, the electrical conductivity of an InGaO3(ZnO)4 thin film deposited at a substrate temperature of 25 C. and an oxygen partial pressure of 10−1 Pa was decreased to about 10−10 S/cm. An InGaO3(ZnO)4 thin film deposited at an oxygen partial pressure exceeding 10−1 Pa had excessively high electrical resistance and thus the electrical conductivity thereof could not be measured. However, extrapolation was conducted for the value observed from a film having a high electron carrier concentration, and the electron mobility was assumed to be about 1 cm2/(Vsec).

In short, a normally off transistor having an on/off ratio exceeding 103 could be made by using a transparent amorphous oxide thin film which was composed of InGaZnO prepared by a sputter deposition method in argon gas atmosphere at an oxygen partial pressure more than 310−2 Pa, preferably more than 510−1 Pa, and which was represented by InGaO3(ZnO)4 (m is a natural number less than 6) in a crystallized state.

When the device and starting materials set forth in this example are used, the oxygen partial pressure during the sputter deposition is, for example, in the range of 310−2 Pa to 510−1 Pa. The electron mobility of the thin films prepared by the pulsed laser deposition method and the sputtering method increases with the number of the conduction electrons, as shown in FIG. 2.

As described above, by controlling the oxygen partial pressure, oxygen defects can be reduced, and therefore the electron carrier concentration can be reduced. Unlike in the polycrystalline state, in the amorphous state, there is essentially no grain interface; therefore, an amorphous thin film with high electron mobility can be obtained. Note that when a polyethylene terephthalate (PET) film having a thickness of 200 μm was used instead of the glass substrate, the resulting InGaO3(ZnO)4 amorphous oxide thin film exhibited similar characteristics.

Example 4 Formation of InZnGaMgO Amorphous Oxide Film by PLD Method

Formation of an InGaO3(Zn1−xMgxO)4 film (0<x<1) on a glass substrate by a PLD method is described. The same deposition device shown in FIG. 7 was used as the deposition device. A SiO2 glass substrate (#1737 produced by Corning) was prepared as the substrate for deposition. As the pre-deposition treatment, the substrate was degreased with ultrasonic waves in acetone, ethanol, and ultrapure water for 5 minutes each, and then dried in air at 100 C.

An InGa(Zn1−xMgxO)4 (0<x<1) sinter (size: 20 mm in dia., 5 mm in thickness) was used as the target. The target was prepared by wet-mixing the starting materials, In2O3:Ga2O3:ZnO:MgO (each being a 4N reagent), in a solvent (ethanol), calcining (1000 C., 2 h) the resulting mixture, dry-milling the calcined mixture, and sintering the resulting mixture (1550 C., 2 h).

The ultimate vacuum inside the deposition chamber was 210−6 (Pa), and the oxygen partial pressure during the deposition was 0.8 (Pa). The substrate temperature was room temperature (25 C.), and the distance between the target and the substrate for deposition was 30 (mm). The power of the KrF excimer laser was 1.5 (mJ/cm2/pulse), the pulse width was 20 (nsec), the repetition frequency was 10 (Hz), and the beam spot diameter was 11 (mm square). The deposition rate was 7 (nm/min).

The resulting film was subjected to grazing incidence x-ray diffraction (thin film method, incident angle: 0.5) for the film surface, but no clear diffraction peak was observed. Thus, the InZnGaMgO thin film obtained was proved to be amorphous. The surface of the resulting film was flat.

The dependency on the value x of the electrical conductivity, electron carrier concentration, and electron mobility of InZnGaMgO amorphous oxide films deposited in atmosphere at an oxygen partial pressure of 0.8 Pa was investigated by using targets of different x values. Note that a high-resistance amorphous InGaO3(Zn1−xMgxO)m film could be obtained at an oxygen partial pressure of less than 1 Pa as long as the polycrystalline InGaO3(Zn1−xMgxO)m (m is a natural number less than 6; 0<x≦1) was used as the target.

The results are shown in FIG. 4. The results showed that the electron carrier concentration of an amorphous oxide film deposited by a PLD method in an atmosphere at an oxygen partial pressure of 0.8 Pa could be reduced to less than 1018/cm3 when the value x was more than 0.4. The electron mobility of the amorphous oxide film with x exceeding 0.4 was more than 1 cm2/(Vsec). As shown in FIG. 4, when a target in which Zn was substituted with 80 at % Mg was used, the electron carrier concentration of the film obtained by the pulsed laser deposition method in an atmosphere at an oxygen partial pressure of 0.8 Pa could be reduced to less than 1016/cm3.

Although the electron mobility of these films is low compared to that of Mg-free films, the degree of decrease is small, while the electron mobility at room temperature is about 5 cm2/(Vsec), i.e., higher than that of amorphous silicon by one order of magnitude. When deposition is conducted under the same conditions, the electrical conductivity and the electron mobility both decrease with an increase in Mg content. Thus, the Mg content is preferably more than 20 at % but less than 85 at % (0.2<x<0.85 in terms of x), and more preferably 0.5<x<0.85.

An InGaO3(Zn1−xMgxO)4 (0<x<1) amorphous oxide film formed on a polyethylene terephthalate (PET) film having a thickness of 200 μm instead of the glass substrate also showed similar characteristics.

Example 5 Formation of In2O3 Amorphous Oxide Film by PLD

Formation of an indium oxide film is now described. The deposition device shown in FIG. 7 was used as the deposition device. A SiO2 glass substrate (#1737 produced by Corning) was prepared as the substrate for deposition. As the pre-deposition treatment, the substrate was degreased with ultrasonic waves in acetone, ethanol, and ultrapure water for 5 minutes each, and then dried in air at 100 C.

An In2O3 sinter (size: 20 mm in dia., 5 mm in thickness) was used as the target. The target was prepared by calcining the starting material In2O3 (a 4N reagent) (1000 C., 2 h), dry milling the calcined material, and sintering the resulting material (1550 C., 2 h).

