Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20100049024 A1
Publication typeApplication
Application numberUS 12/610,127
Publication dateFeb 25, 2010
Priority dateJan 12, 2004
Also published asUS7637868, US20050181012
Publication number12610127, 610127, US 2010/0049024 A1, US 2010/049024 A1, US 20100049024 A1, US 20100049024A1, US 2010049024 A1, US 2010049024A1, US-A1-20100049024, US-A1-2010049024, US2010/0049024A1, US2010/049024A1, US20100049024 A1, US20100049024A1, US2010049024 A1, US2010049024A1
InventorsSean Saint, Mark Brister
Original AssigneeDexcom, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Composite material for implantable device
US 20100049024 A1
Abstract
Devices suitable for implantation in a body of a host and systems and methods for their manufacture are provided. The implantable devices include a composite material formed at least from a matrix material and hollow gas-filled beads. In preferred embodiments, the composite material includes a polymeric matrix mixed with hollow air-filled glass beads, which are mixed and cured to form at least a portion of the body of the implantable device. Implantable devices including this composite material have decreased weight and/or overall density as compared to implantable devices without the beads incorporated therein, which is believed to improve the acceptance and function of the implantable device in vivo. Additionally, implantable devices concerned with transmitting and receiving via RF are believed to achieve improved RF performance due to a reduced dielectric constant provided by the incorporation of beads within the composite material.
Images(4)
Previous page
Next page
Claims(5)
1. A method for forming a composite material suitable for implantation in a host, the method comprising:
providing a matrix material having a first dielectric constant;
providing a plurality of hollow gas-filled beads having a second dielectric constant, wherein the second dielectric constant is lower than the first dielectric constant;
mixing the hollow gas-filled beads and the matrix material to obtain a mixture; and
curing the mixture, whereby a composite material with a third dielectric constant is formed, wherein the third dielectric constant is lower than the first dielectric constant and higher than the second dielectric constant.
2. The method of claim 1, wherein the gas-filled beads are air-filled beads.
3. The method of claim 2, wherein the implantable device comprises electronics and an antenna for radiating or receiving a RF transmission, and wherein the step of curing comprises curing the mixture proximal to the antenna.
4. The method of claim 3, wherein the step of curing comprises at least partially encapsulating the electronics and the antenna with the composite material.
5. The method of claim 1, wherein the implantable device comprises a glucose sensor.
Description
    RELATED APPLICATIONS
  • [0001]
    This application is a divisional of U.S. patent application Ser. No. 11/034,343, filed Jan. 11, 2005, which claims the benefit of U.S. Provisional Application No. 60/535,885, filed Jan. 12, 2004, and U.S. Provisional Application No. 60/535,914 filed Jan. 12, 2004, each of which is incorporated by reference herein in their entirety, and each which is hereby made a part of this specification.
  • FIELD OF THE INVENTION
  • [0002]
    The present invention relates generally to a composite material for an implantable device and systems and methods for its manufacturing.
  • BACKGROUND OF THE INVENTION
  • [0003]
    A variety of implantable medical devices are known in the art for purposes such as sensors for diagnostic testing, blood pumps, pacemakers, and the like. Many of these devices transmit and receive information via Radio Frequency (RF) through or from a patient's body to a location remote therefrom. Some of these devices are formed from hermetic materials (e.g., titanium) in order to protect the sensitive RF components from the effects that can occur to an implanted medical device in vivo, for example, due to moisture penetration. Unfortunately, this design suffers from complexity of design and manufacture and/or higher density and mass than otherwise necessary.
  • SUMMARY OF THE INVENTION
  • [0004]
    In a first embodiment, a device suitable for implantation in a body of a host is provided, the device comprising a composite material comprising a matrix material and a plurality of hollow gas-filled beads.
  • [0005]
    In an aspect of the first embodiment, the beads are glass beads.
  • [0006]
    In an aspect of the first embodiment, the matrix material comprises a polymeric material, for example, an epoxy.
  • [0007]
    In an aspect of the first embodiment, the device comprises a body that is at least partially formed by mixing the matrix material and the hollow gas-filled beads to form a mixture, and curing the mixture.
  • [0008]
    In an aspect of the first embodiment, a diameter of at least a portion of the beads is from about 0.001 mm to about 3 mm.
  • [0009]
    In an aspect of the first embodiment, a diameter of at least a portion of the beads is about 1 mm or less.
  • [0010]
    In an aspect of the first embodiment, the device further comprises an antenna for radiating or receiving an RF transmission. The composite material can be proximal to the antenna or adjacent to the antenna.
  • [0011]
    In an aspect of the first embodiment, a dielectric constant of the composite material is less than a dielectric constant of the matrix material.
  • [0012]
    In a second embodiment, a method for forming a composite material suitable for implantation in a host is provided, the method comprising providing a matrix material having a first dielectric constant; providing a plurality of hollow gas-filled beads having a second dielectric constant, wherein the second dielectric constant is lower than the first dielectric constant; mixing the hollow gas-filled beads and the matrix material to obtain a mixture; and curing the mixture, whereby a composite material with a third dielectric constant is formed, wherein the third dielectric constant is lower than the first dielectric constant and higher than the second dielectric constant.
  • [0013]
    In an aspect of the second embodiment, the gas-filled beads are air-filled beads.
  • [0014]
    In an aspect of the second embodiment, the implantable device comprises electronics and an antenna for radiating or receiving a RF transmission, and wherein the step of curing comprises curing the mixture proximal to the antenna. The step of curing can comprise at least partially encapsulating the electronics and the antenna with the composite material.
  • [0015]
    In an aspect of the second embodiment, the implantable device comprises a glucose sensor.
  • [0016]
    In a third embodiment, a device suitable for implantation in a host is provided, the device comprising a body and electronics, wherein the overall density of the device is about 1 g/cm3.
  • [0017]
    In an aspect of the third embodiment, the body is formed from a composite material comprising a matrix material and a plurality of hollow gas-filled beads. The composite material can have an overall density of less than about 1 g/cm3.
  • [0018]
    In an aspect of the third embodiment, the device is configured to measure glucose.
  • [0019]
    In an aspect of the third embodiment, the device is a wholly implantable glucose sensor configured for implantation in a subcutaneous tissue of a host.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0020]
    FIG. 1 is a perspective view of a system that utilizes a composite material of the preferred embodiments.
  • [0021]
    FIG. 2 is a block diagram that illustrates the electronics associated with the implantable glucose sensor in one embodiment.
  • [0022]
    FIG. 3 is a graph that illustrates the relationship between loading and density determined from an experiment comparing composite materials of the preferred embodiments.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • [0023]
    The following description and examples illustrate some exemplary embodiments of the disclosed invention in detail. Those of skill in the art will recognize that there are numerous variations and modifications of this invention that are encompassed by its scope. Accordingly, the description of a certain exemplary embodiment should not be deemed to limit the scope of the present invention.
  • DEFINITIONS
  • [0024]
    In order to facilitate an understanding of the preferred embodiments, a number of terms are defined below.
  • [0025]
    The term “host,” as used herein, is a broad term and is used in its ordinary sense, including, but not limited to, mammals such as humans.
  • [0026]
    The term “matrix material,” as used herein, is a broad term and is used in its ordinary sense, including, but not limited to, the continuous phase in a composite material in which a second phase is dispersed. In the preferred embodiments, the matrix material is a material that can be provided in liquid or powder form and cured to form a relatively solid body. Matrix materials suitable for the preferred embodiments include: insulating materials, water-vapor permeable materials, and polymeric materials, such as epoxies, urethanes, silicones, resins, Parylene, and the like.
  • [0027]
    The term “beads” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, bubbles or other hollow or enclosed spaces filled with a gas, a vacuum, or low-density material (wherein the density is compared to that of the matrix material).
  • [0028]
    The term “RF transceiver,” as used herein, is a broad term and is used in its ordinary sense, including, but not limited to, a radio frequency transmitter and/or receiver for transmitting and/or receiving signals.
  • [0029]
    The term “antenna,” as used herein, is a broad term and is used in its ordinary sense, including, but not limited to, a metallic or conductive device (such as a rod or wire) for radiating or receiving radio waves.
  • [0030]
    The terms “raw data stream” and “data stream,” as used herein, are broad terms and are used in their ordinary sense, including, but not limited to, an analog or digital signal directly related to the analyte concentration measured by the analyte sensor. In one example, the raw data stream is digital data in “counts” converted by an A/D converter from an analog signal (for example, voltage or amps) representative of an analyte concentration. The terms broadly encompass a plurality of time spaced data points from a substantially continuous analyte sensor, which comprises individual measurements taken at time intervals ranging from fractions of a second up to, for example, 1, 2, 3, 4, or 5 minutes or longer.
  • [0031]
    The term “electronic circuitry,” as used herein, is a broad term and is used in its ordinary sense, including, but not limited to, the components (for example, hardware and/or software) of a device configured to process data. In the case of a glucose sensor, the data includes biological information obtained by a sensor regarding the concentration of the analyte in a biological fluid.
  • [0032]
    The terms “operably connected” and “operably linked,” as used herein, are broad terms and are used in their ordinary sense, including, but not limited to, one or more components being linked to another component(s) in a manner that allows transmission of signals between the components. For example, one or more electrodes can be used to detect the amount of glucose in a sample and convert that information into a signal; the signal can then be transmitted to an electronic circuit. In this case, the electrode is “operably linked” to the electronic circuit. These terms are broad enough to include wired and wireless connectivity.
  • OVERVIEW
  • [0033]
    Implantable devices are disclosed in the preferred embodiments, which utilize a composite material that allows for optimization of the density and/or overall weight of the implantable device. Polymeric materials, for example epoxy, can be used to encapsulate implantable devices; however these polymeric materials can have a sub-optimal weight and/or density for implantation. Most implantable devices are denser than the body and therefore tend to migrate when implanted. Migration can increase the local inflammatory response of the body to the device, which can result in altered function of the implantable device, such as is described in co-pending U.S. patent application Ser. No. 10/646,333, which is incorporated herein by reference in its entirety. Therefore, it can be advantageous to decrease the density (and/or weight) of the implantable device, such as described in more detail below.
