Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20090317045 A1
Publication typeApplication
Application numberUS 11/699,716
Publication dateDec 24, 2009
Filing dateJan 29, 2007
Priority dateNov 17, 2003
Also published asCA2546072A1, CA2546072C, CN1922525A, CN100589003C, CN101923195A, CN101923195B, EP1692556A2, EP1914578A2, EP1914578A3, EP1914578B1, EP2264499A2, EP2264499A3, EP2264499B1, EP2264500A2, EP2264500A3, EP2264501A2, EP2264501A3, EP2264501B1, US6983095, US7088899, US7103255, US7146089, US7171102, US7200317, US7646958, US8005335, US8224145, US20050105873, US20050129379, US20050232567, US20060008232, US20060008233, US20060008234, US20100226615, US20110262100, WO2005050277A2, WO2005050277A3
Publication number11699716, 699716, US 2009/0317045 A1, US 2009/317045 A1, US 20090317045 A1, US 20090317045A1, US 2009317045 A1, US 2009317045A1, US-A1-20090317045, US-A1-2009317045, US2009/0317045A1, US2009/317045A1, US20090317045 A1, US20090317045A1, US2009317045 A1, US2009317045A1
InventorsRandy Reagan, Jeff Gniadek, Tom Parsons, Michael Noonan
Original AssigneeFiber Optic Network Solutions Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Fiber distribution hub with half-loop pigtail storage
US 20090317045 A1
Abstract
A method for configuring an enclosure used in a communications network is described. The method may include providing a group of pigtails. The method may further include routing the group of pigtails circumferentially around a subscriber termination field, where the group of pigtails is associated with an optical splitter module used to convey optical signals to a destination, and where the routing is performed in a manner that does not substantially obstruct access to at least one of a group of subscriber terminations that are associated with the subscriber termination field.
Images(16)
Previous page
Next page
Claims(11)
1-9. (canceled)
10. A fiber distribution hub comprising:
an enclosure;
a subscriber termination field mounted within the enclosure, the subscriber termination field having a first end and a second end vertically spaced from the first end, the subscriber termination field also having a side extending between the first and second ends, the subscriber termination field including a plurality of subscriber terminations, each of the subscriber terminations being associated with a subscriber;
an optical splitter module mounted within the enclosure; and
a plurality of pigtails having connectorized ends, the pigtails being optically coupled to the optical splitter module and being routed laterally along at least part of the first end of the subscriber termination field and along the side of the subscriber termination field from the first end of the subscriber termination field past the second end of the subscriber termination field, and being looped back around past the second end to couple the connectorized ends to the subscriber terminations of the subscriber termination field.
11. The fiber distribution hub of claim 10, further comprising:
a transition member arranged within the enclosure adjacent the first end of the subscriber termination field, the transition member configured to receive a ribbon cable and to output the pigtails.
12. The fiber distribution hub of claim 11, wherein the optical splitter module is configured to output the ribbon cable, wherein signals received at the optical splitter module are transmitted to the ribbon cable.
13. The fiber distribution hub of claim 12, wherein the optical splitter module is mounted adjacent the second end of the subscriber termination field.
14. The fiber distribution hub of claim 10, wherein the enclosure defines a vertical channel, and wherein the pigtails are routed from the first end of the subscriber termination field, through the vertical channel, and past the second end of the subscriber termination field.
15. The fiber distribution hub of claim 10, wherein the pigtails are looped back around in a half-loop configuration.
16. The fiber distribution hub of claim 10, wherein each pigtail has a length, and the length of each pigtail is equal to the length of each other pigtail.
17. The fiber distribution hub of claim 11, wherein each pigtail has a length sufficient to extend from the transition member to any of the subscriber terminations in the subscriber termination field.
18. The fiber distribution hub of claim 11, further comprising:
a splice tray arranged within the enclosure, the splice tray arranged on an opposite end of the subscriber termination field from the transition member.
19. A fiber distribution hub comprising:
an enclosure;
an optical splitter mounted within the enclosure;
a subscriber termination field mounted within the enclosure, the subscriber termination field having a top end, a bottom end and two sides, the subscriber termination field including a plurality of subscriber terminations; and
a plurality of pigtails having connectorized ends, the pigtails being routed laterally above at least a portion of the top end of the subscriber termination field, downwardly along at least a portion of one of the sides of the subscriber termination field, and looped upwardly to couple the connectorized ends to the subscriber terminations of the subscriber termination field.
Description
    CROSS REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This application is a continuation of U.S. patent application Ser. No. 11/225,099, filed on Sep. 14, 2005, which is a divisional of U.S. patent application Ser. No. 11/155,818, filed on Jun. 20, 2005, now U.S. Pat. No. 7,088,899, which is a continuation of U.S. patent application Ser. No. 10/714,814, filed on Nov. 17, 2003, now U.S. Pat. No. 6,983,095, which applications are hereby incorporated by reference in their entireties.
  • BACKGROUND OF THE INVENTION
  • [0002]
    In Fiber-to-the Premises broadband network applications optical splitters are used to split the optical signals at various points in the network. Recent network specifications call for optical splitters to be incorporated in Fiber Distribution Hubs which are re-enterable outdoor enclosures. These enclosures allow easy re-entry for access to optical splitters allowing splitter ports to be utilized effectively and for additional splitter ports to be added on an incremental basis.
  • [0003]
    In typical applications to date, optical splitters are provided prepackaged in optical splitter module housings and are provided with splitter outputs in pigtails that extend from the module. The splitter output pigtails are typically connectorized with high performance low loss SC or LC connectors. This optical splitter cassette provides protective packaging for the optical splitter components in the housing and thus provides for easy handling for otherwise fragile splitter components. This approach allows the optical splitter modules to be added incrementally to the Fiber Distribution Hub, for example, as required.
