US20100080344A1 - X-Ray Machine for Breast Examination Having a Gantry Incorporated in a Patient Table - Google Patents

X-Ray Machine for Breast Examination Having a Gantry Incorporated in a Patient Table Download PDF

Info

Publication number
US20100080344A1
US20100080344A1 US12/401,765 US40176509A US2010080344A1 US 20100080344 A1 US20100080344 A1 US 20100080344A1 US 40176509 A US40176509 A US 40176509A US 2010080344 A1 US2010080344 A1 US 2010080344A1
Authority
US
United States
Prior art keywords
gantry
patient table
breast
ray
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/401,765
Other versions
US7864918B2 (en
Inventor
Harry Schilling
Willi Kalender
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ab-Ct - Advanced Breast-Ct GmbH
Original Assignee
MIR MEDICAL IMAGING Res HOLDING GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIR MEDICAL IMAGING Res HOLDING GmbH filed Critical MIR MEDICAL IMAGING Res HOLDING GmbH
Assigned to MIR MEDICAL IMAGING RESEARCH HOLDING GMBH reassignment MIR MEDICAL IMAGING RESEARCH HOLDING GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KALENDER, WILLI, SCHILLING, HARRY
Publication of US20100080344A1 publication Critical patent/US20100080344A1/en
Application granted granted Critical
Publication of US7864918B2 publication Critical patent/US7864918B2/en
Assigned to AB-CT - ADVANCED BREAST-CT GMBH reassignment AB-CT - ADVANCED BREAST-CT GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MIR MEDICAL IMAGING RESEARCH HOLDING GMBH
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/43Detecting, measuring or recording for evaluating the reproductive systems
    • A61B5/4306Detecting, measuring or recording for evaluating the reproductive systems for evaluating the female reproductive systems, e.g. gynaecological evaluations
    • A61B5/4312Breast evaluation or disorder diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/70Means for positioning the patient in relation to the detecting, measuring or recording means
    • A61B5/704Tables
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • A61B6/035Mechanical aspects of CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • A61B6/0407Supports, e.g. tables or beds, for the body or parts of the body
    • A61B6/0435Supports, e.g. tables or beds, for the body or parts of the body with means for imaging suspended breasts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4275Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis using a detector unit almost surrounding the patient, e.g. more than 180°
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/502Clinical applications involving diagnosis of breast, i.e. mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • A61B90/14Fixators for body parts, e.g. skull clamps; Constructional details of fixators, e.g. pins
    • A61B90/17Fixators for body parts, e.g. skull clamps; Constructional details of fixators, e.g. pins for soft tissue, e.g. breast-holding devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/30Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of the effect of a material on X-radiation, gamma radiation or particle radiation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00084Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • A61B2090/3762Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy using computed tomography systems [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • A61B5/015By temperature mapping of body part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/027Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis characterised by the use of a particular data acquisition trajectory, e.g. helical or spiral
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/06Diaphragms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/10Application or adaptation of safety means
    • A61B6/107Protection against radiation, e.g. shielding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating apparatus or devices for radiation diagnosis
    • A61B6/582Calibration
    • A61B6/583Calibration using calibration phantoms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30068Mammography; Breast
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30096Tumor; Lesion

Definitions

  • the invention relates to an X-ray machine for imaging a female breast (mammography).
  • Various X-ray machines are known for performing an examination of a female breast.
  • a rotating gantry having an X-ray tube and an X-ray detector is located below a patient table on which a female patient rests.
  • a machine of this kind is described in U.S. Pat. No. 4,015,836.
  • Disadvantages of the X-ray machine described in the '836 patent include a large space requirement and the lack of accessibility to the breast being examined. Furthermore, the patient is put into a relatively uncomfortable posture with her head in a low position to maximize the amount of breast accessible to the X-ray device.
  • U.S. Publication No. 2007/0064867 discloses an X-ray machine that is based on a spiral computer tomography (CT) scanner. Although the X-ray machine described in the '867 publication requires less space, resolution is limited in this machine by a mechanical design which provides low stability. Another disadvantage of this machine is that the breast is not accessible from the outside of the machine.
  • CT computer tomography
  • the objective of the disclosure provided herein is to design an X-ray machine for imaging a female breast in a diagnostically correct manner, rapidly, at low cost, and in a comfortable position for the patient.
  • An embodiment of an X-ray machine for imaging a breast of a female patient includes an approximately horizontally disposed patient table with a cut-out portion for accommodating a breast of a female patient, and a gantry rigidly suspended mechanically from the patient table.
  • a gantry in accordance with this disclosure comprises an X-ray tube and the X-ray detector.
  • the gantry is adapted to rotate about an approximately vertical rotational axis.
  • the gantry is further adapted to be set into continuous rotational movement for imaging a breast.
  • the gantry is further adapted to be moved in a vertical direction (e.g., by means of a gantry lift drive), with the vertical movement being dependent on the rotational movement.
  • FIG. 1 shows a planar view of an X-ray machine having an adjustable height patient table, which is firmly installed.
  • FIG. 2 shows a planar view of an X-ray machine having a movable patient table.
  • FIG. 3 shows a partial cross-sectional view through either one of the X-ray machines shown in FIG. 1 or 2 .
  • FIG. 4 shows a portion of the cross-sectional view shown in FIG. 3 to illustrate a beam path between the X-ray tube and X-ray detector of the X-ray machine.
  • FIG. 5 shows a partial cross-sectional view through an example of a locating device included within the X-ray machine of FIG. 3 .
  • FIG. 1 illustrates an embodiment of an X-ray machine.
  • a female patient 30 rests on a patient table 20 .
  • a breast to be examined is suspended through a breast cutout portion 21 in the surface of the patient table, so that the breast is within an exposure range of a gantry 10 .
  • gantry 10 is a spiral computer tomograph (CT) gantry with an X-ray tube and an X-ray detector, which rotate around a breast to be examined. The breast is imaged during the rotation. Simultaneously with the rotation, a displacement in the vertical direction (denoted by arrow 12 ) is effected by a gantry lift drive 11 , so that the breast is scanned along a spiraling direction.
  • CT computer tomograph
  • the height of the patient table 20 is adjustable (along arrow 24 ) with a patient table lift drive 22 . If the patient table 20 is firmly installed, as shown in FIG. 1 , it can be optionally rotated about an axis 25 of the patient table lift drive 22 .
  • FIG. 2 illustrates another embodiment of an X-ray machine.
  • the embodiment shown in FIG. 2 includes many of the components shown in FIG. 1 and described above. Components with like numerals will not be described herein for the sake of brevity.
  • the embodiment shown in FIG. 2 is provided with wheels 23 so that it may be moved in a simple manner.
  • FIG. 3 illustrates a partial cross-sectional view, which may be taken through either of the X-ray machines shown in FIG. 1 or 2 .
  • a female patient 30 is supported on the patient table 20 so that her breast 31 is suspended through a breast cutout portion 21 into an exposure range of a gantry 10 .
  • the gantry 10 is a spiral computer tomograph (CT) gantry with an X-ray tube 15 and an X-ray detector 14 .
  • CT computer tomograph
  • the X-ray tube 15 and X-ray detector 14 are supported by a gantry pivot bearing 13 , which allows the gantry 10 to be rotated about a rotational axis 17 .
  • a displacement in the vertical direction is effected by a gantry lift drive 11 , so that the breast 31 is scanned along a spiraling direction.
  • the gantry lift drive 11 is rigidly mechanically connected to the patient table 20 via a gantry suspension means 26 .
  • FIG. 4 shows a magnified view of the cross-section provided in FIG. 3 to illustrate a path 16 of a beam of rays.
  • a patient's breast 31 is suspended through an opening 21 in a surface of a rest, which in this embodiment is designed to be a patient table 20 .
  • the patient table 20 is inclined or stood upright.
  • the inclined or upright patient table may serve only as an abutment surface through which a breast can be inserted.
  • the wall of a patient's chest should rest as closely as possible against the patient table 20 , so that the breast can be imaged as completely as possible.
  • gantry 10 rotates about the rotational axis 17 , as shown in FIGS. 3 and 4 .
  • the X-ray tube 15 generates a beam of rays 16 which penetrates the breast 31 and is received by the detector 14 .
  • the beam is ideally limited to impinging only on an active face of the detector. It is generally not desired that the beam penetrate the patient table 20 .
  • a central ray 52 which is incident on the active face of the detector 14 , is located at the top edge of the beam of rays 16 close to the patient table 20 .
  • a central axis 53 extending perpendicular to the central ray 52 is aligned, in the illustrated embodiment, with the rotational axis 17 of the gantry 10 .
  • FIG. 5 shows an example of a locating device 40 which may be connected to the patient table 20 .
  • the locating device 40 serves to accommodate or locate the patient's breast within the cutout portion 21 .
  • a vacuum pump 42 is connected via tubing 41 for securing the patient's breast 31 within the locating device 40 by sub-atmospheric pressure.
  • an X-ray machine for imaging a female breast comprises a patient table 20 from which a gantry 10 of a spiral computer tomograph is rigidly and mechanically suspended.
  • the patient table 20 has a breast cut-out portion 21 through which a breast 31 of a patient 30 is suspended downwards, preferably in the direction towards the gantry 10 .
  • the gantry 10 has a gantry lift drive 11 with which it can be moved relative to the patient's table.
  • the gantry 10 rotates around the patient's breast to image the breast.
  • a displacement of the gantry 10 along a longitudinal direction of the breast, e.g., in a vertical direction, is performed simultaneously with rotation and/or intermittently at regular intervals of time.
  • the vertical displacement can be performed continuously at constant speed, or proportionally to the rotational speed of the gantry.
  • the vertical displacement may be performed stepwise, so that for example a vertical displacement of a distance equal to the width of the detector 14 is made following each revolution of the gantry.
  • a resolution of the X-ray machine described herein may be on the order of magnitude of about 10 micrometers to about 500 micrometers. In one embodiment, a resolution up to about 100 micrometers may be obtained with the X-ray machine described herein. At these resolutions, even the smallest mechanical tolerances and fluctuations can appreciably impair image quality.
  • the gantry is put into a suitable exposure position before an exposure is made. After the gantry is stopped, periods ranging from several fractions of a second up to seconds are allowed to pass so that mechanical vibrations can decay before the next exposure is performed.
  • the gantry described herein utilizes a spiral computer tomograph. Gantries of this sort cannot be stopped to minimize mechanical vibrations, since continuous rotation of the gantry around a breast occurs at the same time as an exposure. As a result, mechanical vibrations and tolerances directly affect image quality in gantries comprising spiral CTs.
  • a mechanically rigid connection between the gantry 10 and the patient table 20 is, therefore, of substantial importance to the X-ray machine described herein.
  • a mechanically rigid connection is needed to minimize movement artefacts caused by mechanical vibrations and positional tolerances of the gantry with respect to a breast during high-resolution imaging.
  • the gantry lift drive 11 also must be designed to be mechanically rigid.
  • the mechanically rigid design of the X-ray machine described herein enables substantially higher quality images to be obtained than with systems, in which a patient's table and gantry are set up or suspended separately.
  • mechanical tolerances or a possible bending of the patient table 20 do not affect the accuracy of the measurements obtained with the X-ray machine described herein.
  • the resolution can be optimized, e.g., by arranging the central ray 52 of the beam 16 in a region close to a wall of a breast.
  • the central ray 52 is the ray vertically incident on the detector 14 . It is desired that the central ray 52 be as close as possible to the breast wall of the patient 30 , in order to cover a region of the breast that is as large as possible.
  • the X-ray tube 15 and the detector 14 are preferably disposed so that, the central ray 52 of the beam 16 is located on the side of the beam that faces the patient table 20 .
  • the best resolution is achieved with the central ray 52 , thus, it is desired that the central ray 52 be disposed as close as possible to the patient table without penetrating the table. With the arrangement, it is possible to prevent vibrations and positional tolerances of the gantry and other components of the X-ray machine from impairing the high imaging quality of images achievable with the central ray.
  • a locating device 40 is provided for a breast.
  • the locating device 40 may also be rigidly mechanically connected to the patient table 20 .
  • the locating device 40 can also be detachable from the table.
  • the locating device 40 operates by means of a vacuum that can be produced with a vacuum pump 42 .
  • a spiral computer tomography (CT) gantry consumes less space than other gantries, which require detectors of large surface area to image a whole breast. Due to the spiral recording, a substantially smaller detector can be used in the spiral CT gantry described herein. The use of a smaller detector also results in a substantially flatter gantry.
  • the height of the gantry 10 may be within a range of about 5 cm to about 20 cm. In one embodiment, the height of the gantry may be 10 cm.
  • the space between the gantry 10 and a floor located below the gantry is freely accessible and can therefore be walked upon by a person performing the examination. Additional examination instruments, such as biopsy instruments, can also be disposed within this space. Because of the free accessibility of the space below the gantry, the performance of therapy with simultaneous recording of images is possible.
  • incorporating the gantry 10 with the patient table 20 enables exposures to be taken up to the lower edge of the patient table.
  • the patient table 20 comprises an adjustable height.
  • a patient table lift drive 22 coupled to patient table 20 may be used for lifting or adjusting the height of the patient table.
  • the height of the patient table can be freely adjusted. With an adjustment of height, additional space can be created for additional examination instruments or even for an upright working position of a person performing the examination.
  • the patient table 20 may be tiltable, in some embodiments, providing additional workspace for the person performing the examination.
  • the X-ray machine is provided with wheels ( 23 , FIG. 2 ), so that it can be moved for use at different sites.
  • the wheels enable the machine to be used in other diagnostic facilities or with other instruments.
  • the moveable X-ray machine can be oriented with respect to another X-ray machine, an ultrasonic instrument, or a biopsy facility.
  • an adjustment of the gantry with reference to the table is not altered by movement of the table.
  • the image quality and also the precision of location remain constant.
  • connection is hereby understood to be a connection which, although capable of being released, connects parts in a manner so that mechanical movements during operation are smaller than the resolution of the X-ray machine (which, in one embodiment, comprises a resolution on an order of magnitude of about 10 micrometers up to about 500 micrometers, or more preferably up to about 100 micrometers).