  • [0034]
    Additionally, the implantable device of the preferred embodiments, including the composite material described herein, can optimize RF performance when the implantable device utilizes RF transmissions; for example, implantable devices that are encapsulated in a polymeric material (e.g., epoxy), particularly where the polymeric material comes into direct or close contact with the antenna. These devices typically use electrically small antennas, which tend to have a high Q (Quality factor) making the antenna resonant frequency shift strongly depending on the environment (e.g., dielectric constant of the encapsulating material can shift over time as moisture penetrates through the encapsulating material and proximal to the antenna). Unfortunately, this shift in frequency response can cause the efficiency of the antenna to change when it becomes encapsulated within an implantable device and implanted inside the body (e.g., due to moisture penetration through a moisture-permeable encapsulating material, such as epoxy). Therefore, it can be advantageous to improve the efficiency of the antenna by maintaining a substantially constant dielectric property of the device surrounding the antenna over time even when implanted in a host body.
  • [0035]
    Accordingly, implantable devices are provided wherein the implantable devices include a composite material formed from a matrix material and a plurality of beads incorporated therein. In some embodiments, the composite material encapsulates or substantially encapsulates the electronic circuitry (components) of an implantable device to form the body of device (or a portion of the body of the device). Preferably, the beads can be mixed with the matrix material (e.g., epoxy) prior to curing, and can be very small (e.g., smaller than 1/1000th of an inch). These small beads are hollow and can be filled with any number of gases or a vacuum.
  • [0036]
    In preferred embodiments, the matrix material can be any material that can be provided in liquid or powder form and cured to form a relatively solid body. Matrix materials particularly suitable for use in the preferred embodiments include insulating materials, water-vapor permeable materials, and polymeric materials, such as epoxies, urethanes, silicones, resins, Parylene, and the like. In some embodiments, epoxy materials are generally preferred as the matrix material. However, any suitable material can be employed, for example, other polymeric materials, metals, ceramics, glasses, and the like, as will be appreciated by one skilled in the art.
  • [0037]
    While hollow, or air filled, glass beads are generally preferred, any suitable material of reduced dielectric content or reduced density, when compared to that of the matrix material, can be employed. For example, hollow epoxy beads, or hollow beads prepared from another material, such as polymeric, ceramic, or metallic materials, can also be employed. In addition to hollow beads, beads comprising encapsulated open celled foam, or encapsulated or unencapsulated closed cell foam can also be employed. For example, expandable polystyrene beads can be employed. While beads are generally preferred, any suitable shape can be employed, for example, cubes, rods, irregular shapes, and the like.
  • [0038]
    The beads or other fill material can be of any suitable size. Preferably, the beads range in size from a few microns or smaller to a few millimeters or larger in their greatest dimension. Generally, filler having particle sizes of from about 0.001 mm, 0.005, 0.01, 0.05, 0.1, or 0.5 mm to about 1, 2, or 3 mm are generally preferred. A variety of sizes and shapes of filler particles can be mixed together to improve the number of particles that can be packed into a certain volume.
  • [0039]
    In some alternative embodiments, the composite material can employ an epoxy or other polymeric foam, wherein the voids are filled with a gas or a vacuum. The composite material comprises gas-filled voids that aid in reducing the weight and/or density of the matrix material and/or additionally reduce the dielectric constant surrounding the antenna.
  • [0040]
    In practice, the beads are added to the matrix material, and the material is cured or hardened to form a body, such as the entire implantable device body or a portion thereof In some embodiments, the beads can be added to a matrix material in its liquid phase (e.g., liquid epoxy) before or after a hardener is added. When a light or UV cure is chosen to cure the matrix material, the beads can be added at any time prior to the hardening of the matrix material. Once a desired amount of beads are added to the matrix material, they are mixed, and the material is cured to form the body (or portion of the body) of the implantable device. The resulting structure of the composite material (namely, matrix material and beads) can be optimized for density, RF performance, and other characteristics such as described in more detail below.
  • [0041]
    Implantable devices can be tailored to a wide variety of desirable weights and/or densities using the composite material of the preferred embodiments. This composite material (e.g., with a density less than 1 g/cm3) can provide an advantage of offsetting the electronics (e.g., with density more than 1 g/cm3) to achieve an implantable device with an overall density of about 1 g/cm3. An implantable device with a density of about 1 g/cm3 effectively “floats” within the tissue of the body. Thus, as the body experiences sudden accelerations and decelerations (e.g., jumping, car rides, running, and the like) the device does not experience a displacing force, which would otherwise cause motion artifact, which is known to increase local inflammatory response and decrease device function in many uses and applications. Furthermore, it is contemplated that the device can be implanted without any anchoring device, or that the existing anchoring devices provide sufficient function to counteract motion artifact.
  • [0042]
    Additionally, the tuning of an RF antenna in an implantable device can be more robust due to a more consistent dielectric property surrounding an antenna within the implantable device. Namely, the composite material (e.g., matrix material and gas-filled beads) effectively maintains a reduced dielectric constant as compared with matrix material only because the beads (being hollow) add air to the composite structure and therefore lower the dielectric constant of the surrounding body (e.g., closer to the environment in which the antenna was tuned) such that a substantially constant dielectric property is maintained over time in vivo.
  • [0043]
    While the composite materials of the preferred embodiments are particularly well suited for use in conjunction with implantable glucose sensors, they can also be employed in any other implantable device wherein neutral buoyancy, low dielectric constant, or some other characteristic feature is desirable, for example, pacemakers, sensors, prostheses, and the like.
  • Exemplary Continuous Glucose Sensor Configuration
  • [0044]
    FIG. 1 is a perspective view of a system that utilizes a composite material of the preferred embodiments. It includes a continuous glucose sensor 10 implanted within a human and can be configured for transmitting data via RF in some embodiments. The system of the preferred embodiments provides reduced density for improved interaction within the physiological environment and reliable RF transmissions through the physiological environment, thereby increasing overall patient confidence, safety, and convenience.
  • [0045]
    The continuous glucose sensor 10 measures a concentration of glucose or a substance indicative of a concentration or a presence of glucose. However, the concepts described with reference to the sensor 10 can be implemented with any sensor capable of determining the level of any analyte in the body, for example, oxygen, lactase, insulin, hormones, cholesterol, medicaments, viruses, or the like. Additionally, although much of the description of the glucose sensor is focused on electrochemical detection methods, the systems and methods can be applied to glucose sensors that utilize other measurement techniques, including enzymatic, chemical, physical, spectrophotometric, polarimetric, calorimetric, radiometric, or the like.
  • [0046]
    Reference is now made to FIG. 1, which is a perspective view of the implantable glucose sensor 10 of the preferred embodiments. Co-pending U.S. patent application Ser. No. 10/838,912, filed May 3, 2004 and entitled, “IMPLANTABLE ANALYTE SENSOR” and U.S. Patent Publication No. 2003-0032874 A1 disclose systems and methods that can be used with this exemplary glucose sensor embodiment. In this embodiment, a sensing region 12 is shown on the body 14 of the glucose sensor 10. In one preferred embodiment, the sensing region 12 comprises an electrode system including a platinum working electrode, a platinum counter electrode, and a silver/silver chloride reference electrode. However, a variety of electrode materials and configurations can be used with the implantable glucose sensors of the preferred embodiments. The top ends of the electrodes are in contact with an electrolyte phase (not shown), which is a free-flowing fluid phase disposed between a sensing membrane and the electrodes. In one embodiment, the counter electrode is provided to balance the current generated by the species being measured at the working electrode. In some embodiments, the sensing membrane includes an enzyme, for example, glucose oxidase, and covers the electrolyte phase. In the case of a glucose oxidase based glucose sensor, the species being measured at the working electrode is H2O2. Glucose oxidase catalyzes the conversion of oxygen and glucose to hydrogen peroxide and gluconate according to the following reaction:
  • [0000]

    Glucose+O2→Gluconate+H2O2
  • [0047]
    The change in H2O2 can be monitored to determine glucose concentration, because for each glucose molecule metabolized, there is a proportional change in the product H2O2. Oxidation of H2O2 by the working electrode is balanced by reduction of ambient oxygen, enzyme generated H2O2, or other reducible species at the counter electrode. The H2O2 produced from the glucose oxidase reaction further reacts at the surface of working electrode and produces two protons (2H+), two electrons (2e), and one oxygen molecule (O2).
  • [0048]
    A potentiostat is employed to monitor the electrochemical reaction at the electroactive surface(s). The potentiostat applies a constant potential to the working and reference electrodes to determine a current value. The current that is produced at the working electrode (and flows through the circuitry to the counter electrode) is substantially proportional to the amount of H2O2 that diffuses to the working electrode. Accordingly, a raw signal can be produced that is representative of the concentration of glucose in the user's body, and therefore can be utilized to estimate a meaningful glucose value.
  • [0049]
    FIG. 2 is a block diagram that illustrates the electronics 20 associated with the implantable glucose sensor 10 in one embodiment. In this embodiment, a potentiostat 22 is shown, which is operably connected to an electrode system (such as described above) to obtain a current value, and includes a resistor (not shown) that translates the current into voltage. An A/D converter 24 digitizes the analog signal into “counts” for processing. Accordingly, the resulting raw data stream in counts is directly related to the current measured by the potentiostat 22.
  • [0050]
    A processor module 26 includes the central control unit that houses ROM 28 and RAM 30 and controls the processing of the sensor electronics 20. In some embodiments, the processor module includes a microprocessor, however a computer system other than a microprocessor can be used to process data as described herein, for example an application-specific integrated circuit (ASIC) can be used for some or all of the sensor's central processing, as is appreciated by one skilled in the art. The ROM 28 provides semi-permanent storage of data, for example, storing data such as sensor identifier (ID) and programming to process data streams (for example, programming for data smoothing and/or replacement of signal artifacts such as described in copending U.S. patent application Ser. No. 10/648,849, filed Aug. 22, 2003, and entitled, “SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM,” which is incorporated herein by reference in its entirety). The RAM 30 can be used for the system's cache memory, for example, for temporarily storing recent sensor data. In some alternative embodiments, memory storage components comparable to ROM 28 and RAM 30 can be used instead of or in addition to the preferred hardware, such as dynamic-RAM, static-RAM, non-static RAM, EEPROM, rewritable ROMs, flash memory, or the like.