  • [0004]
    A problem arises due to the lack of protection and organization of the connectorized ends of the splitter output pigtails. These pigtails can sometimes be left dangling in a cable trough or raceway within the enclosure. This method of leaving an exposed optical component such as a high performance connector exposed in an open area leaves it susceptible to damage. The high performance connectors, if damaged, can cause delays in service connection while connectors are repaired. Leaving connectorized splitter output pigtails dangling in a cabling trough also exposes them to dirt and debris in the cabling trough. In current network deployments, it is desirable to maintain clean optical connectors to maximize the performance of the network.
  • [0005]
    In addition, the fiber pigtails in the current art are not organized in a manner conducive to rapid service delivery. In many cases, the splitters may have sixteen or thirty-two output pigtails bundled together making it difficult to find a particular pigtail. Also the bundle of loose hanging pigtails can easily become entangled causing further delays in service delivery. The tangles can actually cause congestion and in some cases result in bend induced loss on the pigtails resulting in overall lower system performance.
  • [0006]
    To solve some of these issues, a separate storage tray or enclosure has been utilized to take up slack and/or store and protect splitter output pigtail connectorized ends. However, these auxiliary devices tend to take up additional space and often hide the pigtail in an enclosure that can cause further delays in deployment depending on how much time is required to access on the tray or enclosure. Thus, there still remains a need for a solution that does not take up additional space and that provides direct access and identification to splitter output pigtail ends.
  • [0007]
    In addition, some network applications may require equipping splitter outputs with fiber optic terminators in order to eliminate reflections caused by unterminated splitter outputs. Other methods of storing connectorized pigtails in cable troughs or auxiliary trays may make it difficult to equip splitter output ports with fiber optic terminators.
  • [0008]
    Finally, current methods tend to result in a disassociation of the splitter module from the splitter output pigtail end. This usually results because the pigtail, once deployed, gets lost in the midst of other pigtails in the fiber jumper trough. When subscribers are taken out of service, it is desirable to disconnect the splitter output and redeploy or store it for ready redeployment. It is further desirable for administrative purposes to maintain association of splitter module to splitter output pigtails so that resources are used effectively over time.
  • SUMMARY OF THE INVENTION
  • [0009]
    In accordance with an implementation, a method for configuring an enclosure used in a communications network is provided. The method may include providing a group of pigtails. The method may include routing the group of pigtails circumferentially around a subscriber termination field, where the group of pigtails is associated with an optical splitter module used to convey optical signals to a destination, and where the routing is performed in a manner that does not substantially obstruct access to at least one of a group of subscriber terminations that are associated with the subscriber termination field.
  • [0010]
    In accordance with another implementation, an optical splitter module for use in an optical communications network is provided. The optical splitter module may include an optical splitter configured to split an incoming optical signal into a group of outgoing optical signals. The splitter module may include a faceplate configured to make the group of outgoing optical signals available to a group of pigtails, where each of the group of pigtails is configured to couple a respective one of the group of optical signals to one of a group of subscriber terminations associated with a subscriber termination field. The faceplate may be configured to facilitate incremental deployment of the optical splitter module on a shelf in a manner that facilitates making optical signals from the group of optical splitter modules available to the subscriber termination field.
  • [0011]
    In accordance with yet another implementation, an enclosure for distributing optical communication signals is provided. The enclosure may include a subscriber termination field mounting area configured to support a subscriber termination field including a group of subscriber terminations, where each of the group of subscriber terminations is associated with a subscriber. The enclosure may include an optical splitter shelf configured to support a group of optical splitter modules, where each of the group of optical splitter modules has a group of pigtails that includes a transition member, and where the group of pigtails is adapted to convey optical communication signals to at least some of the group of subscriber terminations. The enclosure may include a transition member mounting area configured to support a group of transition members to facilitate circumferential routing of the group of pigtails around the subscriber termination field.
  • [0012]
    In accordance yet another implementation, a method for connecting a subscriber to an optical communications network is provided. The method may include removing a pigtail connector from a parked location associated with a receptacle. The method may include coupling the pigtail connector to a subscriber termination associated with a subscriber, where the subscriber termination is one of a group of subscriber terminations associated with a subscriber termination field. The method may include storing slack associated with the pigtail in a vertical channel within an enclosure to facilitate routing the pigtail in a manner that does not substantially interfere with others of the group of subscriber terminations.
  • [0013]
    The foregoing and other features and advantages of the systems and methods for fiber distribution and management will be apparent from the following more particular description of preferred embodiments of the system and method as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0014]
    FIG. 1 illustrates schematically a broadband access network, for example, a fiber-to-the-premises (FTTP) network using passive optical network (PON) components in accordance with a preferred embodiment of the present invention.
  • [0015]
    FIG. 2 illustrates schematically further details of an FTTP network in accordance with a preferred embodiment of the present invention.
  • [0016]
    FIG. 3 illustrates an optical splitter module in a fiber distribution network having connectorized pigtails in accordance with a preferred embodiment of the present invention.
  • [0017]
    FIG. 4A schematically illustrates the installation of the optical splitter module pigtails in accordance with a preferred embodiment of the present invention.
  • [0018]
    FIG. 4B schematically illustrates the service connection configuration of the optical splitter module in accordance with a preferred embodiment of the present invention.
  • [0019]
    FIGS. 5A and 5B schematically illustrate the installation of the optical splitter module pigtails and the service connection configuration of the optical splitter module, respectively, in a network having modules adjacent to each other in accordance with a preferred embodiment of the present invention.
  • [0020]
    FIGS. 5C and 5D schematically illustrate the service connection configurations between adjacent fiber distribution hubs in accordance with alternate preferred embodiments of the present invention.
  • [0021]
    FIG. 6 is a flow chart illustrating a method for installing and connecting optical splitter module pigtails in accordance with a preferred embodiment of the present invention.
