Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20100114340 A1
Publication typeApplication
Application numberUS 12/613,970
Publication dateMay 6, 2010
Filing dateNov 6, 2009
Priority dateJun 2, 2008
Also published asUS7925384, US20100185339
Publication number12613970, 613970, US 2010/0114340 A1, US 2010/114340 A1, US 20100114340 A1, US 20100114340A1, US 2010114340 A1, US 2010114340A1, US-A1-20100114340, US-A1-2010114340, US2010/0114340A1, US2010/114340A1, US20100114340 A1, US20100114340A1, US2010114340 A1, US2010114340A1
InventorsCharles Huizenga, Alex Do, Michael Corr, Dale Fong, Josh Mooney
Original AssigneeCharles Huizenga, Alex Do, Michael Corr, Dale Fong, Josh Mooney
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Automatic provisioning of wireless control systems
US 20100114340 A1
Abstract
Exemplary systems and methods for provisioning wireless control of facilities systems are provided. A message is broadcast to a network that includes one or more control devices, which may be associated with one or more control points (e.g., lights in lighting systems). The control device responds with information concerning the control device and/or any associated control points. A scene including at least one specification for operation the control point is assigned to the control device. A corresponding scene command may be generated and sent to the control device. Provisioning may further include generating a visual display of the various control devices and associated control points (e.g., lights) in the facilities system.
Images(4)
Previous page
Next page
Claims(18)
1. A method of provisioning a wireless control system, the method comprising:
broadcasting a message from a computing device to a wireless communications network comprising one or more control devices, each control device associated with one or more lights;
receiving a response at the computing device from a control device in the network, the response including information regarding the control device;
executing instructions stored in memory of the computing device, wherein execution of the instructions by a processor of the computing device:
assigns a scene to the control device based on at least the received response, the scene comprising a specification for operating the one or more lights associated with the control device, and
generates a scene command for the control device based on the assigned scene; and
transmitting the scene command from the computing device to the control device, wherein execution of the scene command by a processor of the control device configures the control device to direct operations of the one or more associated lights in accordance with the assigned scene.
2. The method of claim 1, wherein the wireless communication network is a multi-hop network and further comprising limiting the broadcast to control devices within a specified number of hops from the computing device.
3. The method of claim 1, further comprising identifying that the control device is associated with one or more relays, and wherein execution of the scene command by the control device includes independently controlling operation of each of the one or more relays.
4. The method of claim 3, wherein identifying that the control device is associated with the one or more relays is based on the received response, wherein the received response from the control device includes information concerning a number of relays associated with the control device and a measured or assigned electrical current consumption and voltage of the load controlled by each relay of the control device.
5. The method of claim 1, wherein the received response further includes location information and further comprising generating a visual display mapping the locations of the one or more control devices.
6. The method of claim 5, wherein assigning the scene to the control device is based on a spatial distribution of the scene and the location information received from the control device.
7. The method of claim 1, wherein the wireless communications network further comprises a sensor associated with one or more lights, the sensor receiving and responding to the broadcast message, and wherein the scene command is further based on the sensor response.
8. The method of claim 1, wherein the scene further includes specifications for operating a plurality of control devices, and wherein execution of the scene command by a processor of the control device configures the control device to operate in conjunction with at least another control device.
9. The method of claim 1, further comprising sending a plurality of scene commands to the control device, each of the plurality of scene commands corresponding to a different scene, wherein the control device determines a scene command to execute according to one or more rules.
10. The method of claim 9, wherein the one or more rules includes a condition associated with a scene command, wherein the control device is configured to detect satisfaction of the condition and execute the associated scene command in response to the detection.
11. The method of claim 9, wherein the one or more rules include an order of scene commands, wherein the control device executes the plurality of scene commands according to the order.
12. A system of provisioning a wireless control system, the system comprising:
a memory of a computing device, the memory configured to store one or more scenes, each scene comprising a specification for operating one or more lights associated with a control device;
a communications interface of the computing device, the communications interface configured to:
broadcast a message to a wireless communications network comprising one or more control devices, each control device associated with one or more lights, and
receive a response from a control device in the network, the response including information regarding the control device; and
a processor of the computing device, the processor configured to execute instructions stored in memory to
assign a scene from the one or more scenes stored in memory to the control device based on at least the received response, and
generate a scene command for the control device based on the assigned scene, wherein execution of the scene command by a processor of the control device configures the control device to direct operations of the one or more associated lights in accordance with the assigned scene.
13. The system of claim 12, wherein the processor is configured to further execute instructions for identifying that the control device is associated with one or more relays and wherein execution of the generated scene command by the control device includes independently controlling operation of each of the one or more relays.
14. The system of claim 14, wherein identifying that the control device is associated with one or more relays is based on the received response from the control device, wherein the received response includes information concerning a number of relays associated with the control device, a measured or assigned electrical current consumption and voltage of the load controlled by each relay of the control device.
15. The system of claim 14, wherein the processor is configured to further execute instructions for generating a visual display of the one or more control devices based on location information in the received response and further comprising a display interface for displaying the generated visual display, the visual display including a total number of unit loads associated with each relay for each control device, the determination of the total number of unit loads based on the information regarding the electrical current consumption of each relay.
16. The system of claim 12, further comprising a memory configured to store a plurality of scenes, each scene being associated with a spatial distribution, wherein the processor is configured to further execute instructions for assigning the scene to the control device based on a spatial distribution associated with the scene and location information received from the control device.
18. A computer-readable storage medium, having embodied thereon a program, the program being executable by a processor to perform a method for provisioning a wireless control system, the method comprising:
broadcasting a message to a wireless communications network comprising one or more control devices, each control device associated with one or more lights;
receiving a response from a control device in the network, the response including information regarding the control device;
assigning a scene to the control device based on at least the received response, the scene comprising a specification for operating the one or more lights associated with the control device;
generating a scene command based on the assigned scene; and
transmitting the scene command to the control device, wherein execution of the scene command by a processor of the control device configures the control device to direct operations of the one or more lights in accordance with the assigned scene.
19-27. (canceled)
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation-in-part of U.S. patent application Ser. No. 12/156,621 filed Jun. 2, 2008, which is entitled “Distributed Intelligence in Lighting Control,” the disclosure of which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to facilities management. More specifically, the present invention relates to provisioning wireless control systems for facilities management.

