US20100126884A1 - Analyte Sensor with Insertion Monitor, and Methods - Google Patents

Analyte Sensor with Insertion Monitor, and Methods Download PDF

Info

Publication number
US20100126884A1
US20100126884A1 US12/695,913 US69591310A US2010126884A1 US 20100126884 A1 US20100126884 A1 US 20100126884A1 US 69591310 A US69591310 A US 69591310A US 2010126884 A1 US2010126884 A1 US 2010126884A1
Authority
US
United States
Prior art keywords
sensor
contact
substrate
electrode
analyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/695,913
Inventor
Yi Wang
Joseph A. Vivolo
Shridhara Alva Karinka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Abbott Diabetes Care Inc
Original Assignee
Abbott Diabetes Care Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/281,883 external-priority patent/US20060091006A1/en
Application filed by Abbott Diabetes Care Inc filed Critical Abbott Diabetes Care Inc
Priority to US12/695,913 priority Critical patent/US20100126884A1/en
Assigned to ABBOTT DIABETES CARE INC. reassignment ABBOTT DIABETES CARE INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VIVOLO, JOSEPH A., KARINKA, SHRIDHARA ALVA, WANG, YI
Publication of US20100126884A1 publication Critical patent/US20100126884A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S439/00Electrical connectors
    • Y10S439/909Medical use or attached to human body