  • [0022]
    FIGS. 7A-7E illustrate views of the fiber distribution hub in accordance with preferred embodiments of the present invention.
  • [0023]
    FIG. 8 illustrates a view of the internal components of a fiber distribution hub enclosure in accordance with a preferred embodiment of the present invention.
  • [0024]
    FIG. 9 illustrates a schematic view of a fiber distribution hub enclosure having a side-by-side equipment configuration in accordance with a preferred embodiment of the present invention.
  • [0025]
    FIG. 10 illustrates a view of the optical component modules used in a fiber distribution hub enclosure in accordance with a preferred embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0026]
    The preferred embodiments of the present invention are directed to an optical splitter module that is equipped with adapters for storing connectorized optical splitter pigtail ends. Adapters are administratively located on the optical splitter module bulkhead, for example, but not limited to, in octal count arrangements ideally suited to identify splitter ports having sixteen or thirty-two output ports. The adapters in accordance with preferred embodiments are used to store or stage the connectorized ends of the optical splitter for rapid location, identification, easy access and removal of pigtail output ends. In accordance with preferred embodiments, the optical splitter outputs extending from the bulkhead on the module are wrapped back and secured to adapters on the splitter bulkhead. The preferred embodiments also include methods for installing optical splitter modules and associated fixed length output pigtails, storing the connectorized ends of the pigtails in a position ready for deployment and then individually connecting the splitter outputs as required to connect service to subscriber terminations.
  • [0027]
    FIG. 1 illustrates schematically a broadband access network 10, for example, a Fiber-to-the-Premises (FTTP) network using passive optical network (PON) components in accordance with a preferred embodiment of the present invention. The architecture can be a point to multi-point PON construction, which utilizes 1:32 splitters at a fiber hub enclosure within the distribution area. The architecture can be fiber rich 1:1 distribution between the fiber hub and a customer's premise. The broadband services capability of the network to distribute source information include, for example, data signals (622 Mbps×155 Mbps (shared)), and video signals (860 MHz, ˜600 analog and digital channels, high definition television (HDTV), and video on demand (VOD)). Signaling is accomplished using wavelength division multiplexing (WDM) and fiber sharing. The network includes the optical network terminals 26 that are scalable, provide high bandwidth, multi-service applications that serve residences and small/medium businesses. The network 10 includes passive components that are located outside the plant and require minimal maintenance.
  • [0028]
    The broadband access network 10 includes digital subscriber plug-in line cards that have a broadband terminal adapter configured for receiving a digitally multiplexed broadband data stream and outputting a group of demultiplexed broadband data streams for the respective subscriber loops.
  • [0029]
    FIG. 2 illustrates schematically further details of an FTTP network 50 in accordance with a preferred embodiment of the present invention. In Fiber-to-the-Premises broadband network applications optical splitters 64 are used to split the optical signals at various points in the network. In FTTP networks optical splitters are typically located in both indoor and outdoor environments including a Central Office/Head End, environmentally secure cabinets, enclosures or drop terminals. In some outdoor applications, optical splitters have been deployed in tightly sealed environmental closures that are not easily re-enterable. Preferred embodiments of the present invention provide optical splitter enclosures to effectively utilize splitter ports or to incrementally deploy additional splitters as the need arises. Preferred embodiments include optical splitters incorporated in Fiber Distribution Hubs 54 which are re-enterable outdoor enclosures. These enclosures allow easy re-entry for access to optical splitters allowing splitter ports to be utilized effectively and for additional splitter ports to be added on an incremental basis.
  • [0030]
    Preferred embodiments of the present invention include optical splitters that are provided prepackaged in optical splitter module housings that are mounted in a fiber patch panels to facilitate routing of jumpers interconnected from fibers in adjacent subscriber ports to the splitter outputs. This optical splitter cassette provides protective packaging and thus easy handling for otherwise fragile splitter components. The optical splitter modules can be added incrementally to the patch panel.
  • [0031]
    FTTP broadband networks are designed to achieve low optical insertion loss in order to achieve maximum network reach from electronics having fixed power output. Each optical component and subsystem utilized in the network is optimized to provide minimum insertion loss. The optical loss budget in a preferred embodiment is approximately 23 to 25 dB with 1:32 passive splitting. The components and factors contributing to the optical loss include splitters (1:32, single or cascaded), WDMs, connectors (optical line terminal (OLT), FDF, splitters, drop, ONT), fiber attenuation (at least three wavelengths: 1310 nm, 1490 nm, 1550 nm), and splicing.
  • [0032]
    The splitter hub 54 serves at least 128 splitter ports/premises. It includes multiple distribution cables, connectorized or fused between splitter and distribution. The preferred embodiments of the present invention provide efficient fiber connection and management with easy access, and low maintenance requirements. The splitter hubs of the preferred embodiments are pole or ground mountable. The drop terminals can be with or without splitters and include various number of drops, both aerial and buried.
  • [0033]
    In preferred embodiments, optical connectors are used in the network to provide the desired flexibility however they are restricted to those points in the network where flexibility is absolutely required. Optical connectors are required to provide flexible access to optical splitter outputs. The preferred embodiments of the present invention provide connector flexibility and yet minimize optical loss using the optical splitter module with connectorized pigtails. The pigtails have standard SC or LC type connectors on the ends.
  • [0034]
    FIG. 3 illustrates an optical splitter module 100 in a fiber distribution network having connectorized pigtails in accordance with a preferred embodiment of the present invention. The module 100 includes a bulkhead faceplate 102 having storage receptacles 112. In a preferred embodiment, the optical splitter module 100 provides for a high density ribbon cabling harness 106 to protect the splitter outputs extending from the splitter module 100. The optical splitter module ribbon harness 106 is secured to the module 100 with a strain relief mechanism 104 to provide high pull strength and bend radius control. The compact nature of the ribbon harness 106 allows for higher packing density and better space utilization in the cabling trough. The module ribbon harness cabling 106 is converted to individual pigtails with connectors to allow splitter outputs to be administered and rearranged individually.