2. Description of Related Art

Various resources are provided to an area by facilities systems. Facilities systems may encompass lighting systems, HVAC systems, security systems, fire/safety systems, irrigation systems, agricultural wind systems, blind/louver systems, and the like. The area receiving the resources from facilities systems may include a building, a floor, a room, a group of buildings, etc. Depending on the area, the resources provided, and specific occupant requirements, such facilities systems may include multiple devices of various types. For example, a lighting system for a large building may include several types of lights in various configurations distributed throughout multiple rooms, on multiple floors, etc.

One possible way to manage a facilities system is to provide centralized control of all the devices in such a system. Centralization may allow an individual, such as a facilities manager, to control all the devices of the facilities system from one or a few control interfaces. For example, the facilities manager can turn on all of the lights and/or turn off all of the lights remotely and without having to physically flick each switch on and off in each room. Some disadvantages to a highly centralized control system may include implementation difficulties and inefficiencies. For example, it may be difficult and/or costly to retrofit a large area with a centralized control system.

Centralized control of a facilities system having multiple devices may also be complicated by various factors. For instance, some devices in the system may be subject to different demands than other devices in the system. Using the above example, the lighting system may need to provide more light in certain rooms that do not receive as much natural sunlight as other rooms. As such, high centralization may be inflexible to local conditions and unable to adapt to changing conditions. Further, high centralization may lead to waste. For example, using a highly centralized system to provide adequate resources to the rooms that require it may result in resources being sent to rooms that do not require the same amount of resources. Energy is wasted where resources are provided to areas that do not require such resources.