  • [0051]
    A battery 32 is operably connected to the sensor electronics 20 and provides the necessary power for the sensor 10. In one embodiment, the battery is a lithium manganese dioxide battery; however any appropriately sized and powered battery can be used (for example, AAA, nickel-cadmium, zinc-carbon, alkaline, lithium, nickel-metal hydride, lithium-ion, zinc-air, zinc-mercury oxide, silver-zinc, and/or hermetically-sealed). In some embodiments, the battery is rechargeable. In some embodiments, a plurality of batteries can be used to power the system. In yet other embodiments, the sensor can be transcutaneously powered via an inductive coupling, for example. In some embodiments, a quartz crystal 34 is operably connected to the processor 26 and maintains system time for the computer system as a whole.
  • [0052]
    An RF module 36 is operably connected to the processor 26 and transmits the sensor data from the sensor 10 to a receiver (not shown) within a wireless transmission 38 via antenna 40. In some embodiments, a second quartz crystal 42 provides the system time for synchronizing the data transmissions from the RF transceiver. In some alternative embodiments, however, other mechanisms, such as optical, infrared radiation (IR), ultrasonic, or the like can be used to transmit and/or receive data.
  • [0053]
    In the configuration of the RF telemetry module of the preferred embodiments, the hardware and software are designed for low power requirements to increase the longevity of the device (for example, to enable a life of up to 3 to 24 months, or more) with maximum RF transmittance from the in vivo environment to the ex vivo environment (for example, about one to ten meters). Preferably, a high frequency carrier signal in the range of 402 to 405 MHz is employed in order to maintain lower power requirements. Additionally, the carrier frequency is adapted for physiological attenuation levels, which is accomplished by tuning the RF module in a simulated in vivo environment to ensure RF functionality after implantation. Accordingly, it is believed that the preferred glucose sensors can sustain sensor function for 3 months, 6 months, 12 months, 24 months, or more.
  • [0054]
    Additionally, the exemplary glucose sensor comprises the composite material of the preferred embodiments. In one embodiment, the body of the sensor is preferably formed from a composite of epoxy mixed with glass beads and molded around the sensor electronics; however, in alternative embodiments, the body can be formed from a variety of composite materials; for example, other matrix materials can also be used, such as silicone, urethane, or other polymeric materials, as well as other types of beads. Co-pending U.S. patent application Ser. No. 10/838,909, filed May 3, 2004 and entitled, “IMPLANTABLE MEDICAL DEVICE,” which is incorporated herein by reference in its entirety, describes systems and methods for encapsulation of sensor electronics in a water vapor permeable material, such as epoxy, which systems and methods can be implemented with the preferred embodiments for encapsulation of an implantable device in the composite material of the preferred embodiments.
  • [0055]
    While not wishing to be bound by theory, it is believed that implantable devices that are partially or wholly formed from the composite material of the preferred embodiments minimize the local inflammatory response of the body to the device, which can result in improved function of the implantable device. Additionally, it is believed that implantable devices that are partially or wholly formed from the composite material of the preferred embodiments improve the tuning of the antenna by lowering the dielectric constant surrounding the antenna, thereby minimizing the susceptibility of the antenna to change as it becomes encapsulated within an implantable device.
  • [0056]
    While the systems and methods of the preferred embodiments are particularly well suited for use in conjunction with implantable glucose sensors, they can also be employed in any other implantable devices wherein neutral buoyancy, low dielectric constant, or some other characteristic feature is desirable, for example, pacemakers, sensors, prostheses, and the like.
  • EXAMPLE
  • [0057]
    An experiment was performed wherein four different amounts of glass beads were each added to three grams of epoxy, after which the material was cured and their densities measured. The results in Table 1 were then graphed to show the weight percent loading to density relationship of the glass beads in epoxy.
  • [0000]
    TABLE 1
    epoxy glass di-
    Sam- weight spheres ameter volume mass density wt. %
    ple (g) (g) (mm) (ml3) (g) (g/ml3) loading
    1 3.00 0.150 35.74 3.43418 2.5896 0.7541 4.8
    2 3.00 0.300 35.76 4.58403 2.9779 0.6496 9.1
    3 3.00 0.447 35.78 5.13549 2.8506 0.5551 13.0
    4 3.00 0.599 35.74 5.01499 2.4824 0.4950 16.6
  • [0058]
    FIG. 3 is a graph that illustrates the relationship between loading and density determined from the above-described experiment. The x-axis represents the density of the composite material in g/ml3. The y-axis represents the weight % of glass beads (spheres). The graph shows that the addition of 17 weight percent glass beads to the epoxy reduces the density of the epoxy to about 0.5 g/ml3. The density of the epoxy material without the addition of the glass beads is about 1.1 g/ml3. This represents a 55% reduction in density of the composite material as compared to epoxy alone. A much lower or higher weight percent of glass beads can be added to the epoxy than is shown above. While not wishing to be bound by theory, it is believed that the density of the composite mixture can be reduced to about 10% of the density of normal epoxy, for example.
  • [0059]
    Methods and devices that are suitable for use in conjunction with aspects of the preferred embodiments are disclosed in co-pending U.S. patent application Ser. No. 10/885,476, filed Jul. 6, 2004, and entitled “SYSTEMS AND METHODS FOR MANUFACTURE OF AN ANALYTE SENSOR INCLUDING A MEMBRANE SYSTEM”; U.S. patent application Ser. No. 10/842,716, filed May 10, 2004, and entitled, “MEMBRANE SYSTEMS INCORPORATING BIOACTIVE AGENTS”; co-pending U.S. patent application Ser. No. 10/838,912, filed May 3, 2004, and entitled, “IMPLANTABLE ANALYTE SENSOR”; U.S. patent application Ser. No. 10/789,359, filed Feb. 26, 2004, and entitled, “INTEGRATED DELIVERY DEVICE FOR A CONTINUOUS GLUCOSE SENSOR”; U.S. application Ser. No. 10/685,636, filed Oct. 28, 2003, and entitled, “SILICONE COMPOSITION FOR MEMBRANE SYSTEM”; U.S. application Ser. No. 10/648,849, filed Aug. 22, 2003, and entitled, “SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM”; U.S. application Ser. No. 10/646,333, filed Aug. 22, 2003 entitled, “OPTIMIZED SENSOR GEOMETRY FOR AN IMPLANTABLE GLUCOSE SENSOR”; U.S. application Ser. No. 10/647,065, filed Aug. 22, 2003, entitled, “POROUS MEMBRANES FOR USE WITH IMPLANTABLE DEVICES”; U.S. application Ser. No. 10/633,367, filed Aug. 1, 2003, entitled, “SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA”; U.S. Pat. No. 6,702,857 entitled “MEMBRANE FOR USE WITH IMPLANTABLE DEVICES”; U.S. application Ser. No. 09/447,227, filed Nov. 22, 1999, and entitled “DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS”; and U.S. Publ. No. 2004-0011671 A1 entitled “DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS,” as well as published applications and issued patents including U.S. Publ. No. 2003/0217966 A1 entitled “TECHNIQUES TO IMPROVE POLYURETHANE MEMBRANES FOR IMPLANTABLE GLUCOSE SENSORS”; U.S. Publ. No. 2003/0032874 A1 entitled “SENSOR HEAD FOR USE WITH IMPLANTABLE DEVICE”; U.S. Pat. No. 6,741,877 entitled “DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS”; U.S. Pat. No. 6,558,321 entitled “SYSTEMS AND METHODS FOR REMOTE MONITORING AND MODULATION OF MEDICAL DEVICES”; U.S. Pat. No. 6,001,067 issued Dec. 14, 1999 and entitled “DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS”; U.S. Pat. No. 4,994,167 issued Feb. 19, 1991 and entitled “BIOLOGICAL FLUID MEASURING DEVICE”; and U.S. Pat. No. 4,757,022 filed Jul. 12, 1988 and entitled “BIOLOGICAL FLUID MEASURING DEVICE”; U.S. application Ser. No. 60/489,615 filed Jul. 23, 2003 and entitled “ROLLED ELECTRODE ARRAY AND ITS METHOD FOR MANUFACTURE”; U.S. application Ser. No. 60/490,010 filed Jul. 25, 2003 and entitled “INCREASING BIAS FOR OXYGEN PRODUCTION IN AN ELECTRODE ASSEMBLY”; U.S. application Ser. No. 60/490,009 filed Jul. 25, 2003 and entitled “OXYGEN ENHANCING ENZYME MEMBRANE FOR ELECTROCHEMICAL SENSORS”; U.S. application Ser. No. 10/896,312 filed Jul. 21, 2004 and entitled “OXYGEN-GENERATING ELECTRODE FOR USE IN ELECTROCHEMICAL SENSORS”; U.S. application Ser. No. 10/896,637 filed Jul. 21, 2004 and entitled “ROLLED ELECTRODE ARRAY AND ITS METHOD FOR MANUFACTURE”; U.S. application Ser. No. 10/896,772 filed Jul. 21, 2004 and entitled “INCREASING BIAS FOR OXYGEN PRODUCTION IN AN ELECTRODE ASSEMBLY”; U.S. application Ser. No. 10/896,639 filed Jul. 21, 2004 and entitled “OXYGEN ENHANCING ENZYME MEMBRANE FOR ELECTROCHEMICAL SENSORS”; U.S. application Ser. No. 10/897,377 filed Jul. 21, 2004 and entitled “ELECTROCHEMICAL SENSORS INCLUDING ELECTRODE SYSTEMS WITH INCREASED OXYGEN GENERATION”. The foregoing patent applications and patents are hereby incorporated herein by reference in their entireties.
  • [0060]
    All references cited herein are incorporated herein by reference in their entireties. To the extent publications and patents or patent applications incorporated by reference contradict the disclosure contained in the specification, the specification is intended to supersede and/or take precedence over any such contradictory material.
  • [0061]
    The term “comprising” as used herein is synonymous with “including,” “containing,” or “characterized by,” and is inclusive or open-ended and does not exclude additional, unrecited elements or method steps.
  • [0062]
    All numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should be construed in light of the number of significant digits and ordinary rounding approaches.