  • [0035]
    The module 100 may be equipped with either half non-functional adapters or full functioning adapters as a means for storing pigtail ends. In a preferred embodiment, the half non-functional adapters are used in applications not requiring fiber optic terminators but for storage functionality. The full functional adapters are used in applications requiring connection of fiber optic terminators to the optical splitter output port. Access to the pigtail ferrule tip may be required for attaching fiber optic terminators to eliminate undesirable reflections caused by unterminated connectors. The module 100 provides a home position from which optical splitter output pigtails can be deployed and where they can be returned to once taken out of service. This administrative use of adapters provides protection for the connectorized pigtails ends 110, maintains cleanliness of the connector ends, and enables rapid service connection and deployment.
  • [0036]
    The preferred embodiments of the present invention address configuring a fiber distribution hub with optical splitter modules having fixed length connectorized pigtails. One aspect of the preferred embodiment determines where to position the optical splitter modules relative to other fiber terminations needing access to the optical splitter ports. The preferred embodiments also addresses installing the pigtails in a configuration that requires minimal pigtail rearrangement and slack yet allowing for enough slack to reach any of the fiber terminations requiring access to splitter ports. The methods of installing optical splitter module pigtails include determining how to route the pigtails in order to provide an optimal routing scheme that does not get congested and wherein slack can be controlled within set limits of the enclosure. The methods in accordance with a preferred embodiment of the present invention include making all pigtails the same length for ease of manufacturing and ordering by the customer. Splitter modules all having the same pigtail length also allow ease of flexibility for allowing a splitter module to be installed in any available slot within the patch panel without regard to sequential order.
  • [0037]
    A preferred embodiment of the method for installing the splitter module pigtails also provides for fiber management in the enclosure so that rearrangement and churn does not congest this management. To accomplish this, the slack and any chance of blocking access because of fiber entanglement is minimized. The preferred embodiments allow for churn over time including initial pigtail storage, service connection, service disconnection and repeat storage to provide ready access to pigtails for future use. The methods of the present invention are non-blocking and non-congesting for jumpers routed into cable pathways and fiber patch panels. The method of a preferred embodiment is fully contained within the confines of the enclosure.
  • [0038]
    FIG. 4A schematically illustrates the installation of the optical splitter module pigtails in accordance with a preferred embodiment of the present invention. A preferred embodiment of the present invention includes a cabling installation method 125 including splitter modules incrementally installed on a shelf adjacent to a subscriber termination field 128. The connectorized pigtails 138 from the splitter modules 132 having fixed identical length are routed in a circumferential path 130 surrounding the subscriber termination field 128. The connectorized ends of the pigtails are stored at a position on the front of the splitter module 132 via storage receptacle 134. The method in accordance with a preferred embodiment employs a fan through placement so that the splitter module pigtails can be installed without disturbing installation of pigtails already connected to subscriber terminations. This installation method in accordance with a preferred method of the present invention also ensures that the splitter module 132 can be preconfigured with the pigtail connectors in the storage position and left in the storage position throughout the pigtail installation process.
  • [0039]
    FIG. 4B schematically illustrates a service connection configuration 150 of the optical splitter module in accordance with the preferred embodiment of the present invention shown in FIG. 4A. The preferred embodiments of the present invention, include a service connection method to connect a subscriber into service by first disconnecting an individual splitter output pigtail from the storage position and then routing the pigtail to the desired subscriber port 152. Since the pigtail harness has been preconfigured and routed circumferentially around the subscriber termination the pigtail inherently reaches any of the desired subscriber ports within the target population by simply reducing the circumferential path distance. By reducing the circumferential path the pigtail slack exhibits additional slack. The additional slack may be taken up using slack-half loops 154 in the vertical channel where the pigtails are routed. The random nature of connecting splitter output pigtails to subscriber ports may result in a family of various size half-loops 154 that are managed in the vertical channel within the confines of the cabinet.
  • [0040]
    FIGS. 5A and 5B schematically illustrate the installation of the optical splitter module pigtails and the service connection configuration of the optical splitter module, respectively, in a network having modules adjacent to each other in accordance with a preferred embodiment of the present invention. A preferred embodiment of the present invention includes a method to connect subscriber ports that are in an adjacent field but not initially contained within the circumference of the splitter pigtail harness. In this extension the splitter output pigtail is routed to the adjacent field which by virtue of a juxtaposed position has a path at the same distance to the subscriber port within the circumference. The subscriber ports in the adjacent field also are assigned randomly therefore the resultant slack is managed using a family of various size half-loops in the vertical channel 176.
  • [0041]
    FIGS. 5C and 5D schematically illustrate the service connection configurations 194, 206 of the termination and splitter fields in adjacent fiber distribution hubs in accordance with a preferred embodiment of the present invention. The pigtails 198, 208 of the left module 196, 214 are routed circumferentially clockwise while the right pigtails 204, 210 of the module 202, 216 are routed circumferentially counterclockwise in a preferred embodiment. The fiber distribution hubs in this embodiment are located adjacent to one another, each having a splitter shelf with splitter modules and a termination shelf. The counter rotating feed provide for routing of the splitter module output pigtails circumferentially around the subscriber termination fields. The pigtail slack is stored in the vertical channels 200, 212.
  • [0042]
    A preferred embodiment includes a method of removing a splitter pigtail from a subscriber port and either redeploying that output pigtail to a new subscriber or storing the pigtail back to the original storage position at the splitter module. The method is completely non-blocking and non-congesting due to the planned slack management.