In contrast, a highly localized facilities control solution presents different disadvantages, such as in the ability to maintain and operate the facilities system. An example of a highly localized control solution is an individual light switch for a light or a group of lights in a particular location. Separate light switches may be distributed throughout a building, floor, etc., and each switch must be separately switched on for its associated device, or group of devices, to be activated. For some areas, this process may be extremely time-consuming. Additionally, separate switches may lead to energy waste when area occupants forget or neglect to switch off each individual switch.

A distributed wireless system may alleviate some of the problems of highly localized and highly centralized systems. One problem with implementing such a system, however, is that most buildings would need to be retrofitted for wireless control. Issues with retrofitting may include reluctance to change or lack of knowledge in implementing such a system. Further, rewiring and/or installing new systems may be costly and difficult to implement.

There is, therefore, a need in the art for improved provisioning for wireless control of facilities systems.

SUMMARY OF THE INVENTION

Exemplary systems, methods, and apparatuses of the present invention provide for provisioning wireless control systems for facilities management. A message is broadcast from a computing device to a wireless communications network that includes one or more control devices. Such control devices may be associated with one or more control points (e.g., lights in lighting systems). In response to the broadcast message, the control device responds with information concerning the control device and/or any associated control points. The information is used to assign a scene to the control device. For example, with respect to a lighting system, such a scene includes at least one specification for operating the lights associated with the control device (e.g., operating at half power). A scene command is generated and sent to the control device.

Various embodiments of the present invention include methods for provisioning wireless control systems for facilities management. A method may include broadcasting a message to a wireless communications network comprising control devices, which may each be associated with one or more lights. Such methods may further include receiving a response from a control device, assigning a scene based on the response, generating a scene command, and transmitting the scene command to the control device. A scene is a set of one or more specifications concerning operation of the one or more lights associated with the control device. Execution of the scene command by the control device results in operation of the lights according to the specifications of the scene.

Various embodiments of the present invention include systems for provisioning wireless control systems for facilities management. An exemplary system may include a memory for storing one or more scenes, a communications interface for broadcasting a message to and receive a response from a wireless communications network including one or more control devices, each of which may be associated with one or more lights. Such systems may further include a processor for assigning a scene to a control device based on the response of the control device and generating a scene command based on the assigned scene. Upon receiving the scene command, the control device may execute the command, which results in operation of the one or more lights associated with the control device. Such operation will be in accordance with the specifications of the scene.

Some embodiments of the present invention include computer media and instructions for provisioning wireless control systems for facilities management. Embodiments may further include instructions for generating visual displays of the control devices and lights in the facilities system.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates an exemplary implementation of a system for provisioning wireless control in a network environment.

FIG. 2 is a flowchart depicting an exemplary method for provisioning wireless control.

FIG. 3 is an exemplary screenshot of a display generated in provisioning wireless control.

DETAILED DESCRIPTION

Embodiments of the present invention comprise systems and methods for provisioning wireless control systems for facilities management. A message is broadcast from a computing device to a wireless communications network that includes one or more control devices. Such control devices may be associated with one or more control points (e.g., lights in lighting systems). In response to the broadcast message, the control device responds with information concerning the control device and/or any associated control points. The information is used to assign a scene to the control device. For example, with respect to a lighting system, such a scene includes at least one specification for operating the lights associated with the control device (e.g., operating at half power). A scene command is generated and sent to the control device.

FIG. 1 illustrates an exemplary implementation of a system for provisioning wireless control in a wireless communications network 100. Communications network 100 may include computing device 120, one or more control devices 130A-130C, which may be associated with one or more lights, and sensor 130D. Control device 130A, for example, can control the operations of three lights associated with control device 130A, while control device 130B can control the operation of the one light associated with control device 130B. In some embodiments, network 100 may further include a sensor 130D.