The ultimate vacuum inside the deposition chamber was 210−6 (Pa), and the oxygen partial pressure during the deposition was 5 (Pa). The steam partial pressure was 0.1 (Pa), and 200 W was applied to the oxygen radical generator to produce oxygen radicals. The substrate temperature was room temperature. The distance between the target and the substrate for deposition was 40 (mm). The power of the KrF excimer laser was 0.5 (mJ/cm2/pulse), the pulse width was 20 (nsec), the repetition frequency was 10 (Hz), and the beam spot diameter was 11 (mm square). The deposition rate was 3 (nm/min).

The resulting film was subjected to grazing incidence x-ray diffraction (thin film method, incident angle: 0.5) for the film surface, but no clear diffraction peak was observed. Thus, the InO thin film obtained was proved to be amorphous. The film thickness was 80 nm. The electron carrier concentration and the electron mobility of the InO amorphous oxide film obtained were 51017/cm3 and about 7 cm2/(Vsec), respectively.

Example 6 Formation of InSnO Amorphous Oxide Film by PLD

Deposition of an InSnO amorphous oxide film having a thickness of 200 μm by a PLD method is described. A SiO2 glass substrate (#1737 produced by Corning) was prepared as the substrate for deposition. As the pre-deposition treatment, the substrate was degreased with ultrasonic waves in acetone, ethanol, and ultrapure water for 5 minutes each, and then dried in air at 100 C.

An In2O3SnO2 sinter (size: 20 mm in dia., 5 mm in thickness) was prepared as the target by wet-mixing the starting materials, In2O3SnO2 (a 4N reagent), in a solvent (ethanol), calcining the resulting mixture (1000 C., 2 h), dry milling the calcined mixture, and sintering the resulting mixture (1550 C., 2 h). The composition of the target was (In0.9Sn0.1)2O3.1 polycrystal.

The ultimate vacuum inside the deposition chamber was 210−6 (Pa), the oxygen partial pressure during the deposition was 5 (Pa), and the nitrogen partial pressure was 0.1 (Pa). Then 200 W is applied to the oxygen radical generator to produce oxygen radicals. The substrate temperature during the deposition was room temperature. The distance between the target and the substrate for deposition was 30 (mm). The power of the KrF excimer laser was 1.5 (mJ/cm2/pulse), the pulse width was 20 (nsec), the repetition frequency was 10 (Hz), and the beam spot diameter was 11 (mm square).

The deposition rate was 6 (nm/min). The resulting film was subjected to grazing incidence x-ray diffraction (thin film method, incident angle: 0.5) for the film surface, but no clear diffraction peak was observed. Thus, the InSnO thin film obtained was proved to be amorphous. The electron carrier concentration and the electron mobility of the InSnO amorphous oxide film obtained were 81017/cm3 and about 5 cm2/(Vsec), respectively. The film thickness was 100 nm.

Example 7 Formation of InGaO Amorphous Oxide Film by PLD Method

Deposition of an indium gallium oxide is described next. A SiO2 glass substrate (#1737 produced by Corning) was prepared as the substrate for deposition. As the pre-deposition treatment, the substrate was degreased with ultrasonic waves in acetone, ethanol, and ultrapure water for 5 minutes each, and then dried in air at 100 C.

A (In2O3)1−x(Ga2O3)x (x=0 to 1) sinter was prepared as the target (size: 20 mm in dia., 5 mm in thickness). For example, when x=0.1, the target was an (In0.9Ga0.1)2O3 polycrystalline sinter. This target was obtained by wet-mixing the starting materials, In2O3Ga2O3 (4N reagent), in a solvent (ethanol), calcining the resulting mixture (1000 C., 2 h), dry-milling the calcined mixture, and sintering the resulting mixture (1550 C., 2 h).

The ultimate vacuum inside the deposition chamber was 210−6 (Pa), and the oxygen partial pressure during the deposition was 1 (Pa). The substrate temperature during the deposition was room temperature. The distance between the target and the substrate for deposition was 30 (mm). The power of the KrF excimer laser was 1.5 (mJ/cm2/pulse), the pulse width was 20 (nsec), the repetition frequency was 10 (Hz), and the beam spot diameter was 11 (mm square). The deposition rate was 6 (nm/min).

The resulting film was subjected to grazing incidence x-ray diffraction (thin film method, incident angle: 0.5) for the film surface, but no clear diffraction peak was observed. Thus, the InGaO thin film obtained was proved to be amorphous. The film thickness was 120 nm. The electron carrier concentration and the electron mobility of the InGaO amorphous oxide film obtained were 81016/cm3 and about 1 cm2/(Vsec), respectively.

Example 8 Preparation of TFT Element (Glass Substrate) Using InZnGaO Amorphous Oxide Film

A top-gate TFT element shown in FIG. 5 was prepared. First, an InZnGaO amorphous film 120 nm in thickness for use as a channel layer (2) was formed on a glass substrate (1) by a method of preparing the InGaZnO amorphous oxide film according to EXAMPLE 1 at an oxygen partial pressure of 5 Pa while using a polycrystalline sinter represented by InGaO3(ZnO)4 as the target.

An InGaZnO amorphous film having high electrical conductivity and a gold film each 30 nm in thickness were deposited on the InGaZnO amorphous film by a PLD method while controlling the oxygen partial pressure inside the chamber to less than 1 Pa, and a drain terminal (5) and a source terminal (6) were formed by a photolithographic method and a lift-off method.

Lastly, an Y2O3 film (thickness: 90 nm, relative dielectric constant: about 15, leak current density: 10−3 A/cm2 upon application of 0.5 MV/cm) for use as a gate insulating film (3) was formed by an electron beam deposition method, and gold was deposited on the Y2O3 film. A gate terminal (4) was formed by a photolithographic method and a lift-off method. The channel length was 50 μm and the channel width was 200 μm.