  • [0043]
    FIG. 6 is a flow chart illustrating a method for installing and connecting optical splitter module pigtails in accordance with a preferred embodiment of the present invention. The method includes the step 222 of installing a splitter module with output pigtails in a patch panel position. Further, the method includes the step 224 of routing the splitter module output pigtails circumferentially around a subscriber termination field. The method includes the step 226 of connecting an individual splitter pigtail connectorized ends at splitter module storage receptacles. These storage receptacles can be initially preconditioned in the factory. The method includes a next step 228 of storing the pigtail slack in half-loops in an adjacent vertical channel. Further, the method includes the step 230 of deciding whether to connect or disconnect the service order. If a service order needs to be connected, the method includes the decision in step 232 of determining if a splitter output is available for assignment. If it is determined that the splitter output is available for assignment then the method progresses to step 242 of disengaging connectorized pigtail from the storage position. If it is determined that the splitter output is not available per step 238 then it is determined if a position is available for adding a module. If yes, then the method steps are reiterated starting back from step 222. If, however, it is determined that there is no position available then the maximum module capacity of the system has been reached.
  • [0044]
    The method also includes the option of disconnecting the service order per step 234. The step 234 includes disengaging the connectorized pigtail from the subscriber position and per step 236 routing the pigtail through an expanded circumferential path around the subscriber termination field 236.
  • [0045]
    The method further includes the step 244 of connecting the splitter pigtail to the subscriber position and the step 246 of routing the pigtail through a reduced circumferential path around the subscriber termination field. The method includes the step 248 of storing the pigtail slack in graduated half-loops in an adjacent vertical channel.
  • [0046]
    FIGS. 7A-7E illustrate views of a fiber distribution hub in accordance with a preferred embodiment of the present invention. The fiber distribution hub (FDH) in accordance with a preferred embodiment administers connections between fiber optic cables and passive optical splitters in the outside plant (OSP) environment. These enclosures are used to connect feeder and distribution cables via power splitters providing distributed service in a FTTP network application. The preferred embodiment FDH provides a vital cross-connect/interconnect interface for optical transmission signals at a location in the network where fiber hubbing, operational access and reconfiguration are important requirements. In addition the FDH is designed to accommodate a range of sizes and fiber counts and support factory installation of pigtails, fanouts and splitters.
  • [0047]
    In a preferred embodiment, the FDH enclosure is designed for front access via a two-door configuration (FIG. 7E). The FDH provides termination, splicing, interconnection and splitting in one compartment. The unit accommodates either metallic or dielectric OSP cables via sealed grommet entry. Cables are secured with standard grip clamps. The FDH provides grounding for metallic members and for the cabinet.
  • [0048]
    The enclosure provides environmental and mechanical protection for cables, splices, connectors and passive optical splitters. These heavy gauge aluminum enclosures are NEMA-4× rated and provide the necessary protection against rain, wind, dust, rodents and other environmental contaminants. At the same time, they remain lightweight for easy installation, and breathable to prevent accumulation of moisture in the unit. The aluminum construction with a heavy power coat finish also provides for corrosion resistance. The enclosure is accessible through secure doors that are locked with standard tool or pad-lock.
  • [0049]
    In accordance with preferred embodiments, the FDH is provided in pole mount or pedestal mount configurations. The same cabinet and working space is available in both pole mount (FIGS. 7A and 7B) and pedestal mount units (FIGS. 7C, 7D and 7E). Three sizes of the fiber distribution hubs are available, for example, to correspond to three different feeder counts, for example, 144, 216 and 432.
  • [0050]
    FIG. 8 illustrates a view of the internal components of a fiber distribution hub enclosure 350 in accordance with a preferred embodiment of the present invention. The FDH enclosure 350 can be configured in a number of different ways to support fiber cable termination and interconnection to passive optical splitters. The configuration illustrated in the preferred embodiment provides for a termination shelf 352, a splitter shelf and optical component modules 354 and a channel for fiber management 358.
  • [0051]
    The termination shelf 352 can be based on the standard main distribution center (MDC) enclosure line that provides complete management for fiber terminations in accordance with a preferred embodiment of the present invention. In a preferred embodiment, the termination shelf is preterminated in the factory with a stub cable containing either 144-fibers, 216-fibers or 432-fibers. This stub cable is used to connect services to distribution cables routed to residences. The distribution fibers are terminated on certified connectors. The termination shelf uses standard 12-pack or 18-pack adapter panels, for example, that have been ergonomically designed to provide easy access to fiber terminations in the field. The panels can be mounted on a hinged bulkhead to allow easy access to the rear for maintenance. The fiber jumpers are organized and protected as they transition into the fiber management section 358 of the enclosure.
  • [0052]
    The splitter shelf 354 can be based on a standard fiber patch panel that accepts standard optical component modules (OCM) holding optical splitters in accordance with a preferred embodiment of the present invention. In a preferred embodiment, the splitter cassettes are designed to simply snap into the shelf and therefore can be added incrementally as needed. The splitter shelf serves to protect and organize the input and output fibers connected to the cassettes. Splitter shelves are available in various sizes and the shelf size can be optimized for different OCM module configurations.
  • [0053]
    FIG. 9 illustrates a schematic view of a fiber distribution hub enclosure 380 having a side-by-side equipment configuration in accordance with a preferred embodiment of the present invention. There are two adjacent termination shelves 388, 390 and two adjacent splitter shelves 384, 386, separated by a central fiber management channel 382 in accordance with a preferred embodiment of the present invention.
  • [0054]
    FIG. 10 illustrates a view of the optical component modules in a fiber distribution hub enclosure in accordance with a preferred embodiment of the present invention. The FDH configuration in a preferred embodiment provides for fiber management hardware on one side of the cabinet. This allows fiber jumpers to be routed between the termination shelf and the splitter shelf. Excess slack can be managed on the side of the cabinet using slack loops.