The network 100 may be a local, proprietary network (e.g., intranet) and/or may be a part of a larger wide-area network. For example, the network 100 may be a local area network (LAN), which may also be communicatively coupled to a wide area network (WAN) such as the Internet. In some embodiments, the network 100 may be configured to transmit various electromagnetic waves, including, for example, radio signals. Examples of the network 110 may include IEEE 802.11 (Wi-Fi or Wireless LAN) networks, IEEE 802.16 (WiMAX) networks, IEEE 802.16c networks, and the like. Network 100 allows for communication between the various components of system 100. In some instances, network 100 is a multi-hop network.

Computing device 120 may comprise any combination of computer hardware and software configured to receive and transmit information over wireless communication network 100, thereby communicating with various control devices 130A-C or sensor 130D. Computing device 120 may be any type of desktop computer, laptop computer, handheld computer, server, etc. configured to communication over wireless communications network 100. If wireless communications network 100 is a multi-hop network, computing device 120 can broadcast a message to devices within a specified number of hops in the communications network 100.

Computing device 120 uses wireless communications network 100 to communicate with various devices, such as control devices 130A-C or sensor 130D. The control device (e.g., 130A) may be embedded in a fixture, housed within a ballast, in a separate device, etc. As illustrated in FIG. 1, a control device 130A may be associated with one or more light fixtures. Described in further detail in co-pending U.S. patent application Ser. No. 12/156,621 which has incorporated herein by reference, the control device 130A can controls the operation of the device or devices (i.e., lights) based on various types of signal information, including signal information sent over the network 100 from computing device 120. Computing device 120 may broadcast a message to devices in the network within a specified number of hops (e.g., two hops). Such a broadcast may be received by control devices 130A-C, but not by sensor 130D.

The control devices 130A-C may be associated with one or more fixtures of a facilities system. In the embodiment illustrated in FIG. 1, such fixtures are light fixtures 140. Also illustrated in FIG. 1 are the associations between the control device 130A with one light, between control device 130B with three lights, and control device 130C with one light.

FIG. 2 is a flowchart depicting an exemplary method for provisioning wireless control. In this method, a message is broadcast to the network 100 including one or more control devices, a response is received from a control device, a scene is assigned based on the response, a scene command for the scene is generated and transmitted to the control device. In some embodiments, a visual display is generated concerning the control device and any associated fixtures.

In step 210, a message is broadcast from computing device 120 to a communications network 100 including one or more control devices 130A-C. The message may include a request for information, including location information, number of fixtures or relays, power consumption, etc. In some embodiments, computing device 120 may limit the broadcast to a specified number of hops through wireless communications network 100.

In step 220, a response is received from a control device 130A. Such a response may include location information and the number of associated relays (e.g., three lights). In some cases, the response from control device 130A may include energy consumption, which may be used, for example, to determine that control device 130A is associated with three relays for the three lights. Information regarding current consumption (measured or assigned), voltage, etc., may be used, further, to determine the load of each relay. Identifying the number of relays and unit loads allows for individual control over each relay and load.

In step 230, a scene is assigned to the control device 130A. A scene is a set of one or more specifications concerning operation of the fixtures (e.g., light fixtures) associated with the control device 130A. The assignment is based in part on the information provided by control device 130A in step 220. For example, control device 130A provides a number of relays. The scene may specify that all the relays be operated at full power, half power, or low power. There may also be individual control over each relay, where one relay is operated at full power, and the others are operated at half power, etc. In some embodiments, a sensor 130D may have responded to the message broadcast in step 210. As such, the assignment of the scene to control device 130A may be further based on information provided by a sensor 130D. For example, if control device 130A and sensor 130D are the in the same location, a scene may be assigned to control device 130A in which the operation of the lights is dependent on conditions detected by sensor 130D. Such a scene may include increasing power to full capacity when sensor 130D detects low levels of natural or ambient light.