Abstract

An X-ray machine for imaging a breast of a female patient comprises a gantry with an X-ray tube and an X-ray detector, and a horizontally disposed patient table with a cut-out portion for accommodating a breast of the patient. The gantry is rigidly mechanically suspended from the patient table. The gantry is adapted to rotate about an approximately vertical rotational axis in continuous rotational movement for imaging the breast. The gantry is also adapted to be moved in a vertical direction during said the rotational movement.

Description

    PRIORITY CLAIM
  • This application claims priority to pending German Application No. DE102008042430.7 filed on Sep. 29, 2008.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention relates to an X-ray machine for imaging a female breast (mammography).
  • 2. Description of Related Art
  • Various X-ray machines are known for performing an examination of a female breast. In these X-ray machines, a rotating gantry having an X-ray tube and an X-ray detector is located below a patient table on which a female patient rests. A machine of this kind is described in U.S. Pat. No. 4,015,836. Disadvantages of the X-ray machine described in the '836 patent include a large space requirement and the lack of accessibility to the breast being examined. Furthermore, the patient is put into a relatively uncomfortable posture with her head in a low position to maximize the amount of breast accessible to the X-ray device.
  • An improvement to the aforementioned device is provided in U.S. Publication No. 2006/0094950. The patient is afforded a more comfortable position in the X-ray machine disclosed in the '950 publication. However, the breast to be examined is accessible only with special instruments. In addition, the X-ray machine disclosed in the '950 publication requires a large amount of space, due to the large constructional size of the gantry.
  • U.S. Publication No. 2007/0064867 discloses an X-ray machine that is based on a spiral computer tomography (CT) scanner. Although the X-ray machine described in the '867 publication requires less space, resolution is limited in this machine by a mechanical design which provides low stability. Another disadvantage of this machine is that the breast is not accessible from the outside of the machine.
  • BRIEF SUMMARY OF THE INVENTION
  • The following description of the objective of the disclosure provided herein and the description of an embodiment of an X-ray machine for imaging a breast is not to be construed in any way as limiting the subject matter of the appended claims.
  • The objective of the disclosure provided herein is to design an X-ray machine for imaging a female breast in a diagnostically correct manner, rapidly, at low cost, and in a comfortable position for the patient.
  • An embodiment of an X-ray machine for imaging a breast of a female patient includes an approximately horizontally disposed patient table with a cut-out portion for accommodating a breast of a female patient, and a gantry rigidly suspended mechanically from the patient table. A gantry in accordance with this disclosure comprises an X-ray tube and the X-ray detector. The gantry is adapted to rotate about an approximately vertical rotational axis. The gantry is further adapted to be set into continuous rotational movement for imaging a breast. During said rotational movement, the gantry is further adapted to be moved in a vertical direction (e.g., by means of a gantry lift drive), with the vertical movement being dependent on the rotational movement.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the following, the invention will be described by way of example, without limitation of the general inventive concept, on examples of embodiment and with reference to the drawings.
  • FIG. 1 shows a planar view of an X-ray machine having an adjustable height patient table, which is firmly installed.
  • FIG. 2 shows a planar view of an X-ray machine having a movable patient table.
  • FIG. 3 shows a partial cross-sectional view through either one of the X-ray machines shown in FIG. 1 or 2.
  • FIG. 4 shows a portion of the cross-sectional view shown in FIG. 3 to illustrate a beam path between the X-ray tube and X-ray detector of the X-ray machine.
  • FIG. 5 shows a partial cross-sectional view through an example of a locating device included within the X-ray machine of FIG. 3.
  • While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • FIG. 1 illustrates an embodiment of an X-ray machine. A female patient 30 rests on a patient table 20. A breast to be examined is suspended through a breast cutout portion 21 in the surface of the patient table, so that the breast is within an exposure range of a gantry 10. In the illustrated embodiment, gantry 10 is a spiral computer tomograph (CT) gantry with an X-ray tube and an X-ray detector, which rotate around a breast to be examined. The breast is imaged during the rotation. Simultaneously with the rotation, a displacement in the vertical direction (denoted by arrow 12) is effected by a gantry lift drive 11, so that the breast is scanned along a spiraling direction. The height of the patient table 20 is adjustable (along arrow 24) with a patient table lift drive 22. If the patient table 20 is firmly installed, as shown in FIG. 1, it can be optionally rotated about an axis 25 of the patient table lift drive 22.
  • FIG. 2 illustrates another embodiment of an X-ray machine. The embodiment shown in FIG. 2 includes many of the components shown in FIG. 1 and described above. Components with like numerals will not be described herein for the sake of brevity. In addition to the components described above, the embodiment shown in FIG. 2 is provided with wheels 23 so that it may be moved in a simple manner.
  • FIG. 3 illustrates a partial cross-sectional view, which may be taken through either of the X-ray machines shown in FIG. 1 or 2. A female patient 30 is supported on the patient table 20 so that her breast 31 is suspended through a breast cutout portion 21 into an exposure range of a gantry 10. The gantry 10 is a spiral computer tomograph (CT) gantry with an X-ray tube 15 and an X-ray detector 14. The X-ray tube 15 and X-ray detector 14 are supported by a gantry pivot bearing 13, which allows the gantry 10 to be rotated about a rotational axis 17. Simultaneously with the rotation, a displacement in the vertical direction is effected by a gantry lift drive 11, so that the breast 31 is scanned along a spiraling direction. The gantry lift drive 11 is rigidly mechanically connected to the patient table 20 via a gantry suspension means 26.
  • FIG. 4 shows a magnified view of the cross-section provided in FIG. 3 to illustrate a path 16 of a beam of rays. As noted above, a patient's breast 31 is suspended through an opening 21 in a surface of a rest, which in this embodiment is designed to be a patient table 20. Of course, such an arrangement could be rotated through a range of desired angles, resulting in an alternative arrangement in which the patient table 20 is inclined or stood upright. In such an alternative embodiment, the inclined or upright patient table may serve only as an abutment surface through which a breast can be inserted. In all embodiments, however, the wall of a patient's chest should rest as closely as possible against the patient table 20, so that the breast can be imaged as completely as possible.
  • To obtain images of the breast, gantry 10 rotates about the rotational axis 17, as shown in FIGS. 3 and 4. The X-ray tube 15 generates a beam of rays 16 which penetrates the breast 31 and is received by the detector 14. The beam is ideally limited to impinging only on an active face of the detector. It is generally not desired that the beam penetrate the patient table 20.
  • As best shown in FIG. 4, the beam generated by anode 50 within the X-ray tube 15 and extends toward the detector 14 with a cone angle α (51). A central ray 52, which is incident on the active face of the detector 14, is located at the top edge of the beam of rays 16 close to the patient table 20. A central axis 53 extending perpendicular to the central ray 52 is aligned, in the illustrated embodiment, with the rotational axis 17 of the gantry 10.
  • FIG. 5 shows an example of a locating device 40 which may be connected to the patient table 20. The locating device 40 serves to accommodate or locate the patient's breast within the cutout portion 21. In the illustrated embodiment, a vacuum pump 42 is connected via tubing 41 for securing the patient's breast 31 within the locating device 40 by sub-atmospheric pressure.
  • As set forth above, an X-ray machine for imaging a female breast comprises a patient table 20 from which a gantry 10 of a spiral computer tomograph is rigidly and mechanically suspended. The patient table 20 has a breast cut-out portion 21 through which a breast 31 of a patient 30 is suspended downwards, preferably in the direction towards the gantry 10. The gantry 10 has a gantry lift drive 11 with which it can be moved relative to the patient's table. The gantry 10 rotates around the patient's breast to image the breast. A displacement of the gantry 10 along a longitudinal direction of the breast, e.g., in a vertical direction, is performed simultaneously with rotation and/or intermittently at regular intervals of time. In some embodiments, the vertical displacement can be performed continuously at constant speed, or proportionally to the rotational speed of the gantry. Alternatively, the vertical displacement may be performed stepwise, so that for example a vertical displacement of a distance equal to the width of the detector 14 is made following each revolution of the gantry.
  • The X-ray machine described herein makes it possible to perform X-ray exposures with high resolution. For example, a resolution of the X-ray machine described herein may be on the order of magnitude of about 10 micrometers to about 500 micrometers. In one embodiment, a resolution up to about 100 micrometers may be obtained with the X-ray machine described herein. At these resolutions, even the smallest mechanical tolerances and fluctuations can appreciably impair image quality.
  • In some X-ray machines, the gantry is put into a suitable exposure position before an exposure is made. After the gantry is stopped, periods ranging from several fractions of a second up to seconds are allowed to pass so that mechanical vibrations can decay before the next exposure is performed. However, the gantry described herein utilizes a spiral computer tomograph. Gantries of this sort cannot be stopped to minimize mechanical vibrations, since continuous rotation of the gantry around a breast occurs at the same time as an exposure. As a result, mechanical vibrations and tolerances directly affect image quality in gantries comprising spiral CTs.
  • A mechanically rigid connection between the gantry 10 and the patient table 20 is, therefore, of substantial importance to the X-ray machine described herein. A mechanically rigid connection is needed to minimize movement artefacts caused by mechanical vibrations and positional tolerances of the gantry with respect to a breast during high-resolution imaging. Accordingly, the gantry lift drive 11 also must be designed to be mechanically rigid. The mechanically rigid design of the X-ray machine described herein enables substantially higher quality images to be obtained than with systems, in which a patient's table and gantry are set up or suspended separately. Furthermore, mechanical tolerances or a possible bending of the patient table 20 do not affect the accuracy of the measurements obtained with the X-ray machine described herein. Thus, the resolution can be optimized, e.g., by arranging the central ray 52 of the beam 16 in a region close to a wall of a breast.
  • As shown in FIG. 4, the central ray 52 is the ray vertically incident on the detector 14. It is desired that the central ray 52 be as close as possible to the breast wall of the patient 30, in order to cover a region of the breast that is as large as possible. Thus, the X-ray tube 15 and the detector 14 are preferably disposed so that, the central ray 52 of the beam 16 is located on the side of the beam that faces the patient table 20. The best resolution is achieved with the central ray 52, thus, it is desired that the central ray 52 be disposed as close as possible to the patient table without penetrating the table. With the arrangement, it is possible to prevent vibrations and positional tolerances of the gantry and other components of the X-ray machine from impairing the high imaging quality of images achievable with the central ray.
  • In order to further improve accuracy of the X-ray machine, a locating device 40 is provided for a breast. Like the gantry, the locating device 40 may also be rigidly mechanically connected to the patient table 20. However, for reasons of hygiene, the locating device 40 can also be detachable from the table. In one embodiment, the locating device 40 operates by means of a vacuum that can be produced with a vacuum pump 42.
  • Another advantage resides in the extremely compact construction of the X-ray machine described herein. For example, a spiral computer tomography (CT) gantry consumes less space than other gantries, which require detectors of large surface area to image a whole breast. Due to the spiral recording, a substantially smaller detector can be used in the spiral CT gantry described herein. The use of a smaller detector also results in a substantially flatter gantry. In one embodiment, the height of the gantry 10 may be within a range of about 5 cm to about 20 cm. In one embodiment, the height of the gantry may be 10 cm. For this reason, and because of the rigid mechanical suspension of the gantry from the table, the space between the gantry 10 and a floor located below the gantry is freely accessible and can therefore be walked upon by a person performing the examination. Additional examination instruments, such as biopsy instruments, can also be disposed within this space. Because of the free accessibility of the space below the gantry, the performance of therapy with simultaneous recording of images is possible.
  • Furthermore, incorporating the gantry 10 with the patient table 20 enables exposures to be taken up to the lower edge of the patient table.
  • Another advantage of the X-ray machine described herein is that the patient table 20 comprises an adjustable height. For example, a patient table lift drive 22 coupled to patient table 20 may be used for lifting or adjusting the height of the patient table. As the gantry 10 is suspended from the patient table 20, the height of the patient table can be freely adjusted. With an adjustment of height, additional space can be created for additional examination instruments or even for an upright working position of a person performing the examination. The patient table 20 may be tiltable, in some embodiments, providing additional workspace for the person performing the examination.
  • In some embodiments the X-ray machine is provided with wheels (23, FIG. 2), so that it can be moved for use at different sites. The wheels enable the machine to be used in other diagnostic facilities or with other instruments. For example, the moveable X-ray machine can be oriented with respect to another X-ray machine, an ultrasonic instrument, or a biopsy facility. As the gantry 10 is rigidly mechanically suspended from the table, an adjustment of the gantry with reference to the table is not altered by movement of the table. Thus, the image quality and also the precision of location remain constant.
  • The term “rigid mechanical connection” is hereby understood to be a connection which, although capable of being released, connects parts in a manner so that mechanical movements during operation are smaller than the resolution of the X-ray machine (which, in one embodiment, comprises a resolution on an order of magnitude of about 10 micrometers up to about 500 micrometers, or more preferably up to about 100 micrometers).
  • It will be appreciated to those skilled in the art having the benefit of this disclosure that this disclosure is believed to provide X-ray machines for imaging a breast. Further modifications and alternative embodiments of various aspects of the invention will be apparent to those skilled in the art in view of this description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as the presently preferred embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the spirit and scope of the invention as described in the following claims.