  • [0055]
    In accordance with a preferred embodiment, OCM modules can also be equipped with pigtails to reduce the number of connections in the network. The module shown in FIG. 10 contains a 1×32 splitter with pigtails provided on the input and 32 outputs. The connectorized ends of the pigtails are stored on bulkhead adapters on the front of the module. These storage adapters provide a familiar locating scheme for spare pigtails so that connector ends can be quickly identified and connected to distribution fibers. The spacing on the adapters is the same as on standard connector panels.
  • [0056]
    In preferred embodiments, OCM modules can also be equipped with standard terminators. Modules terminated with bulkhead adapters may be equipped with terminators on the front of the module. Modules connected via pigtails and equipped with storage adapters are equipped with terminators on the rear of the panel.
  • [0057]
    The claims should not be read as limited to the described order or elements unless stated to that effect. Therefore, all embodiments that come within the scope and spirit of the following claims and equivalents thereto are claimed as the invention.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4287926 *Jun 26, 1979Sep 8, 1981Wong James K CTire traction device
US4736100 *Jul 31, 1986Apr 5, 1988Amp IncorporatedOptical loop attenuator simulating an optical system
US4747020 *May 16, 1986May 24, 1988Adc Telecommunications, Inc.Wire distribution apparatus
US4824196 *May 26, 1987Apr 25, 1989Minnesota Mining And Manufacturing CompanyOptical fiber distribution panel
US4826077 *Dec 7, 1987May 2, 1989Egy Michael JEmergency traction device for vehicles
US4861134 *Jun 29, 1988Aug 29, 1989American Telephone And Telegraph Company, At&T Bell LaboratoriesOpto-electronic and optical fiber interface arrangement
US4900123 *Aug 29, 1988Feb 13, 1990Gte Products Corporation1550 nm fiber distribution panel
US4948220 *Jun 16, 1989Aug 14, 1990Societe Anonyme De TelecommunicationsModule for distributing and connecting optical fibers
US4995688 *Jul 31, 1989Feb 26, 1991Adc Telecommunications, Inc.Optical fiber distribution frame
US5023646 *May 12, 1989Jun 11, 1991Minolta Camera Kabushiki KaishaAutomatic focus detection system
US5058983 *Jul 6, 1990Oct 22, 1991Aster CorporationFiber optic connector terminator
US5142598 *Aug 28, 1991Aug 25, 1992Porta Systems Corp.Fiber optic connector having snap ring adjustment means
US5214735 *Apr 6, 1992May 25, 1993Adc Telecommunications, Inc.Fiber optic connector retainer
US5233674 *Nov 21, 1991Aug 3, 1993Methode Electronics, Inc.Fiber optic connector with sliding tab release
US5317663 *May 20, 1993May 31, 1994Adc Telecommunications, Inc.One-piece SC adapter
US5333221 *Jun 30, 1992Jul 26, 1994The Whitaker CorporationUniversal adapter for optical connectors
US5333222 *May 14, 1993Jul 26, 1994Molex IncorporatedAdapter for interconnecting optical fiber connectors or the like
US5402515 *Mar 1, 1994Mar 28, 1995Minnesota Mining And Manufacturing CompanyFiber distribution frame system, cabinets, trays and fiber optic connector couplings
US5408557 *Apr 20, 1994Apr 18, 1995Hsu; Chung-TangFC-type optical fiber cable connector's adaptor
US5420958 *Jul 15, 1994May 30, 1995Minnesota Mining And Manufacturing CompanyOptical fiber distribution center
US5442726 *Feb 22, 1994Aug 15, 1995Hubbell IncorporatedOptical fiber storage system
US5448015 *Dec 28, 1992Sep 5, 1995Societe Anonyme Dite Alcatel CitSupport and Guide device for cables carrying elcetrical or light signals
US5497444 *May 22, 1995Mar 5, 1996Adc Telecommunications, Inc.High-density fiber distribution frame
US5511144 *Jun 13, 1994Apr 23, 1996Siecor CorporationOptical distribution frame
US5542015 *Nov 25, 1994Jul 30, 1996The Whitaker CorporationOptical fiber connector latching mechanism
US5636138 *Oct 20, 1994Jun 3, 1997Lucent Technologies Inc.Jumper cable selection and routing system
US5647043 *Oct 12, 1995Jul 8, 1997Lucent Technologies, Inc.Unipartite jack receptacle
US5708751 *Apr 24, 1996Jan 13, 1998Tii Industries, Inc.Optical fiber enclosure system
US5734776 *Aug 28, 1996Mar 31, 1998Adc Telecommunications, Inc.Outside plant cross-connect apparatus
US5764844 *Mar 6, 1995Jun 9, 1998N.V. Raychem S.A.Splice organizing apparatus
US5774612 *Jul 25, 1997Jun 30, 1998Molex IncorporatedAdapted for interconnecting optical fiber connectors
US5883995 *May 20, 1997Mar 16, 1999Adc Telecommunications, Inc.Fiber connector and adapter
US5909526 *Apr 8, 1998Jun 1, 1999Molex IncorporatedFiber optic connector assembly
US5930425 *Apr 21, 1998Jul 27, 1999Lucent Technologies Inc.High density coupling module
US5945633 *Nov 3, 1997Aug 31, 1999The Siemon CompanyRack mountable cable distribution enclosure having an angled adapter plate bracket
US5956444 *Feb 13, 1997Sep 21, 1999Amphenol CorporationRadiation absorbing shield for fiber optic systems
US6027252 *Dec 19, 1997Feb 22, 2000The Whitaker CorporationSimplified fiber optic receptacle