Definitions

  • This invention relates to analytical sensors for the detection of bioanalytes in a small volume sample, and methods of making and using the sensors.
  • Analytical sensors are useful in chemistry and medicine to determine the presence and concentration of a biological analyte. Such sensors are needed, for example, to monitor glucose in diabetic patients and lactate during critical care events.
  • the sensors of the present invention provide a method for the detection and quantification of an analyte.
  • the invention includes a method and sensor for analysis of an analyte in a sample, e.g., a small volume sample, by, for example, coulometry, amperometry and/or potentiometry.
  • a sensor of the invention may utilize a non-leachable or diffusible electron transfer agent and/or a redox mediator.
  • the sensor also includes a sample chamber to hold the sample in electrolytic contact with the working electrode.
  • the working electrode faces a counter electrode, forming a measurement zone within the sample chamber, between the two electrodes, that is sized to contain no more than about 1 ⁇ L of sample, e.g., no more than about 0.5 ⁇ L, e.g., no more than about 0.32 ⁇ L, e.g., no more than about 0.25 ⁇ L, e.g., no more than about 0.1 ⁇ L of sample.
  • a sensor configured for insertion into an electronic meter, is provided with a working electrode and a counter electrode, and a conductive insertion monitor which provides electrical contact with the electronic meter if the sensor is properly inserted into the meter.
  • the conductive insertion monitor is configured and arranged to close an electrical circuit when the sensor is properly inserted into the electronic connector.
  • a sensor is provided with a plurality of contacts, each contact having a contact pad, which is a region for connection with an electronic meter.
  • the plurality of contacts and contact pads are on a substrate having a length and a width, and each contact pad has a contact pad width taken parallel to the width of the substrate. The sum of the contact pad widths is greater than the width of the substrate.
  • six electrical connections are made with six contact pads on the sensor but in a width that is approximately the width of four contact pads.
  • a working electrode, three counter electrodes (e.g., one counter electrode and two indicator electrodes), and two insertion trace connections each have a contact pad; connection can be made to each of these six contact pads in the same width of the contact pads of the working electrode and three counter electrodes.
  • the present invention also includes an electrical connector, for providing electrical contact between a sensor and an electrical meter or other device.
  • the electrical connector has a plurality of contact structures, each which has a proximal contact end for electrical connection to a sensor contact, and a distal end for electrical connection to the electrical device.
  • a plurality of first contact structures extend longitudinally parallel from the distal to the proximal end.
  • one or more second contract structures extend longitudinally next to the first contact structures, from the distal end past the proximal end of the first contact structures, and angle toward a longitudinal center line of the connector. Contact to the sensor is then made via the proximal contact ends.
  • the electrical connector has at least two second contact structures extending longitudinally past the proximal end of the first contact structures and angling toward the longitudinal center line of the connector. After the angled or bent portion, the proximal contact ends of the second contact structures of one embodiment make electrical contact with a single conductive surface of a sensor, such as a conductive insertion monitor.
  • the first contact structures can be configured and arranged to contact one or more working and/or counter electrodes of a sensor, and the second contact structures are configured and arranged to contact one or more conductive insertion monitors.
  • the sensors of the present invention can be configured for side-filling or tip-filling.
  • the sensor may be part of an integrated sample acquisition and analyte measurement device.
  • the integrated sample acquisition and analyte measurement device can include the sensor and a skin piercing member, so that the device can be used to pierce the skin of a user to cause flow of a fluid sample, such as blood, that can then be collected by the sensor.
  • the fluid sample can be collected without moving the integrated sample acquisition and analyte measurement device.
  • the senor is connected with an electrical device, to provide a processor coupled to the sensor.
  • the processor is configured and arranged to determine, during electrolysis of a sample in the sample chamber, a series of current values.
  • the processor determines a peak current value from the series of current values. After the current values decrease below a threshold fraction of the peak current values, slope values are determined from the current values and represent a linear function of the logarithm of current values over time.
  • the processor determines, from the slope values, an extrapolation slope. From the extrapolated slope and the measured current values, the processor determines an amount of charge needed to electrolyze the sample and, from that amount of charge, the concentration of the analyte in the sample.
  • One method of forming a sensor includes forming at least one working electrode on a first substrate and forming at least one counter or counter/reference electrode on a second substrate.
  • a spacer layer is disposed on either the first or second substrates.
  • the spacer layer defines a chamber into which a sample can be drawn and held when the sensor is completed.
  • a redox mediator and/or second electron transfer agent can be disposed on the first or second substrate in a region that will be exposed within the sample chamber when the sensor is completed.
  • the first and second substrates are then brought together and spaced apart by the spacer layer with the sample chamber providing access to the at least one working electrode and the at least one counter or counter/reference electrode.
  • the first and second substrates are portions of a single sheet or continuous web of material. The invention includes particularly efficient and reliable methods for the manufacture of these sensors.
  • One such efficient and reliable method includes providing an adhesive having first and second surfaces covered with first and second release liners and then making detailed cuts through the first release liner and the adhesive but not through the second release liner. These cuts define one or more sample chamber regions. A portion of the first release liner is removed to expose a portion of the first adhesive surface, which leaves a remaining portion of the first release liner over the sample chamber regions. This exposed first adhesive surface is applied to a first substrate having one or more conductive traces disposed thereon. The second release liner is removed together with the adhesive and the first release liner of the sample chamber regions in order to expose the second adhesive surface. The second adhesive surface is then applied to a second substrate having one or more conductive traces disposed thereon. This method forms a sensor having a sample chamber corresponding to one of the sample chamber regions.
  • FIG. 1 is a schematic view of a first embodiment of a sensor strip in accordance with the present invention
  • FIG. 2A is an exploded view of the sensor strip shown in FIG. 1 , the layers illustrated individually with the electrodes in a first configuration;
  • FIG. 2B is a top view of the sensor strip shown in FIGS. 1 and 2A ;
  • FIG. 3A is a schematic view of a second embodiment of a sensor strip in accordance with the present invention, the layer illustrated individually with the electrodes in a second configuration;
  • FIG. 3B is a top view of the sensor strip shown in FIG. 3A ;
  • FIG. 4 is a top view of the first substrate of the sensor strip of FIGS. 3A and 3B ;
  • FIG. 5A is a top view of a first example configuration for a suitable insertion monitor in accordance with the present invention.
  • FIG. 5B is a top view of a second example configuration for a suitable insertion monitor in accordance with the present invention.
  • FIG. 5C is a top view of a third example configuration for a suitable insertion monitor in accordance with the present invention.
  • FIG. 5D is a top view of a fourth example configuration for a suitable insertion monitor in accordance with the present invention.
  • FIG. 6A illustrates a top view of one embodiment of a sheet of sensor components, according to the invention.
  • FIG. 6B illustrates a top view of another embodiment of a sheet of sensor components, according to the invention.
  • FIG. 7A is a top perspective view of a sensor strip positioned for insertion within an electrical connector device in accordance with the present invention.
  • FIG. 7B is an exploded view of the electrical connector device of FIG. 7A ;
  • FIG. 8A is a top perspective view of a sensor strip fully positioned within the electrical connector device of FIG. 7A ;
  • FIG. 8B is an exploded view of the electrical connector device of FIG. 8A ;
  • FIG. 9A is a bottom perspective view of the electrical connector device of FIGS. 7A and 7B ;
  • FIG. 9B is a bottom perspective view of the electrical connector device of FIGS. 8A and 8B .
  • Amperometry includes steady-state amperometry, chronoamperometry, and Cottrell-type measurements.
  • a “biological fluid” is any body fluid in which the analyte can be measured, for example, blood (which includes whole blood and its cell-free components, such as, plasma and serum), interstitial fluid, dermal fluid, sweat, tears, urine and saliva.
  • “Coulometry” is the determination of charge passed or projected to pass during complete or nearly complete electrolysis of the analyte, either directly on the electrode or through one or more electron transfer agents. The charge is determined by measurement of charge passed during partial or nearly complete electrolysis of the analyte or, more often, by multiple measurements during the electrolysis of a decaying current and elapsed time. The decaying current results from the decline in the concentration of the electrolyzed species caused by the electrolysis.
  • a “counter electrode” refers to one or more electrodes paired with the working electrode, through which passes an electrochemical current equal in magnitude and opposite in sign to the current passed through the working electrode.
  • the term “counter electrode” is meant to include counter electrodes which also function as reference electrodes (i.e. a counter/reference electrode) unless the description provides that a “counter electrode” excludes a reference or counter/reference electrode.
  • An “electrochemical sensor” is a device configured to detect the presence of and/or measure the concentration of an analyte via electrochemical oxidation and reduction reactions. These reactions are transduced to an electrical signal that can be correlated to an amount or concentration of analyte.
  • Electrolysis is the electrooxidation or electroreduction of a compound either directly at an electrode or via one or more electron transfer agents (e.g., redox mediators and/or enzymes).
  • electron transfer agents e.g., redox mediators and/or enzymes.
  • facing electrodes refers to a configuration of the working and counter electrodes in which the working surface of the working electrode is disposed in approximate opposition to a surface of the counter electrode. In at least some instances, the distance between the working and counter electrodes is less than the width of the working surface of the working electrode.
  • an “indicator electrode” or “fill indicator electrode” is an electrode that detects partial or complete filling of a sample chamber and/or measurement zone with sample.
  • a “layer” is one or more layers.
  • the “measurement zone” is defined herein as a region of the sample chamber sized to contain only that portion of the sample that is to be interrogated during an analyte assay.
  • a “non-diffusible,” “non-leachable,” or “non-releasable” compound is a compound which does not substantially diffuse away from the working surface of the working electrode for the duration of the analyte assay.
  • a “redox mediator” is an electron transfer agent for carrying electrons between the analyte and the working electrode, either directly or through another electron transfer agent.
  • a “reference electrode” includes a reference electrode that also functions as a counter electrode (i.e., a counter/reference electrode) unless the description provides that a “reference electrode” excludes a counter/reference electrode.
  • a “working electrode” is an electrode at which analyte is electrooxidized or electroreduced with or without the agency of a redox mediator.
  • Sensor strip 10 has a first substrate 12 , a second substrate 14 , and a spacer 15 positioned therebetween.
  • Sensor strip 10 includes at least one working electrode 22 and at least one counter electrode 24 .
  • Sensor strip 10 also includes insertion monitor 30 .
  • sensor strip 10 has first substrate 12 , second substrate 14 , and spacer 15 positioned therebetween.
  • Sensor strip 10 includes working electrode 22 , counter electrode 24 and insertion monitor 30 .
  • Sensor strip 10 is a layered construction, in certain embodiments having a generally rectangular shape, i.e., its length is longer than its width, although other shapes are possible as well.
  • Sensor strip 10 ′ of FIGS. 3A , 3 B and 4 also has first substrate 12 , second substrate 14 , spacer 15 , working electrode 22 , counter electrode 24 and insertion monitor 30 .
  • the overall length of sensor strip 10 , 10 ′ may be no less than about 20 mm and no greater than about 50 mm.
  • the length may be between about 30 and 45 mm; e.g., about 30 to 40 mm. It is understood, however that shorter and longer sensor strips 10 , 10 ′ could be made.
  • the overall width of sensor strip 10 , 10 ′ may be no less than about 3 mm and no greater than about 15 mm.
  • the width may be between about 4 and 10 mm, about 5 to 8 mm, or about 5 to 6 mm.
  • sensor strip 10 , 10 ′ has a length of about 32 mm and a width of about 6 mm.
  • sensor strip 10 , 10 ′ has a length of about 40 mm and a width of about 5 mm. In yet another particular example, sensor strip 10 , 10 ′ has a length of about 34 mm and a width of about 5 mm.
  • sensor strip 10 , 10 ′ has first and second substrates 12 , 14 , non-conducting, inert substrates which form the overall shape and size of sensor strip 10 , 10 ′.
  • Substrates 12 , 14 may be substantially rigid or substantially flexible.
  • substrates 12 , 14 are flexible or deformable.
  • suitable materials for substrates 12 , 14 include, but are not limited, to polyester, polyethylene, polycarbonate, polypropylene, nylon, and other “plastics” or polymers.
  • the substrate material is “Melinex” polyester. Other non-conducting materials may also be used.
  • Spacer 15 is an inert non-conducting substrate, typically at least as flexible and deformable (or as rigid) as substrates 12 , 14 .
  • spacer 15 is an adhesive layer or double-sided adhesive tape or film. Any adhesive selected for spacer 15 should be selected to not diffuse or release material which may interfere with accurate analyte measurement.
  • the thickness of spacer 15 may be at least about 0.01 mm (10 ⁇ m) and no greater than about 1 mm or about 0.5 mm.
  • the thickness may be between about 0.02 mm (20 ⁇ m) and about 0.2 mm (200 ⁇ m). In one certain embodiment, the thickness is about 0.05 mm (50 ⁇ m), and about 0.1 mm (100 ⁇ m) in another embodiment.
  • the sensor includes a sample chamber for receiving a volume of sample to be analyzed; in the embodiment illustrated, particularly in FIG. 1 , sensor strip 10 , 10 ′ includes sample chamber 20 having an inlet 21 for access to sample chamber 20 .
  • sensor strips 10 , 10 ′ are side-fill sensor strips, having inlet 21 present on a side edge of strips 10 , 10 ′. Tip-fill sensors can also be configured in accordance with this invention.
  • Sample chamber 20 is configured so that when a sample is provided in chamber 20 , the sample is in electrolytic contact with both the working electrode and the counter electrode, which allows electrical current to flow between the electrodes to effect the electrolysis (electrooxidation or electroreduction) of the analyte.
  • Sample chamber 20 is defined by substrate 12 , substrate 14 and spacer 15 ; in many embodiments, sample chamber 20 exists between substrate 12 and substrate 14 where spacer 15 is not present. Typically, a portion of spacer 15 is removed to provide an area between substrates 12 , 14 without spacer 15 ; this volume of removed spacer is sample chamber 20 . For embodiments that include spacer 15 between substrates 12 , 14 , the thickness of sample chamber 20 is generally the thickness of spacer 15 .
  • Sample chamber 20 has a volume sufficient to receive a sample of biological fluid therein.
  • sample chamber 20 has a volume that is preferably no more than about 1 ⁇ L, for example no more than about 0.5 ⁇ L, and also for example, no more than about 0.25 ⁇ L.
  • a volume of no more than about 0.1 ⁇ L is also suitable for sample chamber 20 , as are volumes of no more than about 0.05 ⁇ L and about 0.03 ⁇ L.
  • a measurement zone is contained within sample chamber 20 and is the region of the sample chamber that contains only that portion of the sample that is interrogated during the analyte assay.
  • the measurement zone has a volume that is approximately equal to the volume of sample chamber 20 .
  • the measurement zone includes 80% of the sample chamber, 90% in other embodiments, and about 100% in yet other embodiments.
  • the thickness of sample chamber 20 corresponds typically to the thickness of spacer 15 . Particularly for facing electrode configurations, this thickness is small to promote rapid electrolysis of the analyte, as more of the sample will be in contact with the electrode surface for a given sample volume.
  • a thin sample chamber 20 helps to reduce errors from diffusion of analyte into the measurement zone from other portions of the sample chamber during the analyte assay, because diffusion time is long relative to the measurement time, which may be about 5 seconds or less.
  • the senor includes a working electrode and at least one counter electrode.
  • the counter electrode may be a counter/reference electrode. If multiple counter electrodes are present, one of the counter electrodes will be a counter electrode and one or more may be reference electrodes. Referring to FIGS. 2A and 2B and FIGS. 3A , 3 B and 4 , two examples of suitable electrode configurations are illustrated.
  • At least one working electrode is positioned on one of first substrate 12 and second substrate 14 .
  • working electrode 22 is illustrated on substrate 12 .
  • Working electrode 22 extends from the sample chamber 20 to the other end of the sensor 10 as an electrode extension called a “trace”.
  • the trace provides a contact pad 23 for providing electrical connection to a meter or other device to allow for data and measurement collection, as will be described later.
  • Contact pad 23 can be positioned on a tab 26 that extends from the substrate on which working electrode 22 is positioned, such as substrate 12 .
  • a tab has more than one contact pad positioned thereon.
  • a single contact pad is used to provide a connection to one or more electrodes; that is, multiple electrodes are coupled together and are connected via one contact pad.
  • Working electrode 22 can be a layer of conductive material such as gold, carbon, platinum, ruthenium dioxide, palladium, or other non-corroding, conducting material.
  • Working electrode 22 can be a combination of two or more conductive materials.
  • An example of a suitable conductive epoxy is ECCOCOAT CT5079-3 Carbon-Filled Conductive Epoxy Coating (available from W.R. Grace Company, Woburn, Mass.).
  • the material of working electrode 22 typically has relatively low electrical resistance and is typically electrochemically inert over the potential range of the sensor during operation.
  • Working electrode 22 may be applied on substrate 12 by any of various methods, including by being deposited, such as by vapor deposition or vacuum deposition or otherwise sputtered, printed on a flat surface or in an embossed or otherwise recessed surface, transferred from a separate carrier or liner, etched, or molded. Suitable methods of printing include screen-printing, piezoelectric printing, ink jet printing, laser printing, photolithography, and painting.
  • working electrode 22 is provided in sample chamber 20 for the analysis of analyte, in conjunction with the counter electrode.
  • the sensor includes at least one counter electrode positioned within the sample chamber.
  • counter electrode 24 is illustrated on substrate 14 .
  • a counter electrode 24 is present on substrate 12 .
  • Counter electrode 24 extends from the sample chamber 20 to the other end of the sensor 10 as an electrode extension called a “trace”.
  • the trace provides a contact pad 25 for providing electrical connection to a meter or other device to allow for data and measurement collection, as will be described later.
  • Contact pad 25 can be positioned on a tab 27 that extends from the substrate on which counter electrode 24 is positioned, such as substrate 12 or 14 .
  • a tab has more than one contact pad positioned thereon.
  • a single contact pad is used to provide a connection to one or more electrodes; that is, multiple electrodes are coupled together and are connected via one contact pad.
  • Counter electrode 24 may be constructed in a manner similar to working electrode 22 . Suitable materials for the counter/reference or reference electrode include Ag/AgCl or Ag/AgBr on a non-conducting base material or silver chloride on a silver metal base. The same materials and methods may be used for counter electrode 24 as are available for working electrode 22 , although different materials and methods may also be used. Counter electrode 24 can include a mix of multiple conducting materials, such as Ag/AgCl and carbon.
  • Working electrode 22 and counter electrode 24 may be disposed opposite to and facing each other to form facing electrodes. See for example, FIG. 2A , which has working electrode 22 on substrate 12 and counter electrode 24 on substrate 14 , forming facing electrodes. In this configuration, the sample chamber is typically present between the two electrodes 22 , 24 .
  • electrodes 22 , 24 may be separated by a distance of no more than about 0.2 mm (e.g., at least one portion of the working electrode is separated from one portion of the counter electrode by no more than about 200 ⁇ m), e.g., no more than about 100 ⁇ m, e.g., no more than about 50 ⁇ m.
  • Working electrode 22 and counter electrode 24 can alternately be disposed generally planar to one another, such as on the same substrate, to form co-planar or planar electrodes. Referring to FIGS. 3A and 4 , both working electrode 22 and counter electrode 24 occupy a portion of the surface of substrate 12 , thus forming co-planar electrodes.
  • sensing chemistry material(s) are preferably provided in sample chamber 20 for the analysis of the analyte. Sensing chemistry material facilitates the transfer of electrons between working electrode 22 and the analyte in the sample. Any sensing chemistry may be used in sensor strip 10 , 10 ; the sensing chemistry may include one or more materials.
  • the sensing chemistry can be diffusible or leachable, or non-diffusible or non-leachable.
  • the term “diffusible” will be used to represent “diffusible or leachable” and the term “non-diffusible” will be used to represent “non-diffusible or non-leachable” and variations thereof.
  • Placement of sensing chemistry components may depend on whether they are diffusible or not.
  • both non-diffusible and/or diffusible component(s) may form a sensing layer on working electrode 22 .
  • one or more diffusible components may be present on any surface in sample chamber 20 prior to the introduction of the sample to be analyzed.
  • one or more diffusible component(s) may be placed in the sample prior to introduction of the sample into sample chamber 20 .
  • the sensing chemistry generally includes an electron transfer agent that facilitates the transfer of electrons to or from the analyte.
  • the electron transfer agent may be diffusible or non-diffusible, and may be present on working electrode 22 as a layer.
  • One example of a suitable electron transfer agent is an enzyme which catalyzes a reaction of the analyte.
  • a glucose oxidase or glucose dehydrogenase such as pyrroloquinoline quinone glucose dehydrogenase (PQQ)
  • PQQ pyrroloquinoline quinone glucose dehydrogenase
  • Other enzymes can be used for other analytes.
  • the electron transfer agent whether it is diffusible or not, facilitates a current between working electrode 22 and the analyte and enables the electrochemical analysis of molecules.
  • the agent facilitates the transfer electrons between the electrode and the analyte.
  • This sensing chemistry may, additionally to or alternatively to the electron transfer agent, include a redox mediator.
  • a redox mediator that is a transition metal compound or complex.
  • suitable transition metal compounds or complexes include osmium, ruthenium, iron, and cobalt compounds or complexes. In these complexes, the transition metal is coordinatively bound to one or more ligands, which are typically mono-, di-, tri-, or tetradentate.
  • the redox mediator can be a polymeric redox mediator, or, a redox polymer (i.e., a polymer having one or more redox species). Examples of suitable redox mediators and redox polymer are disclosed in U.S. Pat. No. 6,338,790, for example, and in U.S. Pat. Nos. 6,605,200 and 6,605,201.
  • the redox mediator may be disposed on working electrode 22 as a layer.
  • the redox mediator and electron transfer agent are both non-leachable, then both components are disposed on working electrode 22 as individual layers, or combined and applied as a single layer.
  • the redox mediator mediates a current between working electrode 22 and the analyte and enables the electrochemical analysis of molecules which may not be suited for direct electrochemical reaction on an electrode.
  • the mediator functions as an agent to transfer electrons between the electrode and the analyte.
  • Sample chamber 20 can be empty before the sample is placed in the chamber, or, in some embodiments, the sample chamber can include a sorbent material to sorb and hold a fluid sample during the measurement process.
  • the sorbent material facilitates the uptake of small volume samples by a wicking action which can complement or, e.g., replace any capillary action of the sample chamber.
  • Suitable sorbent materials include polyester, nylon, cellulose, and cellulose derivatives such as nitrocellulose.
  • a portion or the entirety of the wall of the sample chamber may be coated by a surfactant, which is intended to lower the surface tension of the fluid sample and improve fluid flow within the sample chamber.
  • Methods other than the wicking action of a sorbent can be used to transport the sample into the sample chamber or measurement zone.