Claims (6)

1. An X-ray machine for imaging a breast of a female patient, comprising:
an approximately horizontally disposed patient table with a cut-out portion for accommodating a breast of a female patient;
a gantry rigidly mechanically suspended from the patient table, wherein the gantry comprises an X-ray tube and an X-ray detector, and wherein the gantry is adapted to rotate about an approximately vertical rotational axis in a continuous rotational movement for imaging a breast, and wherein the gantry is further adapted to be moved in a vertical direction during said rotational movement.
2. The X-ray machine according to claim 1, wherein the X-ray tube and the X-ray detector are disposed so that a central ray of a beam of rays from the X-ray tube is located on a side of the beam nearest the patient table.
3. The X-ray machine according to claim 1, further comprising a locating device for locating the breast within the cut-out portion, wherein the locating device is rigidly mechanically suspended from the patient table.
4. The X-ray machine according to claim 1, further comprising a patient table lift drive coupled to the patient table for adjusting a height of the patient table.
5. The X-ray machine according to claim 1, wherein the patient table comprises wheels, which allow the patient table to be moved.
6. The X-ray machine according to claim 1, wherein the patient table is tiltable.
US12/401,765 2008-09-29 2009-03-11 X-ray machine for breast examination having a gantry incorporated in a patient table Active US7864918B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008042430 2008-09-29
DE102008042430 2008-09-29
DE102008042430.7 2008-09-29

Publications (2)

Publication Number Publication Date
US20100080344A1 true US20100080344A1 (en) 2010-04-01
US7864918B2 US7864918B2 (en) 2011-01-04

Family

ID=40524871

Family Applications (8)

Application Number Title Priority Date Filing Date
US12/402,141 Abandoned US20100080349A1 (en) 2008-09-29 2009-03-11 Modular System for Diagnosis and Surgical Operation on a Breast
US12/401,814 Expired - Fee Related US7881427B2 (en) 2008-09-29 2009-03-11 Breast locating means with sample container for an instrument for examining a female breast
US12/401,792 Expired - Fee Related US8102964B2 (en) 2008-09-29 2009-03-11 Breast locating device including an RFID transponder for a diagnostic instrument for examining a female breast
US12/401,735 Expired - Fee Related US7924974B2 (en) 2008-09-29 2009-03-11 X-ray machine for breast examination in a standing position
US12/401,976 Expired - Fee Related US8199993B2 (en) 2008-09-29 2009-03-11 Method for defining an individual coordination system for a breast of a female patient
US12/401,765 Active US7864918B2 (en) 2008-09-29 2009-03-11 X-ray machine for breast examination having a gantry incorporated in a patient table
US12/402,225 Expired - Fee Related US7945019B2 (en) 2008-09-29 2009-03-11 Method and device for thermal breast tumor treatment with 3D monitoring function
US12/402,059 Active US7869564B2 (en) 2008-09-29 2009-03-11 X-ray machine for breast examination having a beam configuration for high resolution images

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US12/402,141 Abandoned US20100080349A1 (en) 2008-09-29 2009-03-11 Modular System for Diagnosis and Surgical Operation on a Breast
US12/401,814 Expired - Fee Related US7881427B2 (en) 2008-09-29 2009-03-11 Breast locating means with sample container for an instrument for examining a female breast
US12/401,792 Expired - Fee Related US8102964B2 (en) 2008-09-29 2009-03-11 Breast locating device including an RFID transponder for a diagnostic instrument for examining a female breast
US12/401,735 Expired - Fee Related US7924974B2 (en) 2008-09-29 2009-03-11 X-ray machine for breast examination in a standing position
US12/401,976 Expired - Fee Related US8199993B2 (en) 2008-09-29 2009-03-11 Method for defining an individual coordination system for a breast of a female patient

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/402,225 Expired - Fee Related US7945019B2 (en) 2008-09-29 2009-03-11 Method and device for thermal breast tumor treatment with 3D monitoring function
US12/402,059 Active US7869564B2 (en) 2008-09-29 2009-03-11 X-ray machine for breast examination having a beam configuration for high resolution images

Country Status (2)

Country Link
US (8) US20100080349A1 (en)
EP (8) EP2178048A3 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090064413A1 (en) * 2007-09-06 2009-03-12 Orbital Therapy Llc Patient support system for full access prone position breast radiotherapy
US20100071131A1 (en) * 2008-09-13 2010-03-25 Joachim Gunkel Support apparatus and patient support table as well as medical device
US20100080345A1 (en) * 2008-09-29 2010-04-01 Mir Medical Imaging Research Holding Gmbh Breast Locating Means for a Diagnostic Instrument for Examining a Female Breast
US9326739B2 (en) * 2014-04-28 2016-05-03 Cheryl A. Galambos McLaughlin Mammogram table
JP2016106964A (en) * 2014-12-09 2016-06-20 キヤノン株式会社 Mammographic and tomographic imaging system
US9848797B2 (en) 2012-12-31 2017-12-26 Siemens Aktiengesellschaft Patient tables and magnetic resonance imaging equipment
CN108956656A (en) * 2018-07-17 2018-12-07 章慧妍 A kind of high contrast low dosage phase contrast CT image-forming device