(Evaluation of Characteristics of TFT Element)

FIG. 6 shows the current-voltage characteristic of the TFT element measured at room temperature. Since the drain current IDS increased with the drain voltage VDS, the channel was found to be of an n-conductivity type. This is consistent with the fact that the amorphous InGaZnO oxide film is an n-type conductor. IDS was saturated (pinch-off) at about VDS=6 V, which was a typical behavior for semiconductor transistors. The gain characteristic was determined, and the threshold value of the gate voltage VGS when VDS=4 V was applied was about −0.5 V. Upon application of VGs=6 V and VDS=10 V, current of IDS=1.010−5 A flowed. This is because carriers were induced in the InGaZnO amorphous semiconductor thin film, i.e., an insulator, due to the gate bias. The on/off ratio of the transistor exceeded 103. The field effect mobility was determined from the output characteristics. As a result, a field effect mobility of about 7 cm2(Vs)−1 was obtained in the saturation region.

The same measurements were carried out on the element while irradiating the element with visible light, but no change in transistor characteristics was observed. Note that the film can be used as a channel layer of a TFT by controlling the electron carrier concentration of the amorphous oxide to less than 1018/cm3. An electron carrier concentration of 1017/cm3 or less was more preferable, and an electron carrier density of 1016/cm3 or less was yet more preferable.

According to this example, a tin film transistor having a channel layer with an increased electron carrier concentration, a high electrical resistance, and high electron mobility can be realized. The amorphous oxide described above exhibited excellent characteristics such as increased electron mobility with increasing electron carrier concentration and degenerate conduction.

In this example, the thin film transistor is formed on a glass substrate; however, since the film formation can be conducted at room temperature, a substrate such as a plastic board or a film can be used. Moreover, the amorphous oxide obtained in this example hardly absorbs visible light, and thus a transparent flexible TFT can be realized.

Example 9 Preparation of TFT Element Using InZnGaO Amorphous Oxide Film

A top-gate TFT element shown in FIG. 5 was prepared. In particular, an InZnGaO amorphous oxide film 120 nm in thickness for use as a channel layer (2) was formed on a polyethylene terephthalate (PET) film (1) by a deposition method of EXAMPLE 2 in an atmosphere at an oxygen partial pressure of 5 Pa using a polycrystalline sinter represented by InGaO3(ZnO) as the target.

An InZnGaO amorphous oxide film having high electrical conductivity and a gold film each 30 nm in thickness were deposited on the InZnGaO amorphous oxide film by the PLD method at an oxygen partial pressure inside the chamber of less than 1 Pa, and a drain terminal (5) and a source terminal (6) were formed by a photolithographic method and a lift-off method.

Lastly, a gate insulating film (3) was formed by an electron beam deposition method and gold is deposited thereon. A gate terminal (4) was then formed by a photolithographic method and a lift-off method. The channel length was 50 μm and the channel width was 200 μm. Three types of TFTs with the above-described structure were prepared using Y2O3 (thickness: 140 nm), Al2O3 (thickness: 130 nm) and HfO2 (thickness: 140 nm), respectively.

(Evaluation of Characteristics of TFT Element)

The current-voltage characteristic of the TFT element measured at room temperature was similar to one shown in FIG. 6. Namely, since the drain current IDS increased with the drain voltage VDS, the channel was found to be of an n-conductivity type. This is consistent with the fact that the amorphous InGaZnO amorphous oxide film is an n-type conductor. IDS was saturated (pinch-off) at VDS=about 6 V, which was a typical behavior for semiconductor transistors. When VGS=6 V and VDS=10 V, current of Ids=110−5 A flowed. This is because carriers were induced in the InGaZnO amorphous oxide thin film, i.e., an insulator, due to the gate bias. The on/off ratio of the transistor exceeded 103. The field effect mobility was determined from the output characteristics. As a result, a field effect mobility of about 7 cm2(Vs)−1 was obtained in the saturation region.

The element formed on the PET film was inflected at a radius of curvature of 30 mm, and the same transistor characteristic was measured. No change in transistor characteristic was observed.

The TFT including the gate insulating film made from the Al2O3 film also showed similar transistor characteristics to those shown in FIG. 6. When VGS=6 V and VDS=0, current of Ids=10−8 A flowed, and when VDS=10 V, current of Ids=5.010−6 A flowed. The on/off ratio of the transistor exceeded 102. The field effect mobility was determined from the output characteristics. As a result, a field effect mobility of about 2 cm2(Vs)−1 was obtained in the saturation region.

The TFT including the gate insulating film made from the HfO2 film also showed similar transistor characteristics to those shown in FIG. 6. When Vg=0 V, current of Ids=10−8 A flowed, and when Vg=10 V, current of Ids=1.010−6 A flowed. The on/off ratio of the transistor exceeded 102. The field effect mobility was determined from the output characteristics. As a result, a field effect mobility of about 10 cm2(Vs)−1 was obtained in the saturation region.

Example 10 Preparation of TFT Element Using In2O3 Amorphous Oxide Film by PLD Method

A top-gate TFT element shown in FIG. 5 was prepared. First, an In2O3 amorphous oxide film 80 nm in thickness for use as a channel layer (2) was formed on a polyethylene terephthalate (PET) film (1) by the deposition method of EXAMPLE 5.

An In2O3 amorphous oxide film having high electrical conductivity and a gold layer each 30 nm in thickness were formed on this In2O3 amorphous oxide film by the PLD method at an oxygen partial pressure inside the chamber of less than 1 Pa while applying zero voltage to the oxygen radical generator. A drain terminal (5) and a source terminal (6) were then formed by a photolithographic method and a lift-off method.

Lastly, an Y2O3 film for use as a gate insulating film (3) was formed by an electron beam deposition method, and gold was deposited on the Y2O3 film. A gate terminal (4) was formed by a photolithographic method and a lift-off method.