US6041155 *Dec 10, 1997Mar 21, 2000Lucent Technologies Inc.Universal dust cover
US6044193 *Jul 10, 1998Mar 28, 2000Siecor Operations, LlcFiber optic interconnection enclosure having a forced air system
US6061492 *Apr 9, 1997May 9, 2000Siecor CorporationApparatus and method for interconnecting fiber cables
US6079881 *Apr 8, 1998Jun 27, 2000Molex IncorporatedFiber optic connector receptacle assembly
US6188687 *Dec 30, 1997Feb 13, 2001Verizon Laboratories Inc.Broadband switch that manages traffic and method therefor
US6188825 *Apr 15, 1999Feb 13, 2001Lucent Technologies, Inc.Dust cover for protecting optical fiber sleeve housing
US6208796 *Jul 21, 1998Mar 27, 2001Adc Telecommunications, Inc.Fiber optic module
US6227717 *Dec 16, 1997May 8, 2001The Siemon CompanyDust caps for use with telecommunications adapters and connectors
US6234683 *Sep 13, 1999May 22, 2001Stratos Lightwave, Inc.Field repairable hermaphroditic connector
US6236795 *Jun 7, 1999May 22, 2001E. Walter RodgersHigh-density fiber optic cable distribution frame
US6240229 *Dec 21, 1998May 29, 2001Molex IncorporatedConnector assembly
US6256443 *Jul 20, 1999Jul 3, 2001Nippon Telegraph And Telephone CorporationOptical fiber distribution module for holding an optical fiber cord and fiber distribution system using optical fiber cords
US6271484 *Oct 5, 1998Aug 7, 2001Ishida Co., Ltd.Weighing apparatus having an automatic filter adjusting capability
US6278829 *May 5, 1999Aug 21, 2001Marconi Communications, Inc.Optical fiber routing and support apparatus
US6347888 *Nov 23, 1998Feb 19, 2002Adc Telecommunications, Inc.Fiber optic adapter, including hybrid connector system
US6356697 *Nov 23, 1999Mar 12, 2002Sumitomo Electric Lightwave Corp.Optical fiber cable distribution shelf with pivotably mounted trays
US6363200 *Oct 13, 2000Mar 26, 2002Adc Telecommunications, Inc.Outside plant fiber distribution apparatus and method
US6385381 *Sep 21, 1999May 7, 2002Lucent Technologies Inc.Fiber optic interconnection combination closure
US6411767 *Nov 11, 1999Jun 25, 2002Corning Cable Systems LlcOptical fiber interconnection closures
US6424781 *Oct 5, 1999Jul 23, 2002Adc Telecommunications, Inc.Optical fiber distribution frame with pivoting connector panels
US6425694 *Sep 18, 2000Jul 30, 2002Molex IncorporatedFiber optic receptacle with protective shutter
US6431762 *Apr 10, 2000Aug 13, 2002Seiko Instruments Inc.Optical connector adapter
US6434313 *Oct 31, 2000Aug 13, 2002Corning Cable Systems LlcFiber optic closure with couplers and splice tray
US6452925 *Jun 26, 2000Sep 17, 2002Verizon Services Corp.Universal access multimedia data network
US6453033 *Jul 23, 2001Sep 17, 2002Verizon Services Corp.Automated system and method for subscriber line service control
US6535682 *May 2, 2000Mar 18, 2003Adc Telecommunications, Inc.Optical fiber distribution frame with connector modules
US6539147 *Dec 26, 2000Mar 25, 2003Bellsouth Intellectual Property CorporationConnectorized inside fiber optic drop
US6539160 *Dec 27, 2000Mar 25, 2003Corning Cable Systems LlcOptical fiber splicing and connecting assembly with coupler cassette
US6542688 *Oct 27, 2000Apr 1, 2003Corning Cable Systems LlcOptical fiber splicing and connecting assembly
US6554485 *Sep 11, 2000Apr 29, 2003Corning Cable Systems LlcTranslucent dust cap and associated method for testing the continuity of an optical fiber jumper
US6577595 *Nov 12, 1999Jun 10, 2003Genuity Inc.Systems and methods for transporting associated data signals over a network
US6597670 *Sep 10, 1999Jul 22, 2003Verizon Laboratories Inc.Method and system for distributing subscriber services using wireless bidirectional broadband loops
US6614980 *Dec 10, 2002Sep 2, 2003Bellsouth Intellectual Property CorporationConnectorized outside fiber optic drop
US6621975 *Nov 30, 2001Sep 16, 2003Corning Cable Systems LlcDistribution terminal for network access point
US6623170 *Jun 20, 2001Sep 23, 2003Fci Americas Technology, Inc.Angular mounted optical connector adaptor frame
US6625375 *Oct 29, 2002Sep 23, 2003Bellsouth Intellectual Property CorporationFiber optic interface device
US6755574 *Jun 17, 2002Jun 29, 2004Fujikura Ltd. And Nippon Telegraph And Telephone CorporationOptical connector
US6760530 *Jun 9, 2000Jul 6, 2004Cisco Technology, Inc.Fiber cable connector clip
US6760531 *Nov 20, 2000Jul 6, 2004Adc Telecommunications, Inc.Optical fiber distribution frame with outside plant enclosure
US6779738 *Mar 20, 2003Aug 24, 2004Gregory L. StannardVehicle traction mat
US6792190 *Jun 1, 2001Sep 14, 2004Telect, Inc.High density fiber optic splitter/connector tray system
US6792191 *Apr 22, 2003Sep 14, 2004Corning Cable Systems LlcLocal convergence cabinet
US6950593 *Feb 10, 2004Sep 27, 2005Wave7 Optics, Inc.Cable splice enclosure
US6983095 *Nov 17, 2003Jan 3, 2006Fiber Optic Network Solutions CorporationSystems and methods for managing optical fibers and components within an enclosure in an optical communications network
US7086539 *Oct 21, 2002Aug 8, 2006Adc Telecommunications, Inc.High density panel with rotating tray