  • methods for transport include the application of pressure on a sample to push it into the sample chamber, the creation of a vacuum by a pump or other vacuum-producing method in the sample chamber to pull the sample into the chamber, capillary action due to interfacial tension of the sample with the walls of a thin sample chamber, as well as the wicking action of a sorbent material.
  • Sensor strip 10 , 10 ′ can be indicated as filled, or substantially filled, by observing a signal between an indicator electrode and one or both of working electrode 22 or counter electrode 24 as sample chamber 20 fills with fluid. When fluid reaches the indicator electrode, the signal from that electrode will change. Suitable signals for observing include, for example, voltage, current, resistance, impedance, or capacitance between the indicator electrode and, for example, working electrode 22 . Alternatively, the sensor can be observed after filling to determine if a value of the signal (e.g., voltage, current, resistance, impedance, or capacitance) has been reached indicating that the sample chamber is filled.
  • a value of the signal e.g., voltage, current, resistance, impedance, or capacitance
  • the indicator electrode is further downstream from a sample inlet, such as inlet 21 , than working electrode 22 and counter electrode 24 .
  • an indicator electrode can be present on each side of the counter electrode. This permits the user to fill the sample chamber from either the left or right side with an indicator electrode disposed further upstream. This three-electrode configuration is not necessary. Side-fill sensors can also have a single indicator electrode and may include some indication as to which side should be placed in contact with the sample fluid.
  • the indicator electrode can also be used to improve the precision of the analyte measurements.
  • the indicator electrode may operate as a working electrode or as a counter electrode or counter/reference electrode. Measurements from the indicator electrode/working electrode can be combined (for example, added or averaged) with those from the first counter/reference electrode/working electrode to obtain more accurate measurements.
  • the sensor or equipment that the sensor connected is with can include a sign (e.g., a visual sign or auditory signal) that is activated in response to the indicator electrode to alert the user that the measurement zone has been filled.
  • the sensor or equipment can be configured to initiate a reading when the indicator electrode indicates that the measurement zone has been filled with or without alerting the user. The reading can be initiated, for example, by applying a potential between the working electrode and the counter electrode and beginning to monitor the signals generated at the working electrode.
  • the senor includes an indicator to notify when proper insertion of sensor strip 10 , 10 ′ into receiving equipment, such as a meter, has occurred.
  • sensor strips 10 , 10 ′ include insertion monitor 30 on an exterior surface of one of substrates 12 , 14 .
  • Insertion monitor 30 is used to encode information regarding sensor strip 10 , 10 ′.
  • the encoded information can be, for example, calibration information for that manufacturing lot or for that specific strip.
  • Such calibration information or code may relate to, e.g., the sensitivity of the strip or to the y-intercept and/or slope of its calibration curve.
  • the calibration code is used by the meter or other equipment to which sensor strip 10 , 10 ′ is connected to provide an accurate analyte reading. For example, based on the calibration code, the meter uses one of several programs stored within the meter.
  • a value indicative of the calibration code is manually entered into the meter or other equipment, for example, by the user.
  • the calibration code is directly read by the meter or other equipment, thus not requiring input or other interaction by the user.
  • insertion monitor 30 is a stripe 130 extending across an exterior surface of sensor 10 , 10 ′, for example, from side edge to side edge, with one contact pad for connection to a meter. It is understood that in alternate embodiments stripe 130 need not extend to both side edges.
  • the insertion monitor comprises two or more contact pads for connection to a meter. The two or more contact pads are electrically connected to each other by a material, such as a conductive ink.
  • the calibration code can be designed into insertion monitor 30 , for example, either by the resistance or other electrical characteristic of insertion monitor 30 , by the placement or position of insertion monitor 30 , or by the shape or configuration of insertion monitor 30 .
  • Insertion monitor 30 may alternately or additionally carry other information regarding the sensor strip 10 , 10 ′.
  • This other information that could be encoded into insertion monitor 30 include the test time needed for accurate analyte concentration analysis, expiration date of the sensor strip 10 , 10 ′, various correction factors, such as for environmental temperature and/or pressure, selection of the analyte to be analyzed (e.g., glucose, ketone, lactate), and the like.
  • the resistance of insertion monitor 30 is related to the encoded information.
  • resistance values in a given range can correspond to one calibration setting, and resistance values in a different range can correspond to a different calibration setting.
  • indicator monitor 30 will notify the meter or equipment which assay calculation to use.
  • the resistance of indicator monitor 30 can be varied by cutting or scoring some or all of the conductive pathways so that they do not carry charge.
  • the resistance can additionally or alternately be controlled by the width or length of the conductive path.
  • An example of a material suitable for indicator monitor 30 is a combination of carbon and silver; the resistance of this mixture will vary, based on the ratio of the two materials.
  • the placement or position of insertion monitor 30 can additionally or alternately be related to the encoded calibration information.
  • the calibration code can be directly related to the location of indicator monitor 30 .
  • the position of indicator monitor 30 can be varied so that is makes electrical contact with different contact structures. (Contact structures are described below in “Sensor Connection to Electrical Device”). Depending on the contact structures engaged, the meter will recognize the calibration code and thus know what parameter to use to calculate an accurate analyte level.
  • the shape and/or configuration of insertion monitor 30 can additionally or alternatively be related to the encoded calibration code.
  • the calibration code can be directed related to which and/or the number of contact structures that make electrical contact with indicator monitor 30 .
  • a pattern of discrete and unconnected indicator monitors can be present on the sensor; the calibration code will be directly related to the arrangement of those monitors.
  • the pattern could be parallel lines, orderly arranged dots or squares, or the like.
  • the insertion monitor function and the encoding of information can also be implemented separately using separate conductive traces on the strip.
  • Conductive insertion monitor 30 is positioned on the non-conductive base substrate and has a contact pad for electrical contact with a connector. Insertion monitor 30 is configured and arranged to close an electrical circuit when sensor 10 , 10 ′ is properly inserted into the connector.
  • Insertion monitor 30 may have any suitable configuration, including but not limited to, a stripe extending across sensor strip 10 , 10 ′ from a side edge to a side edge, such as stripe 130 , a stripe extending across the sensor strip, although not the entire width, and an array of unconnected dots, strips, or other areas.
  • FIGS. 5B , 5 C and 5 D Other suitable configurations for insertion monitor 30 are illustrated in FIGS. 5B , 5 C and 5 D.
  • FIG. 5 B illustrates insertion monitor 30 as bi-regional monitor 230 , having a first stripe 230 A and a second stripe 230 B, both of which extend from side edge to side edge, although it is understood that one or both of strips 230 A, 230 B may not extend completely to a side edge.
  • Insertion monitor 330 of FIG. 5C has a stripe 330 A and an elongate stripe 330 B.
  • Insertion monitor 430 of FIG. 5D has a single conductive strip 430 , which provides an elongate path.
  • a sensor strip 100 is illustrated readied for insertion into a connector 500 .
  • Sensor strip 100 is similar to sensor strips 10 , 10 ′.
  • Sensor strip 100 includes insertion monitor 30 on an outer surface of one of the substrates forming strip 100 .
  • Sensor strip 100 includes, although not illustrated, one working electrode and three counter electrodes.
  • the working electrode includes a contact pad positioned on tab 123 (see FIGS. 7A and 9A ).
  • Each of the three counter electrodes includes a contact pad positioned on tab 124 , 125 , 126 , respectively (see FIG. 9A ).
  • Sensor strip 100 is configured to couple to a meter or other electrical device by electrical connector 500 which is configured to couple with and contact the end of sensor 100 at contact pads 123 , 124 , 125 , 126 .
  • the sensor meter typically includes a potentiostat or other component to provide a potential and/or current for the electrodes of the sensor.
  • the sensor reader also typically includes a processor (e.g., a microprocessor or hardware) for determining analyte concentration from the sensor signals.
  • the sensor meter also includes a display or a port for coupling a display to the sensor.
  • the display displays the sensor signals and/or results determined from the sensor signals including, for example, analyte concentration, rate of change of analyte concentration, and/or the exceeding of a threshold analyte concentration (indicating, for example, hypo- or hyperglycemia).
  • Connector 500 (which is used to connect a sensor to a meter or other electrical device) is generally a two part structure, having top portion 510 and bottom portion 520 (see FIG. 7B ). Positioned between and secured by top portion 510 and bottom portion 520 are various contact leads that provide electrical connection between sensor 100 and a meter. Bottom portion includes leads 51 , 52 and 223 , 224 , 225 , 226 , as will be described below.
  • Leads 223 , 224 , 225 , 226 have proximal ends to physically contact pads 123 , 124 , 125 , 126 , respectively, and to connect to any attached meter. Each pad 123 , 124 , 125 , 126 has its respective lead 223 , 224 , 225 , 226 .
  • the end of sensor 100 having the contact pads can be slid into or mated with connector 500 by placing sensor 100 into slide area 530 , which provides a support for and retains sensor 100 . It is typically important that the contact structures of the connector 500 make electrical contact with the correct pads of the sensor so that the working electrode and counter electrode(s) are correctly coupled to the meter.
  • Connector 500 includes leads or contact structures 51 , 52 for connection to insertion monitor 30 .
  • Insertion monitor 30 is configured and arranged to close an electrical circuit between contact structures 51 and 52 when the sensor is properly inserted into the connector.
  • Proper insertion into connector 500 means that the sensor strip 100 is inserted right side up, that the correct end of strip 100 is inserted into connector 500 , and that sensor strip 100 is inserted far enough into connector 500 that reliable electrical connections are made between the electrode contact pads 123 , 124 , 125 , 126 and the corresponding contacts leads 223 , 224 , 225 , 226 .
  • no closed circuit is made unless all electrode pads have properly contacted the contact structures of connector 500 .
  • the insertion monitor may have shapes other than a stripe across the width of the sensor; for example, other designs include an individual dot, a grid pattern, or may include stylistic features, such as words or letters.
  • the width of the contact pads 123 , 124 , 125 , 126 is defined as the width on which a lead could be placed that would result in an electrical connection; typically, the contact width is the width of the exposed contact area.
  • six contact lead structures on the connector e.g., 52 , 223 , 224 , 225 , 226 , 51
  • leads 223 , 224 , 225 , 226 make contact with contact pads 123 , 124 , 125 , 126 . If each lead and/or contact pad is one millimeter wide, a sensor of at least 4 mm wide is needed to make contact. Additional leads, such as those for insertion monitor 30 (i.e., contact leads 51 , 52 ), can make contact by having leads 51 , 52 extend along the side of leads 223 , 226 and then angle in toward the center of strip 100 after the point where leads 223 , 224 , 225 , 226 contact strip 100 . The insertion monitor leads 51 , 52 cross side edges of sensor 100 to make contact with the sensor, thus not requiring additional sensor width.
  • the contact structures are generally parallel and non-overlapping.
  • the lead structures 223 , 224 , 225 , 226 terminate in close proximity to the proximal end of sensor strip 100 (e.g., on contact pads 123 , 124 , 125 , 126 ), but lead structures 51 , 52 continue longitudinally past the proximal end of lead structures 223 , 224 , 225 , 226 farther toward the distal end of sensor strip 100 . Once past the proximal end and past lead structures 223 , 224 , 225 , 226 , lead structures 51 , 52 angle in toward the center of the sensor strip.
  • the meter may include a raised area or bump that prevents or hinders the insertion of the sensor in an improper direction. Objects other than a raised area can also be used to guide the user in correct introduction of the sensor into the meter.
  • FIGS. 6A and 6B one example of a method for making sensors having two substrates with electrodes thereon is described with respect to the sensor arrangement displayed in FIG. 2A , although this method can be used to make a variety of other sensor arrangements, including those described before.
  • this method can be used to make a variety of other sensor arrangements, including those described before.
  • a substrate 1000 such as a plastic substrate, is moving in the direction indicated by the arrow.
  • Substrate 1000 can be an individual sheet or a continuous roll on a web.
  • Multiple sensors can be formed on substrate 1000 as sections 1022 that have working electrodes 22 ( FIG. 2A ) thereon and sections 1024 that have counter electrodes 24 ( FIG. 2A ) thereon and other electrodes, such as reference electrodes and/or fill indicator electrodes. These working, counter and optional electrodes are electrically connected to their corresponding traces and contact pads.
  • working electrode sections 1022 are produced on one half of substrate 1000 and counter electrode sections 1024 are produce on the other half of substrate 1000 .
  • substrate 1000 can be scored and folded to bring the sections 1022 , 1024 together to form the sensor.
  • the individual working electrode sections 1022 can be formed next to or adjacent each other on substrate 1000 , to reduce waste material.
  • individual counter electrode sections 1024 can be formed next to or adjacent each other.
  • the individual working electrode sections 1022 (and, similarly, the counter electrode sections 1024 ) can be spaced apart, as illustrated in FIG. 6B . The remainder of the process is described for the manufacture of multiple sensors, but can be readily modified to form individual sensors.
  • Carbon or other electrode material (e.g., metal, such as gold or platinum) is formed on substrate 1000 to provide a working electrode 22 for each sensor.
  • the carbon or other electrode material can be deposited by a variety of methods including printing a carbon or metal ink, vapor deposition, and other methods. The printing may be done by screen printing, gravure roll printing, transfer printing, and other known printing methods.
  • the respective trace and contact pad 23 could be applied together with working electrode 22 , but may be applied in a subsequent step.
  • counter electrode 24 is formed on substrate 1000 .
  • the counter electrode(s) are formed by providing carbon or other conductive electrode material onto substrate 1000 .
  • the material used for the counter electrode(s) is a Ag/AgCl ink.
  • the material of the counter electrode(s) may be deposited by a variety of methods including printing or vapor deposition. The printing may be done by screen printing, gravure roll printing, transfer printing, and other known printing methods.
  • the respective trace and contact pad 25 could be applied together with counter electrodes 24 , but may be applied in a subsequent step.
  • multiple sensors 10 are manufactured simultaneously; that is, the working electrodes, including their traces and contact pads, for a plurality of sensors are produced (e.g., printed) on a polymer sheet or web, and simultaneously or subsequently, the counter electrodes, and their traces and contact pads, for a plurality of sensors are produced (e.g., printed).
  • the working electrode(s) and counter electrode(s) can be formed on separate substrates that are later positioned opposite one another so that the electrodes face each other.
  • the working electrodes can be formed on a first half of a substrate sheet of web and the counter electrodes are formed on a second half of the substrate sheet or web so that the sheet or web can be folded to superimpose the working and counter electrodes in a facing arrangement.
  • spacer 15 is formed over at least one of the substrate/working electrode and substrate/counter electrode(s).
  • Spacer 15 can be an adhesive spacer, such as a single layer of adhesive or a double-sided adhesive tape (e.g., a polymer carrier film with adhesive disposed on opposing surfaces).
  • Suitable spacer materials include adhesives such as urethanes, acrylates, acrylics, latexes, rubbers and the like.
  • a channel which will result in the sample chamber, is provided in spacer 15 , either by cutting out a portion of the adhesive spacer or placing two adhesive pieces in close proximity but having a gap therebetween.
  • the adhesive can be printed or otherwise disposed on the substrate according to a pattern which defines the channel region.
  • the adhesive spacer can be optionally provided with one or more release liners prior to its incorporation into the sensor.
  • the adhesive can be cut (e.g., die-cut or slit) to remove the portion of the adhesive corresponding to the channel prior to disposing the spacer on the substrate.
  • any sensing chemistry is disposed onto the substrate in at least the sample chamber regions. If any of the sensing chemistry component(s) is non-leachable, that component is preferably disposed on the working electrode. If any of the sensing chemistry component(s) is diffusible, that component can be disposed on any surface of the substrate in the channel region.
  • the redox mediator and/or electrode transfer agent can be disposed independently or together on the substrate prior to or after placement of the spacer.
  • the redox mediator and/or electrode transfer agent may be applied by a variety of methods including, for example, screen printing, ink jet printing, spraying, painting, striping along a row or column of aligned and/or adjacent electrodes, and the like.
  • Other components can be deposited separately or together with the redox mediator and/or electrode transfer agent; these components can include, for example, surfactants, polymers, polymer films, preservatives, binders, buffers, and cross-linkers.
  • the first and second substrates (having the working and counter electrodes thereon) are positioned opposite each other to form the sensor.
  • the faces of the substrate are joined by the adhesive of the spacer.
  • individual sensors can be cut out from the web of sensors using a variety of methods including, for example, die cutting, slitting, or otherwise cutting away the excess substrate material and separating the individual sensors. In some embodiments, a combination of cutting or slitting methods is used.
  • the individual sensor components can first be cut out of the substrates and then brought together to form the sensor by adhesively joining the two components, such as by using the spacer adhesive.
  • the sides of the sensor can be straight to allow the sensor to be cut out from the remainder of the substrate and/or from other sensors by slitting the substrate in parallel directions using, for example, a gang arbor blade system.
  • the edges of the sensor can define edges of the sample chamber and/or measurement zone.
  • a common use for the analyte sensor of the present invention, such as sensor strip 10 , 10 ′, 100 is for the determination of analyte concentration in a biological fluid, such as glucose concentration in blood, interstitial fluid, and the like, in a patient or other user.
  • Sensor strips 10 , 10 ′, 100 may be available at pharmacies, hospitals, clinics, from doctors, and other sources of medical devices. Multiple sensor strips 10 , 10 ′, 100 may be packaged together and sold as a single unit; e.g., a package of 25, 50, or 100 strips.
  • Sensor strips 10 , 10 ′, 100 can be used for an electrochemical assay, or, for a photometric test. Sensor strips 10 , 10 ′, 100 are generally configured for use with an electrical meter, which may be connectable to various electronics. A meter may be available at generally the same locations as sensor strips 10 , 10 ′, 100 and sometimes may be packaged together with sensor strips 10 , 10 ′, 100 , e.g., as a kit.
  • Suitable electronics connectable to the meter include a data processing terminal, such as a personal computer (PC), a portable computer such as a laptop or a handheld device (e.g., personal digital assistants (PDAs)), and the like.
  • the electronics are configured for data communication with the receiver via a wired or a wireless connection. Additionally, the electronics may further be connected to a data network (not shown) for storing, retrieving and updating data corresponding to the detected glucose level of the user.
  • the various devices connected to the meter may wirelessly communicate with a server device, e.g., using a common standard such as 802.11 or Bluetooth RF protocol, or an IrDA infrared protocol.
  • the server device could be another portable device, such as a Personal Digital Assistant (PDA) or notebook computer, or a larger device such as a desktop computer, appliance, etc.
  • PDA Personal Digital Assistant
  • the server device does have a display, such as a liquid crystal display (LCD), as well as an input device, such as buttons, a keyboard, mouse or touch-screen.
  • the user can control the meter indirectly by interacting with the user interface(s) of the server device, which in turn interacts with the meter across a wireless link.
  • the server device can also communicate with another device, such as for sending glucose data from the meter and/or the service device to a data storage or computer.
  • the service device could send and/or receive instructions (e.g., an insulin pump protocol) from a health care provider computer.
  • instructions e.g., an insulin pump protocol
  • Examples of such communications include a PDA synching data with a personal computer (PC), a mobile phone communicating over a cellular network with a computer at the other end, or a household appliance communicating with a computer system at a physician's office.
  • a lancing device or other mechanism to obtain a sample of biological fluid, e.g., blood, from the patient or user may also be available at generally the same locations as sensor strips 10 and the meter, and sometimes may be packaged together with sensor strips 10 and/or meter, e.g., as a kit.
  • An analyte measurement device constructed according to the principles of the present invention typically includes a sensor strip 10 , 10 ′, 100 , as described hereinabove, combined with a sample acquisition apparatus to provide an integrated sampling and measurement device.
  • the sample acquisition apparatus typically includes, for example, a skin piercing member, such as a lancet, that can be injected into a patient's skin to cause blood flow.
  • the integrated sample acquisition and analyte measurement device can comprise a lancing instrument that holds a lancet and sensor strip 10 , 10 ′, 100 .
  • the lancing instrument might require active cocking. By requiring the user to cock the device prior to use, the risk of inadvertently triggering the lancet is minimized.
  • the lancing instrument could also permit the user to adjust the depth of penetration of the lancet into the skin.
  • Such devices are commercially available from companies such as Boehringer Mannheim and Palco. This feature allows users to adjust the lancing device for differences in skin thickness, skin durability, and pain sensitivity across different sites on the body and across different users.
  • the lancing instrument and the meter are integrated into a single device.
  • the user need only insert a disposable cartridge containing a sensor strip and lancing device into the integrated device, cock the lancing instrument, press it against the skin to activate it, and read the result of the measurement.
  • a disposable cartridge containing a sensor strip and lancing device into the integrated device, cock the lancing instrument, press it against the skin to activate it, and read the result of the measurement.
  • Such an integrated lancing instrument and test reader simplifies the testing procedure for the user and minimizes the handling of body fluids.
  • sensor strips 10 , 10 ′ may be integrated with both a meter and a lancing device. Having multiple elements together in one device reduces the number of devices needed to obtain an analyte level and facilitates the sampling process.
  • embodiments may include a housing that includes one or more of the subject strips, a skin piercing element and a processor for determining the concentration of an analyte in a sample applied to the strip.
  • a plurality of strips 10 , 10 ′, 100 may be retained in a cassette in the housing interior and, upon actuation by a user, a single strip 10 , 10 ′ may be dispensed from the cassette so that at least a portion extends out of the housing for use.
  • a sample of biological fluid is provided into the sample chamber of the sensor, where the level of analyte is determined.
  • the analysis may be based on providing an electrochemical assay or a photometric assay.
  • it is the level of glucose in blood that is determined.
  • the source of the biological fluid is a drop of blood drawn from a patient, e.g., after piercing the patient's skin with a lancing device, which could be present in an integrated device, together with the sensor strip.
  • the analyte in the sample is, e.g., electrooxidized or electroreduced, at working electrode 22 , and the level of current obtained at counter electrode 24 is correlated as analyte concentration.
  • Sensor strip 10 , 10 ′, 100 may be operated with or without applying a potential to electrodes 22 , 24 .
  • the electrochemical reaction occurs spontaneously and a potential need not be applied between working electrode 22 and counter electrode 24 .
  • a potential is applied between working electrode 22 and counter electrode 24 .