(Evaluation of Characteristics of TFT Element)

The current-voltage characteristics of the TFT element formed on the PET film were measured at room temperature. Since the drain current IDS increased with the drain voltage VDS, the channel was found to be of an n-conductivity type. This is consistent with the fact that the amorphous InO amorphous oxide film is an n-type conductor. IDS was saturated (pinch-off) at VDS=about 5 V, which was a typical behavior for semiconductor transistors. When VGS=6 V and VDS=0, current of Ids=210−8 A flowed, and when VDS=10 V current of Ids=2.010−6 A flowed. This is because carriers were induced in the InO amorphous oxide thin film, i.e., an insulator, due to the gate bias. The on/off ratio of the transistor was about 102. The field effect mobility was determined from the output characteristics. As a result, a field effect mobility of about 10 cm2(Vs)−1 was obtained in the saturation region.

The TFT element formed on a glass substrate showed similar characteristics. The element formed on the PET film was inflected at a radius of curvature of 30 mm, and the same transistor characteristics were measured. No change in transistor characteristics was observed.

Example 11 Preparation of TFT Element Using InSnO Amorphous Oxide Film by PLD Method

A top gate TFT element shown in FIG. 5 was prepared. In particular, an InSnO amorphous oxide film 100 nm in thickness for use as a channel layer (2) was formed on a polyethylene terephthalate (PET) film (1) by a deposition method of EXAMPLE 6.

An InSnO amorphous oxide film having high electrical conductivity and a gold film each 30 nm in thickness were deposited on this InSnO amorphous oxide film by the PLD method at an oxygen partial pressure inside the chamber of less than 1 Pa while applying zero voltage to the oxygen radical generator. A drain terminal (5) and a source terminal (6) were formed by a photolithographic method and a lift-off method.

Lastly, an Y2O3 film for use as a gate insulating film (3) was formed by an electron beam deposition method and gold was deposited thereon. A gate terminal (4) was then formed by a photolithographic method and a lift-off method.

(Evaluation of Characteristics of TFT Element)

The current-voltage characteristic of the TFT element formed on the PET film was measured at room temperature. Since the drain current IDS increased with the drain voltage VDS, the channel was found to be of an n-conductivity type. This is consistent with the fact that the amorphous InSnO amorphous oxide film is an n-type conductor. IDS was saturated (pinch-off) at VDS=about 6 V, which was a typical behavior for semiconductor transistors. When VGS=6 V and VDS=0 V, current of Ids=510−8 A flowed, and when VDS=10 V, current of Ids=5.010−5 A flowed. This is because carriers were induced in the InSnO amorphous oxide thin film, i.e., an insulator, due to the gate bias. The on/off ratio of the transistor was about 103. The field effect mobility was determined from the output characteristics. As a result, a field effect mobility of about 5 cm2(Vs)−1 was obtained in the saturation region.

The TFT element formed on a glass substrate showed similar characteristics. The element formed on the PET film was inflected at a radius of curvature of 30 mm, and the same transistor characteristics were measured. No change in transistor characteristics was observed.

Example 12 Preparation of TFT Element Using InGaO Amorphous Oxide Film by PLD Method

A top gate TFT element shown in FIG. 5 was prepared. In particular, an InGaO amorphous oxide film 120 nm in thickness for use as a channel layer (2) was formed on a polyethylene terephthalate (PET) film (1) by the deposition method of EXAMPLE 7.

An InGaO amorphous oxide film having high electrical conductivity and a gold film each 30 nm in thickness were formed on this InGaO amorphous oxide film by the PLD method at an oxygen partial pressure inside the chamber of less than 1 Pa while applying zero voltage to the oxygen radical generator. A drain terminal (5) and a source terminal (6) were formed by a photolithographic method and a lift-off method.

Lastly, an Y2O3 film for use as a gate insulating film (3) was formed by an electron beam deposition method and gold was deposited thereon. A gate terminal (4) was then formed by a photolithographic method and a lift-off method.

(Evaluation of Characteristics of TFT Element)

The current-voltage characteristic of the TFT element formed on the PET film was measured at room temperature. Since the drain current IDS increased with the drain voltage VDS, the channel was found to be of an n-conductivity type. This is consistent with the fact that the amorphous InGaO amorphous oxide film is an n-type conductor. IDS was saturated (pinch-off) at VDS=about 6 V, which was a typical behavior for semiconductor transistors. When VGS=6V and VDS=0 V, current of Ids=110−8 A flowed, and when VDS=10 V, current of Ids=1.010−6 A flowed. This corresponds to the induction of electron carriers inside the insulator, InGaO amorphous oxide film by the gate bias. The on/off ratio of the transistor was about 102. The field effect mobility was determined from the output characteristics. As a result, a field effect mobility of about 0.8 cm2(Vs)−1 was obtained in the saturation region.

The TFT element formed on a glass substrate showed similar characteristics. The element formed on the PET film was inflected at a radius of curvature of 30 mm, and the same transistor characteristics were measured. No change in transistor characteristics was observed.

It should be noted that, as described in EXAMPLES above, the film can be used as a channel layer of a TFT by controlling the electron carrier concentration to less than 1018/cm3. The electron carrier concentration is more preferably 1017/cm3 or less and yet more preferably 1016/cm3 or less.