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8014490B2 (en) * 2009-10-20 2011-09-06 Linda Mitchell Mammogram tender machine
US8421604B2 (en) * 2009-11-30 2013-04-16 Symbol Technologies, Inc. Method and apparatus for identifying read zone of RFID reader
US8374312B2 (en) * 2010-02-18 2013-02-12 Varian Medical Systems, Inc. Prone patient positioning devices and methods
DE102010011660A1 (en) * 2010-03-17 2011-09-22 Siemens Aktiengesellschaft Mammography apparatus for radiography of patient's breast, has multi-focus tubes with carbon nanotubes in region of recess below couch surface, and detector unit aligned corresponding to one activated nanotube to receive X-ray images
JP5700950B2 (en) * 2010-04-21 2015-04-15 キヤノン株式会社 Biological information acquisition device
US20120001737A1 (en) * 2010-05-13 2012-01-05 Amir Berger Method and system for computed radiography
US20140191852A1 (en) * 2010-05-13 2014-07-10 Carestream Health, Inc. Method and system for phosphor plate identification in computed radiography
GB2483640A (en) * 2010-09-10 2012-03-21 Specialty Magnetics Ltd Breast immobilisation arrangement
CN105769236B (en) 2010-10-05 2020-02-07 霍洛吉克公司 Upright X-ray chest imaging system and method
DE102010052603A1 (en) * 2010-11-25 2012-05-31 Artemis Imaging Gmbh Medical device for use with tomographic imaging, particularly computer tomography, has day bed, particularly horizontally arranged day bed and imaging system, where day bed has two recesses
WO2012120498A1 (en) * 2011-03-04 2012-09-13 Technion Research & Development Non-invasive thermal treatment monitoring
DE102011006353A1 (en) 2011-03-29 2012-10-04 Siemens Aktiengesellschaft mammography system
WO2012171029A1 (en) 2011-06-09 2012-12-13 The Regents Of The University Of California Excised specimen imaging using a combined pet and micro ct scanner
US8842806B2 (en) 2012-04-03 2014-09-23 Carestream Health, Inc. Apparatus and method for breast imaging
RU2014148332A (en) * 2012-05-02 2016-06-20 Конинклейке Филипс Н.В. VISUALIZED THERMOMETRY
US9307961B2 (en) * 2012-06-29 2016-04-12 Carefusion 2200, Inc. Fine needle aspiration biopsy device
KR102001926B1 (en) * 2012-09-11 2019-07-30 삼성디스플레이 주식회사 X-ray detector, X-ray detecting system including the same, and method for detecting X-ray
DE102012216687A1 (en) * 2012-09-18 2014-03-20 Jan Rimbach Apparatus for testing specimens
DE102012217301B4 (en) 2012-09-25 2021-10-14 Bayer Pharma Aktiengesellschaft Combination of contrast agent and mammography CT system with a specified energy range and method for generating tomographic mammography CT images using this combination
AU2014331830A1 (en) 2013-10-09 2016-04-21 Hologic, Inc. X-ray breast tomosynthesis enhancing spatial resolution including in the thickness direction of a flattened breast
US9161725B1 (en) * 2014-02-05 2015-10-20 Regine Millien-White Adjustable breast examination device
JP6376783B2 (en) * 2014-03-12 2018-08-22 キヤノン株式会社 Breast tomography apparatus and control method
JP6381253B2 (en) * 2014-03-31 2018-08-29 キヤノン株式会社 Radiography equipment, tomography equipment
WO2015151127A1 (en) * 2014-04-04 2015-10-08 Pierfrancesco Pavoni Access gate or gantry comprising an antennas assembly for therapy or imaging
US9301726B2 (en) * 2014-05-02 2016-04-05 Wisconsin Alumni Research Foundation CT machine for multi-angle scanning of stationary patients
CN104173075B (en) * 2014-08-26 2016-07-06 李丙曙 Radiology department's examinating couch
CN107405124A (en) * 2014-12-26 2017-11-28 射线科学有限公司 Lifting means for pressure oar and the x-ray photography device including the lifting means
CN105832353B (en) * 2015-01-30 2020-11-06 佳能株式会社 Radiation imaging system
JP6651069B2 (en) * 2015-05-13 2020-02-19 フジデノロ株式会社 Fixture mounting device
KR20160139292A (en) * 2015-05-27 2016-12-07 삼성전자주식회사 Radio frequency surface coil and Magnetic resonance imaging system comprising the same
JP6525768B2 (en) * 2015-06-30 2019-06-05 キヤノン株式会社 Mammography device
US10542951B2 (en) * 2015-07-23 2020-01-28 General Electric Company Systems, methods, and devices for simplified high quality imaging of biopsy samples on a mammography machine
WO2017019401A1 (en) * 2015-07-24 2017-02-02 Dretzaka-Kaye Tricia Anatomy scanning system and method
US11076821B2 (en) 2015-11-25 2021-08-03 The Regents Of The University Of California 3D-beam modulation filter for equalizing dose and image quality in breast CT
DE102015225236A1 (en) * 2015-12-15 2017-06-22 Siemens Healthcare Gmbh High throughput mammography screening
CN106933857B (en) * 2015-12-30 2020-12-29 创新先进技术有限公司 Method and device for scheduling tasks in data warehouse
DE102016206198A1 (en) * 2016-04-13 2017-10-19 Siemens Healthcare Gmbh X-ray system
WO2017180570A1 (en) * 2016-04-14 2017-10-19 Dedicated2Imaging, Llc Ct systems for imaging of the breast
WO2018051220A1 (en) * 2016-09-14 2018-03-22 Mor Research Applications Ltd. Device, system and method for detecting irregularities in soft tissue
US10180207B1 (en) * 2017-07-13 2019-01-15 Danylo Kozub Stand
CN108175430A (en) * 2018-01-17 2018-06-19 江苏美伦影像系统有限公司 It is a kind of that there is the mammary gland X ray photographing system of radiation protection
US10959747B1 (en) * 2018-04-02 2021-03-30 Lifei Guo Tissue removing
US10893844B1 (en) * 2018-10-10 2021-01-19 David Byron Douglas Method and apparatus for performing 3D imaging examinations of a structure under differing configurations and analyzing morphologic changes
DE102018207636A1 (en) * 2018-05-16 2019-11-21 Siemens Healthcare Gmbh Patient table with device for reversible recording of a transfer plate
CN110975156B (en) * 2019-11-15 2021-11-19 山东大学齐鲁医院 Breast traction fixing device and system
EP4125605A1 (en) * 2020-03-31 2023-02-08 Hologic, Inc. Systems and methods for x-ray imaging tissue specimens
KR102640269B1 (en) * 2020-05-29 2024-02-26 (의료)길의료재단 Radiation Therapy Device for Breast Cancer
CN111714222B (en) * 2020-06-29 2021-07-23 北京欧扬医疗美容门诊部有限公司 Fat self-implantation device for traceless breast augmentation
CN111714191A (en) * 2020-06-30 2020-09-29 广西医科大学附属肿瘤医院 Laser positioning device for cone beam mammary gland CT guided pendulous puncture
US11692951B2 (en) * 2021-02-24 2023-07-04 GE Precision Healthcare LLC System and method for specimen imaging using an existing mammography imaging system
EP4226875A1 (en) * 2022-02-09 2023-08-16 Storz Medical AG Shock wave device having a source self aligning with an x-ray device
EP4226876A1 (en) * 2022-02-09 2023-08-16 Storz Medical AG Shock wave device having improved acoustic coupling
EP4226874A1 (en) * 2022-02-09 2023-08-16 Storz Medical AG Ultrasound and/or shock wave device with hexapod platform mounted source
EP4226877A1 (en) * 2022-02-09 2023-08-16 Storz Medical AG Shock wave device with integrated ultrasound probe
WO2023200890A1 (en) * 2022-04-14 2023-10-19 Koning Corporation Stationary detail imaging in cone beam breast computed tomography

Citations (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3673394A (en) * 1969-02-18 1972-06-27 North American Rockwell Measuring method and apparatus
US4015836A (en) * 1975-07-31 1977-04-05 General Electric Company Mammography table
US4400827A (en) * 1981-11-13 1983-08-23 Spears James R Method and apparatus for calibrating rapid sequence radiography
US4680028A (en) * 1984-07-02 1987-07-14 Lact-Assist, Incorporated Flexible breast receptor for breast pump
US4709382A (en) * 1984-11-21 1987-11-24 Picker International, Inc. Imaging with focused curved radiation detectors
US5273435A (en) * 1992-07-16 1993-12-28 The Mcw Research Foundation, Inc. Tumor localization phantom
US5308321A (en) * 1992-05-05 1994-05-03 Castro Donna J Retainer assisted by vacuum expansion system