Abstract

A sensor, and methods of making, for determining the concentration of an analyte, such as glucose or lactate, in a biological fluid such as blood or serum, using techniques such as coulometry, amperometry, and potentiometry. The sensor includes a working electrode and a counter electrode, and can include an insertion monitoring trace to determine correct positioning of the sensor in a connector.

Description

  • This application is a continuation of U.S. Ser. No. 11/281,883, filed Nov. 17, 2005, which is a continuation-in-part of U.S. Ser. No. 10/866,477, filed Jun. 12, 2004, which is a continuation of U.S. Ser. No. 10/033,575, filed Dec. 28, 2001, issued as U.S. Pat. No. 6,749,740, which is a continuation of U.S. Ser. No. 09/434,026, filed Nov. 4, 1999, issued as U.S. Pat. No. 6,616,819, the entire disclosures of which are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • This invention relates to analytical sensors for the detection of bioanalytes in a small volume sample, and methods of making and using the sensors.
  • BACKGROUND
  • Analytical sensors are useful in chemistry and medicine to determine the presence and concentration of a biological analyte. Such sensors are needed, for example, to monitor glucose in diabetic patients and lactate during critical care events.
  • Currently available technology measures bioanalytes in relatively large sample volumes, e.g., generally requiring 3 microliters or more of blood or other biological fluid. These fluid samples are obtained from a patient, for example, using a needle and syringe, or by lancing a portion of the skin such as the fingertip and “milking” the area to obtain a useful sample volume. These procedures are inconvenient for the patient, and often painful, particularly when frequent samples are required. Less painful methods for obtaining a sample are known such as lancing the arm or thigh, which have a lower nerve ending density. However, lancing the body in the preferred regions typically produces submicroliter samples of blood, because these regions are not heavily supplied with near-surface capillary vessels.
  • It would therefore be desirable and very useful to develop a relatively painless, easy to use blood analyte sensor, capable of performing an accurate and sensitive analysis of the concentration of analytes in a small volume of sample.
  • It would also be desirable to develop methods for manufacturing small volume electrochemical sensors capable of decreasing the errors that arise from the size of the sensor and the sample.
  • SUMMARY OF THE DISCLOSURE
  • The sensors of the present invention provide a method for the detection and quantification of an analyte. In general, the invention includes a method and sensor for analysis of an analyte in a sample, e.g., a small volume sample, by, for example, coulometry, amperometry and/or potentiometry. A sensor of the invention may utilize a non-leachable or diffusible electron transfer agent and/or a redox mediator. The sensor also includes a sample chamber to hold the sample in electrolytic contact with the working electrode.
  • In one embodiment, the working electrode faces a counter electrode, forming a measurement zone within the sample chamber, between the two electrodes, that is sized to contain no more than about 1 μL of sample, e.g., no more than about 0.5 μL, e.g., no more than about 0.32 μL, e.g., no more than about 0.25 μL, e.g., no more than about 0.1 μL of sample.
  • In one embodiment of the invention, a sensor, configured for insertion into an electronic meter, is provided with a working electrode and a counter electrode, and a conductive insertion monitor which provides electrical contact with the electronic meter if the sensor is properly inserted into the meter. The conductive insertion monitor is configured and arranged to close an electrical circuit when the sensor is properly inserted into the electronic connector.
  • In another embodiment of the invention, a sensor is provided with a plurality of contacts, each contact having a contact pad, which is a region for connection with an electronic meter. The plurality of contacts and contact pads are on a substrate having a length and a width, and each contact pad has a contact pad width taken parallel to the width of the substrate. The sum of the contact pad widths is greater than the width of the substrate. In one embodiment, six electrical connections are made with six contact pads on the sensor but in a width that is approximately the width of four contact pads. For example, a working electrode, three counter electrodes (e.g., one counter electrode and two indicator electrodes), and two insertion trace connections each have a contact pad; connection can be made to each of these six contact pads in the same width of the contact pads of the working electrode and three counter electrodes.
  • The present invention also includes an electrical connector, for providing electrical contact between a sensor and an electrical meter or other device. The electrical connector has a plurality of contact structures, each which has a proximal contact end for electrical connection to a sensor contact, and a distal end for electrical connection to the electrical device. In one embodiment, a plurality of first contact structures extend longitudinally parallel from the distal to the proximal end. Additionally, one or more second contract structures extend longitudinally next to the first contact structures, from the distal end past the proximal end of the first contact structures, and angle toward a longitudinal center line of the connector. Contact to the sensor is then made via the proximal contact ends.
  • In some embodiments, the electrical connector has at least two second contact structures extending longitudinally past the proximal end of the first contact structures and angling toward the longitudinal center line of the connector. After the angled or bent portion, the proximal contact ends of the second contact structures of one embodiment make electrical contact with a single conductive surface of a sensor, such as a conductive insertion monitor. In another aspect, the first contact structures can be configured and arranged to contact one or more working and/or counter electrodes of a sensor, and the second contact structures are configured and arranged to contact one or more conductive insertion monitors.
  • The sensors of the present invention can be configured for side-filling or tip-filling. In addition, in some embodiments, the sensor may be part of an integrated sample acquisition and analyte measurement device. The integrated sample acquisition and analyte measurement device can include the sensor and a skin piercing member, so that the device can be used to pierce the skin of a user to cause flow of a fluid sample, such as blood, that can then be collected by the sensor. In at least some embodiments, the fluid sample can be collected without moving the integrated sample acquisition and analyte measurement device.
  • In one embodiment, the sensor is connected with an electrical device, to provide a processor coupled to the sensor. The processor is configured and arranged to determine, during electrolysis of a sample in the sample chamber, a series of current values. The processor determines a peak current value from the series of current values. After the current values decrease below a threshold fraction of the peak current values, slope values are determined from the current values and represent a linear function of the logarithm of current values over time. The processor determines, from the slope values, an extrapolation slope. From the extrapolated slope and the measured current values, the processor determines an amount of charge needed to electrolyze the sample and, from that amount of charge, the concentration of the analyte in the sample.
  • One method of forming a sensor, as described above, includes forming at least one working electrode on a first substrate and forming at least one counter or counter/reference electrode on a second substrate. A spacer layer is disposed on either the first or second substrates. The spacer layer defines a chamber into which a sample can be drawn and held when the sensor is completed. A redox mediator and/or second electron transfer agent can be disposed on the first or second substrate in a region that will be exposed within the sample chamber when the sensor is completed. The first and second substrates are then brought together and spaced apart by the spacer layer with the sample chamber providing access to the at least one working electrode and the at least one counter or counter/reference electrode. In some embodiments, the first and second substrates are portions of a single sheet or continuous web of material. The invention includes particularly efficient and reliable methods for the manufacture of these sensors.
  • One such efficient and reliable method includes providing an adhesive having first and second surfaces covered with first and second release liners and then making detailed cuts through the first release liner and the adhesive but not through the second release liner. These cuts define one or more sample chamber regions. A portion of the first release liner is removed to expose a portion of the first adhesive surface, which leaves a remaining portion of the first release liner over the sample chamber regions. This exposed first adhesive surface is applied to a first substrate having one or more conductive traces disposed thereon. The second release liner is removed together with the adhesive and the first release liner of the sample chamber regions in order to expose the second adhesive surface. The second adhesive surface is then applied to a second substrate having one or more conductive traces disposed thereon. This method forms a sensor having a sample chamber corresponding to one of the sample chamber regions.
  • These and various other features which characterize the invention are pointed out with particularity in the attached claims. For a better understanding of the invention, its advantages, and objectives obtained by its use, reference should be made to the drawings and to the accompanying description, in which there is illustrated and described preferred embodiments of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Referring now to the drawings, wherein like reference numerals and letters indicate corresponding structure throughout the several views:
  • FIG. 1 is a schematic view of a first embodiment of a sensor strip in accordance with the present invention;
  • FIG. 2A is an exploded view of the sensor strip shown in FIG. 1, the layers illustrated individually with the electrodes in a first configuration;
  • FIG. 2B is a top view of the sensor strip shown in FIGS. 1 and 2A;
  • FIG. 3A is a schematic view of a second embodiment of a sensor strip in accordance with the present invention, the layer illustrated individually with the electrodes in a second configuration;
  • FIG. 3B is a top view of the sensor strip shown in FIG. 3A;
  • FIG. 4 is a top view of the first substrate of the sensor strip of FIGS. 3A and 3B;
  • FIG. 5A is a top view of a first example configuration for a suitable insertion monitor in accordance with the present invention;
  • FIG. 5B is a top view of a second example configuration for a suitable insertion monitor in accordance with the present invention;
  • FIG. 5C is a top view of a third example configuration for a suitable insertion monitor in accordance with the present invention;
  • FIG. 5D is a top view of a fourth example configuration for a suitable insertion monitor in accordance with the present invention;
  • FIG. 6A illustrates a top view of one embodiment of a sheet of sensor components, according to the invention;
  • FIG. 6B illustrates a top view of another embodiment of a sheet of sensor components, according to the invention;
  • FIG. 7A is a top perspective view of a sensor strip positioned for insertion within an electrical connector device in accordance with the present invention;
  • FIG. 7B is an exploded view of the electrical connector device of FIG. 7A;
  • FIG. 8A is a top perspective view of a sensor strip fully positioned within the electrical connector device of FIG. 7A;
  • FIG. 8B is an exploded view of the electrical connector device of FIG. 8A;
  • FIG. 9A is a bottom perspective view of the electrical connector device of FIGS. 7A and 7B; and
  • FIG. 9B is a bottom perspective view of the electrical connector device of FIGS. 8A and 8B.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • As used herein, the following definitions define the stated term:
  • “Amperometry” includes steady-state amperometry, chronoamperometry, and Cottrell-type measurements.
  • A “biological fluid” is any body fluid in which the analyte can be measured, for example, blood (which includes whole blood and its cell-free components, such as, plasma and serum), interstitial fluid, dermal fluid, sweat, tears, urine and saliva.
  • “Coulometry” is the determination of charge passed or projected to pass during complete or nearly complete electrolysis of the analyte, either directly on the electrode or through one or more electron transfer agents. The charge is determined by measurement of charge passed during partial or nearly complete electrolysis of the analyte or, more often, by multiple measurements during the electrolysis of a decaying current and elapsed time. The decaying current results from the decline in the concentration of the electrolyzed species caused by the electrolysis.
  • A “counter electrode” refers to one or more electrodes paired with the working electrode, through which passes an electrochemical current equal in magnitude and opposite in sign to the current passed through the working electrode. The term “counter electrode” is meant to include counter electrodes which also function as reference electrodes (i.e. a counter/reference electrode) unless the description provides that a “counter electrode” excludes a reference or counter/reference electrode.
  • An “electrochemical sensor” is a device configured to detect the presence of and/or measure the concentration of an analyte via electrochemical oxidation and reduction reactions. These reactions are transduced to an electrical signal that can be correlated to an amount or concentration of analyte.
  • “Electrolysis” is the electrooxidation or electroreduction of a compound either directly at an electrode or via one or more electron transfer agents (e.g., redox mediators and/or enzymes).
  • The term “facing electrodes” refers to a configuration of the working and counter electrodes in which the working surface of the working electrode is disposed in approximate opposition to a surface of the counter electrode. In at least some instances, the distance between the working and counter electrodes is less than the width of the working surface of the working electrode.
  • An “indicator electrode” or “fill indicator electrode” is an electrode that detects partial or complete filling of a sample chamber and/or measurement zone with sample.
  • A “layer” is one or more layers.
  • The “measurement zone” is defined herein as a region of the sample chamber sized to contain only that portion of the sample that is to be interrogated during an analyte assay.
  • A “non-diffusible,” “non-leachable,” or “non-releasable” compound is a compound which does not substantially diffuse away from the working surface of the working electrode for the duration of the analyte assay.
  • A “redox mediator” is an electron transfer agent for carrying electrons between the analyte and the working electrode, either directly or through another electron transfer agent.
  • A “reference electrode” includes a reference electrode that also functions as a counter electrode (i.e., a counter/reference electrode) unless the description provides that a “reference electrode” excludes a counter/reference electrode.
  • A “working electrode” is an electrode at which analyte is electrooxidized or electroreduced with or without the agency of a redox mediator.
  • Referring to the Drawings in general and FIGS. 1 and 2A in particular, a first embodiment of a sensor strip 10 is schematically illustrated. Sensor strip 10 has a first substrate 12, a second substrate 14, and a spacer 15 positioned therebetween. Sensor strip 10 includes at least one working electrode 22 and at least one counter electrode 24. Sensor strip 10 also includes insertion monitor 30.
  • Sensor Strips
  • Referring to FIGS. 1, 2A and 2B in particular, sensor strip 10 has first substrate 12, second substrate 14, and spacer 15 positioned therebetween. Sensor strip 10 includes working electrode 22, counter electrode 24 and insertion monitor 30. Sensor strip 10 is a layered construction, in certain embodiments having a generally rectangular shape, i.e., its length is longer than its width, although other shapes are possible as well. Sensor strip 10′ of FIGS. 3A, 3B and 4 also has first substrate 12, second substrate 14, spacer 15, working electrode 22, counter electrode 24 and insertion monitor 30.
  • The dimensions of a sensor may vary. In certain embodiments, the overall length of sensor strip 10, 10′ may be no less than about 20 mm and no greater than about 50 mm. For example, the length may be between about 30 and 45 mm; e.g., about 30 to 40 mm. It is understood, however that shorter and longer sensor strips 10, 10′ could be made. In certain embodiments, the overall width of sensor strip 10, 10′ may be no less than about 3 mm and no greater than about 15 mm. For example, the width may be between about 4 and 10 mm, about 5 to 8 mm, or about 5 to 6 mm. In one particular example, sensor strip 10, 10′ has a length of about 32 mm and a width of about 6 mm. In another particular example, sensor strip 10, 10′ has a length of about 40 mm and a width of about 5 mm. In yet another particular example, sensor strip 10, 10′ has a length of about 34 mm and a width of about 5 mm.
  • Substrates
  • As provided above, sensor strip 10, 10′ has first and second substrates 12, 14, non-conducting, inert substrates which form the overall shape and size of sensor strip 10, 10′. Substrates 12, 14 may be substantially rigid or substantially flexible. In certain embodiments, substrates 12, 14 are flexible or deformable. Examples of suitable materials for substrates 12, 14 include, but are not limited, to polyester, polyethylene, polycarbonate, polypropylene, nylon, and other “plastics” or polymers. In certain embodiments the substrate material is “Melinex” polyester. Other non-conducting materials may also be used.
  • Spacer Layer
  • As indicated above, positioned between substrate 12 and substrate 14 can be spacer 15 to separate first substrate 12 from second substrate 14. Spacer 15 is an inert non-conducting substrate, typically at least as flexible and deformable (or as rigid) as substrates 12, 14. In certain embodiments, spacer 15 is an adhesive layer or double-sided adhesive tape or film. Any adhesive selected for spacer 15 should be selected to not diffuse or release material which may interfere with accurate analyte measurement.
  • In certain embodiments, the thickness of spacer 15 may be at least about 0.01 mm (10 μm) and no greater than about 1 mm or about 0.5 mm. For example, the thickness may be between about 0.02 mm (20 μm) and about 0.2 mm (200 μm). In one certain embodiment, the thickness is about 0.05 mm (50 μm), and about 0.1 mm (100 μm) in another embodiment.
  • Sample Chamber
  • The sensor includes a sample chamber for receiving a volume of sample to be analyzed; in the embodiment illustrated, particularly in FIG. 1, sensor strip 10, 10′ includes sample chamber 20 having an inlet 21 for access to sample chamber 20. In the embodiments illustrated, sensor strips 10, 10′ are side-fill sensor strips, having inlet 21 present on a side edge of strips 10, 10′. Tip-fill sensors can also be configured in accordance with this invention.
  • Sample chamber 20 is configured so that when a sample is provided in chamber 20, the sample is in electrolytic contact with both the working electrode and the counter electrode, which allows electrical current to flow between the electrodes to effect the electrolysis (electrooxidation or electroreduction) of the analyte.
  • Sample chamber 20 is defined by substrate 12, substrate 14 and spacer 15; in many embodiments, sample chamber 20 exists between substrate 12 and substrate 14 where spacer 15 is not present. Typically, a portion of spacer 15 is removed to provide an area between substrates 12, 14 without spacer 15; this volume of removed spacer is sample chamber 20. For embodiments that include spacer 15 between substrates 12, 14, the thickness of sample chamber 20 is generally the thickness of spacer 15.