INDUSTRIAL APPLICABILITY

The amorphous oxide of the present invention can be used in semiconductor devices such as thin film transistors. The thin film transistors can be used as switching elements of LCDs and organic EL displays and are also widely applicable to see-through-type displays, IC cards, ID tags, etc.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7955916 *May 15, 2008Jun 7, 2011Sony CorporationMethod for making semiconductor apparatus and semiconductor apparatus obtained by the method, method for making thin film transistor substrate and thin film transistor substrate obtained by the method, and method for making display apparatus and display apparatus obtained by the method
US7961006Jan 25, 2010Jun 14, 2011Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and electronic apparatus having the same
US8115201Aug 5, 2009Feb 14, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device with oxide semiconductor formed within
US8144389Jan 7, 2011Mar 27, 2012Semiconductor Energy Laboratory Co., Ltd.Electronic paper
US8174021Jan 28, 2010May 8, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method of manufacturing the semiconductor device
US8193031Nov 17, 2010Jun 5, 2012Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8207025Apr 1, 2011Jun 26, 2012Semiconductor Energy Laboratory Co., Ltd.Manufacturing method of semiconductor device
US8212252Sep 15, 2010Jul 3, 2012Canon Kabushiki KaishaLight-emitting device
US8222647Apr 26, 2011Jul 17, 2012Sony CorporationMethod for making semiconductor apparatus and semiconductor apparatus obtained by the method, method for making thin film transistor substrate and thin film transistor substrate obtained by the method, and method for making display apparatus and display apparatus obtained by the method
US8247813Dec 1, 2010Aug 21, 2012Semiconductor Energy Laboratory Co., Ltd.Display device and electronic device including the same
US8259463Apr 22, 2010Sep 4, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and display device
US8268642Sep 29, 2010Sep 18, 2012Semiconductor Energy Laboratory Co., Ltd.Method for removing electricity and method for manufacturing semiconductor device
US8274079Jan 26, 2011Sep 25, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device comprising oxide semiconductor and method for manufacturing the same
US8278162Apr 27, 2010Oct 2, 2012Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8278657Feb 4, 2010Oct 2, 2012Semiconductor Energy Laboratory Co., Ltd.Transistor, semiconductor device including the transistor, and manufacturing method of the transistor and the semiconductor device
US8283662Nov 15, 2010Oct 9, 2012Semiconductor Energy Laboratory Co., Ltd.Memory device
US8293661Dec 2, 2010Oct 23, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8314637Dec 13, 2010Nov 20, 2012Semiconductor Energy Laboratory Co., Ltd.Non-volatile latch circuit and logic circuit, and semiconductor device using the same
US8319218Oct 4, 2010Nov 27, 2012Semiconductor Energy Laboratory Co., Ltd.Oxide semiconductor layer and semiconductor device
US8319267Nov 10, 2010Nov 27, 2012Semiconductor Energy Laboratory Co., Ltd.Device including nonvolatile memory element
US8319300Apr 9, 2010Nov 27, 2012Samsung Electronics Co., Ltd.Solution composition for forming oxide thin film and electronic device including the oxide thin film
US8324626Aug 5, 2010Dec 4, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8330156Dec 22, 2009Dec 11, 2012Semiconductor Energy Laboratory Co., Ltd.Thin film transistor with a plurality of oxide clusters over the gate insulating layer
US8334719Nov 10, 2010Dec 18, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor device having function of thyristor
US8344788Jan 20, 2011Jan 1, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8362538Dec 22, 2010Jan 29, 2013Semiconductor Energy Laboratory Co., Ltd.Memory device, semiconductor device, and electronic device
US8373203Nov 24, 2010Feb 12, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8377744Dec 1, 2010Feb 19, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8378403Jun 27, 2011Feb 19, 2013Semiconductor Energy LaboratorySemiconductor device
US8389417Nov 12, 2010Mar 5, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8395931Jan 19, 2011Mar 12, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device and driving method thereof
US8395938Jan 10, 2011Mar 12, 2013Semiconductor Energy Laboratory Co., Ltd.Non-volatile semiconductor memory device equipped with an oxide semiconductor writing transistor having a small off-state current
US8410002Nov 12, 2010Apr 2, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8411480Apr 8, 2011Apr 2, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8415667Dec 1, 2010Apr 9, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8416622May 16, 2011Apr 9, 2013Semiconductor Energy Laboratory Co., Ltd.Driving method of a semiconductor device with an inverted period having a negative potential applied to a gate of an oxide semiconductor transistor
US8420553Dec 2, 2010Apr 16, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8421069Oct 14, 2010Apr 16, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8426853Dec 3, 2010Apr 23, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8427417Sep 8, 2010Apr 23, 2013Semiconductor Energy Laboratory Co., Ltd.Driver circuit, display device including the driver circuit, and electronic device including the display device
US8431449Apr 1, 2011Apr 30, 2013Semiconductor Energy Laboratory Co., Ltd.Manufacturing method of semiconductor device
US8432502Dec 1, 2010Apr 30, 2013Semiconductor Energy Laboratory Co., Ltd.Display device and electronic device including the same
US8432730Jul 19, 2011Apr 30, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for driving the same
US8436350Jan 25, 2010May 7, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device using an oxide semiconductor with a plurality of metal clusters
US8441009Dec 21, 2010May 14, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8441047Apr 5, 2010May 14, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8441841Feb 15, 2011May 14, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and driving method of semiconductor device
US8446171Apr 23, 2012May 21, 2013Semiconductor Energy Laboratory Co., Ltd.Signal processing unit
US8450123Aug 19, 2011May 28, 2013Semiconductor Energy Laboratory Co., Ltd.Oxygen diffusion evaluation method of oxide film stacked body
US8451651Feb 15, 2011May 28, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8456396Dec 23, 2010Jun 4, 2013Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device