US5386447A (en) * 1992-09-23 1995-01-31 Fischer Imaging Corporation Mammographic screening and biopsy apparatus
US5426685A (en) * 1991-11-27 1995-06-20 Thermotrex Corporation Stereotactic mammography system imaging
US5528043A (en) * 1995-04-21 1996-06-18 Thermotrex Corporation X-ray image sensor
US5569266A (en) * 1991-03-11 1996-10-29 Fischer Imaging Corporation Magnetic resonance imaging device useful for guiding a medical instrument
US5609827A (en) * 1995-05-02 1997-03-11 Beekley Corporation Biopsy specimen container
US5664569A (en) * 1992-09-28 1997-09-09 Fonar Corporation Breast positioning device for use during magnetic resonance imaging
US5757878A (en) * 1996-08-16 1998-05-26 Analogic Corporation Detector arrangement for x-ray tomography system
US5803912A (en) * 1989-11-21 1998-09-08 Fischer Imaging Corporation Positioning function mammographic biopsy function system with offset
US6242743B1 (en) * 1998-08-11 2001-06-05 Mosaic Imaging Technology, Inc. Non-orbiting tomographic imaging system
US6254614B1 (en) * 1999-10-18 2001-07-03 Jerry M. Jesseph Device and method for improved diagnosis and treatment of cancer
US6298114B1 (en) * 1994-05-11 2001-10-02 Mitsubishi Denki Kabushiki Kaisha X-ray mammography apparatus
US6325537B1 (en) * 1998-10-16 2001-12-04 Kabushiki Kaisha Toshiba X-ray diagnosis apparatus
US6358246B1 (en) * 1999-06-25 2002-03-19 Radiotherapeutics Corporation Method and system for heating solid tissue
US6415012B1 (en) * 1999-02-17 2002-07-02 Kabushiki Kaisha Toshiba Multi-slice X-ray computed tomography apparatus
US6418188B1 (en) * 2001-06-14 2002-07-09 Juanita L. Broadnax Radiation breast cup and method
US6419390B1 (en) * 2001-03-26 2002-07-16 Marianette Landis-Lowell Folding mammography table and method of use
US6463122B1 (en) * 2000-08-21 2002-10-08 Bio-Imaging Resource, Inc. Mammography of computer tomography for imaging and therapy
US6480565B1 (en) * 1999-11-18 2002-11-12 University Of Rochester Apparatus and method for cone beam volume computed tomography breast imaging
US20020181651A1 (en) * 2001-05-04 2002-12-05 Shepherd John A. Device and method for determining proportions of body materials
US20030072409A1 (en) * 2001-10-12 2003-04-17 Kaufhold John Patrick Methods and apparatus for estimating a material composition of an imaged object
US20030204965A1 (en) * 2001-12-10 2003-11-06 Hennessey C. William Parallel kinematic micromanipulator
US6684097B1 (en) * 1999-04-22 2004-01-27 University Of Miami Intraoperative monitoring of temperature-induced tissue changes with a high-resolution digital x-ray system during thermotherapy
US20040066880A1 (en) * 2002-10-02 2004-04-08 Shiro Oikawa Radiographic apparatus
US20040082856A1 (en) * 2002-07-16 2004-04-29 Alfred E. Mann Institute For Biomedical Engineering, University Of Southern California Support bra for ultrasonic breast scanner
US20040092826A1 (en) * 2002-11-08 2004-05-13 Luc Corbeil Method and apparatus for optical imaging
US6819736B1 (en) * 2002-02-22 2004-11-16 Siemens Aktiengesellschaft Computed tomography method and computed tomography apparatus
US20040238750A1 (en) * 2003-06-02 2004-12-02 Habib Vafi X-ray and CT image detector
US20040251419A1 (en) * 2003-06-16 2004-12-16 Nelson Robert Sigurd Device and system for enhanced SPECT, PET, and Compton scatter imaging in nuclear medicine
US20040254461A1 (en) * 2002-03-20 2004-12-16 Ackerman William H. Acoustic beam shaping by pulse power modulation at constant amplitude
US6837772B1 (en) * 2003-07-18 2005-01-04 Regina Miracle International Limited Breast cup construction
US6872001B1 (en) * 2003-05-05 2005-03-29 Peco Controls Corp. X-ray shielding structure for food inspection station
US20050070817A1 (en) * 2003-09-30 2005-03-31 Mueller Richard L. Lavage assist device
US7005988B2 (en) * 2003-09-19 2006-02-28 International Business Machines Corporation Using radio frequency identification to detect and/or prevent theft and shoplifting
US20060094950A1 (en) * 1999-11-18 2006-05-04 Ruola Ning Apparatus and method for cone beam computed tomography breast imaging
US7065393B2 (en) * 2002-07-11 2006-06-20 Cedara Software Corp. Apparatus, system and method of calibrating medical imaging systems
US20060145871A1 (en) * 2004-12-02 2006-07-06 Smith & Nephew, Inc. Radio Frequency Identification for Medical Devices
US20060262898A1 (en) * 2005-05-20 2006-11-23 Varian Medical Systems, Inc. System and method for imaging and treatment of tumorous tissue in breasts using computed tomography and radiotherapy
US20070009080A1 (en) * 2005-07-08 2007-01-11 Mistretta Charles A Backprojection reconstruction method for CT imaging
US20070064867A1 (en) * 2005-09-20 2007-03-22 Hansen Timothy B Apparatus and method to acquire data for reconstruction of images pertaining to functional and anatomical structure of the breast
US20070092059A1 (en) * 2005-10-25 2007-04-26 Jeffrey Wayne Eberhard Breast immobilization device and method of imaging the breast
US20070238957A1 (en) * 2005-12-22 2007-10-11 Visen Medical, Inc. Combined x-ray and optical tomographic imaging system
US20070237306A1 (en) * 2006-01-17 2007-10-11 Jones Sharon D Laser imaging apparatus with variable patient positioning
US7304578B1 (en) * 2005-06-02 2007-12-04 Hewlett-Packard Development Company, L.P. Tag including RFID circuit storing data modifiable using a physically alterable medium
US20080033420A1 (en) * 2006-08-04 2008-02-07 Nields Morgan W Methods for planning and performing thermal ablation
US20080037703A1 (en) * 2006-08-09 2008-02-14 Digimd Corporation Three dimensional breast imaging
US20080081984A1 (en) * 2006-09-28 2008-04-03 Lafferty Peter R System and apparatus for rapid stereotactic breast biopsy analysis
US20080084961A1 (en) * 2006-10-04 2008-04-10 Cynthia Keppel Method and apparatus for combined gamma/x-ray imaging in stereotactic biopsy
US20080089471A1 (en) * 2006-10-11 2008-04-17 Canon Kabushiki Kaisha Medical breast-image capturing apparatus
US20080101538A1 (en) * 2004-09-03 2008-05-01 Claus-Gunter Schliermann X-Ray Facility
US20080187095A1 (en) * 2005-05-03 2008-08-07 The Regents Of The University Of California Biopsy Systems For Breast Computed Tomography
US20080205588A1 (en) * 2005-02-11 2008-08-28 Siyong Kim System Including Computed Tomography Device For Image Guided Treatment
US20080221478A1 (en) * 2007-03-07 2008-09-11 Ritchie Paul G Integrated Imaging and Biopsy System with Integrated Control Interface
US20080230074A1 (en) * 2007-03-23 2008-09-25 Zheng Mike Q Method and device for immobilization of the human breast in a prone position for radiotherapy
US7453978B1 (en) * 2007-06-25 2008-11-18 University Of Tennessee Research Foundation Variable resolution x-ray CT detector with multi-axis tilt
US7467892B2 (en) * 2000-08-29 2008-12-23 Imaging Therapeutics, Inc. Calibration devices and methods of use thereof
US20090080604A1 (en) * 2007-08-23 2009-03-26 Fischer Medical Technologies, Inc. Computed tomography breast imaging and biopsy system
US7556426B2 (en) * 2003-09-05 2009-07-07 Fujifilm Corporation Radiation cassette
US7558370B2 (en) * 2005-11-07 2009-07-07 Sommer Jr Edward J Method and apparatus for improving identification and control of articles passing through a scanning system
US20090196393A1 (en) * 2008-02-01 2009-08-06 Ge Wang Interior Tomography and Instant Tomography by Reconstruction from Truncated Limited-Angle Projection Data
US7677799B2 (en) * 2006-07-28 2010-03-16 General Electric Company Coordination of radiological imaging subsystems and components
US7743953B2 (en) * 2007-04-17 2010-06-29 Yoshiki Okazaki Brassier washing utensil
US7764765B2 (en) * 2007-07-24 2010-07-27 Fujifilm Corporation Cassette and mobile X-ray image capturing apparatus