  • Sample chamber 20 has a volume sufficient to receive a sample of biological fluid therein. In some embodiments, such as when sensor strip 10, 10′ is a small volume sensor, sample chamber 20 has a volume that is preferably no more than about 1 μL, for example no more than about 0.5 μL, and also for example, no more than about 0.25 μL. A volume of no more than about 0.1 μL is also suitable for sample chamber 20, as are volumes of no more than about 0.05 μL and about 0.03 μL.
  • A measurement zone is contained within sample chamber 20 and is the region of the sample chamber that contains only that portion of the sample that is interrogated during the analyte assay. In some designs, the measurement zone has a volume that is approximately equal to the volume of sample chamber 20. In some embodiments the measurement zone includes 80% of the sample chamber, 90% in other embodiments, and about 100% in yet other embodiments.
  • As provided above, the thickness of sample chamber 20 corresponds typically to the thickness of spacer 15. Particularly for facing electrode configurations, this thickness is small to promote rapid electrolysis of the analyte, as more of the sample will be in contact with the electrode surface for a given sample volume. In addition, a thin sample chamber 20 helps to reduce errors from diffusion of analyte into the measurement zone from other portions of the sample chamber during the analyte assay, because diffusion time is long relative to the measurement time, which may be about 5 seconds or less.
  • Electrodes
  • As provided above, the sensor includes a working electrode and at least one counter electrode. The counter electrode may be a counter/reference electrode. If multiple counter electrodes are present, one of the counter electrodes will be a counter electrode and one or more may be reference electrodes. Referring to FIGS. 2A and 2B and FIGS. 3A, 3B and 4, two examples of suitable electrode configurations are illustrated.
  • Working Electrode
  • At least one working electrode is positioned on one of first substrate 12 and second substrate 14. In all of FIGS. 2A though 4, working electrode 22 is illustrated on substrate 12. Working electrode 22 extends from the sample chamber 20 to the other end of the sensor 10 as an electrode extension called a “trace”. The trace provides a contact pad 23 for providing electrical connection to a meter or other device to allow for data and measurement collection, as will be described later. Contact pad 23 can be positioned on a tab 26 that extends from the substrate on which working electrode 22 is positioned, such as substrate 12. In one embodiment, a tab has more than one contact pad positioned thereon. In a second embodiment, a single contact pad is used to provide a connection to one or more electrodes; that is, multiple electrodes are coupled together and are connected via one contact pad.
  • Working electrode 22 can be a layer of conductive material such as gold, carbon, platinum, ruthenium dioxide, palladium, or other non-corroding, conducting material. Working electrode 22 can be a combination of two or more conductive materials. An example of a suitable conductive epoxy is ECCOCOAT CT5079-3 Carbon-Filled Conductive Epoxy Coating (available from W.R. Grace Company, Woburn, Mass.). The material of working electrode 22 typically has relatively low electrical resistance and is typically electrochemically inert over the potential range of the sensor during operation.
  • Working electrode 22 may be applied on substrate 12 by any of various methods, including by being deposited, such as by vapor deposition or vacuum deposition or otherwise sputtered, printed on a flat surface or in an embossed or otherwise recessed surface, transferred from a separate carrier or liner, etched, or molded. Suitable methods of printing include screen-printing, piezoelectric printing, ink jet printing, laser printing, photolithography, and painting.
  • As provided above, at least a portion of working electrode 22 is provided in sample chamber 20 for the analysis of analyte, in conjunction with the counter electrode.
  • Counter Electrode
  • The sensor includes at least one counter electrode positioned within the sample chamber. In FIGS. 2A and 2B, counter electrode 24 is illustrated on substrate 14. In FIGS. 3A, 3B and 4, a counter electrode 24 is present on substrate 12. Counter electrode 24 extends from the sample chamber 20 to the other end of the sensor 10 as an electrode extension called a “trace”. The trace provides a contact pad 25 for providing electrical connection to a meter or other device to allow for data and measurement collection, as will be described later. Contact pad 25 can be positioned on a tab 27 that extends from the substrate on which counter electrode 24 is positioned, such as substrate 12 or 14. In one embodiment, a tab has more than one contact pad positioned thereon. In a second embodiment, a single contact pad is used to provide a connection to one or more electrodes; that is, multiple electrodes are coupled together and are connected via one contact pad.
  • Counter electrode 24 may be constructed in a manner similar to working electrode 22. Suitable materials for the counter/reference or reference electrode include Ag/AgCl or Ag/AgBr on a non-conducting base material or silver chloride on a silver metal base. The same materials and methods may be used for counter electrode 24 as are available for working electrode 22, although different materials and methods may also be used. Counter electrode 24 can include a mix of multiple conducting materials, such as Ag/AgCl and carbon.
  • Electrode Configurations
  • Working electrode 22 and counter electrode 24 may be disposed opposite to and facing each other to form facing electrodes. See for example, FIG. 2A, which has working electrode 22 on substrate 12 and counter electrode 24 on substrate 14, forming facing electrodes. In this configuration, the sample chamber is typically present between the two electrodes 22, 24. For this facing electrode configuration, electrodes 22, 24 may be separated by a distance of no more than about 0.2 mm (e.g., at least one portion of the working electrode is separated from one portion of the counter electrode by no more than about 200 μm), e.g., no more than about 100 μm, e.g., no more than about 50 μm.
  • Working electrode 22 and counter electrode 24 can alternately be disposed generally planar to one another, such as on the same substrate, to form co-planar or planar electrodes. Referring to FIGS. 3A and 4, both working electrode 22 and counter electrode 24 occupy a portion of the surface of substrate 12, thus forming co-planar electrodes.
  • Sensing Chemistry
  • In addition to working electrode 22, sensing chemistry material(s) are preferably provided in sample chamber 20 for the analysis of the analyte. Sensing chemistry material facilitates the transfer of electrons between working electrode 22 and the analyte in the sample. Any sensing chemistry may be used in sensor strip 10, 10; the sensing chemistry may include one or more materials.
  • The sensing chemistry can be diffusible or leachable, or non-diffusible or non-leachable. For purposes of discussion herein, the term “diffusible” will be used to represent “diffusible or leachable” and the term “non-diffusible” will be used to represent “non-diffusible or non-leachable” and variations thereof. Placement of sensing chemistry components may depend on whether they are diffusible or not. For example, both non-diffusible and/or diffusible component(s) may form a sensing layer on working electrode 22. Alternatively, one or more diffusible components may be present on any surface in sample chamber 20 prior to the introduction of the sample to be analyzed. As another example, one or more diffusible component(s) may be placed in the sample prior to introduction of the sample into sample chamber 20.
  • Electron Transfer Agent
  • The sensing chemistry generally includes an electron transfer agent that facilitates the transfer of electrons to or from the analyte. The electron transfer agent may be diffusible or non-diffusible, and may be present on working electrode 22 as a layer. One example of a suitable electron transfer agent is an enzyme which catalyzes a reaction of the analyte. For example, a glucose oxidase or glucose dehydrogenase, such as pyrroloquinoline quinone glucose dehydrogenase (PQQ), is used when the analyte is glucose. Other enzymes can be used for other analytes.
  • The electron transfer agent, whether it is diffusible or not, facilitates a current between working electrode 22 and the analyte and enables the electrochemical analysis of molecules. The agent facilitates the transfer electrons between the electrode and the analyte.
  • Redox Mediator
  • This sensing chemistry may, additionally to or alternatively to the electron transfer agent, include a redox mediator. Certain embodiments use a redox mediator that is a transition metal compound or complex. Examples of suitable transition metal compounds or complexes include osmium, ruthenium, iron, and cobalt compounds or complexes. In these complexes, the transition metal is coordinatively bound to one or more ligands, which are typically mono-, di-, tri-, or tetradentate. The redox mediator can be a polymeric redox mediator, or, a redox polymer (i.e., a polymer having one or more redox species). Examples of suitable redox mediators and redox polymer are disclosed in U.S. Pat. No. 6,338,790, for example, and in U.S. Pat. Nos. 6,605,200 and 6,605,201.
  • If the redox mediator is non-diffusible, then the redox mediator may be disposed on working electrode 22 as a layer. In an embodiment having a redox mediator and an electron transfer agent, if the redox mediator and electron transfer agent are both non-leachable, then both components are disposed on working electrode 22 as individual layers, or combined and applied as a single layer.
  • The redox mediator, whether it is diffusible or not, mediates a current between working electrode 22 and the analyte and enables the electrochemical analysis of molecules which may not be suited for direct electrochemical reaction on an electrode. The mediator functions as an agent to transfer electrons between the electrode and the analyte.
  • Sorbent Material
  • Sample chamber 20 can be empty before the sample is placed in the chamber, or, in some embodiments, the sample chamber can include a sorbent material to sorb and hold a fluid sample during the measurement process. The sorbent material facilitates the uptake of small volume samples by a wicking action which can complement or, e.g., replace any capillary action of the sample chamber. Suitable sorbent materials include polyester, nylon, cellulose, and cellulose derivatives such as nitrocellulose. In addition to or alternatively, a portion or the entirety of the wall of the sample chamber may be coated by a surfactant, which is intended to lower the surface tension of the fluid sample and improve fluid flow within the sample chamber.
  • Methods other than the wicking action of a sorbent can be used to transport the sample into the sample chamber or measurement zone. Examples of such methods for transport include the application of pressure on a sample to push it into the sample chamber, the creation of a vacuum by a pump or other vacuum-producing method in the sample chamber to pull the sample into the chamber, capillary action due to interfacial tension of the sample with the walls of a thin sample chamber, as well as the wicking action of a sorbent material.
  • Fill Indicator Electrode
  • In some instances, it is desirable to be able to determine when the sample chamber is filled. Sensor strip 10, 10′ can be indicated as filled, or substantially filled, by observing a signal between an indicator electrode and one or both of working electrode 22 or counter electrode 24 as sample chamber 20 fills with fluid. When fluid reaches the indicator electrode, the signal from that electrode will change. Suitable signals for observing include, for example, voltage, current, resistance, impedance, or capacitance between the indicator electrode and, for example, working electrode 22. Alternatively, the sensor can be observed after filling to determine if a value of the signal (e.g., voltage, current, resistance, impedance, or capacitance) has been reached indicating that the sample chamber is filled.
  • Typically, the indicator electrode is further downstream from a sample inlet, such as inlet 21, than working electrode 22 and counter electrode 24.
  • For side-fill sensors, an indicator electrode can be present on each side of the counter electrode. This permits the user to fill the sample chamber from either the left or right side with an indicator electrode disposed further upstream. This three-electrode configuration is not necessary. Side-fill sensors can also have a single indicator electrode and may include some indication as to which side should be placed in contact with the sample fluid.
  • The indicator electrode can also be used to improve the precision of the analyte measurements. The indicator electrode may operate as a working electrode or as a counter electrode or counter/reference electrode. Measurements from the indicator electrode/working electrode can be combined (for example, added or averaged) with those from the first counter/reference electrode/working electrode to obtain more accurate measurements.
  • The sensor or equipment that the sensor connected is with (e.g., a meter) can include a sign (e.g., a visual sign or auditory signal) that is activated in response to the indicator electrode to alert the user that the measurement zone has been filled. The sensor or equipment can be configured to initiate a reading when the indicator electrode indicates that the measurement zone has been filled with or without alerting the user. The reading can be initiated, for example, by applying a potential between the working electrode and the counter electrode and beginning to monitor the signals generated at the working electrode.
  • Insertion Monitor
  • In accordance with this invention, the sensor includes an indicator to notify when proper insertion of sensor strip 10, 10′ into receiving equipment, such as a meter, has occurred. As seen in FIGS. 1, 2A, 2B, 3A and 3B, sensor strips 10, 10′ include insertion monitor 30 on an exterior surface of one of substrates 12, 14.
  • Insertion monitor 30 is used to encode information regarding sensor strip 10, 10′. The encoded information can be, for example, calibration information for that manufacturing lot or for that specific strip. Such calibration information or code may relate to, e.g., the sensitivity of the strip or to the y-intercept and/or slope of its calibration curve. The calibration code is used by the meter or other equipment to which sensor strip 10, 10′ is connected to provide an accurate analyte reading. For example, based on the calibration code, the meter uses one of several programs stored within the meter.
  • In some embodiments, a value indicative of the calibration code is manually entered into the meter or other equipment, for example, by the user. In other embodiments, the calibration code is directly read by the meter or other equipment, thus not requiring input or other interaction by the user.
  • In one embodiment, illustrated, for example in FIG. 5A, insertion monitor 30 is a stripe 130 extending across an exterior surface of sensor 10, 10′, for example, from side edge to side edge, with one contact pad for connection to a meter. It is understood that in alternate embodiments stripe 130 need not extend to both side edges. In another embodiment, the insertion monitor comprises two or more contact pads for connection to a meter. The two or more contact pads are electrically connected to each other by a material, such as a conductive ink.
  • The calibration code can be designed into insertion monitor 30, for example, either by the resistance or other electrical characteristic of insertion monitor 30, by the placement or position of insertion monitor 30, or by the shape or configuration of insertion monitor 30.
  • Insertion monitor 30 may alternately or additionally carry other information regarding the sensor strip 10, 10′. This other information that could be encoded into insertion monitor 30 include the test time needed for accurate analyte concentration analysis, expiration date of the sensor strip 10, 10′, various correction factors, such as for environmental temperature and/or pressure, selection of the analyte to be analyzed (e.g., glucose, ketone, lactate), and the like.
  • The resistance of insertion monitor 30, such as that of single stripe 130 or area or of a conductive path between the two or more contact pads, is related to the encoded information. As an example of discrete calibration values, resistance values in a given range can correspond to one calibration setting, and resistance values in a different range can correspond to a different calibration setting. Thus, when a meter or other equipment receives a sensor strip, indicator monitor 30 will notify the meter or equipment which assay calculation to use.
  • In addition to varying the resistance of indicator monitor 30 by varying the conductive or semi-conductive material used, the resistance of indicator monitor 30 can be varied by cutting or scoring some or all of the conductive pathways so that they do not carry charge. The resistance can additionally or alternately be controlled by the width or length of the conductive path. An example of a material suitable for indicator monitor 30 is a combination of carbon and silver; the resistance of this mixture will vary, based on the ratio of the two materials.
  • The placement or position of insertion monitor 30 can additionally or alternately be related to the encoded calibration information. For example, the calibration code can be directly related to the location of indicator monitor 30. For example, the position of indicator monitor 30 can be varied so that is makes electrical contact with different contact structures. (Contact structures are described below in “Sensor Connection to Electrical Device”). Depending on the contact structures engaged, the meter will recognize the calibration code and thus know what parameter to use to calculate an accurate analyte level.
  • The shape and/or configuration of insertion monitor 30 can additionally or alternatively be related to the encoded calibration code. For example, the calibration code can be directed related to which and/or the number of contact structures that make electrical contact with indicator monitor 30. For example, a pattern of discrete and unconnected indicator monitors can be present on the sensor; the calibration code will be directly related to the arrangement of those monitors. The pattern could be parallel lines, orderly arranged dots or squares, or the like.
  • While it is preferred to provide this encoded information on the insertion monitor, it should be recognized that the insertion monitor function and the encoding of information can also be implemented separately using separate conductive traces on the strip.
  • Conductive insertion monitor 30 is positioned on the non-conductive base substrate and has a contact pad for electrical contact with a connector. Insertion monitor 30 is configured and arranged to close an electrical circuit when sensor 10, 10′ is properly inserted into the connector.
  • Insertion monitor 30 may have any suitable configuration, including but not limited to, a stripe extending across sensor strip 10, 10′ from a side edge to a side edge, such as stripe 130, a stripe extending across the sensor strip, although not the entire width, and an array of unconnected dots, strips, or other areas. Other suitable configurations for insertion monitor 30 are illustrated in FIGS. 5B, 5C and 5D. FIG. 5B illustrates insertion monitor 30 as bi-regional monitor 230, having a first stripe 230A and a second stripe 230B, both of which extend from side edge to side edge, although it is understood that one or both of strips 230A, 230B may not extend completely to a side edge. FIGS. 5C and 5D illustrate insertion monitors that have a long, tortuous path, which extends longitudinally toward an end of the sensor, rather than extending merely side-to-side. Insertion monitor 330 of FIG. 5C has a stripe 330A and an elongate stripe 330B. Insertion monitor 430 of FIG. 5D has a single conductive strip 430, which provides an elongate path.
  • Sensor Connection to Electrical Device