US8461595Apr 24, 2012Jun 11, 2013Sony CorporationMethod for making semiconductor apparatus and semiconductor apparatus obtained by the method, method for making thin film transistor substrate and thin film transistor substrate obtained by the method, and method for making display apparatus and display apparatus obtained by the method
US8461630Nov 18, 2011Jun 11, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8462100Nov 30, 2011Jun 11, 2013Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device
US8466740Oct 27, 2011Jun 18, 2013Semiconductor Energy Laboratory Co., Ltd.Receiving circuit, LSI chip, and storage medium
US8467232Jul 29, 2011Jun 18, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8467825Nov 16, 2010Jun 18, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8470649Dec 1, 2010Jun 25, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8471596Jun 6, 2011Jun 25, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and electronic apparatus having the same
US8476927Apr 23, 2012Jul 2, 2013Semiconductor Energy Laboratory Co., Ltd.Programmable logic device
US8477158Feb 15, 2011Jul 2, 2013Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device and electronic device
US8481377Feb 14, 2011Jul 9, 2013Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing a semiconductor device with impurity doped oxide semiconductor
US8482005Dec 1, 2010Jul 9, 2013Semiconductor Energy Laboratory Co., Ltd.Display device comprising an oxide semiconductor layer
US8487844Aug 18, 2011Jul 16, 2013Semiconductor Energy Laboratory Co., Ltd.EL display device and electronic device including the same
US8492759Dec 6, 2010Jul 23, 2013Semiconductor Energy Laboratory Co., Ltd.Field effect transistor
US8492853Jan 26, 2011Jul 23, 2013Semiconductor Energy Laboratory Co., Ltd.Field effect transistor having conductor electrode in contact with semiconductor layer
US8502222Feb 23, 2012Aug 6, 2013Canon Kabushiki KaishaAmorphous oxide semiconductor, semiconductor device, thin film transistor and display device
US8508256May 15, 2012Aug 13, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor integrated circuit
US8518740Jul 1, 2010Aug 27, 2013Semiconductor Energy Laboratory Co., Ltd.Manufacturing method of semiconductor device
US8518755Feb 17, 2011Aug 27, 2013Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8518761Apr 13, 2011Aug 27, 2013Semiconductor Energy Laboratory Co., Ltd.Deposition method and method for manufacturing semiconductor device
US8519387Jul 19, 2011Aug 27, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing
US8525304May 18, 2011Sep 3, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8529802Feb 12, 2010Sep 10, 2013Samsung Electronics Co., Ltd.Solution composition and method of forming thin film and method of manufacturing thin film transistor using the solution composition
US8530944Mar 1, 2011Sep 10, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8531870Jul 28, 2011Sep 10, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and driving method of semiconductor device
US8537600Jul 27, 2011Sep 17, 2013Semiconductor Energy Laboratory Co., Ltd.Low off-state leakage current semiconductor memory device
US8541782Nov 5, 2010Sep 24, 2013Semiconductor Energy Laboratory Co., Ltd.Method for evaluating oxide semiconductor and method for manufacturing semiconductor device
US8541846Feb 14, 2011Sep 24, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8546161Sep 7, 2011Oct 1, 2013Semiconductor Energy Laboratory Co., Ltd.Manufacturing method of thin film transistor and liquid crystal display device
US8546181Sep 25, 2012Oct 1, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8546892Oct 17, 2011Oct 1, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing semiconductor device
US8551810Mar 25, 2011Oct 8, 2013Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8552712Apr 13, 2011Oct 8, 2013Semiconductor Energy Laboratory Co., Ltd.Current measurement method, inspection method of semiconductor device, semiconductor device, and test element group
US8553447Sep 20, 2011Oct 8, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device and driving method thereof
US8564331May 2, 2012Oct 22, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8569753May 27, 2011Oct 29, 2013Semiconductor Energy Laboratory Co., Ltd.Storage device comprising semiconductor elements
US8570065Apr 3, 2012Oct 29, 2013Semiconductor Energy Laboratory Co., Ltd.Programmable LSI
US8570456Dec 27, 2010Oct 29, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device, display device and electronic device equipped with the semiconductor device
US8575610Aug 19, 2011Nov 5, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for driving the same
US8575678Jan 4, 2012Nov 5, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device with floating gate
US8587342May 15, 2012Nov 19, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor integrated circuit
US8592879Aug 30, 2011Nov 26, 2013Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8593856Jan 18, 2011Nov 26, 2013Semiconductor Energy Laboratory Co., Ltd.Signal processing circuit and method for driving the same
US8593857Feb 10, 2011Nov 26, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device, driving method thereof, and method for manufacturing semiconductor device
US8593858Aug 26, 2011Nov 26, 2013Semiconductor Energy Laboratory Co., Ltd.Driving method of semiconductor device
US8597992Feb 14, 2011Dec 3, 2013Semiconductor Energy Laboratory Co., Ltd.Transistor and manufacturing method of the same
US8599604Oct 19, 2011Dec 3, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device and driving method thereof
US8603841Aug 24, 2011Dec 10, 2013Semiconductor Energy Laboratory Co., Ltd.Manufacturing methods of semiconductor device and light-emitting display device
US8604472Nov 1, 2012Dec 10, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8604473Apr 18, 2013Dec 10, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8605073Feb 14, 2011Dec 10, 2013Semiconductor Energy Laboratory Co., Ltd.Pulse signal output circuit and shift register
US8605477Apr 25, 2011Dec 10, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device
US8610180Jun 7, 2011Dec 17, 2013Semiconductor Energy Laboratory Co., Ltd.Gas sensor and method for manufacturing the gas sensor
US8610482May 22, 2012Dec 17, 2013Semiconductor Energy Laboratory Co., Ltd.Trimming circuit and method for driving trimming circuit
US8610696Feb 4, 2011Dec 17, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and display device including the same