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI85803C (en) 1989-11-23 1992-06-10 Planmed Oy FOERFARANDE OCH ANORDNING FOER STYRNING AV FUNKTIONER AV EN MAMMOGRAFIROENTGENANORDNING.
US5409497A (en) 1991-03-11 1995-04-25 Fischer Imaging Corporation Orbital aiming device for mammo biopsy
US6075879A (en) * 1993-09-29 2000-06-13 R2 Technology, Inc. Method and system for computer-aided lesion detection using information from multiple images
US5709206A (en) * 1995-11-27 1998-01-20 Teboul; Michel Imaging system for breast sonography
DE19639975C1 (en) 1996-09-27 1998-05-07 Siemens Ag Diagnostic and therapeutic equipment e.g. computer tomograph, MRI, shock wave generator radiation diagnosis or therapy
AU7368798A (en) 1997-05-06 1998-11-27 Quanta Vision Tissue analysis apparatus
US5991357A (en) 1997-12-16 1999-11-23 Analogic Corporation Integrated radiation detecting and collimating assembly for X-ray tomography system
US6175117B1 (en) * 1998-01-23 2001-01-16 Quanta Vision, Inc. Tissue analysis apparatus
DE19812995A1 (en) 1998-03-25 1999-10-07 Siemens Ag Mammography unit, especially for magnified image mammography
TW406009B (en) * 1999-07-16 2000-09-21 Nat Science Council 3-D localization method of clustered microcalcifications using cranio-caudal and medio-lateral oblique views
DE10026792A1 (en) 2000-05-31 2001-12-06 Bip Biomedizinische Instr & Pr Diagnostic and therapy table comprises lying surface with breast holes module and table swivel mechanism plus tread for placing mounting patients feet.
US7940966B2 (en) 2000-11-24 2011-05-10 U-Systems, Inc. Full-field breast image data processing and archiving
US7218766B2 (en) * 2002-04-15 2007-05-15 General Electric Company Computer aided detection (CAD) for 3D digital mammography
US7783089B2 (en) * 2002-04-15 2010-08-24 General Electric Company Method and apparatus for providing mammographic image metrics to a clinician
US7149566B2 (en) * 2002-10-31 2006-12-12 Manoa Medical, Inc. Soft tissue orientation and imaging guide systems and methods
US7286634B2 (en) * 2002-12-23 2007-10-23 Select Technologies, Llc Method and apparatus for improving baggage screening examination
DE602004022514D1 (en) * 2003-02-20 2009-09-24 Manoa Medical Inc BENDABLE CUTTING DEVICE
US7850613B2 (en) 2003-05-30 2010-12-14 Orison Corporation Apparatus and method for three dimensional ultrasound breast imaging
GB0318701D0 (en) * 2003-08-08 2003-09-10 Inst Of Cancer Res The A method and apparatus for image processing
US20050096515A1 (en) * 2003-10-23 2005-05-05 Geng Z. J. Three-dimensional surface image guided adaptive therapy system
US7653229B2 (en) * 2003-12-23 2010-01-26 General Electric Company Methods and apparatus for reconstruction of volume data from projection data
JP4119835B2 (en) 2003-12-26 2008-07-16 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Exposure dose calculation method and X-ray imaging apparatus
US7519209B2 (en) * 2004-06-23 2009-04-14 Vanderbilt University System and methods of organ segmentation and applications of same
US20060239398A1 (en) 2005-03-07 2006-10-26 Fused Multimodality Imaging, Ltd. Breast diagnostic apparatus for fused SPECT, PET, x-ray CT, and optical surface imaging of breast cancer
EP1864611A4 (en) 2005-04-01 2013-09-04 Keizi Shibuya Breast inspection system
DE102005022347B4 (en) 2005-05-13 2010-08-12 Siemens Ag Medical basic system and medical technology system
US7573034B2 (en) * 2005-05-18 2009-08-11 Carestream Health, Inc. Mobile radiography image recording system
KR20080021723A (en) * 2005-06-02 2008-03-07 더 메디패턴 코포레이션 System and method of computer-aided detection
JP4837507B2 (en) * 2005-10-06 2011-12-14 富士フイルム株式会社 Breast imaging device
DE102005048049B4 (en) 2005-10-07 2010-09-23 Karlsruher Institut für Technologie Device for image-assisted breast diagnosis and therapy
DE102005053993A1 (en) * 2005-11-10 2007-05-24 Siemens Ag Diagnostic device and diagnostic method for combined and / or combinable radiographic and nuclear medicine examinations
US8014576B2 (en) * 2005-11-23 2011-09-06 The Medipattern Corporation Method and system of computer-aided quantitative and qualitative analysis of medical images
WO2007120622A2 (en) 2006-04-11 2007-10-25 Playtex Products, Inc Manual breast pump
US7483511B2 (en) * 2006-06-06 2009-01-27 Ge Homeland Protection, Inc. Inspection system and method
US7840046B2 (en) * 2006-06-27 2010-11-23 Siemens Medical Solutions Usa, Inc. System and method for detection of breast masses and calcifications using the tomosynthesis projection and reconstructed images
WO2008024611A2 (en) * 2006-08-21 2008-02-28 Ev Products, Inc. Staggered array imaging system using pixilated radiation detectors
WO2008054279A1 (en) 2006-10-31 2008-05-08 Xcounter Ab Imaging arrangement and system for imaging
JP4851298B2 (en) * 2006-10-31 2012-01-11 富士フイルム株式会社 Radiation tomographic image generator
JP2008272093A (en) 2007-04-26 2008-11-13 Toshiba Corp X-ray imaging apparatus for breast and x-ray imaging method for breast
US20100080349A1 (en) * 2008-09-29 2010-04-01 Mir Medical Imaging Research Holding Gmbh Modular System for Diagnosis and Surgical Operation on a Breast
EP2189114A1 (en) * 2008-11-22 2010-05-26 MIR Medical Imaging Research Holding GmbH Device for fixing the female breast for diagnostic imaging and intervention