  • [0063]
    The above description discloses several methods and materials of the present invention. This invention is susceptible to modifications in the methods and materials, as well as alterations in the fabrication methods and equipment. Such modifications will become apparent to those skilled in the art from a consideration of this disclosure or practice of the invention disclosed herein. Consequently, it is not intended that this invention be limited to the specific embodiments disclosed herein, but that it cover all modifications and alternatives coming within the true scope and spirit of the invention as embodied in the attached claims.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3791871 *Apr 14, 1971Feb 12, 1974Lockheed Aircraft CorpElectrochemical cell
US3933593 *Aug 9, 1972Jan 20, 1976Beckman Instruments, Inc.Rate sensing batch analysis method
US3943918 *Dec 2, 1971Mar 16, 1976Tel-Pac, Inc.Disposable physiological telemetric device
US4253469 *Apr 20, 1979Mar 3, 1981The Narda Microwave CorporationImplantable temperature probe
US4255500 *Mar 29, 1979Mar 10, 1981General Electric CompanyVibration resistant electrochemical cell having deformed casing and method of making same
US4374013 *Mar 3, 1981Feb 15, 1983Enfors Sven OlofOxygen stabilized enzyme electrode
US4431507 *Jan 12, 1982Feb 14, 1984Matsushita Electric Industrial Co., Ltd.Enzyme electrode
US4494950 *Jan 19, 1982Jan 22, 1985The Johns Hopkins UniversityPlural module medication delivery system
US4571292 *Aug 12, 1982Feb 18, 1986Case Western Reserve UniversityApparatus for electrochemical measurements
US4650547 *Dec 20, 1985Mar 17, 1987The Regents Of The University Of CaliforniaMethod and membrane applicable to implantable sensor
US4721677 *May 7, 1987Jan 26, 1988Children's Hospital Medical CenterImplantable gas-containing biosensor and method for measuring an analyte such as glucose
US4731726 *May 19, 1986Mar 15, 1988Healthware CorporationPatient-operated glucose monitor and diabetes management system
US4805624 *Apr 14, 1987Feb 21, 1989The Montefiore Hospital Association Of Western PaLow-potential electrochemical redox sensors
US4805625 *Jul 8, 1987Feb 21, 1989Ad-Tech Medical Instrument CorporationSphenoidal electrode and insertion method
US4890621 *Jan 19, 1988Jan 2, 1990Northstar Research Institute, Ltd.Continuous glucose monitoring and a system utilized therefor
US4988341 *Jun 5, 1989Jan 29, 1991Eastman Kodak CompanySterilizing dressing device and method for skin puncture
US4992794 *Oct 10, 1989Feb 12, 1991Texas Instruments IncorporatedTransponder and method for the production thereof
US5089112 *Jan 11, 1990Feb 18, 1992Associated Universities, Inc.Electrochemical biosensor based on immobilized enzymes and redox polymers
US5097834 *Aug 2, 1989Mar 24, 1992Avl AgProcess for determining parameters of interest in living organisms
US5190041 *Dec 27, 1991Mar 2, 1993Palti Yoram ProfSystem for monitoring and controlling blood glucose
US5281319 *Jun 29, 1992Jan 25, 1994Agency Of Industrial Science And TechnologyCarbon micro-sensor electrode and method for preparing it
US5282848 *Apr 19, 1993Feb 1, 1994Meadox Medicals, Inc.Self-supporting woven vascular graft
US5284140 *Feb 11, 1992Feb 8, 1994Eli Lilly And CompanyAcrylic copolymer membranes for biosensors
US5298144 *Sep 15, 1992Mar 29, 1994The Yellow Springs Instrument Company, Inc.Chemically wired fructose dehydrogenase electrodes
US5384028 *Aug 27, 1993Jan 24, 1995Nec CorporationBiosensor with a data memory
US5387327 *Oct 19, 1992Feb 7, 1995Duquesne University Of The Holy GhostImplantable non-enzymatic electrochemical glucose sensor
US5390671 *Mar 15, 1994Feb 21, 1995Minimed Inc.Transcutaneous sensor insertion set
US5391250 *Mar 15, 1994Feb 21, 1995Minimed Inc.Method of fabricating thin film sensors
US5482008 *Sep 11, 1992Jan 9, 1996Stafford; Rodney A.Electronic animal identification system
US5482473 *May 9, 1994Jan 9, 1996Minimed Inc.Flex circuit connector
US5494562 *Jun 27, 1994Feb 27, 1996Ciba Corning Diagnostics Corp.Electrochemical sensors
US5497772 *Nov 19, 1993Mar 12, 1996Alfred E. Mann Foundation For Scientific ResearchGlucose monitoring system
US5502396 *Sep 21, 1994Mar 26, 1996Asulab S.A.Measuring device with connection for a removable sensor
US5607565 *Mar 27, 1995Mar 4, 1997Coulter CorporationApparatus for measuring analytes in a fluid sample
US5611900 *Jul 20, 1995Mar 18, 1997Michigan State UniversityMicrobiosensor used in-situ
US5704354 *Jun 23, 1995Jan 6, 1998Siemens AktiengesellschaftElectrocatalytic glucose sensor
US5706807 *Oct 11, 1996Jan 13, 1998Applied Medical ResearchSensor device covered with foam membrane
US5707502 *Jul 12, 1996Jan 13, 1998Chiron Diagnostics CorporationSensors for measuring analyte concentrations and methods of making same
US5711861 *Nov 22, 1995Jan 27, 1998Ward; W. KennethDevice for monitoring changes in analyte concentration
US5861019 *Jul 25, 1997Jan 19, 1999Medtronic Inc.Implantable medical device microstrip telemetry antenna
US5863400 *Apr 12, 1995Jan 26, 1999Usf Filtration & Separations Group Inc.Electrochemical cells
US5871514 *Aug 1, 1997Feb 16, 1999Medtronic, Inc.Attachment apparatus for an implantable medical device employing ultrasonic energy
US5879373 *Dec 22, 1995Mar 9, 1999Boehringer Mannheim GmbhSystem and method for the determination of tissue properties
US6011984 *Nov 21, 1996Jan 4, 2000Minimed Inc.Detection of biological molecules using chemical amplification and optical sensors
US6013113 *Mar 6, 1998Jan 11, 2000Wilson Greatbatch Ltd.Slotted insulator for unsealed electrode edges in electrochemical cells
US6016448 *Oct 27, 1998Jan 18, 2000Medtronic, Inc.Multilevel ERI for implantable medical devices
US6036924 *Dec 4, 1997Mar 14, 2000Hewlett-Packard CompanyCassette of lancet cartridges for sampling blood
US6167614 *Sep 8, 1999Jan 2, 2001Micron Technology, Inc.Method of manufacturing and testing an electronic device, and an electronic device
US6169155 *Jan 14, 1999Jan 2, 2001Dow Corning CorporationSilicone gel composition and silicone gel produced therefrom
US6175752 *Apr 30, 1998Jan 16, 2001Therasense, Inc.Analyte monitoring device and methods of use
US6201980 *Oct 5, 1998Mar 13, 2001The Regents Of The University Of CaliforniaImplantable medical sensor system
US6201993 *Dec 9, 1998Mar 13, 2001Medtronic, Inc.Medical device telemetry receiver having improved noise discrimination
US6208894 *Mar 25, 1998Mar 27, 2001Alfred E. Mann Foundation For Scientific Research And Advanced BionicsSystem of implantable devices for monitoring and/or affecting body parameters
US6360888 *Feb 10, 2000Mar 26, 2002Minimed Inc.Glucose sensor package system
US6510329 *Jan 24, 2001Jan 21, 2003Datex-Ohmeda, Inc.Detection of sensor off conditions in a pulse oximeter
US6512939 *Jun 27, 2000Jan 28, 2003Medtronic Minimed, Inc.Implantable enzyme-based monitoring systems adapted for long term use
US6520326 *Oct 9, 2001Feb 18, 2003Medtronic Minimed, Inc.Glucose sensor package system
US6534711 *Apr 14, 1998Mar 18, 2003The Goodyear Tire & Rubber CompanyEncapsulation package and method of packaging an electronic circuit module
US6673596 *Dec 2, 1999Jan 6, 2004Ut-Battelle, LlcIn vivo biosensor apparatus and method of use
US6699383 *May 28, 2002Mar 2, 2004Siemens AktiengesellschaftMethod for determining a NOx concentration
US6998247 *Feb 28, 2003Feb 14, 2006Sensys Medical, Inc.Method and apparatus using alternative site glucose determinations to calibrate and maintain noninvasive and implantable analyzers
US7166074 *Jun 2, 2003Jan 23, 2007Medtronic Minimed, Inc.Reusable analyte sensor site and method of using the same
US7169289 *Feb 10, 2005Jan 30, 2007november Aktiengesellschaft Gesellschaft für Molekulare MedizinElectrochemical detection method and device
US7657297 *Feb 2, 2010Dexcom, Inc.Implantable analyte sensor
US20030004457 *Jun 25, 2002Jan 2, 2003Andersson Stig O.Hypodermic implant device
US20030006669 *May 21, 2002Jan 9, 2003Sri InternationalRolled electroactive polymers
US20030023317 *Jul 27, 2001Jan 30, 2003Dexcom, Inc.Membrane for use with implantable devices
US20030032874 *Jul 27, 2001Feb 13, 2003Dexcom, Inc.Sensor head for use with implantable devices
US20030036773 *Aug 2, 2002Feb 20, 2003Whitehurst Todd K.Systems and methods for treatment of coronary artery disease
US20040011671 *Jul 27, 2001Jan 22, 2004Dexcom, Inc.Device and method for determining analyte levels
US20040015063 *Dec 21, 2001Jan 22, 2004Denuzzio John D.Minimally-invasive system and method for monitoring analyte levels
US20040045879 *Sep 9, 2003Mar 11, 2004Dexcom, Inc.Device and method for determining analyte levels
US20050027175 *Jul 31, 2003Feb 3, 2005Zhongping YangImplantable biosensor
US20050027180 *Aug 1, 2003Feb 3, 2005Goode Paul V.System and methods for processing analyte sensor data
US20050027181 *Aug 1, 2003Feb 3, 2005Goode Paul V.System and methods for processing analyte sensor data
US20050027182 *Dec 31, 2003Feb 3, 2005Uzair SiddiquiSystem for monitoring physiological characteristics
US20050027463 *Aug 1, 2003Feb 3, 2005Goode Paul V.System and methods for processing analyte sensor data
US20050031689 *May 10, 2004Feb 10, 2005Dexcom, Inc.Biointerface membranes incorporating bioactive agents
US20050033132 *May 14, 2004Feb 10, 2005Shults Mark C.Analyte measuring device
US20050043598 *Aug 22, 2003Feb 24, 2005Dexcom, Inc.Systems and methods for replacing signal artifacts in a glucose sensor data stream