US8618586Jan 18, 2013Dec 31, 2013Semiconductor Energy Laboratory Co., Ltd.Memory device, semiconductor device, and electronic device
US8624239May 11, 2011Jan 7, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8624245Dec 1, 2010Jan 7, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8624305 *Nov 3, 2010Jan 7, 2014Sony CorporationSolid-state imaging device and method for manufacturing solid-state imaging device, and electronic device
US8625085Feb 29, 2012Jan 7, 2014Semiconductor Energy Laboratory Co., Ltd.Defect evaluation method for semiconductor
US8637348Jul 24, 2013Jan 28, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8637354Jun 14, 2011Jan 28, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8637802Jun 7, 2011Jan 28, 2014Semiconductor Energy Laboratory Co., Ltd.Photosensor, semiconductor device including photosensor, and light measurement method using photosensor
US8637861Nov 18, 2010Jan 28, 2014Semiconductor Energy Laboratory Co., Ltd.Transistor having oxide semiconductor with electrode facing its side surface
US8637865Feb 15, 2013Jan 28, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8638322Jan 26, 2011Jan 28, 2014Semiconductor Energy Laboratory Co., Ltd.Display device
US8643008Jul 12, 2012Feb 4, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8643586May 29, 2013Feb 4, 2014Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device
US8644048Sep 12, 2011Feb 4, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8654582Mar 8, 2013Feb 18, 2014Semiconductor Energy Laboratory Co., Ltd.Non-volatile semiconductor memory device equipped with an oxide semiconductor writing transistor having a small off-state current
US8658448Dec 1, 2011Feb 25, 2014Semiconductor Energy Laboratory Co., Ltd.Display device and method for manufacturing the same
US8658546Oct 12, 2012Feb 25, 2014Samsung Electronics Co., Ltd.Solution composition for forming oxide thin film and electronic device including the oxide thin film
US8659015Feb 23, 2012Feb 25, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8659957Feb 23, 2012Feb 25, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method of driving semiconductor device
US8664118Jul 2, 2012Mar 4, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8673426Jun 21, 2012Mar 18, 2014Semiconductor Energy Laboratory Co., Ltd.Driver circuit, method of manufacturing the driver circuit, and display device including the driver circuit
US8674738May 17, 2012Mar 18, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8675382Jan 31, 2012Mar 18, 2014Semiconductor Energy Laboratory Co., Ltd.Programmable LSI
US8679986Sep 24, 2011Mar 25, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing display device
US8680521Jan 30, 2013Mar 25, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8680679Mar 1, 2011Mar 25, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing semiconductor device
US8681533Apr 23, 2012Mar 25, 2014Semiconductor Energy Laboratory Co., Ltd.Memory circuit, signal processing circuit, and electronic device
US8685787Aug 17, 2011Apr 1, 2014Semiconductor Energy Laboratory Co., Ltd.Manufacturing method of semiconductor device
US8686416Mar 15, 2012Apr 1, 2014Semiconductor Energy Laboratory Co., Ltd.Oxide semiconductor film and semiconductor device
US8686426Jul 23, 2012Apr 1, 2014Samsung Display Co., Ltd.Thin film transistor having plural semiconductive oxides, thin film transistor array panel and display device including the same, and manufacturing method of thin film transistor
US8686750May 5, 2011Apr 1, 2014Semiconductor Energy Laboratory Co., Ltd.Method for evaluating semiconductor device
US8687416Dec 23, 2011Apr 1, 2014Semiconductor Energy Laboratory Co., Ltd.Signal processing circuit comprising buffer memory device
US8692243Apr 11, 2011Apr 8, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8698155Jun 24, 2013Apr 15, 2014Semiconductor Energy Laboratory Co., Ltd.Display device
US8698219Jan 11, 2011Apr 15, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device having a low off state current and high repeatability
US8704222Jul 8, 2013Apr 22, 2014Semiconductor Energy Laboratory Co., Ltd.Field effect transistor
US8704806Dec 6, 2010Apr 22, 2014Semiconductor Energy Laboratory Co., Ltd.Display device and driving method thereof
US8705267Nov 30, 2011Apr 22, 2014Semiconductor Energy Laboratory Co., Ltd.Integrated circuit, method for driving the same, and semiconductor device
US8709688Apr 23, 2013Apr 29, 2014Fuji Xerox Co., Ltd.Oxide material, electrophotographic photoreceptor, process cartridge, and image forming device
US8709864Nov 3, 2010Apr 29, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor element and semiconductor device, and deposition apparatus
US8709889May 15, 2012Apr 29, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device and manufacturing method thereof
US8709920Feb 16, 2012Apr 29, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8711314Mar 11, 2013Apr 29, 2014Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device
US8716073Jul 12, 2012May 6, 2014Semiconductor Energy Laboratory Co., Ltd.Method for processing oxide semiconductor film and method for manufacturing semiconductor device
US8716646Oct 4, 2011May 6, 2014Semiconductor Energy Laboratory Co., Ltd.Photoelectric conversion device and method for operating the same
US8716712Feb 15, 2011May 6, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8723173Sep 22, 2010May 13, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device, power circuit, and manufacturing method of semiconductor device
US8723175Jan 24, 2013May 13, 2014Idemitsu Kosan Co., Ltd.Oxide semiconductor field effect transistor and method for manufacturing the same
US8728860Aug 17, 2011May 20, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8729613Oct 11, 2012May 20, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8729938May 16, 2012May 20, 2014Semiconductor Energy Laboratory Co., Ltd.Phase locked loop and semiconductor device using the same
US8730730Jan 24, 2012May 20, 2014Semiconductor Energy Laboratory Co., Ltd.Temporary storage circuit, storage device, and signal processing circuit
US8736371May 10, 2012May 27, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device having transistors each of which includes an oxide semiconductor
US8742804May 17, 2012Jun 3, 2014Semiconductor Energy Laboratory Co., Ltd.Divider circuit and semiconductor device using the same
US8743307Jun 7, 2012Jun 3, 2014Samsung Display Co, Ltd.Display device
US8743590Apr 5, 2012Jun 3, 2014Semiconductor Energy Laboratory Co., Ltd.Memory device and semiconductor device using the same