Patent Citations (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3673394A (en) * 1969-02-18 1972-06-27 North American Rockwell Measuring method and apparatus
US4015836A (en) * 1975-07-31 1977-04-05 General Electric Company Mammography table
US4400827A (en) * 1981-11-13 1983-08-23 Spears James R Method and apparatus for calibrating rapid sequence radiography
US4680028A (en) * 1984-07-02 1987-07-14 Lact-Assist, Incorporated Flexible breast receptor for breast pump
US4709382A (en) * 1984-11-21 1987-11-24 Picker International, Inc. Imaging with focused curved radiation detectors
US5803912A (en) * 1989-11-21 1998-09-08 Fischer Imaging Corporation Positioning function mammographic biopsy function system with offset
US5569266A (en) * 1991-03-11 1996-10-29 Fischer Imaging Corporation Magnetic resonance imaging device useful for guiding a medical instrument
US5426685A (en) * 1991-11-27 1995-06-20 Thermotrex Corporation Stereotactic mammography system imaging
US5308321A (en) * 1992-05-05 1994-05-03 Castro Donna J Retainer assisted by vacuum expansion system
US5273435A (en) * 1992-07-16 1993-12-28 The Mcw Research Foundation, Inc. Tumor localization phantom
US5273435B1 (en) * 1992-07-16 1995-12-05 Wisconsin Med College Inc Tumor localization phantom
US5386447A (en) * 1992-09-23 1995-01-31 Fischer Imaging Corporation Mammographic screening and biopsy apparatus
US5664569A (en) * 1992-09-28 1997-09-09 Fonar Corporation Breast positioning device for use during magnetic resonance imaging
US6298114B1 (en) * 1994-05-11 2001-10-02 Mitsubishi Denki Kabushiki Kaisha X-ray mammography apparatus
US5528043A (en) * 1995-04-21 1996-06-18 Thermotrex Corporation X-ray image sensor
US5609827A (en) * 1995-05-02 1997-03-11 Beekley Corporation Biopsy specimen container
US5757878A (en) * 1996-08-16 1998-05-26 Analogic Corporation Detector arrangement for x-ray tomography system
US6242743B1 (en) * 1998-08-11 2001-06-05 Mosaic Imaging Technology, Inc. Non-orbiting tomographic imaging system
US6325537B1 (en) * 1998-10-16 2001-12-04 Kabushiki Kaisha Toshiba X-ray diagnosis apparatus
US6415012B1 (en) * 1999-02-17 2002-07-02 Kabushiki Kaisha Toshiba Multi-slice X-ray computed tomography apparatus
US6684097B1 (en) * 1999-04-22 2004-01-27 University Of Miami Intraoperative monitoring of temperature-induced tissue changes with a high-resolution digital x-ray system during thermotherapy
US6358246B1 (en) * 1999-06-25 2002-03-19 Radiotherapeutics Corporation Method and system for heating solid tissue
US6254614B1 (en) * 1999-10-18 2001-07-03 Jerry M. Jesseph Device and method for improved diagnosis and treatment of cancer
US6480565B1 (en) * 1999-11-18 2002-11-12 University Of Rochester Apparatus and method for cone beam volume computed tomography breast imaging
US7697660B2 (en) * 1999-11-18 2010-04-13 University Of Rochester Apparatus and method for cone beam computed tomography breast imaging
US20060094950A1 (en) * 1999-11-18 2006-05-04 Ruola Ning Apparatus and method for cone beam computed tomography breast imaging
US6463122B1 (en) * 2000-08-21 2002-10-08 Bio-Imaging Resource, Inc. Mammography of computer tomography for imaging and therapy
US7467892B2 (en) * 2000-08-29 2008-12-23 Imaging Therapeutics, Inc. Calibration devices and methods of use thereof
US6419390B1 (en) * 2001-03-26 2002-07-16 Marianette Landis-Lowell Folding mammography table and method of use
US20020181651A1 (en) * 2001-05-04 2002-12-05 Shepherd John A. Device and method for determining proportions of body materials
US6418188B1 (en) * 2001-06-14 2002-07-09 Juanita L. Broadnax Radiation breast cup and method
US20030072409A1 (en) * 2001-10-12 2003-04-17 Kaufhold John Patrick Methods and apparatus for estimating a material composition of an imaged object
US20030204965A1 (en) * 2001-12-10 2003-11-06 Hennessey C. William Parallel kinematic micromanipulator
US6819736B1 (en) * 2002-02-22 2004-11-16 Siemens Aktiengesellschaft Computed tomography method and computed tomography apparatus
US20040254461A1 (en) * 2002-03-20 2004-12-16 Ackerman William H. Acoustic beam shaping by pulse power modulation at constant amplitude
US7065393B2 (en) * 2002-07-11 2006-06-20 Cedara Software Corp. Apparatus, system and method of calibrating medical imaging systems
US20040082856A1 (en) * 2002-07-16 2004-04-29 Alfred E. Mann Institute For Biomedical Engineering, University Of Southern California Support bra for ultrasonic breast scanner
US20040066880A1 (en) * 2002-10-02 2004-04-08 Shiro Oikawa Radiographic apparatus
US20040092826A1 (en) * 2002-11-08 2004-05-13 Luc Corbeil Method and apparatus for optical imaging
US6872001B1 (en) * 2003-05-05 2005-03-29 Peco Controls Corp. X-ray shielding structure for food inspection station
US20040238750A1 (en) * 2003-06-02 2004-12-02 Habib Vafi X-ray and CT image detector
US20040251419A1 (en) * 2003-06-16 2004-12-16 Nelson Robert Sigurd Device and system for enhanced SPECT, PET, and Compton scatter imaging in nuclear medicine
US6837772B1 (en) * 2003-07-18 2005-01-04 Regina Miracle International Limited Breast cup construction
US7556426B2 (en) * 2003-09-05 2009-07-07 Fujifilm Corporation Radiation cassette
US7005988B2 (en) * 2003-09-19 2006-02-28 International Business Machines Corporation Using radio frequency identification to detect and/or prevent theft and shoplifting
US20050070817A1 (en) * 2003-09-30 2005-03-31 Mueller Richard L. Lavage assist device
US20080101538A1 (en) * 2004-09-03 2008-05-01 Claus-Gunter Schliermann X-Ray Facility
US20060145871A1 (en) * 2004-12-02 2006-07-06 Smith & Nephew, Inc. Radio Frequency Identification for Medical Devices
US20080205588A1 (en) * 2005-02-11 2008-08-28 Siyong Kim System Including Computed Tomography Device For Image Guided Treatment
US20080187095A1 (en) * 2005-05-03 2008-08-07 The Regents Of The University Of California Biopsy Systems For Breast Computed Tomography
US20060262898A1 (en) * 2005-05-20 2006-11-23 Varian Medical Systems, Inc. System and method for imaging and treatment of tumorous tissue in breasts using computed tomography and radiotherapy
US7492858B2 (en) * 2005-05-20 2009-02-17 Varian Medical Systems, Inc. System and method for imaging and treatment of tumorous tissue in breasts using computed tomography and radiotherapy
US7304578B1 (en) * 2005-06-02 2007-12-04 Hewlett-Packard Development Company, L.P. Tag including RFID circuit storing data modifiable using a physically alterable medium
US20070009080A1 (en) * 2005-07-08 2007-01-11 Mistretta Charles A Backprojection reconstruction method for CT imaging
US20070064867A1 (en) * 2005-09-20 2007-03-22 Hansen Timothy B Apparatus and method to acquire data for reconstruction of images pertaining to functional and anatomical structure of the breast
US20070092059A1 (en) * 2005-10-25 2007-04-26 Jeffrey Wayne Eberhard Breast immobilization device and method of imaging the breast
US7558370B2 (en) * 2005-11-07 2009-07-07 Sommer Jr Edward J Method and apparatus for improving identification and control of articles passing through a scanning system
US20070238957A1 (en) * 2005-12-22 2007-10-11 Visen Medical, Inc. Combined x-ray and optical tomographic imaging system
US20070237306A1 (en) * 2006-01-17 2007-10-11 Jones Sharon D Laser imaging apparatus with variable patient positioning
US7677799B2 (en) * 2006-07-28 2010-03-16 General Electric Company Coordination of radiological imaging subsystems and components
US20080033420A1 (en) * 2006-08-04 2008-02-07 Nields Morgan W Methods for planning and performing thermal ablation
US20080037703A1 (en) * 2006-08-09 2008-02-14 Digimd Corporation Three dimensional breast imaging
US20080081984A1 (en) * 2006-09-28 2008-04-03 Lafferty Peter R System and apparatus for rapid stereotactic breast biopsy analysis
US20080084961A1 (en) * 2006-10-04 2008-04-10 Cynthia Keppel Method and apparatus for combined gamma/x-ray imaging in stereotactic biopsy
US20080089471A1 (en) * 2006-10-11 2008-04-17 Canon Kabushiki Kaisha Medical breast-image capturing apparatus
US20080221478A1 (en) * 2007-03-07 2008-09-11 Ritchie Paul G Integrated Imaging and Biopsy System with Integrated Control Interface
US20080221443A1 (en) * 2007-03-07 2008-09-11 Ritchie Paul G Integrated Imaging and Biopsy System with Ancillary Device Authentication
US20080230074A1 (en) * 2007-03-23 2008-09-25 Zheng Mike Q Method and device for immobilization of the human breast in a prone position for radiotherapy
US7743953B2 (en) * 2007-04-17 2010-06-29 Yoshiki Okazaki Brassier washing utensil
US7453978B1 (en) * 2007-06-25 2008-11-18 University Of Tennessee Research Foundation Variable resolution x-ray CT detector with multi-axis tilt
US7764765B2 (en) * 2007-07-24 2010-07-27 Fujifilm Corporation Cassette and mobile X-ray image capturing apparatus
US20090080604A1 (en) * 2007-08-23 2009-03-26 Fischer Medical Technologies, Inc. Computed tomography breast imaging and biopsy system
US20090196393A1 (en) * 2008-02-01 2009-08-06 Ge Wang Interior Tomography and Instant Tomography by Reconstruction from Truncated Limited-Angle Projection Data