US20060015020 *Jul 6, 2004Jan 19, 2006Dexcom, Inc.Systems and methods for manufacture of an analyte-measuring device including a membrane system
US20060015024 *Mar 10, 2005Jan 19, 2006Mark BristerTranscutaneous medical device with variable stiffness
US20060016700 *Jun 21, 2005Jan 26, 2006Dexcom, Inc.Transcutaneous analyte sensor
US20060020186 *Mar 10, 2005Jan 26, 2006Dexcom, Inc.Transcutaneous analyte sensor
US20060036141 *Mar 10, 2005Feb 16, 2006Dexcom, Inc.Transcutaneous analyte sensor
US20060036143 *Mar 10, 2005Feb 16, 2006Dexcom, Inc.Transcutaneous analyte sensor
US20060036144 *Jun 21, 2005Feb 16, 2006Dexcom, Inc.Transcutaneous analyte sensor
US20070027384 *Oct 4, 2006Feb 1, 2007Mark BristerDual electrode system for a continuous analyte sensor
US20070027385 *Oct 4, 2006Feb 1, 2007Mark BristerDual electrode system for a continuous analyte sensor
US20070032717 *Oct 4, 2006Feb 8, 2007Mark BristerDual electrode system for a continuous analyte sensor
US20070032718 *Oct 10, 2006Feb 8, 2007Shults Mark CDevice and method for determining analyte levels
US20070038044 *Jun 1, 2006Feb 15, 2007Dobbles J MAnalyte sensor
US20080021666 *Oct 1, 2007Jan 24, 2008Dexcom, Inc.System and methods for processing analyte sensor data
US20090012379 *Aug 20, 2008Jan 8, 2009Dexcom, Inc.System and methods for processing analyte sensor data
US20090018418 *May 9, 2008Jan 15, 2009Glumetrics, Inc.Equilibrium non-consuming fluorescence sensor for real time intravascular glucose measurement
US20090018426 *May 9, 2008Jan 15, 2009Glumetrics, Inc.Device and methods for calibrating analyte sensors
US20090045055 *Oct 28, 2008Feb 19, 2009Dexcom, Inc.Sensor head for use with implantable devices
US20100041971 *Feb 18, 2010Dexcom, Inc.Implantable analyte sensor
USRE32361 *Jul 19, 1982Feb 24, 1987Medtronic, Inc.Implantable telemetry transmission system for analog and digital data
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7783333Mar 10, 2005Aug 24, 2010Dexcom, Inc.Transcutaneous medical device with variable stiffness
US7792562Sep 7, 2010Dexcom, Inc.Device and method for determining analyte levels
US7811231Oct 12, 2010Abbott Diabetes Care Inc.Continuous glucose monitoring system and methods of use
US7822455Oct 26, 2010Abbott Diabetes Care Inc.Analyte sensors and methods of use
US7826382Nov 2, 2010Abbott Diabetes Care Inc.Close proximity communication device and methods
US7826879Feb 28, 2006Nov 2, 2010Abbott Diabetes Care Inc.Analyte sensors and methods of use
US7857760Feb 22, 2006Dec 28, 2010Dexcom, Inc.Analyte sensor
US7860544Mar 7, 2007Dec 28, 2010Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US7869853Jan 11, 2011Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US7881763May 2, 2006Feb 1, 2011Dexcom, Inc.Optimized sensor geometry for an implantable glucose sensor
US7883464Sep 30, 2005Feb 8, 2011Abbott Diabetes Care Inc.Integrated transmitter unit and sensor introducer mechanism and methods of use
US7885697Feb 8, 2011Dexcom, Inc.Transcutaneous analyte sensor
US7885698Feb 28, 2006Feb 8, 2011Abbott Diabetes Care Inc.Method and system for providing continuous calibration of implantable analyte sensors
US7885699Feb 8, 2011Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US7901354May 1, 2008Mar 8, 2011Dexcom, Inc.Low oxygen in vivo analyte sensor
US7905833Jun 21, 2005Mar 15, 2011Dexcom, Inc.Transcutaneous analyte sensor
US7920906Mar 9, 2006Apr 5, 2011Dexcom, Inc.System and methods for processing analyte sensor data for sensor calibration
US7920907Jun 7, 2007Apr 5, 2011Abbott Diabetes Care Inc.Analyte monitoring system and method
US7922458Dec 29, 2008Apr 12, 2011Abbott Diabetes Care Inc.Variable volume, shape memory actuated insulin dispensing pump
US7927274Apr 19, 2011Dexcom, Inc.Integrated receiver for continuous analyte sensor
US7928850Apr 19, 2011Abbott Diabetes Care Inc.Analyte monitoring system and methods
US7949381Apr 11, 2008May 24, 2011Dexcom, Inc.Transcutaneous analyte sensor
US7951080May 31, 2011Abbott Diabetes Care Inc.On-body medical device securement
US7976492Jul 12, 2011Dexcom, Inc.Integrated delivery device for continuous glucose sensor
US7981034Feb 28, 2006Jul 19, 2011Abbott Diabetes Care Inc.Smart messages and alerts for an infusion delivery and management system
US7993108Aug 9, 2011Abbott Diabetes Care Inc.Variable volume, shape memory actuated insulin dispensing pump
US7993109Aug 9, 2011Abbott Diabetes Care Inc.Variable volume, shape memory actuated insulin dispensing pump
US7996054Aug 9, 2011Abbott Diabetes Care Inc.Electrochemical analyte sensor
US7996158May 14, 2008Aug 9, 2011Abbott Diabetes Care Inc.Method and apparatus for providing data processing and control in a medical communication system
US8029245Oct 4, 2011Abbott Diabetes Care Inc.Variable volume, shape memory actuated insulin dispensing pump
US8029250Oct 4, 2011Abbott Diabetes Care Inc.Variable volume, shape memory actuated insulin dispensing pump
US8029443Sep 26, 2008Oct 4, 2011Abbott Diabetes Care Inc.Glucose measuring device integrated into a holster for a personal area network device
US8029459Oct 4, 2011Abbott Diabetes Care Inc.Method and system for providing integrated medication infusion and analyte monitoring system
US8029460Oct 4, 2011Abbott Diabetes Care Inc.Method and system for providing integrated medication infusion and analyte monitoring system
US8047811Dec 29, 2008Nov 1, 2011Abbott Diabetes Care Inc.Variable volume, shape memory actuated insulin dispensing pump
US8047812Dec 29, 2008Nov 1, 2011Abbott Diabetes Care Inc.Variable volume, shape memory actuated insulin dispensing pump
US8052601Nov 8, 2011Dexcom, Inc.System and methods for processing analyte sensor data
US8066639Jun 4, 2004Nov 29, 2011Abbott Diabetes Care Inc.Glucose measuring device for use in personal area network
US8085151Jun 26, 2008Dec 27, 2011Abbott Diabetes Care Inc.Signal converting cradle for medical condition monitoring and management system
US8086292Oct 27, 2009Dec 27, 2011Abbott Diabetes Care Inc.Analyte monitoring and management system and methods therefor
US8103471May 14, 2008Jan 24, 2012Abbott Diabetes Care Inc.Method and apparatus for providing data processing and control in a medical communication system
US8112138Sep 26, 2008Feb 7, 2012Abbott Diabetes Care Inc.Method and apparatus for providing rechargeable power in data monitoring and management systems
US8112240Apr 29, 2005Feb 7, 2012Abbott Diabetes Care Inc.Method and apparatus for providing leak detection in data monitoring and management systems
US8115635Nov 24, 2009Feb 14, 2012Abbott Diabetes Care Inc.RF tag on test strips, test strip vials and boxes
US8116840Oct 30, 2007Feb 14, 2012Abbott Diabetes Care Inc.Method of calibrating of an analyte-measurement device, and associated methods, devices and systems
US8121857Feb 14, 2008Feb 21, 2012Abbott Diabetes Care Inc.Device and method for automatic data acquisition and/or detection
US8123686Mar 1, 2007Feb 28, 2012Abbott Diabetes Care Inc.Method and apparatus for providing rolling data in communication systems
US8140142Apr 14, 2008Mar 20, 2012Abbott Diabetes Care Inc.Method and apparatus for providing data processing and control in medical communication system
US8140312Jan 31, 2008Mar 20, 2012Abbott Diabetes Care Inc.Method and system for determining analyte levels
US8149117Aug 29, 2009Apr 3, 2012Abbott Diabetes Care Inc.Analyte monitoring system and methods
US8160671Apr 17, 2012Dexcom, Inc.Calibration techniques for a continuous analyte sensor
US8160900Apr 17, 2012Abbott Diabetes Care Inc.Analyte monitoring and management device and method to analyze the frequency of user interaction with the device
US8162829Mar 30, 2009Apr 24, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8175673Nov 9, 2009May 8, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8177716Dec 21, 2009May 15, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8187183Oct 11, 2010May 29, 2012Abbott Diabetes Care Inc.Continuous glucose monitoring system and methods of use
US8206296Jun 26, 2012Abbott Diabetes Care Inc.Method and system for providing integrated analyte monitoring and infusion system therapy management
US8219174Jun 29, 2009Jul 10, 2012Abbott Diabetes Care Inc.Method of calibrating an analyte-measurement device, and associated methods, devices and systems
US8219175Jun 29, 2009Jul 10, 2012Abbott Diabetes Care Inc.Method of calibrating an analyte-measurement device, and associated methods, devices and systems
US8223021Jul 17, 2012Abbott Diabetes Care Inc.RF tag on test strips, test strip vials and boxes
US8224413Oct 10, 2008Jul 17, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8226555Mar 18, 2009Jul 24, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8226557Jul 24, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8226558Sep 27, 2010Jul 24, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8226891Jul 24, 2012Abbott Diabetes Care Inc.Analyte monitoring devices and methods therefor
US8231531Jul 31, 2012Dexcom, Inc.Analyte sensor
US8231532Apr 30, 2007Jul 31, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8235896Dec 21, 2009Aug 7, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8239166Aug 7, 2012Abbott Diabetes Care Inc.Method and apparatus for providing data processing and control in a medical communication system
US8249684Aug 21, 2012Dexcom, Inc.Calibration techniques for a continuous analyte sensor
US8252229Apr 10, 2009Aug 28, 2012Abbott Diabetes Care Inc.Method and system for sterilizing an analyte sensor