US8748223Sep 23, 2010Jun 10, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing oxide semiconductor film and method for manufacturing semiconductor device
US8748224Aug 4, 2011Jun 10, 2014Semiconductor Energy Laboratory Co., Ltd.Manufacturing method of semiconductor device
US8748240Dec 13, 2012Jun 10, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8748886Jun 26, 2012Jun 10, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing semiconductor device
US8748889Jul 22, 2011Jun 10, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method of manufacturing the same
US8750023Sep 12, 2011Jun 10, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device
US8753548Dec 7, 2009Jun 17, 2014Idemitsu Kosan Co., Ltd.Composite oxide sintered body and sputtering target comprising same
US8753928Mar 7, 2012Jun 17, 2014Semiconductor Energy Laboratory Co., Ltd.Method of manufacturing semiconductor device
US8754839Nov 1, 2011Jun 17, 2014Semiconductor Energy Laboratory Co., Ltd.Method for driving display device
US8759820Aug 9, 2011Jun 24, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8760903Mar 5, 2012Jun 24, 2014Semiconductor Energy Laboratory Co., Ltd.Storage circuit
US8766250Nov 19, 2010Jul 1, 2014Semiconductor Energy Laboratory Co., Ltd.Thin film transistor
US8766252Jun 23, 2011Jul 1, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device comprising an oxide semiconductor
US8766329Jun 14, 2012Jul 1, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and a method for manufacturing the same
US8766608Oct 21, 2010Jul 1, 2014Semiconductor Energy Laboratory Co., Ltd.Voltage regulator circuit and semiconductor device, including transistor using oxide semiconductor
US8767442Sep 12, 2011Jul 1, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device including memory cell array
US8767443Sep 19, 2011Jul 1, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device and method for inspecting the same
US8772094Nov 20, 2012Jul 8, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8772160Feb 17, 2011Jul 8, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor element and deposition apparatus
US8772769Oct 5, 2012Jul 8, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing semiconductor device
US8772771Apr 25, 2013Jul 8, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8773906Jan 24, 2012Jul 8, 2014Semiconductor Energy Laboratory Co., Ltd.Memory circuit
US8779418Oct 7, 2010Jul 15, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8779433May 25, 2011Jul 15, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8779479Feb 28, 2013Jul 15, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US8780307Mar 1, 2012Jul 15, 2014Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device and electronic device
US8785258Dec 11, 2012Jul 22, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device
US8785923Apr 17, 2012Jul 22, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8785926Apr 11, 2013Jul 22, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8785933Feb 23, 2012Jul 22, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8785990Jan 4, 2012Jul 22, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device including first and second or drain electrodes and manufacturing method thereof
US8787083Feb 3, 2012Jul 22, 2014Semiconductor Energy Laboratory Co., Ltd.Memory circuit
US8787102May 17, 2012Jul 22, 2014Semiconductor Energy Laboratory Co., Ltd.Memory device and signal processing circuit
US8791516May 16, 2012Jul 29, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8796681Sep 4, 2012Aug 5, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8796682Nov 1, 2012Aug 5, 2014Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing a semiconductor device
US8797487Sep 7, 2011Aug 5, 2014Semiconductor Energy Laboratory Co., Ltd.Transistor, liquid crystal display device, and manufacturing method thereof
US8797785Nov 10, 2011Aug 5, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8797788Apr 18, 2012Aug 5, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8802493Sep 6, 2012Aug 12, 2014Semiconductor Energy Laboratory Co., Ltd.Manufacturing method of oxide semiconductor device
US8803143Oct 12, 2011Aug 12, 2014Semiconductor Energy Laboratory Co., Ltd.Thin film transistor including buffer layers with high resistivity
US8803154Feb 10, 2014Aug 12, 2014Semiconductor Energy Laboratory Co., Ltd.Display device and method for manufacturing the same
US8803164Jul 29, 2011Aug 12, 2014Semiconductor Energy Laboratory Co., Ltd.Solid-state image sensing device and semiconductor display device
US8803559Apr 23, 2012Aug 12, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor circuit having switching element, capacitor, and operational amplifier circuit
US8804405Jun 11, 2012Aug 12, 2014Semiconductor Energy Laboratory Co., Ltd.Memory device and semiconductor device
US8809154Dec 20, 2012Aug 19, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8809853Mar 1, 2012Aug 19, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US8809928Apr 25, 2012Aug 19, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device, memory device, and method for manufacturing the semiconductor device
US8811064Jan 6, 2012Aug 19, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor memory device including multilayer wiring layer
US20110115003 *Nov 3, 2010May 19, 2011Sony CorporationSolid-state imaging device and method for manufacturing solid-state imaging device, and electronic device
US20120049901 *Aug 25, 2011Mar 1, 2012Semiconductor Energy Laboratory Co., Ltd.Semiconductor Device and Method of Driving Semiconductor Device
US20120140523 *Nov 30, 2011Jun 7, 2012Semiconductor Energy Laboratory Co., Ltd.Dc-dc converter and manufacturing method thereof
US20120248451 *Dec 22, 2010Oct 4, 2012Yuji SoneField-effect transistor, semiconductor memory display element, image display device, and system
US20130270616 *Apr 9, 2013Oct 17, 2013Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US20140048798 *Aug 19, 2013Feb 20, 2014Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method the same
Classifications
U.S. Classification438/104, 257/E21.461, 204/192.1
International ClassificationG02F1/1345, H01L21/36, G02F1/1368, C23C14/34, H01L21/77, H01L21/84, H01L21/363, H01L29/786
Cooperative ClassificationC23C14/28, H01L21/02631, H01L29/78693, C23C14/086, H01L29/7869, H01L21/02554, H01L21/02565, H01L29/78696, H01L27/1225, C23C14/3414, C23C14/0021
European ClassificationC23C14/08L, C23C14/00F, C23C14/28, C23C14/34B2, H01L27/12T, H01L29/786K2, H01L29/786S, H01L29/786K, H01L21/02K4C1D, H01L21/02K4E3P, H01L21/02K4C1C1