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090064413A1 (en) * 2007-09-06 2009-03-12 Orbital Therapy Llc Patient support system for full access prone position breast radiotherapy
US8272088B2 (en) * 2007-09-06 2012-09-25 Orbital Therapy Llc Patient support system for full access prone position breast radiotherapy
US20100071131A1 (en) * 2008-09-13 2010-03-25 Joachim Gunkel Support apparatus and patient support table as well as medical device
US8102964B2 (en) 2008-09-29 2012-01-24 Mir Medical Imaging Research Holding Gmbh Breast locating device including an RFID transponder for a diagnostic instrument for examining a female breast
US20100080345A1 (en) * 2008-09-29 2010-04-01 Mir Medical Imaging Research Holding Gmbh Breast Locating Means for a Diagnostic Instrument for Examining a Female Breast
US20100080347A1 (en) * 2008-09-29 2010-04-01 Mir Medical Imaging Research Holding Gmbh Method for Defining an Individual Coordination System for a Breast of a Female Patient
US7924974B2 (en) 2008-09-29 2011-04-12 Mir Medical Imaging Research Holding Gmbh X-ray machine for breast examination in a standing position
US7945019B2 (en) 2008-09-29 2011-05-17 Mir Medical Imaging Research Holding Gmbh Method and device for thermal breast tumor treatment with 3D monitoring function
US20100080350A1 (en) * 2008-09-29 2010-04-01 Mir Medical Imaging Research Holding Gmbh Method and Device for Thermal Breast Tumor Treatment with 3D Monitoring Function
US8199993B2 (en) 2008-09-29 2012-06-12 Mir Medical Imaging Research Holding Gmbh Method for defining an individual coordination system for a breast of a female patient
US20100080343A1 (en) * 2008-09-29 2010-04-01 Mir Medical Imaging Research Holding Gmbh X-Ray Machine for Breast Examination in a Standing Position
US8726434B2 (en) * 2008-09-30 2014-05-20 Siemens Aktiengesellschaft Support apparatus and patient support table as well as medical device
US9848797B2 (en) 2012-12-31 2017-12-26 Siemens Aktiengesellschaft Patient tables and magnetic resonance imaging equipment
US9326739B2 (en) * 2014-04-28 2016-05-03 Cheryl A. Galambos McLaughlin Mammogram table
JP2016106964A (en) * 2014-12-09 2016-06-20 キヤノン株式会社 Mammographic and tomographic imaging system
US10653377B2 (en) 2014-12-09 2020-05-19 Canon Kabushiki Kaisha Breast computed tomography system comprising a gripper
CN108956656A (en) * 2018-07-17 2018-12-07 章慧妍 A kind of high contrast low dosage phase contrast CT image-forming device

Also Published As

Publication number Publication date
EP2168484A1 (en) 2010-03-31
EP2168486A1 (en) 2010-03-31
US20100080348A1 (en) 2010-04-01
US7945019B2 (en) 2011-05-17
US7869564B2 (en) 2011-01-11
US20100080350A1 (en) 2010-04-01
EP2168484B1 (en) 2011-10-26
EP2178048A3 (en) 2017-07-19
US7881427B2 (en) 2011-02-01
EP2168487A1 (en) 2010-03-31
EP2168485A1 (en) 2010-03-31
US7864918B2 (en) 2011-01-04
US20100080343A1 (en) 2010-04-01
EP2168489B1 (en) 2011-06-29
US7924974B2 (en) 2011-04-12
US20100080347A1 (en) 2010-04-01
US20100080345A1 (en) 2010-04-01
EP2168490A1 (en) 2010-03-31
EP2178048A2 (en) 2010-04-21
US8199993B2 (en) 2012-06-12
EP2168486B1 (en) 2011-10-05
EP2168491A1 (en) 2010-03-31
EP2168489A1 (en) 2010-03-31
US20100080349A1 (en) 2010-04-01
US20100080346A1 (en) 2010-04-01
US8102964B2 (en) 2012-01-24

Similar Documents

Publication Publication Date Title
US7864918B2 (en) X-ray machine for breast examination having a gantry incorporated in a patient table
US8094777B2 (en) Digital mammography scanning system
JP4646570B2 (en) Radiation tomosynthesis image acquisition using asymmetric geometry
JP5226523B2 (en) Method and apparatus for X-ray imaging
US7003070B1 (en) Upright CT scanner
CN101161211B (en) Medical breast-image capturing apparatus
US6959068B1 (en) Computed tomography apparatus
US8693621B2 (en) Source and/or detector positioning system
US6990170B2 (en) X-ray computed tomographic imaging apparatus
US6879657B2 (en) Computed tomography system with integrated scatter detectors
DK2119326T3 (en) Adjustable scanner
US5706324A (en) X-ray computed tomography apparatus having marks for geometrical image correlation
US20080025459A1 (en) X-ray hybrid diagnosis system
US20080165916A1 (en) Variable speed three-dimensional imaging system
US9480440B2 (en) System and method for cone beam computed tomography
US6400791B1 (en) CT device for generating tomograms of slices of a subject which are inclined relative to the longitudinal axis of a patient support
US7636422B2 (en) X-ray CT apparatus and X-ray tube current determining method
EP1736102A3 (en) X-Ray ct method and x-ray ct apparatus
EP0446259A1 (en) X-ray apparatus
KR20070057055A (en) X-ray ct apparatus and method of controlling the same
JP2008524574A (en) Gantry system
KR20220129013A (en) Multi-mode system for mammography
JP2825352B2 (en) CT device
US20050133708A1 (en) Method and system for three dimensional tomosynthesis imaging
JP2010213729A (en) Radiographic imaging system

Legal Events

Date Code Title Description
AS Assignment

Owner name: MIR MEDICAL IMAGING RESEARCH HOLDING GMBH,GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHILLING, HARRY;KALENDER, WILLI;SIGNING DATES FROM 20090310 TO 20090311;REEL/FRAME:022376/0367

Owner name: MIR MEDICAL IMAGING RESEARCH HOLDING GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHILLING, HARRY;KALENDER, WILLI;SIGNING DATES FROM 20090310 TO 20090311;REEL/FRAME:022376/0367

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

SULP Surcharge for late payment
AS Assignment

Owner name: AB-CT - ADVANCED BREAST-CT GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MIR MEDICAL IMAGING RESEARCH HOLDING GMBH;REEL/FRAME:046946/0395

Effective date: 20171010

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: 7.5 YR SURCHARGE - LATE PMT W/IN 6 MO, SMALL ENTITY (ORIGINAL EVENT CODE: M2555); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: 11.5 YR SURCHARGE- LATE PMT W/IN 6 MO, SMALL ENTITY (ORIGINAL EVENT CODE: M2556); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2553); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 12