US8255031Mar 17, 2009Aug 28, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8260392Sep 4, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8260558May 14, 2008Sep 4, 2012Abbott Diabetes Care Inc.Method and apparatus for providing data processing and control in a medical communication system
US8265726Sep 11, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8273022Sep 25, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8275439Nov 9, 2009Sep 25, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8282550Jul 29, 2008Oct 9, 2012Dexcom, Inc.Integrated receiver for continuous analyte sensor
US8287454Oct 16, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8306598Nov 9, 2009Nov 6, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8333714Sep 10, 2006Dec 18, 2012Abbott Diabetes Care Inc.Method and system for providing an integrated analyte sensor insertion device and data processing unit
US8343092Nov 24, 2009Jan 1, 2013Abbott Diabetes Care Inc.Method and system for providing integrated medication infusion and analyte monitoring system
US8343093May 28, 2010Jan 1, 2013Abbott Diabetes Care Inc.Fluid delivery device with autocalibration
US8344966Jan 31, 2006Jan 1, 2013Abbott Diabetes Care Inc.Method and system for providing a fault tolerant display unit in an electronic device
US8346335Jan 1, 2013Abbott Diabetes Care Inc.Analyte sensor calibration management
US8346336Mar 18, 2009Jan 1, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8346337Jun 30, 2009Jan 1, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8353829Dec 21, 2009Jan 15, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8357091Jan 22, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8358210Jan 22, 2013Abbott Diabetes Care Inc.RF tag on test strips, test strip vials and boxes
US8362904Jan 29, 2013Abbott Diabetes Care Inc.Analyte monitoring system and methods
US8366614Mar 30, 2009Feb 5, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8368556Feb 5, 2013Abbott Diabetes Care Inc.Method and system for providing data communication in continuous glucose monitoring and management system
US8372005Dec 21, 2009Feb 12, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8374668Oct 23, 2008Feb 12, 2013Abbott Diabetes Care Inc.Analyte sensor with lag compensation
US8376945Nov 23, 2009Feb 19, 2013Abbott Diabetes Care Inc.Method and system for providing calibration of an analyte sensor in an analyte monitoring system
US8377031Aug 31, 2008Feb 19, 2013Abbott Diabetes Care Inc.Closed loop control system with safety parameters and methods
US8380273Feb 19, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8390455Mar 5, 2013Abbott Diabetes Care Inc.RF tag on test strips, test strip vials and boxes
US8391945Mar 17, 2009Mar 5, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8394021Mar 12, 2013Dexcom, Inc.System and methods for processing analyte sensor data
US8409093Apr 2, 2013Abbott Diabetes Care Inc.Assessing measures of glycemic variability
US8409131Mar 7, 2007Apr 2, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8417545Apr 9, 2013Abbott Diabetes Care Inc.Device and method for automatic data acquisition and/or detection
US8428678Apr 23, 2013Dexcom, Inc.Calibration techniques for a continuous analyte sensor
US8437966May 7, 2013Abbott Diabetes Care Inc.Method and system for transferring analyte test data
US8442610Aug 21, 2008May 14, 2013Dexcom, Inc.System and methods for processing analyte sensor data
US8444560May 14, 2008May 21, 2013Abbott Diabetes Care Inc.Method and apparatus for providing data processing and control in a medical communication system
US8456301May 8, 2008Jun 4, 2013Abbott Diabetes Care Inc.Analyte monitoring system and methods
US8460243Jun 10, 2003Jun 11, 2013Abbott Diabetes Care Inc.Glucose measuring module and insulin pump combination
US8461985May 8, 2008Jun 11, 2013Abbott Diabetes Care Inc.Analyte monitoring system and methods
US8463351Aug 6, 2010Jun 11, 2013Abbott Diabetes Care Inc.Electrochemical analyte sensor
US8465425Jun 18, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8467972Jun 18, 2013Abbott Diabetes Care Inc.Closed loop blood glucose control algorithm analysis
US8473021Jul 31, 2009Jun 25, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8473022Jan 30, 2009Jun 25, 2013Abbott Diabetes Care Inc.Analyte sensor with time lag compensation
US8478557Jul 30, 2010Jul 2, 2013Abbott Diabetes Care Inc.Method and apparatus for providing analyte monitoring system calibration accuracy
US8480580Apr 19, 2007Jul 9, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8483791Apr 11, 2008Jul 9, 2013Dexcom, Inc.Transcutaneous analyte sensor
US8483967Apr 28, 2010Jul 9, 2013Abbott Diabetes Care Inc.Method and system for providing real time analyte sensor calibration with retrospective backfill
US8483974Nov 20, 2009Jul 9, 2013Abbott Diabetes Care Inc.Method and system for transferring analyte test data
US8484005Mar 19, 2012Jul 9, 2013Abbott Diabetes Care Inc.Method and system for determining analyte levels
US8497777Apr 15, 2010Jul 30, 2013Abbott Diabetes Care Inc.Analyte monitoring system having an alert
US8502682Dec 23, 2011Aug 6, 2013Abbott Diabetes Care Inc.Signal converting cradle for medical condition monitoring and management system
US8506482Feb 7, 2011Aug 13, 2013Abbott Diabetes Care Inc.Method and system for providing continuous calibration of implantable analyte sensors
US8509107Nov 1, 2010Aug 13, 2013Abbott Diabetes Care Inc.Close proximity communication device and methods
US8512239Apr 20, 2009Aug 20, 2013Abbott Diabetes Care Inc.Glucose measuring device for use in personal area network
US8512243Sep 30, 2005Aug 20, 2013Abbott Diabetes Care Inc.Integrated introducer and transmitter assembly and methods of use
US8512244Sep 26, 2008Aug 20, 2013Abbott Diabetes Care Inc.Integrated analyte sensor and infusion device and methods therefor
US8512246Mar 15, 2010Aug 20, 2013Abbott Diabetes Care Inc.Method and apparatus for providing peak detection circuitry for data communication systems
US8514086Aug 30, 2010Aug 20, 2013Abbott Diabetes Care Inc.Displays for a medical device
US8515517Sep 30, 2009Aug 20, 2013Abbott Diabetes Care Inc.Method and system for dynamically updating calibration parameters for an analyte sensor
US8527025Nov 22, 1999Sep 3, 2013Dexcom, Inc.Device and method for determining analyte levels
US8542122Jan 17, 2013Sep 24, 2013Abbott Diabetes Care Inc.Glucose measurement device and methods using RFID
US8543183Dec 23, 2011Sep 24, 2013Abbott Diabetes Care Inc.Analyte monitoring and management system and methods therefor
US8545403Dec 28, 2006Oct 1, 2013Abbott Diabetes Care Inc.Medical device insertion
US8560037Mar 26, 2010Oct 15, 2013Dexcom, Inc.System and methods for processing analyte sensor data for sensor calibration
US8560038May 14, 2008Oct 15, 2013Abbott Diabetes Care Inc.Method and apparatus for providing data processing and control in a medical communication system
US8560039Sep 17, 2009Oct 15, 2013Dexcom, Inc.Particle-containing membrane and particulate electrode for analyte sensors
US8560082Jan 30, 2009Oct 15, 2013Abbott Diabetes Care Inc.Computerized determination of insulin pump therapy parameters using real time and retrospective data processing
US8560250Aug 18, 2010Oct 15, 2013Abbott LaboratoriesMethod and system for transferring analyte test data
US8562558Jun 5, 2008Oct 22, 2013Dexcom, Inc.Integrated medicament delivery device for use with continuous analyte sensor
US8571624Dec 29, 2004Oct 29, 2013Abbott Diabetes Care Inc.Method and apparatus for mounting a data transmission device in a communication system
US8571808Jan 23, 2012Oct 29, 2013Abbott Diabetes Care Inc.Method and apparatus for providing data processing and control in a medical communication system
US8579816Jan 7, 2010Nov 12, 2013Dexcom, Inc.System and methods for processing analyte sensor data for sensor calibration
US8579853Oct 31, 2006Nov 12, 2013Abbott Diabetes Care Inc.Infusion devices and methods
US8585591Jul 10, 2010Nov 19, 2013Abbott Diabetes Care Inc.Method and system for providing basal profile modification in analyte monitoring and management systems
US8588881Mar 2, 2007Nov 19, 2013Abbott Diabetes Care Inc.Subcutaneous glucose electrode
US8591410Jun 1, 2009Nov 26, 2013Abbott Diabetes Care Inc.Method and apparatus for providing glycemic control
US8593109Nov 3, 2009Nov 26, 2013Abbott Diabetes Care Inc.Method and system for powering an electronic device
US8593287Jul 20, 2012Nov 26, 2013Abbott Diabetes Care Inc.Analyte monitoring system and methods
US8597188Jun 20, 2008Dec 3, 2013Abbott Diabetes Care Inc.Health management devices and methods
US8597189Mar 3, 2009Dec 3, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8597575Jul 23, 2012Dec 3, 2013Abbott Diabetes Care Inc.Analyte monitoring devices and methods therefor
US8600681May 14, 2008Dec 3, 2013Abbott Diabetes Care Inc.Method and apparatus for providing data processing and control in a medical communication system
US8602991Jun 7, 2010Dec 10, 2013Abbott Diabetes Care Inc.Analyte sensor introducer and methods of use
US8611978Jan 7, 2010Dec 17, 2013Dexcom, Inc.System and methods for processing analyte sensor data for sensor calibration
US8612159Feb 16, 2004Dec 17, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8612163Aug 30, 2012Dec 17, 2013Abbott Diabetes Care Inc.Method and apparatus for providing data processing and control in a medical communication system
US8613703May 29, 2008Dec 24, 2013Abbott Diabetes Care Inc.Insertion devices and methods
US8613892Jun 30, 2009Dec 24, 2013Abbott Diabetes Care Inc.Analyte meter with a moveable head and methods of using the same