In step 240, a scene command is generated based on the assigned scene. There may be one or more commands associated with the scene based on the number of relays, the extent of individualized control over each relay, etc. In some embodiments, multiple scenes may be assigned to a control device 130A, in which case multiple scene commands associated with each scene are generated. In some embodiments, a scene command may include commands for cooperation between one or more control devices 130A. For example, a room may include lights under the control of two different control devices 130B and 130C. Controlling the lights in that room may include

In step 250, the scene command is transmitted to the control device 130A. The scene command is executable by the control device 130A to control operations of the lights associated with control device 130A in accordance with the specification(s) of the assigned scene. Where there are multiple scenes and multiple scene commands assigned to control device 130A, rules or conditions may also be provided to control device 130A for use in determining which scene command(s) to execute at certain time or under a certain set of circumstances.

In an optional step 260, a visual display may be generated based on the responses of the control devices 130A-C or sensor 130D that responded to the message broadcast in step 210. Such a display may reflect location information, such as a spatial distribution of the control devices and any associated lights. Such a display allows a user to view the control devices and associated fixtures. In some embodiments, the user may use the visual display to create and edit scenes, create rules for scenes, etc.

FIG. 3 is an exemplary screenshot of a display generated in provisioning wireless control. An exemplary display may include a plurality of control of devices, each of which may be associated with multiple relays, and each relay have be associated with a number of unit loads. Such a display may illustrate the spatial positioning of devices (and associated relays/loads) in a network and further, be superimposed on a two-dimensional or three-dimensional representation of the building(s), floor(s), room(s), etc. The display may further illustrate the locations of each device in a network. Location data may be provided as latitude, longitude, elevation, and/or x-y-z offsets from a known location.

A particular target device may determine its location in various ways, including use of independent location-aware devices, radio signal triangulation, calculations involving ultrasonic devices, an installation plan identifying devices in a floor plan, and/or location-aware barcode scanning upon installation. For example, an independent location-aware device (e.g., ultrasonic, GPS, A-GPS) can send a message containing the target device location from close proximity, optionally using a directional antenna to the target device.

Location may also be determined by using radio signal strength to triangulate the position of a particular device. The location may be triangulated relative to other devices and/or one or more independent commissioning devices. Independent commissioning devices may also be provided with known location constraints (e.g., from a floor plan or a grid layout) to aid in determination of a location of particular device. Such data may be processed by the commissioning device, and results may be sent via radio frequency network to the target device. Triangulation may also be used with an ultrasonic transmitter in conjunction with two or more receivers with known positions instead of or in addition to the radio signal strength.

Further, location may be determined through use of an installation plan identifying a target device and its location on a scaled floor plan. Such an installation plan can be used to calculate the location of the target device, and the data transmitted via the radio. Such an installation plan may have involved use of a location-aware scanning device. A location-aware scanning device can scan a bar code, for example, of a target device during installation and record the identity and location of the target device. This information can then be transmitted to the device via radio, either immediately or at a later time.

In addition to being used to generate displays, location information may further be used to automatically generate lighting scenes based on a particular distribution of light (e.g., turning off every other light fixture in a hallway). Location information may also be used to assign sensors, switches, etc., to controllers based on proximity and/or relationships to other building features (e.g., walls, floors). For example, all fixtures in a room could be automatically grouped together for control purposes.

Some of the above-described functions can be composed of instructions that are stored on storage media (e.g., computer-readable medium). The instructions may be retrieved and executed by the processor 230. Some examples of storage media are memory devices, tapes, disks, integrated circuits, and servers. The instructions are operational when executed by the processor 230 to direct the processor 230 to operate in accord with the invention. Those skilled in the art are familiar with instructions, processor(s), and storage media.