US7088899 *Jun 20, 2005Aug 8, 2006Fiber Optic Networks Solutions CorporationConfiguring pigtails in a fiber distribution hub
US7198409 *Jun 30, 2003Apr 3, 2007Adc Telecommunications, Inc.Fiber optic connector holder and method
US7200317 *Nov 17, 2004Apr 3, 2007Fiber Optic Network Solutions CorporationSystems and methods for optical fiber distribution and management
US7218827 *Jun 18, 2004May 15, 2007Adc Telecommunications, Inc.Multi-position fiber optic connector holder and method
US7233731 *Jul 2, 2003Jun 19, 2007Adc Telecommunications, Inc.Telecommunications connection cabinet
US7407330 *Mar 27, 2007Aug 5, 2008Adc Telecommunications, Inc.Fiber optic connector holder and method
US20020034290 *Mar 20, 2001Mar 21, 2002Verizon Services Corp.Methods and apparatus for facilitating the interaction between multiple telephone and computer users
US20030165315 *Nov 26, 2002Sep 4, 2003Adc Telecommunications, Inc.Cable management panel with sliding drawer
US20030174996 *Mar 15, 2002Sep 18, 2003Fiber Optic Network Solutions, Inc.Optical fiber enclosure system using integrated optical connector and coupler assembly
US20040165852 *Nov 3, 2003Aug 26, 2004Erwin Charles MatthewOptical fiber management system and method and fiber bender thereof
US20050002633 *Jul 2, 2003Jan 6, 2005Solheid James J.Telecommunications connection cabinet
US20080019655 *Aug 8, 2007Jan 24, 2008Adc Telecommunications, Inc.Fiber Optic Splitter
US20080025684 *Aug 8, 2007Jan 31, 2008Adc Telecommunications, Inc.Fiber Optic Splitter
US20090074372 *Nov 24, 2008Mar 19, 2009Adc Telecommunications, Inc.Telecommunications connection cabinet
US20090087157 *Aug 4, 2008Apr 2, 2009Adc Telecommunications, Inc.Fiber optic connector holder and method
USRE7489 *May 5, 1876Feb 6, 1877y rnesne assignments to the YALE LOCK MANUFACTURINGImprovement in anodes for electroplating with nickel
USRE34955 *Feb 26, 1993May 30, 1995Adc Telecommunications, Inc.Optical fiber distribution frame
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7964793Apr 29, 2010Jun 21, 2011Adc Telecommunications, Inc.Fiber distribution hub with dual swing frames
US8357851May 24, 2011Jan 22, 2013Adc Telecommunications, Inc.Fiber distribution hub with dual swing frames
US8577198Jul 20, 2010Nov 5, 2013Adc Telecommunications, Inc.Fiber distribution hub with swing frame and wrap-around doors
US9335504Nov 5, 2013May 10, 2016Commscope Technologies LlcFiber distribution hub with swing frame and wrap-around doors
US20090002783 *Jun 26, 2008Jan 1, 2009Canon Kabushiki KaishaImage processing apparatus and profile generating method
US20150370028 *Apr 21, 2015Dec 24, 2015Tyco Electronics CorporationSwitch rack system
US20160209614 *Jan 14, 2016Jul 21, 2016Commscope, Inc. Of North CarolinaModule and assembly for fiber optic interconnections
Classifications
U.S. Classification385/135
International ClassificationH04Q1/14, G02B6/44, G02B6/00
Cooperative ClassificationH04Q1/14, H04Q2201/804, G02B6/4452, H04Q2201/10, H04Q1/021
European ClassificationH04Q1/14, G02B6/44C8A4
Legal Events
DateCodeEventDescription
Oct 16, 2008ASAssignment
Owner name: ADC TELECOMMUNICATIONS, INC., MINNESOTA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FIBER OPTIC NETWORK SOLUTIONS CORPORATION;REEL/FRAME:021691/0274
Effective date: 20081016
Owner name: ADC TELECOMMUNICATIONS, INC.,MINNESOTA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FIBER OPTIC NETWORK SOLUTIONS CORPORATION;REEL/FRAME:021691/0274
Effective date: 20081016
Nov 11, 2008ASAssignment
Owner name: ADC TELECOMMUNICATIONS, INC., MINNESOTA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FIBER OPTIC NETWORK SOLUTIONS CORPORATION;REEL/FRAME:021817/0263
Effective date: 20081021
Owner name: ADC TELECOMMUNICATIONS, INC.,MINNESOTA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FIBER OPTIC NETWORK SOLUTIONS CORPORATION;REEL/FRAME:021817/0263
Effective date: 20081021
Feb 19, 2013CCCertificate of correction
Mar 14, 2013FPAYFee payment
Year of fee payment: 4
Jul 6, 2015ASAssignment
Owner name: TYCO ELECTRONICS SERVICES GMBH, SWITZERLAND
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ADC TELECOMMUNICATIONS, INC.;REEL/FRAME:036060/0174
Effective date: 20110930
Oct 26, 2015ASAssignment
Owner name: COMMSCOPE EMEA LIMITED, IRELAND
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TYCO ELECTRONICS SERVICES GMBH;REEL/FRAME:036956/0001
Effective date: 20150828
Oct 29, 2015ASAssignment
Owner name: COMMSCOPE TECHNOLOGIES LLC, NORTH CAROLINA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COMMSCOPE EMEA LIMITED;REEL/FRAME:037012/0001
Effective date: 20150828
Jan 13, 2016ASAssignment
Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, IL
Free format text: PATENT SECURITY AGREEMENT (TERM);ASSIGNOR:COMMSCOPE TECHNOLOGIES LLC;REEL/FRAME:037513/0709
Effective date: 20151220
Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, IL
Free format text: PATENT SECURITY AGREEMENT (ABL);ASSIGNOR:COMMSCOPE TECHNOLOGIES LLC;REEL/FRAME:037514/0196
Effective date: 20151220