  • Referring to FIGS. 7A, 7B, 8A, 8B, 9A and 9B, a sensor strip 100 is illustrated readied for insertion into a connector 500. Sensor strip 100 is similar to sensor strips 10, 10′. Sensor strip 100 includes insertion monitor 30 on an outer surface of one of the substrates forming strip 100. Sensor strip 100 includes, although not illustrated, one working electrode and three counter electrodes. The working electrode includes a contact pad positioned on tab 123 (see FIGS. 7A and 9A). Each of the three counter electrodes includes a contact pad positioned on tab 124, 125, 126, respectively (see FIG. 9A).
  • Sensor strip 100 is configured to couple to a meter or other electrical device by electrical connector 500 which is configured to couple with and contact the end of sensor 100 at contact pads 123, 124, 125, 126. The sensor meter typically includes a potentiostat or other component to provide a potential and/or current for the electrodes of the sensor. The sensor reader also typically includes a processor (e.g., a microprocessor or hardware) for determining analyte concentration from the sensor signals. The sensor meter also includes a display or a port for coupling a display to the sensor. The display displays the sensor signals and/or results determined from the sensor signals including, for example, analyte concentration, rate of change of analyte concentration, and/or the exceeding of a threshold analyte concentration (indicating, for example, hypo- or hyperglycemia).
  • One example of a suitable connector is shown in FIGS. 7A and 7B, 8A and 8B, and 9A and 9B. Connector 500 (which is used to connect a sensor to a meter or other electrical device) is generally a two part structure, having top portion 510 and bottom portion 520 (see FIG. 7B). Positioned between and secured by top portion 510 and bottom portion 520 are various contact leads that provide electrical connection between sensor 100 and a meter. Bottom portion includes leads 51, 52 and 223, 224, 225, 226, as will be described below.
  • Leads 223, 224, 225, 226, have proximal ends to physically contact pads 123, 124, 125, 126, respectively, and to connect to any attached meter. Each pad 123, 124, 125, 126 has its respective lead 223, 224, 225, 226. The end of sensor 100 having the contact pads can be slid into or mated with connector 500 by placing sensor 100 into slide area 530, which provides a support for and retains sensor 100. It is typically important that the contact structures of the connector 500 make electrical contact with the correct pads of the sensor so that the working electrode and counter electrode(s) are correctly coupled to the meter.
  • Connector 500 includes leads or contact structures 51, 52 for connection to insertion monitor 30. Insertion monitor 30 is configured and arranged to close an electrical circuit between contact structures 51 and 52 when the sensor is properly inserted into the connector. Proper insertion into connector 500 means that the sensor strip 100 is inserted right side up, that the correct end of strip 100 is inserted into connector 500, and that sensor strip 100 is inserted far enough into connector 500 that reliable electrical connections are made between the electrode contact pads 123, 124, 125, 126 and the corresponding contacts leads 223, 224, 225, 226. Preferably, no closed circuit is made unless all electrode pads have properly contacted the contact structures of connector 500. The insertion monitor may have shapes other than a stripe across the width of the sensor; for example, other designs include an individual dot, a grid pattern, or may include stylistic features, such as words or letters.
  • Because this insertion monitor 30 is not at the end with the contact regions for the electrodes, the insertion monitor 30 does not require additional width space on the sensor. The width of the contact pads 123, 124, 125, 126 is defined as the width on which a lead could be placed that would result in an electrical connection; typically, the contact width is the width of the exposed contact area. In one embodiment, six contact lead structures on the connector (e.g., 52, 223, 224, 225, 226, 51) can contact sensor 100 in the same width as the four contact pads (e.g., 123, 124, 125, 126). This concept of having contact points on the sensor that occupy more width than the width of the sensor may be used for any number of contact points; this may be used with or without an insertion monitor 30.
  • As a particular example, four leads 223, 224, 225, 226 make contact with contact pads 123, 124, 125, 126. If each lead and/or contact pad is one millimeter wide, a sensor of at least 4 mm wide is needed to make contact. Additional leads, such as those for insertion monitor 30 (i.e., contact leads 51, 52), can make contact by having leads 51, 52 extend along the side of leads 223, 226 and then angle in toward the center of strip 100 after the point where leads 223, 224, 225, 226 contact strip 100. The insertion monitor leads 51, 52 cross side edges of sensor 100 to make contact with the sensor, thus not requiring additional sensor width.
  • The contact structures are generally parallel and non-overlapping. The lead structures 223, 224, 225, 226 terminate in close proximity to the proximal end of sensor strip 100 (e.g., on contact pads 123, 124, 125, 126), but lead structures 51, 52 continue longitudinally past the proximal end of lead structures 223, 224, 225, 226 farther toward the distal end of sensor strip 100. Once past the proximal end and past lead structures 223, 224, 225, 226, lead structures 51, 52 angle in toward the center of the sensor strip.
  • In an optional embodiment to ensure proper insertion of a sensor into a meter, the meter may include a raised area or bump that prevents or hinders the insertion of the sensor in an improper direction. Objects other than a raised area can also be used to guide the user in correct introduction of the sensor into the meter.
  • General Method for Manufacturing Sensors
  • Referring now to FIGS. 6A and 6B, one example of a method for making sensors having two substrates with electrodes thereon is described with respect to the sensor arrangement displayed in FIG. 2A, although this method can be used to make a variety of other sensor arrangements, including those described before. When the three layers of FIG. 2A are assembled, a sensor similar to sensor 10 is formed.
  • In FIGS. 6A and 6B, a substrate 1000, such as a plastic substrate, is moving in the direction indicated by the arrow. Substrate 1000 can be an individual sheet or a continuous roll on a web. Multiple sensors can be formed on substrate 1000 as sections 1022 that have working electrodes 22 (FIG. 2A) thereon and sections 1024 that have counter electrodes 24 (FIG. 2A) thereon and other electrodes, such as reference electrodes and/or fill indicator electrodes. These working, counter and optional electrodes are electrically connected to their corresponding traces and contact pads. Typically, working electrode sections 1022 are produced on one half of substrate 1000 and counter electrode sections 1024 are produce on the other half of substrate 1000. In some embodiments, substrate 1000 can be scored and folded to bring the sections 1022, 1024 together to form the sensor. In some embodiments, as illustrated in FIG. 6A, the individual working electrode sections 1022 can be formed next to or adjacent each other on substrate 1000, to reduce waste material. Similarly, individual counter electrode sections 1024 can be formed next to or adjacent each other. In other embodiments, the individual working electrode sections 1022 (and, similarly, the counter electrode sections 1024) can be spaced apart, as illustrated in FIG. 6B. The remainder of the process is described for the manufacture of multiple sensors, but can be readily modified to form individual sensors.
  • Carbon or other electrode material (e.g., metal, such as gold or platinum) is formed on substrate 1000 to provide a working electrode 22 for each sensor. The carbon or other electrode material can be deposited by a variety of methods including printing a carbon or metal ink, vapor deposition, and other methods. The printing may be done by screen printing, gravure roll printing, transfer printing, and other known printing methods. The respective trace and contact pad 23 could be applied together with working electrode 22, but may be applied in a subsequent step.
  • Similar to the working electrode 22, counter electrode 24 is formed on substrate 1000. The counter electrode(s) are formed by providing carbon or other conductive electrode material onto substrate 1000. In one embodiment, the material used for the counter electrode(s) is a Ag/AgCl ink. The material of the counter electrode(s) may be deposited by a variety of methods including printing or vapor deposition. The printing may be done by screen printing, gravure roll printing, transfer printing, and other known printing methods. The respective trace and contact pad 25 could be applied together with counter electrodes 24, but may be applied in a subsequent step.
  • Preferably, multiple sensors 10 are manufactured simultaneously; that is, the working electrodes, including their traces and contact pads, for a plurality of sensors are produced (e.g., printed) on a polymer sheet or web, and simultaneously or subsequently, the counter electrodes, and their traces and contact pads, for a plurality of sensors are produced (e.g., printed). The working electrode(s) and counter electrode(s) can be formed on separate substrates that are later positioned opposite one another so that the electrodes face each other. Alternately, to simplify registration of the substrates, the working electrodes can be formed on a first half of a substrate sheet of web and the counter electrodes are formed on a second half of the substrate sheet or web so that the sheet or web can be folded to superimpose the working and counter electrodes in a facing arrangement.
  • To provide sample chamber 20, spacer 15 is formed over at least one of the substrate/working electrode and substrate/counter electrode(s). Spacer 15 can be an adhesive spacer, such as a single layer of adhesive or a double-sided adhesive tape (e.g., a polymer carrier film with adhesive disposed on opposing surfaces). Suitable spacer materials include adhesives such as urethanes, acrylates, acrylics, latexes, rubbers and the like.
  • A channel, which will result in the sample chamber, is provided in spacer 15, either by cutting out a portion of the adhesive spacer or placing two adhesive pieces in close proximity but having a gap therebetween. The adhesive can be printed or otherwise disposed on the substrate according to a pattern which defines the channel region. The adhesive spacer can be optionally provided with one or more release liners prior to its incorporation into the sensor. The adhesive can be cut (e.g., die-cut or slit) to remove the portion of the adhesive corresponding to the channel prior to disposing the spacer on the substrate.
  • Any sensing chemistry is disposed onto the substrate in at least the sample chamber regions. If any of the sensing chemistry component(s) is non-leachable, that component is preferably disposed on the working electrode. If any of the sensing chemistry component(s) is diffusible, that component can be disposed on any surface of the substrate in the channel region. The redox mediator and/or electrode transfer agent can be disposed independently or together on the substrate prior to or after placement of the spacer. The redox mediator and/or electrode transfer agent may be applied by a variety of methods including, for example, screen printing, ink jet printing, spraying, painting, striping along a row or column of aligned and/or adjacent electrodes, and the like. Other components can be deposited separately or together with the redox mediator and/or electrode transfer agent; these components can include, for example, surfactants, polymers, polymer films, preservatives, binders, buffers, and cross-linkers.
  • After disposing the spacer, redox mediator, second electron transfer agent, sensing layers, and the like, the first and second substrates (having the working and counter electrodes thereon) are positioned opposite each other to form the sensor. The faces of the substrate are joined by the adhesive of the spacer. After bringing the faces together, individual sensors can be cut out from the web of sensors using a variety of methods including, for example, die cutting, slitting, or otherwise cutting away the excess substrate material and separating the individual sensors. In some embodiments, a combination of cutting or slitting methods is used. As another alternative, the individual sensor components can first be cut out of the substrates and then brought together to form the sensor by adhesively joining the two components, such as by using the spacer adhesive.
  • The sides of the sensor can be straight to allow the sensor to be cut out from the remainder of the substrate and/or from other sensors by slitting the substrate in parallel directions using, for example, a gang arbor blade system. The edges of the sensor can define edges of the sample chamber and/or measurement zone. By accurately controlling the distance between cuts, variability in sample chamber volume can often be reduced. In some instances, these cuts are parallel to each other, as parallel cuts are typically the easiest to reproduce.
  • Application of the Sensor
  • A common use for the analyte sensor of the present invention, such as sensor strip 10, 10′, 100 is for the determination of analyte concentration in a biological fluid, such as glucose concentration in blood, interstitial fluid, and the like, in a patient or other user. Sensor strips 10, 10′, 100 may be available at pharmacies, hospitals, clinics, from doctors, and other sources of medical devices. Multiple sensor strips 10, 10′, 100 may be packaged together and sold as a single unit; e.g., a package of 25, 50, or 100 strips.
  • Sensor strips 10, 10′, 100 can be used for an electrochemical assay, or, for a photometric test. Sensor strips 10, 10′, 100 are generally configured for use with an electrical meter, which may be connectable to various electronics. A meter may be available at generally the same locations as sensor strips 10, 10′, 100 and sometimes may be packaged together with sensor strips 10, 10′, 100, e.g., as a kit.
  • Examples of suitable electronics connectable to the meter include a data processing terminal, such as a personal computer (PC), a portable computer such as a laptop or a handheld device (e.g., personal digital assistants (PDAs)), and the like. The electronics are configured for data communication with the receiver via a wired or a wireless connection. Additionally, the electronics may further be connected to a data network (not shown) for storing, retrieving and updating data corresponding to the detected glucose level of the user.
  • The various devices connected to the meter may wirelessly communicate with a server device, e.g., using a common standard such as 802.11 or Bluetooth RF protocol, or an IrDA infrared protocol. The server device could be another portable device, such as a Personal Digital Assistant (PDA) or notebook computer, or a larger device such as a desktop computer, appliance, etc. In some embodiments, the server device does have a display, such as a liquid crystal display (LCD), as well as an input device, such as buttons, a keyboard, mouse or touch-screen. With such an arrangement, the user can control the meter indirectly by interacting with the user interface(s) of the server device, which in turn interacts with the meter across a wireless link.
  • The server device can also communicate with another device, such as for sending glucose data from the meter and/or the service device to a data storage or computer. For example, the service device could send and/or receive instructions (e.g., an insulin pump protocol) from a health care provider computer. Examples of such communications include a PDA synching data with a personal computer (PC), a mobile phone communicating over a cellular network with a computer at the other end, or a household appliance communicating with a computer system at a physician's office.
  • A lancing device or other mechanism to obtain a sample of biological fluid, e.g., blood, from the patient or user may also be available at generally the same locations as sensor strips 10 and the meter, and sometimes may be packaged together with sensor strips 10 and/or meter, e.g., as a kit.
  • Integrated Sample Acquisition and Analyte Measurement Device
  • An analyte measurement device constructed according to the principles of the present invention typically includes a sensor strip 10, 10′, 100, as described hereinabove, combined with a sample acquisition apparatus to provide an integrated sampling and measurement device. The sample acquisition apparatus typically includes, for example, a skin piercing member, such as a lancet, that can be injected into a patient's skin to cause blood flow. The integrated sample acquisition and analyte measurement device can comprise a lancing instrument that holds a lancet and sensor strip 10, 10′, 100. The lancing instrument might require active cocking. By requiring the user to cock the device prior to use, the risk of inadvertently triggering the lancet is minimized. The lancing instrument could also permit the user to adjust the depth of penetration of the lancet into the skin. Such devices are commercially available from companies such as Boehringer Mannheim and Palco. This feature allows users to adjust the lancing device for differences in skin thickness, skin durability, and pain sensitivity across different sites on the body and across different users.
  • In one embodiment, the lancing instrument and the meter are integrated into a single device. To operate the device the user need only insert a disposable cartridge containing a sensor strip and lancing device into the integrated device, cock the lancing instrument, press it against the skin to activate it, and read the result of the measurement. Such an integrated lancing instrument and test reader simplifies the testing procedure for the user and minimizes the handling of body fluids.
  • In some embodiments, sensor strips 10, 10′ may be integrated with both a meter and a lancing device. Having multiple elements together in one device reduces the number of devices needed to obtain an analyte level and facilitates the sampling process.
  • For example, embodiments may include a housing that includes one or more of the subject strips, a skin piercing element and a processor for determining the concentration of an analyte in a sample applied to the strip. A plurality of strips 10, 10′, 100 may be retained in a cassette in the housing interior and, upon actuation by a user, a single strip 10, 10′ may be dispensed from the cassette so that at least a portion extends out of the housing for use.
  • Operation of the Sensor Strip
  • In use, a sample of biological fluid is provided into the sample chamber of the sensor, where the level of analyte is determined. The analysis may be based on providing an electrochemical assay or a photometric assay. In many embodiments, it is the level of glucose in blood that is determined. Also in many embodiments, the source of the biological fluid is a drop of blood drawn from a patient, e.g., after piercing the patient's skin with a lancing device, which could be present in an integrated device, together with the sensor strip.
  • The analyte in the sample is, e.g., electrooxidized or electroreduced, at working electrode 22, and the level of current obtained at counter electrode 24 is correlated as analyte concentration.
  • Sensor strip 10, 10′, 100 may be operated with or without applying a potential to electrodes 22, 24. In one embodiment, the electrochemical reaction occurs spontaneously and a potential need not be applied between working electrode 22 and counter electrode 24. In another embodiment, a potential is applied between working electrode 22 and counter electrode 24.
  • The invention has been described with reference to various specific and preferred embodiments and techniques. However, it will be apparent to one of ordinarily skill in the art that many variations and modifications may be made while remaining within the spirit and scope of the invention.
  • All patents and other references in this specification are indicative of the level of ordinary skill in the art to which this invention pertains. All patents are herein incorporated by reference to the same extent as if each individual patent was specifically and individually incorporated by reference.