US8617069Jun 20, 2008Dec 31, 2013Abbott Diabetes Care Inc.Health monitor
US8617071Jun 21, 2007Dec 31, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8622903May 25, 2012Jan 7, 2014Abbott Diabetes Care Inc.Continuous glucose monitoring system and methods of use
US8622906Dec 21, 2009Jan 7, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8622988Aug 31, 2008Jan 7, 2014Abbott Diabetes Care Inc.Variable rate closed loop control and methods
US8638220May 23, 2011Jan 28, 2014Abbott Diabetes Care Inc.Method and apparatus for providing data communication in data monitoring and management systems
US8641618Jun 26, 2008Feb 4, 2014Abbott Diabetes Care Inc.Method and structure for securing a monitoring device element
US8641619Dec 21, 2009Feb 4, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8647269Apr 20, 2009Feb 11, 2014Abbott Diabetes Care Inc.Glucose measuring device for use in personal area network
US8649841Apr 3, 2007Feb 11, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8652043Jul 20, 2012Feb 18, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8660627Mar 17, 2009Feb 25, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8665091Jun 30, 2009Mar 4, 2014Abbott Diabetes Care Inc.Method and device for determining elapsed sensor life
US8666469Nov 16, 2007Mar 4, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8668645Jan 3, 2003Mar 11, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8670815Apr 30, 2007Mar 11, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8672844Feb 27, 2004Mar 18, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8676288Jun 22, 2011Mar 18, 2014Dexcom, Inc.Device and method for determining analyte levels
US8676601Apr 8, 2013Mar 18, 2014Abbott Diabetes Care Inc.Device and method for automatic data acquisition and/or detection
US8682598Aug 27, 2009Mar 25, 2014Abbott LaboratoriesMethod and system for transferring analyte test data
US8682615Aug 4, 2012Mar 25, 2014Abbott Diabetes Care Inc.Method and apparatus for providing data processing and control in a medical communication system
US8684930Jun 29, 2009Apr 1, 2014Abbott Diabetes Care Inc.Method of calibrating an analyte-measurement device, and associated methods, devices and systems
US8688188Jun 30, 2009Apr 1, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8690775Apr 11, 2008Apr 8, 2014Dexcom, Inc.Transcutaneous analyte sensor
US8706180Jun 10, 2013Apr 22, 2014Abbott Diabetes Care Inc.Electrochemical analyte sensor
US8710993Nov 21, 2012Apr 29, 2014Abbott Diabetes Care Inc.Mitigating single point failure of devices in an analyte monitoring system and methods thereof
US8718739Dec 28, 2012May 6, 2014Abbott Diabetes Care Inc.Analyte sensor calibration management
US8718965Jun 24, 2013May 6, 2014Abbott Diabetes Care Inc.Method and apparatus for providing analyte monitoring system calibration accuracy
US8721585Mar 30, 2012May 13, 2014Dex Com, Inc.Integrated delivery device for continuous glucose sensor
US8727982Jun 25, 2012May 20, 2014Abbott Diabetes Care Inc.Method and system for providing integrated analyte monitoring and infusion system therapy management
US8730058Jul 29, 2013May 20, 2014Abbott Diabetes Care Inc.Analyte monitoring system having an alert
US8734344May 29, 2011May 27, 2014Abbott Diabetes Care Inc.On-body medical device securement
US8734346Apr 30, 2007May 27, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8734348Mar 17, 2009May 27, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8734422Aug 31, 2008May 27, 2014Abbott Diabetes Care Inc.Closed loop control with improved alarm functions
US8737259Aug 5, 2013May 27, 2014Abbott Diabetes Care Inc.Close proximity communication device and methods
US8738109Mar 3, 2009May 27, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8741590Apr 3, 2007Jun 3, 2014Abbott Diabetes Care Inc.Subcutaneous glucose electrode
US8744545Mar 3, 2009Jun 3, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8764657Mar 30, 2012Jul 1, 2014Abbott Diabetes Care Inc.Medical device inserters and processes of inserting and using medical devices
US8771183Feb 16, 2005Jul 8, 2014Abbott Diabetes Care Inc.Method and system for providing data communication in continuous glucose monitoring and management system
US8774887Mar 24, 2007Jul 8, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8792953Mar 19, 2010Jul 29, 2014Dexcom, Inc.Transcutaneous analyte sensor
US8792954Mar 19, 2010Jul 29, 2014Dexcom, Inc.Transcutaneous analyte sensor
US8792955Jun 9, 2011Jul 29, 2014Dexcom, Inc.Transcutaneous analyte sensor
US8795252Oct 16, 2009Aug 5, 2014Abbott Diabetes Care Inc.Robust closed loop control and methods
US8798934Jul 23, 2010Aug 5, 2014Abbott Diabetes Care Inc.Real time management of data relating to physiological control of glucose levels
US8802006Aug 27, 2012Aug 12, 2014Abbott Diabetes Care Inc.Method and system for sterilizing an analyte sensor
US8808228Jun 5, 2008Aug 19, 2014Dexcom, Inc.Integrated medicament delivery device for use with continuous analyte sensor
US8816862Aug 19, 2013Aug 26, 2014Abbott Diabetes Care Inc.Displays for a medical device
US8834366Jul 31, 2007Sep 16, 2014Abbott Diabetes Care Inc.Method and apparatus for providing analyte sensor calibration
US8840553Feb 26, 2009Sep 23, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8852101Sep 30, 2009Oct 7, 2014Abbott Diabetes Care Inc.Method and apparatus for providing analyte sensor insertion
US8862198Dec 17, 2012Oct 14, 2014Abbott Diabetes Care Inc.Method and system for providing an integrated analyte sensor insertion device and data processing unit
US8876755Jul 14, 2009Nov 4, 2014Abbott Diabetes Care Inc.Closed loop control system interface and methods
US8880137Apr 18, 2003Nov 4, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8880138Sep 30, 2005Nov 4, 2014Abbott Diabetes Care Inc.Device for channeling fluid and methods of use
US8882741Apr 30, 2012Nov 11, 2014Dexcom, Inc.Integrated delivery device for continuous glucose sensor
US8915850Mar 28, 2014Dec 23, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8920319Dec 28, 2012Dec 30, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8920401Apr 30, 2012Dec 30, 2014Dexcom, Inc.Integrated delivery device for continuous glucose sensor
US8924159Jun 1, 2009Dec 30, 2014Abbott Diabetes Care Inc.Method and apparatus for providing glycemic control
US8926585Mar 30, 2012Jan 6, 2015Dexcom, Inc.Integrated delivery device for continuous glucose sensor
US8932216Aug 7, 2006Jan 13, 2015Abbott Diabetes Care Inc.Method and system for providing data management in integrated analyte monitoring and infusion system
US8933664Nov 25, 2013Jan 13, 2015Abbott Diabetes Care Inc.Method and system for powering an electronic device
US8974386Nov 1, 2005Mar 10, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8986208Sep 30, 2008Mar 24, 2015Abbott Diabetes Care Inc.Analyte sensor sensitivity attenuation mitigation
US8993331Aug 31, 2010Mar 31, 2015Abbott Diabetes Care Inc.Analyte monitoring system and methods for managing power and noise
US9000929Nov 22, 2013Apr 7, 2015Abbott Diabetes Care Inc.Analyte monitoring system and methods
US9008743Apr 14, 2008Apr 14, 2015Abbott Diabetes Care Inc.Method and apparatus for providing data processing and control in medical communication system
US9011331Dec 29, 2004Apr 21, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9011332Oct 30, 2007Apr 21, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9014773Mar 7, 2007Apr 21, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9031630Nov 1, 2010May 12, 2015Abbott Diabetes Care Inc.Analyte sensors and methods of use
US9035767May 30, 2013May 19, 2015Abbott Diabetes Care Inc.Analyte monitoring system and methods
US9039975Dec 2, 2013May 26, 2015Abbott Diabetes Care Inc.Analyte monitoring devices and methods therefor
US9042953Mar 2, 2007May 26, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9044199Mar 10, 2005Jun 2, 2015Dexcom, Inc.Transcutaneous analyte sensor
US9050413Apr 30, 2012Jun 9, 2015Dexcom, Inc.Integrated delivery device for continuous glucose sensor
US9060719Dec 13, 2013Jun 23, 2015Abbott Diabetes Care Inc.Method and apparatus for providing data processing and control in a medical communication system
US9060742Mar 19, 2010Jun 23, 2015Dexcom, Inc.Transcutaneous analyte sensor
US9064107Sep 30, 2013Jun 23, 2015Abbott Diabetes Care Inc.Infusion devices and methods
US9066694Apr 3, 2007Jun 30, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9066695Apr 12, 2007Jun 30, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9066697Oct 27, 2011Jun 30, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9069536Oct 30, 2012Jun 30, 2015Abbott Diabetes Care Inc.Electronic devices having integrated reset systems and methods thereof
US9072477Jun 21, 2007Jul 7, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9078607Jun 17, 2013Jul 14, 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9078608Jul 13, 2012Jul 14, 2015Dexcom, Inc.System and methods for processing analyte sensor data for sensor calibration
US9088452Jan 31, 2013Jul 21, 2015Abbott Diabetes Care Inc.Method and system for providing data communication in continuous glucose monitoring and management system
US9095290Feb 27, 2012Aug 4, 2015Abbott Diabetes Care Inc.Method and apparatus for providing rolling data in communication systems
US9119582Jun 30, 2006Sep 1, 2015Abbott Diabetes Care, Inc.Integrated analyte sensor and infusion device and methods therefor