It is noteworthy that any hardware platform suitable for performing the processing described herein is suitable for use with the invention. The terms “computer-readable medium” and “computer-readable media” as used herein refer to any medium or media that participate in providing instructions to a CPU for execution. Such media can take many forms, including, but not limited to, non-volatile media, volatile media and transmission media. Non-volatile media include, for example, optical or magnetic disks, such as a fixed disk. Volatile media include dynamic memory, such as system RAM. Transmission media include coaxial cables, copper wire and fiber optics, among others, including the wires that comprise one embodiment of a bus. Transmission media can also take the form of acoustic or light waves, such as those generated during radio frequency (RF) and infrared (IR) data communications. Common forms of computer-readable media include, for example, a floppy disk, a flexible disk, a hard disk, magnetic tape, any other magnetic medium, a CD-ROM disk, digital video disk (DVD), any other optical medium, punch cards, paper tape, any other physical medium with patterns of marks or holes, a RAM, a PROM, an EPROM, an EEPROM, a FLASHEPROM, any other memory chip or cartridge, a carrier wave, or any other medium from which a computer can read.

Various forms of computer-readable media may be involved in carrying one or more sequences of one or more instructions to a CPU for execution. A bus carries the data to system RAM, from which a CPU retrieves and executes the instructions. The instructions received by system RAM can optionally be stored on a fixed disk either before or after execution by a CPU.

The above description is illustrative and not restrictive. Many variations of the invention will become apparent to those of skill in the art upon review of this disclosure. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.

While the present invention has been described in connection with a series of preferred embodiment, these descriptions are not intended to limit the scope of the invention to the particular forms set forth herein. It will be further understood that the methods of the invention are not necessarily limited to the discrete steps or the order of the steps described. To the contrary, the present descriptions are intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims and otherwise appreciated by one of ordinary skill in the art.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US6510369 *Aug 24, 1999Jan 21, 2003Plug Power Inc.Residential load shedding
US20090018706 *Nov 26, 2006Jan 15, 2009Lupu WittnerFlexible electric load management system and method therefore
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US8140279Sep 23, 2008Mar 20, 2012Budderfly Ventures, LlcComputer based energy management
US8396608Jun 30, 2010Mar 12, 2013Budderfly Ventures LlcComputer based energy management
US8572230Jun 3, 2011Oct 29, 2013Honeywell International Inc.System for using attributes to deploy demand response resources
US20120165998 *Dec 22, 2011Jun 28, 2012Electronics And Telecommunications Research InstituteApparatus for verifying and managing consumption electric power data in a green home electric power management system and method thereof
EP2533615A2 *May 30, 2012Dec 12, 2012Greenwave Reality Pte LtdNetwork inclusion of a networked light bulb
EP2538378A1 *May 25, 2012Dec 26, 2012Honeywell International Inc.A system for using attributes to deploy demand response resources
WO2012168859A2 *Jun 5, 2012Dec 13, 2012Koninklijke Philips Electronics N.V.Automatically commissioning of devices of a networked control system
WO2014022091A1 *Jul 16, 2013Feb 6, 2014Abl Ip Holding LlcNetworked system of intelligent lighting devices with sharing of processing resources of the devices with other entities
Classifications
U.S. Classification700/90, 706/47
International ClassificationG06F17/00, G06N5/02
Cooperative ClassificationH05B37/0272
European ClassificationH05B37/02B6R
Legal Events
DateCodeEventDescription
Feb 15, 2013ASAssignment
Owner name: ABL IP HOLDING LLC, GEORGIA
Effective date: 20121220
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ADURA TECHNOLOGIES, INC.;REEL/FRAME:029818/0107
Jan 15, 2010ASAssignment
Owner name: ADURA TECHNOLOGIES, INC.,CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUIZENGA, CHARLES;DO, ALEX;CORR, MICHAEL AND OTHERS;US-ASSIGNMENT DATABASE UPDATED:20100513;REEL/FRAME:23799/103
Effective date: 20100112
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUIZENGA, CHARLES;DO, ALEX;CORR, MICHAEL;AND OTHERS;REEL/FRAME:023799/0103