Claims (15)

1.-19. (canceled)
20. An analyte test strip comprising:
a generally planar substrate;
a plurality of conductive areas disposed on the substrate to define five distinct conductive portions comprising at least five contact lands, and in which two contact lands are located in a single conductive portion.
21. The test strip of claim 20, further comprising an insulation layer, reagent layer and adhesive layer.
22. The test strip of claim 20, in which the at least five contact lands comprise six contact lands.
23. The test strip of claim 20, in which the generally planar substrate extends along a longitudinal axis to define a generally rectangular member.
24. The test strip of claim 23, further comprising first and second working electrodes and reference electrode in electrical communication with respective conductive portions.
25. The test strip of claim 23, further comprising a reagent layer proximate the first and second working electrodes, the reagent layer including an enzyme, ruthenium mediator and a buffer.
26. The test strip of claim 25, in which the enzyme comprises an enzyme selected from a group consisting essentially of glucose oxidase, glucose dehydrogenase, or combinations thereof.
27. An analyte measurement system comprising:
a housing including a connector module disposed in the housing, the connector module including a plurality of spaced apart contact leads disposed in the connector module; and
a test strip comprising a generally planar substrate, the test strip including a plurality of conductive areas disposed on the substrate to define five distinct conductive portions comprising at least five contact lands, and in which two contact lands are located in a single conductive portions so that the plurality of spaced apart contact leads engages respective contact lands when the substrate is inserted into the connector module.
28. The system of claim 27, in which the generally planar substrate extends along a longitudinal axis to define a generally rectangular member.
29. The system of claim 28, further comprising first and second working electrodes and reference electrode in electrical communication with respective conductive portions.
30. The system of claim 27, in which the connector module comprises first and second members with the plurality of contact leads located proximate the first and second members.
31. A method of operating a test measurement device, the method comprising:
providing a measurement device having six contact leads;
designating two contact leads as strip detection contact leads; and
locating four contact lands as respective vertices of a polygon on a substrate with two contact lands that are in substantial alignment with the strip detection contact leads when the substrate is inserted into the measurement device.
32. The method of claim 31, further comprising turning on the measurement device via a connection between the strip detection contact leads and the contact lands.
33. The method of claim 31, in which the locating comprises forming an electrical connection between the two contact lands.
US12/695,913 1999-11-04 2010-01-28 Analyte Sensor with Insertion Monitor, and Methods Abandoned US20100126884A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/695,913 US20100126884A1 (en) 1999-11-04 2010-01-28 Analyte Sensor with Insertion Monitor, and Methods

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US09/434,026 US6616819B1 (en) 1999-11-04 1999-11-04 Small volume in vitro analyte sensor and methods
US10/033,575 US6749740B2 (en) 1999-11-04 2001-12-28 Small volume in vitro analyte sensor and methods
US10/866,477 US20040225230A1 (en) 1999-11-04 2004-06-12 Small volume in vitro analyte sensor and methods
US11/281,883 US20060091006A1 (en) 1999-11-04 2005-11-17 Analyte sensor with insertion monitor, and methods
US11/932,658 US8066858B2 (en) 1999-11-04 2007-10-31 Analyte sensor with insertion monitor, and methods
US12/695,913 US20100126884A1 (en) 1999-11-04 2010-01-28 Analyte Sensor with Insertion Monitor, and Methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/932,658 Continuation US8066858B2 (en) 1999-11-04 2007-10-31 Analyte sensor with insertion monitor, and methods

Publications (1)

Publication Number Publication Date
US20100126884A1 true US20100126884A1 (en) 2010-05-27

Family

ID=23722510

Family Applications (8)

Application Number Title Priority Date Filing Date
US09/434,026 Expired - Lifetime US6616819B1 (en) 1999-11-04 1999-11-04 Small volume in vitro analyte sensor and methods
US10/033,506 Expired - Lifetime US6942518B2 (en) 1999-11-04 2001-12-28 Small volume in vitro analyte sensor and methods
US10/033,575 Expired - Lifetime US6749740B2 (en) 1999-11-04 2001-12-28 Small volume in vitro analyte sensor and methods
US10/866,477 Abandoned US20040225230A1 (en) 1999-11-04 2004-06-12 Small volume in vitro analyte sensor and methods
US11/932,658 Expired - Fee Related US8066858B2 (en) 1999-11-04 2007-10-31 Analyte sensor with insertion monitor, and methods
US12/437,141 Abandoned US20090260985A1 (en) 1999-11-04 2009-05-07 Analyte sensor with insertion monitor, and methods
US12/463,187 Abandoned US20090260986A1 (en) 1999-11-04 2009-05-08 Analyte sensor with insertion monitor, and methods
US12/695,913 Abandoned US20100126884A1 (en) 1999-11-04 2010-01-28 Analyte Sensor with Insertion Monitor, and Methods

Family Applications Before (7)

Application Number Title Priority Date Filing Date
US09/434,026 Expired - Lifetime US6616819B1 (en) 1999-11-04 1999-11-04 Small volume in vitro analyte sensor and methods
US10/033,506 Expired - Lifetime US6942518B2 (en) 1999-11-04 2001-12-28 Small volume in vitro analyte sensor and methods
US10/033,575 Expired - Lifetime US6749740B2 (en) 1999-11-04 2001-12-28 Small volume in vitro analyte sensor and methods
US10/866,477 Abandoned US20040225230A1 (en) 1999-11-04 2004-06-12 Small volume in vitro analyte sensor and methods
US11/932,658 Expired - Fee Related US8066858B2 (en) 1999-11-04 2007-10-31 Analyte sensor with insertion monitor, and methods
US12/437,141 Abandoned US20090260985A1 (en) 1999-11-04 2009-05-07 Analyte sensor with insertion monitor, and methods
US12/463,187 Abandoned US20090260986A1 (en) 1999-11-04 2009-05-08 Analyte sensor with insertion monitor, and methods

Country Status (10)

Country Link
US (8) US6616819B1 (en)
EP (1) EP1145000B8 (en)
JP (2) JP2003513279A (en)
KR (1) KR100495935B1 (en)
CN (1) CN1201149C (en)
AT (1) ATE295538T1 (en)
AU (1) AU776764B2 (en)
CA (1) CA2358993C (en)
DE (1) DE60020076T2 (en)
WO (1) WO2001033216A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090093695A1 (en) * 2005-06-27 2009-04-09 National Institute Of Advanced Industrial Science And Technology Biosensor
US8858884B2 (en) 2013-03-15 2014-10-14 American Sterilizer Company Coupled enzyme-based method for electronic monitoring of biological indicator
US9121050B2 (en) 2013-03-15 2015-09-01 American Sterilizer Company Non-enzyme based detection method for electronic monitoring of biological indicator
US9214753B2 (en) 2012-06-05 2015-12-15 Panasonic Healthcare Holdings Co., Ltd. Connector for biological information measurement, and biological information measurement device using same
WO2016011308A1 (en) * 2014-07-17 2016-01-21 Siemens Healthcare Diagnostics Inc. Sensor array
US11382185B2 (en) * 2016-01-08 2022-07-05 Siemens Healthcare Diagnostics Inc. Heating element for sensor array