US9125548May 14, 2008Sep 8, 2015Abbott Diabetes Care Inc.Method and apparatus for providing data processing and control in a medical communication system
US9155843Jul 26, 2012Oct 13, 2015Dexcom, Inc.Integrated delivery device for continuous glucose sensor
US9177456Jun 10, 2013Nov 3, 2015Abbott Diabetes Care Inc.Analyte monitoring system and methods
US9178752Apr 25, 2014Nov 3, 2015Abbott Diabetes Care Inc.Analyte monitoring system having an alert
US9184875Apr 25, 2014Nov 10, 2015Abbott Diabetes Care, Inc.Close proximity communication device and methods
US9186098Mar 24, 2011Nov 17, 2015Abbott Diabetes Care Inc.Medical device inserters and processes of inserting and using medical devices
US9186113Aug 11, 2014Nov 17, 2015Abbott Diabetes Care Inc.Displays for a medical device
US9204827Apr 14, 2008Dec 8, 2015Abbott Diabetes Care Inc.Method and apparatus for providing data processing and control in medical communication system
US9215992Mar 24, 2011Dec 22, 2015Abbott Diabetes Care Inc.Medical device inserters and processes of inserting and using medical devices
US9220449Jul 9, 2013Dec 29, 2015Dexcom, Inc.System and methods for processing analyte sensor data for sensor calibration
US9226701Apr 28, 2010Jan 5, 2016Abbott Diabetes Care Inc.Error detection in critical repeating data in a wireless sensor system
US9226714Jan 8, 2015Jan 5, 2016Abbott Diabetes Care Inc.Displays for a medical device
US9259175Oct 23, 2006Feb 16, 2016Abbott Diabetes Care, Inc.Flexible patch for fluid delivery and monitoring body analytes
US9265453Mar 24, 2011Feb 23, 2016Abbott Diabetes Care Inc.Medical device inserters and processes of inserting and using medical devices
US9289179Apr 11, 2014Mar 22, 2016Abbott Diabetes Care Inc.Mitigating single point failure of devices in an analyte monitoring system and methods thereof
US9310230Jun 24, 2013Apr 12, 2016Abbott Diabetes Care Inc.Method and system for providing real time analyte sensor calibration with retrospective backfill
US9314195Aug 31, 2010Apr 19, 2016Abbott Diabetes Care Inc.Analyte signal processing device and methods
US9314196Sep 7, 2012Apr 19, 2016Dexcom, Inc.System and methods for processing analyte sensor data for sensor calibration
US9314198Apr 3, 2015Apr 19, 2016Abbott Diabetes Care Inc.Analyte monitoring system and methods
US9317656Nov 21, 2012Apr 19, 2016Abbott Diabetes Care Inc.Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof
US9320462May 5, 2014Apr 26, 2016Abbott Diabetes Care Inc.Analyte sensor calibration management
US9320468Jun 21, 2013Apr 26, 2016Abbott Diabetes Care Inc.Analyte sensor with time lag compensation
US9323898Nov 15, 2013Apr 26, 2016Abbott Diabetes Care Inc.Method and system for providing basal profile modification in analyte monitoring and management systems
US9326707Nov 10, 2009May 3, 2016Abbott Diabetes Care Inc.Alarm characterization for analyte monitoring devices and systems
US9326714Jun 29, 2010May 3, 2016Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9326716Dec 5, 2014May 3, 2016Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US9326727May 15, 2014May 3, 2016Abbott Diabetes Care Inc.On-body medical device securement
US9332933Sep 29, 2014May 10, 2016Abbott Diabetes Care Inc.Method and apparatus for providing analyte sensor insertion
US9332934Feb 8, 2013May 10, 2016Abbott Diabetes Care Inc.Analyte sensor with lag compensation
US9339217Nov 21, 2012May 17, 2016Abbott Diabetes Care Inc.Analyte monitoring system and methods of use
US9339222May 31, 2013May 17, 2016Dexcom, Inc.Particle-containing membrane and particulate electrode for analyte sensors
US9339223Dec 30, 2013May 17, 2016Dexcom, Inc.Device and method for determining analyte levels
US9351669Sep 30, 2010May 31, 2016Abbott Diabetes Care Inc.Interconnect for on-body analyte monitoring device
US9357959Aug 19, 2013Jun 7, 2016Abbott Diabetes Care Inc.Method and system for dynamically updating calibration parameters for an analyte sensor
US9380971Dec 5, 2014Jul 5, 2016Abbott Diabetes Care Inc.Method and system for powering an electronic device
US20060183985 *Feb 22, 2006Aug 17, 2006Mark BristerAnalyte sensor
US20070038044 *Jun 1, 2006Feb 15, 2007Dobbles J MAnalyte sensor
US20070078320 *Sep 30, 2005Apr 5, 2007Abbott Diabetes Care, Inc.Integrated transmitter unit and sensor introducer mechanism and methods of use
US20070149874 *Mar 7, 2007Jun 28, 2007Abbott Diabetes Care, Inc.Analyte Monitoring Device and Methods of Use
US20070173708 *Jun 1, 2006Jul 26, 2007Dobbles J MAnalyte sensor
US20070179370 *Apr 3, 2007Aug 2, 2007Abbott Diabetes Care, Inc.Analyte Monitoring Device and Methods of Use
US20070191699 *Apr 3, 2007Aug 16, 2007Abbott Diabetes Care, Inc.Analyte Monitoring Device and Methods of Use
US20070203408 *Apr 30, 2007Aug 30, 2007Abbott Diabetes Care, Inc.Analyte Monitoring Device and Methods of Use
US20070203411 *Apr 30, 2007Aug 30, 2007Abbott Diabetes Care, Inc.Analyte Monitoring Device and Methods of Use
US20070208247 *Apr 30, 2007Sep 6, 2007Abbott Diabetes Care, Inc.Analyte Monitoring Device and Methods of Use
US20070213657 *Feb 28, 2006Sep 13, 2007Abbott Diabetes Care, IncSmart messages and alerts for an infusion delivery and management system
US20080004515 *Jun 30, 2006Jan 3, 2008Abbott Diabetes Care, Inc.Integrated Analyte Sensor and Infusion Device and Methods Therefor
US20080004601 *Jun 28, 2006Jan 3, 2008Abbott Diabetes Care, Inc.Analyte Monitoring and Therapy Management System and Methods Therefor
US20080033271 *Jun 21, 2007Feb 7, 2008Abbott Diabetes Care, Inc.Analyte monitoring device and methods of use
US20080086039 *Oct 30, 2007Apr 10, 2008Abbott Diabetes Care, Inc.Analyte Monitoring Device And Methods Of Use
US20080091096 *Nov 16, 2007Apr 17, 2008Abbott Diabetes Care, Inc.Analyte Monitoring Device and Methods of Use
US20080114280 *Oct 23, 2006May 15, 2008Gary Ashley StaffordVariable speed sensor insertion devices and methods of use
US20080161666 *Dec 29, 2006Jul 3, 2008Abbott Diabetes Care, Inc.Analyte devices and methods
US20080188731 *Apr 11, 2008Aug 7, 2008Dexcom, Inc.Transcutaneous analyte sensor
US20080200897 *Feb 15, 2008Aug 21, 2008Abbott Diabetes Care, Inc.Modular combination of medication infusion and analyte monitoring
US20080214915 *Apr 11, 2008Sep 4, 2008Dexcom, Inc.Transcutaneous analyte sensor
US20080296155 *May 1, 2008Dec 4, 2008Dexcom, Inc.Low oxygen in vivo analyte sensor
US20080306435 *Jun 5, 2008Dec 11, 2008Dexcom, Inc.Integrated medicament delivery device for use with continuous analyte sensor
US20090002179 *Jun 26, 2008Jan 1, 2009Abbott Diabetes Care, Inc.Signal converting cradle for medical condition monitoring and management system
US20090012377 *Jun 26, 2008Jan 8, 2009Abbott Diabetes Care, Inc.Method and structure for securing a monitoring device element
US20090030294 *Oct 7, 2008Jan 29, 2009Dexcom, Inc.Implantable analyte sensor
US20090036747 *Jul 31, 2007Feb 5, 2009Abbott Diabetes Care, Inc.Method and apparatus for providing data processing and control in a medical communication system
US20090054748 *Feb 28, 2006Feb 26, 2009Abbott Diabetes Care, Inc.Method and system for providing continuous calibration of implantable analyte sensors
US20090054750 *Aug 7, 2006Feb 26, 2009Abbott Diabetes Care, Inc.Method and System for Providing Integrated Analyte Monitoring and Infusion System Therapy Management
US20090062633 *Nov 4, 2008Mar 5, 2009Dexcorn, Inc.Implantable analyte sensor
US20090082693 *Dec 29, 2004Mar 26, 2009Therasense, Inc.Method and apparatus for providing temperature sensor module in a data communication system
US20090105570 *Mar 31, 2006Apr 23, 2009Abbott Diabetes Care, Inc.Analyte monitoring devices and methods therefor
US20090164251 *Jan 31, 2008Jun 25, 2009Abbott Diabetes Care, Inc.Method and apparatus for providing treatment profile management
US20100027169 *Jul 30, 2009Feb 4, 2010Arnold KnottPower distribution arrangement
US20100041971 *Feb 18, 2010Dexcom, Inc.Implantable analyte sensor
US20100099970 *Dec 22, 2009Apr 22, 2010Dexcom, Inc.Device and method for determining analyte levels
US20100309001 *Aug 18, 2010Dec 9, 2010Abbott Diabetes Care Inc.Method and System for Transferring Analyte Test Data
US20100331655 *Sep 1, 2010Dec 30, 2010Dexcom, Inc.Calibration techniques for a continuous analyte sensor
US20110040489 *Aug 10, 2010Feb 17, 2011Abbott Diabetes Care Inc.Diabetes Care Host-Client Architecture and Data Management System
US20110040570 *Aug 10, 2010Feb 17, 2011Abbott Diabetes Care Inc.Diabetes Care Host-Client Architecture and Data Management System
US20110046977 *Sep 28, 2010Feb 24, 2011Abbott Diabetes Care Inc.Diabetes Care Host-Client Architecture and Data Management System
US20110178717 *Jul 21, 2011Abbott Diabetes Care Inc.Diabetes Care Host-Client Architecture and Data Management System
WO2014158405A2Feb 12, 2014Oct 2, 2014Dexcom, Inc.Systems and methods for processing and transmitting sensor data
WO2015156966A1Mar 16, 2015Oct 15, 2015Dexcom, Inc.Sensors for continuous analyte monitoring, and related methods
Classifications
U.S. Classification600/365, 29/601, 29/592.1
International ClassificationA61N1/375, A61B5/145, A61B5/00, H01P11/00
Cooperative ClassificationA61N1/375, A61B5/14532, A61B5/14865, A61B5/0031, Y10T29/49002, Y10T29/49018, A61B5/14546
European ClassificationA61B5/145G, A61B5/1486B, A61B5/145P, A61B5/00B9, A61N1/375
Legal Events
DateCodeEventDescription
Nov 2, 2009ASAssignment
Owner name: DEXCOM, INC.,CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAINT, SEAN;BRISTER, MARK;SIGNING DATES FROM 20050413 TO20050415;REEL/FRAME:023459/0656