Families Citing this family (686)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3394262B2 (en) 1997-02-06 2003-04-07 セラセンス、インク. Small volume in vitro analyte sensor
US7899511B2 (en) 2004-07-13 2011-03-01 Dexcom, Inc. Low oxygen in vivo analyte sensor
US9155496B2 (en) 1997-03-04 2015-10-13 Dexcom, Inc. Low oxygen in vivo analyte sensor
US6071391A (en) 1997-09-12 2000-06-06 Nok Corporation Enzyme electrode structure
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US8071384B2 (en) 1997-12-22 2011-12-06 Roche Diagnostics Operations, Inc. Control and calibration solutions and methods for their use
US6103033A (en) 1998-03-04 2000-08-15 Therasense, Inc. Process for producing an electrochemical biosensor
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
JP4469504B2 (en) * 1998-10-08 2010-05-26 メドトロニック ミニメド インコーポレイテッド Remote trait monitor system
US6338790B1 (en) 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US7621893B2 (en) * 1998-10-29 2009-11-24 Medtronic Minimed, Inc. Methods and apparatuses for detecting occlusions in an ambulatory infusion pump
US7766873B2 (en) 1998-10-29 2010-08-03 Medtronic Minimed, Inc. Method and apparatus for detecting occlusions in an ambulatory infusion pump
US7806886B2 (en) 1999-06-03 2010-10-05 Medtronic Minimed, Inc. Apparatus and method for controlling insulin infusion with state variable feedback
US20050103624A1 (en) 1999-10-04 2005-05-19 Bhullar Raghbir S. Biosensor and method of making
US20060091006A1 (en) 1999-11-04 2006-05-04 Yi Wang Analyte sensor with insertion monitor, and methods
US6616819B1 (en) * 1999-11-04 2003-09-09 Therasense, Inc. Small volume in vitro analyte sensor and methods
WO2001036660A2 (en) 1999-11-15 2001-05-25 Therasense, Inc. Transition metal complexes attached to a polymer via a flexible chain
US8444834B2 (en) 1999-11-15 2013-05-21 Abbott Diabetes Care Inc. Redox polymers for use in analyte monitoring
US8268143B2 (en) * 1999-11-15 2012-09-18 Abbott Diabetes Care Inc. Oxygen-effect free analyte sensor
US20030060765A1 (en) * 2000-02-16 2003-03-27 Arthur Campbell Infusion device menu structure and method of using the same
US20030042150A1 (en) * 2000-03-22 2003-03-06 Jun-Oh Ryu Electrochemical biosensor test strip with recognition electrode and readout meter using this test strip
KR20020097206A (en) 2000-03-31 2002-12-31 라이프스캔, 인코포레이티드 Electrically-conductive patterns for monitoring the filling of medical devices
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
EP2096437B1 (en) 2000-11-30 2014-11-19 Panasonic Healthcare Co., Ltd. Biosensor for quantifying substrate
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
US6576102B1 (en) 2001-03-23 2003-06-10 Virotek, L.L.C. Electrochemical sensor and method thereof
US6572745B2 (en) 2001-03-23 2003-06-03 Virotek, L.L.C. Electrochemical sensor and method thereof
EP1397068A2 (en) 2001-04-02 2004-03-17 Therasense, Inc. Blood glucose tracking apparatus and methods
US6676816B2 (en) 2001-05-11 2004-01-13 Therasense, Inc. Transition metal complexes with (pyridyl)imidazole ligands and sensors using said complexes
US8226814B2 (en) * 2001-05-11 2012-07-24 Abbott Diabetes Care Inc. Transition metal complexes with pyridyl-imidazole ligands
US8070934B2 (en) * 2001-05-11 2011-12-06 Abbott Diabetes Care Inc. Transition metal complexes with (pyridyl)imidazole ligands
US7025774B2 (en) 2001-06-12 2006-04-11 Pelikan Technologies, Inc. Tissue penetration device
AU2002344825A1 (en) 2001-06-12 2002-12-23 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
WO2002100254A2 (en) 2001-06-12 2002-12-19 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
ES2352998T3 (en) 2001-06-12 2011-02-24 Pelikan Technologies Inc. LANCETA ELECTRIC ACTUATOR.
CA2448905C (en) 2001-06-12 2010-09-07 Pelikan Technologies, Inc. Blood sampling apparatus and method
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
CA2448902C (en) 2001-06-12 2010-09-07 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
EP1277438A1 (en) * 2001-07-10 2003-01-22 Agilent Technologies, Inc. (a Delaware corporation) System for point of care diagnosis and/or analysis
WO2003006980A1 (en) * 2001-07-13 2003-01-23 Arkray, Inc. Analyzing apparatus, piercing element integrally installed body for temperature measuring device with analyzing apparatus, and body fluid sampling apparatus
US20030032874A1 (en) 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
US6827702B2 (en) 2001-09-07 2004-12-07 Medtronic Minimed, Inc. Safety limits for closed-loop infusion pump control
USRE44522E1 (en) 2001-09-14 2013-10-08 Arkray, Inc. Concentration measuring method, concentration test instrument, and concentration measuring apparatus
WO2003029804A1 (en) 2001-09-28 2003-04-10 Arkray, Inc. Measurement instrument and concentration measurement apparatus
US6797150B2 (en) 2001-10-10 2004-09-28 Lifescan, Inc. Determination of sample volume adequacy in biosensor devices
US20030077205A1 (en) * 2001-10-24 2003-04-24 Xu Tom C. Diagnostic test optical fiber tips
US20030116447A1 (en) 2001-11-16 2003-06-26 Surridge Nigel A. Electrodes, methods, apparatuses comprising micro-electrode arrays
US6872298B2 (en) * 2001-11-20 2005-03-29 Lifescan, Inc. Determination of sample volume adequacy in biosensor devices
US6856125B2 (en) 2001-12-12 2005-02-15 Lifescan, Inc. Biosensor apparatus and method with sample type and volume detection
US6863800B2 (en) * 2002-02-01 2005-03-08 Abbott Laboratories Electrochemical biosensor strip for analysis of liquid samples
US8260393B2 (en) 2003-07-25 2012-09-04 Dexcom, Inc. Systems and methods for replacing signal data artifacts in a glucose sensor data stream
US8010174B2 (en) 2003-08-22 2011-08-30 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US9247901B2 (en) 2003-08-22 2016-02-02 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8372016B2 (en) 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7491178B2 (en) * 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7175642B2 (en) 2002-04-19 2007-02-13 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7713214B2 (en) 2002-04-19 2010-05-11 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing
US7374544B2 (en) * 2002-04-19 2008-05-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7410468B2 (en) * 2002-04-19 2008-08-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US6964871B2 (en) * 2002-04-25 2005-11-15 Home Diagnostics, Inc. Systems and methods for blood glucose sensing
US6743635B2 (en) 2002-04-25 2004-06-01 Home Diagnostics, Inc. System and methods for blood glucose sensing
US6946299B2 (en) * 2002-04-25 2005-09-20 Home Diagnostics, Inc. Systems and methods for blood glucose sensing
US20080112852A1 (en) * 2002-04-25 2008-05-15 Neel Gary T Test Strips and System for Measuring Analyte Levels in a Fluid Sample
EP1382968B1 (en) * 2002-07-18 2008-11-19 Panasonic Corporation Measuring apparatus with a biosensor
US8512276B2 (en) * 2002-07-24 2013-08-20 Medtronic Minimed, Inc. System for providing blood glucose measurements to an infusion device
US7278983B2 (en) 2002-07-24 2007-10-09 Medtronic Minimed, Inc. Physiological monitoring device for controlling a medication infusion device
US20040068230A1 (en) * 2002-07-24 2004-04-08 Medtronic Minimed, Inc. System for providing blood glucose measurements to an infusion device
AU2003248095A1 (en) * 2002-07-25 2004-02-16 Arkray, Inc. Sample analyzing method and sample analyzing device
DE10234819A1 (en) * 2002-07-31 2004-02-19 Roche Diagnostics Gmbh Test apparatus for blood, comprising compound body with test strip levels and transport channels to give complex tests in compact structure
KR100485671B1 (en) * 2002-09-30 2005-04-27 주식회사 인포피아 A measuring instrument for biosensor
US9017544B2 (en) 2002-10-04 2015-04-28 Roche Diagnostics Operations, Inc. Determining blood glucose in a small volume sample receiving cavity and in a short time period
US7117754B2 (en) * 2002-10-28 2006-10-10 The Curators Of The University Of Missouri Torque ripple sensor and mitigation mechanism
US7381184B2 (en) 2002-11-05 2008-06-03 Abbott Diabetes Care Inc. Sensor inserter assembly
US7572237B2 (en) 2002-11-06 2009-08-11 Abbott Diabetes Care Inc. Automatic biological analyte testing meter with integrated lancing device and methods of use
EP1422523B1 (en) * 2002-11-21 2007-05-23 Lifescan, Inc. Determination of sample volume adequacy in biosensors
US20040118704A1 (en) 2002-12-19 2004-06-24 Yi Wang Analyte test intrument having improved versatility
US20040122353A1 (en) * 2002-12-19 2004-06-24 Medtronic Minimed, Inc. Relay device for transferring information between a sensor system and a fluid delivery system
CN100415877C (en) 2002-12-24 2008-09-03 池田食研株式会社 Coenzyme-binding glucose dehydrogenase
EP2711415B1 (en) * 2002-12-26 2022-02-16 Meso Scale Technologies, LLC. Assay cartridges and methods of using the same
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
TW200411178A (en) * 2002-12-31 2004-07-01 Veutron Corp Method for determining the resolution of blood glucose by using rising time curve
AU2003303597A1 (en) 2002-12-31 2004-07-29 Therasense, Inc. Continuous glucose monitoring system and methods of use
US8771183B2 (en) 2004-02-17 2014-07-08 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US7587287B2 (en) 2003-04-04 2009-09-08 Abbott Diabetes Care Inc. Method and system for transferring analyte test data
TW592667B (en) * 2003-04-04 2004-06-21 Veutron Corp Method for determining the resolution of blood glucose
US20040214345A1 (en) * 2003-04-23 2004-10-28 Matzinger David P. Ambidextrous capillary-filled test strip
EP2238892A3 (en) 2003-05-30 2011-02-09 Pelikan Technologies Inc. Apparatus for body fluid sampling
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
US8460243B2 (en) 2003-06-10 2013-06-11 Abbott Diabetes Care Inc. Glucose measuring module and insulin pump combination
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
US7488601B2 (en) 2003-06-20 2009-02-10 Roche Diagnostic Operations, Inc. System and method for determining an abused sensor during analyte measurement
US8679853B2 (en) 2003-06-20 2014-03-25 Roche Diagnostics Operations, Inc. Biosensor with laser-sealed capillary space and method of making
US8148164B2 (en) 2003-06-20 2012-04-03 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US7452457B2 (en) * 2003-06-20 2008-11-18 Roche Diagnostics Operations, Inc. System and method for analyte measurement using dose sufficiency electrodes
CN1846131B (en) 2003-06-20 2012-01-18 霍夫曼-拉罗奇有限公司 Method and reagent for producing narrow, homogenous reagent strips
US7645421B2 (en) 2003-06-20 2010-01-12 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US7645373B2 (en) 2003-06-20 2010-01-12 Roche Diagnostic Operations, Inc. System and method for coding information on a biosensor test strip
US8058077B2 (en) 2003-06-20 2011-11-15 Roche Diagnostics Operations, Inc. Method for coding information on a biosensor test strip
US7718439B2 (en) 2003-06-20 2010-05-18 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US8206565B2 (en) 2003-06-20 2012-06-26 Roche Diagnostics Operation, Inc. System and method for coding information on a biosensor test strip
US8071030B2 (en) 2003-06-20 2011-12-06 Roche Diagnostics Operations, Inc. Test strip with flared sample receiving chamber
GB0314944D0 (en) * 2003-06-26 2003-07-30 Univ Cranfield Electrochemical detector for metabolites in physiological fluids
US7722536B2 (en) 2003-07-15 2010-05-25 Abbott Diabetes Care Inc. Glucose measuring device integrated into a holster for a personal area network device
US7761130B2 (en) 2003-07-25 2010-07-20 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US7074307B2 (en) 2003-07-25 2006-07-11 Dexcom, Inc. Electrode systems for electrochemical sensors
US7774145B2 (en) 2003-08-01 2010-08-10 Dexcom, Inc. Transcutaneous analyte sensor
US7591801B2 (en) 2004-02-26 2009-09-22 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US7778680B2 (en) 2003-08-01 2010-08-17 Dexcom, Inc. System and methods for processing analyte sensor data
US8676287B2 (en) 2003-08-01 2014-03-18 Dexcom, Inc. System and methods for processing analyte sensor data
US20190357827A1 (en) 2003-08-01 2019-11-28 Dexcom, Inc. Analyte sensor
US9135402B2 (en) 2007-12-17 2015-09-15 Dexcom, Inc. Systems and methods for processing sensor data
US20080119703A1 (en) 2006-10-04 2008-05-22 Mark Brister Analyte sensor
US7494465B2 (en) 2004-07-13 2009-02-24 Dexcom, Inc. Transcutaneous analyte sensor
US8275437B2 (en) 2003-08-01 2012-09-25 Dexcom, Inc. Transcutaneous analyte sensor
US8160669B2 (en) 2003-08-01 2012-04-17 Dexcom, Inc. Transcutaneous analyte sensor
AU2004268222B2 (en) 2003-08-21 2010-03-11 Agamatrix, Inc. Method and apparatus for assay of electrochemical properties
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US20140121989A1 (en) 2003-08-22 2014-05-01 Dexcom, Inc. Systems and methods for processing analyte sensor data
WO2005033659A2 (en) 2003-09-29 2005-04-14 Pelikan Technologies, Inc. Method and apparatus for an improved sample capture device
WO2005037095A1 (en) 2003-10-14 2005-04-28 Pelikan Technologies, Inc. Method and apparatus for a variable user interface
US7653492B2 (en) * 2003-10-31 2010-01-26 Lifescan Scotland Limited Method of reducing the effect of direct interference current in an electrochemical test strip
USD914881S1 (en) 2003-11-05 2021-03-30 Abbott Diabetes Care Inc. Analyte sensor electronic mount
TW200516247A (en) * 2003-11-05 2005-05-16 Bionime Corp Electrochemical sensing device
WO2005051170A2 (en) 2003-11-19 2005-06-09 Dexcom, Inc. Integrated receiver for continuous analyte sensor
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
EP3273232A2 (en) 2003-12-04 2018-01-24 Panasonic Healthcare Holdings Co., Ltd. Method of measuring blood component, sensor used in the method, and measuring device
US8088271B2 (en) * 2003-12-04 2012-01-03 Panasonic Corporation Method of measuring hematocrit (Hct), sensor used in the method, and measuring device
EP2256493B1 (en) 2003-12-05 2014-02-26 DexCom, Inc. Calibration techniques for a continuous analyte sensor
US8287453B2 (en) 2003-12-05 2012-10-16 Dexcom, Inc. Analyte sensor
US8423114B2 (en) 2006-10-04 2013-04-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8364231B2 (en) 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
US11633133B2 (en) 2003-12-05 2023-04-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US9012232B2 (en) * 2005-07-15 2015-04-21 Nipro Diagnostics, Inc. Diagnostic strip coding system and related methods of use
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
JP2007523326A (en) 2004-02-06 2007-08-16 バイエル・ヘルスケア・エルエルシー Oxidizable species as internal standards for biosensors and methods of use
WO2009048462A1 (en) 2007-10-09 2009-04-16 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US8808228B2 (en) 2004-02-26 2014-08-19 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
DE102004011648A1 (en) 2004-03-10 2005-09-29 Roche Diagnostics Gmbh Test element analysis system with hard-coated contact surfaces
CN1938590B (en) * 2004-04-19 2010-05-05 松下电器产业株式会社 Method for measuring blood components and biosensor and measuring instrument for use therein
US8792955B2 (en) 2004-05-03 2014-07-29 Dexcom, Inc. Transcutaneous analyte sensor
EP1751546A2 (en) 2004-05-20 2007-02-14 Albatros Technologies GmbH & Co. KG Printable hydrogel for biosensors
CN103353475B (en) 2004-05-21 2017-03-01 埃葛梅崔克斯股份有限公司 Electrochemical cell and the method producing electrochemical cell
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
WO2005120365A1 (en) 2004-06-03 2005-12-22 Pelikan Technologies, Inc. Method and apparatus for a fluid sampling device
WO2005119524A2 (en) 2004-06-04 2005-12-15 Therasense, Inc. Diabetes care host-client architecture and data management system
US20070100222A1 (en) * 2004-06-14 2007-05-03 Metronic Minimed, Inc. Analyte sensing apparatus for hospital use
US7569126B2 (en) 2004-06-18 2009-08-04 Roche Diagnostics Operations, Inc. System and method for quality assurance of a biosensor test strip
US7601299B2 (en) 2004-06-18 2009-10-13 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US7783333B2 (en) 2004-07-13 2010-08-24 Dexcom, Inc. Transcutaneous medical device with variable stiffness
US8565848B2 (en) 2004-07-13 2013-10-22 Dexcom, Inc. Transcutaneous analyte sensor
US8886272B2 (en) 2004-07-13 2014-11-11 Dexcom, Inc. Analyte sensor
US20070045902A1 (en) 2004-07-13 2007-03-01 Brauker James H Analyte sensor
US8452368B2 (en) 2004-07-13 2013-05-28 Dexcom, Inc. Transcutaneous analyte sensor
US8170803B2 (en) 2004-07-13 2012-05-01 Dexcom, Inc. Transcutaneous analyte sensor
US7344500B2 (en) * 2004-07-27 2008-03-18 Medtronic Minimed, Inc. Sensing system with auxiliary display
WO2006042304A1 (en) 2004-10-12 2006-04-20 Bayer Healthcare Llc Concentration determination in a diffusion barrier layer
JP4807493B2 (en) * 2004-12-03 2011-11-02 住友電気工業株式会社 Sensor chip and manufacturing method thereof
US7303543B1 (en) 2004-12-03 2007-12-04 Medtronic Minimed, Inc. Medication infusion set
WO2006065901A1 (en) * 2004-12-13 2006-06-22 Bayer Healthcare Llc Multi-contact connector assembly for a sensor-dispensing instrument
US7331174B2 (en) * 2004-12-16 2008-02-19 Independent Natural Resources, Inc. Buoyancy pump power system
US9398882B2 (en) 2005-09-30 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor and data processing device
US8545403B2 (en) 2005-12-28 2013-10-01 Abbott Diabetes Care Inc. Medical device insertion
US20090105569A1 (en) 2006-04-28 2009-04-23 Abbott Diabetes Care, Inc. Introducer Assembly and Methods of Use
US8029441B2 (en) 2006-02-28 2011-10-04 Abbott Diabetes Care Inc. Analyte sensor transmitter unit configuration for a data monitoring and management system
US9572534B2 (en) 2010-06-29 2017-02-21 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US9636450B2 (en) 2007-02-19 2017-05-02 Udo Hoss Pump system modular components for delivering medication and analyte sensing at seperate insertion sites
US7731657B2 (en) 2005-08-30 2010-06-08 Abbott Diabetes Care Inc. Analyte sensor introducer and methods of use
US9788771B2 (en) 2006-10-23 2017-10-17 Abbott Diabetes Care Inc. Variable speed sensor insertion devices and methods of use
US7697967B2 (en) 2005-12-28 2010-04-13 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US7883464B2 (en) 2005-09-30 2011-02-08 Abbott Diabetes Care Inc. Integrated transmitter unit and sensor introducer mechanism and methods of use
US9743862B2 (en) 2011-03-31 2017-08-29 Abbott Diabetes Care Inc. Systems and methods for transcutaneously implanting medical devices
US9351669B2 (en) 2009-09-30 2016-05-31 Abbott Diabetes Care Inc. Interconnect for on-body analyte monitoring device
US8512243B2 (en) 2005-09-30 2013-08-20 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US9259175B2 (en) 2006-10-23 2016-02-16 Abbott Diabetes Care, Inc. Flexible patch for fluid delivery and monitoring body analytes
US8571624B2 (en) 2004-12-29 2013-10-29 Abbott Diabetes Care Inc. Method and apparatus for mounting a data transmission device in a communication system
US10226207B2 (en) 2004-12-29 2019-03-12 Abbott Diabetes Care Inc. Sensor inserter having introducer
US8333714B2 (en) 2006-09-10 2012-12-18 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US7704229B2 (en) * 2005-02-03 2010-04-27 Medtronic Minimed, Inc. Insertion device
US7545272B2 (en) * 2005-02-08 2009-06-09 Therasense, Inc. RF tag on test strips, test strip vials and boxes
US20060184104A1 (en) * 2005-02-15 2006-08-17 Medtronic Minimed, Inc. Needle guard
US20090076360A1 (en) 2007-09-13 2009-03-19 Dexcom, Inc. Transcutaneous analyte sensor
US8133178B2 (en) 2006-02-22 2012-03-13 Dexcom, Inc. Analyte sensor
CA2604507C (en) 2005-03-25 2015-11-10 Ikeda Food Research Co., Ltd. Coenzyme-linked glucose dehydrogenase and polynucleotide encoding the same
US7517439B2 (en) * 2005-04-15 2009-04-14 Agamatrix, Inc. Error detection in analyte measurements based on measurement of system resistance
US7713392B2 (en) * 2005-04-15 2010-05-11 Agamatrix, Inc. Test strip coding and quality measurement
US7964089B2 (en) 2005-04-15 2011-06-21 Agamatrix, Inc. Analyte determination method and analyte meter
US7547382B2 (en) 2005-04-15 2009-06-16 Agamatrix, Inc. Determination of partial fill in electrochemical strips
US7645374B2 (en) 2005-04-15 2010-01-12 Agamatrix, Inc. Method for determination of analyte concentrations and related apparatus
US7344626B2 (en) * 2005-04-15 2008-03-18 Agamatrix, Inc. Method and apparatus for detection of abnormal traces during electrochemical analyte detection
US8192599B2 (en) * 2005-05-25 2012-06-05 Universal Biosensors Pty Ltd Method and apparatus for electrochemical analysis
US8323464B2 (en) * 2005-05-25 2012-12-04 Universal Biosensors Pty Ltd Method and apparatus for electrochemical analysis
JP4682706B2 (en) * 2005-05-31 2011-05-11 オムロン株式会社 connector
US20070033074A1 (en) * 2005-06-03 2007-02-08 Medtronic Minimed, Inc. Therapy management system
US20060272652A1 (en) * 2005-06-03 2006-12-07 Medtronic Minimed, Inc. Virtual patient software system for educating and treating individuals with diabetes
US7905999B2 (en) * 2005-06-08 2011-03-15 Abbott Laboratories Biosensor strips and methods of preparing same
US7922883B2 (en) 2005-06-08 2011-04-12 Abbott Laboratories Biosensors and methods of using the same
JP4595070B2 (en) * 2005-06-27 2010-12-08 独立行政法人産業技術総合研究所 Needle integrated biosensor
JP4893921B2 (en) * 2005-06-27 2012-03-07 独立行政法人産業技術総合研究所 Biosensor
US20070016449A1 (en) * 2005-06-29 2007-01-18 Gary Cohen Flexible glucose analysis using varying time report deltas and configurable glucose target ranges
US8999125B2 (en) 2005-07-15 2015-04-07 Nipro Diagnostics, Inc. Embedded strip lot autocalibration
US7955856B2 (en) * 2005-07-15 2011-06-07 Nipro Diagnostics, Inc. Method of making a diagnostic test strip having a coding system
ES2717135T3 (en) 2005-07-20 2019-06-19 Ascensia Diabetes Care Holdings Ag Method to signal the user to add an additional sample to a test strip, method to measure the temperature of a sample and methods to determine the concentration of an analyte based on controlled amperometry
US20070066956A1 (en) * 2005-07-27 2007-03-22 Medtronic Minimed, Inc. Systems and methods for entering temporary basal rate pattern in an infusion device
US20070093786A1 (en) * 2005-08-16 2007-04-26 Medtronic Minimed, Inc. Watch controller for a medical device
US20070060870A1 (en) * 2005-08-16 2007-03-15 Tolle Mike Charles V Controller device for an infusion pump
US7737581B2 (en) 2005-08-16 2010-06-15 Medtronic Minimed, Inc. Method and apparatus for predicting end of battery life
US20070060869A1 (en) * 2005-08-16 2007-03-15 Tolle Mike C V Controller device for an infusion pump
US20090227855A1 (en) * 2005-08-16 2009-09-10 Medtronic Minimed, Inc. Controller device for an infusion pump
JP2009507224A (en) 2005-08-31 2009-02-19 ユニヴァーシティー オブ ヴァージニア パテント ファンデーション Improving the accuracy of continuous glucose sensors
US8298389B2 (en) * 2005-09-12 2012-10-30 Abbott Diabetes Care Inc. In vitro analyte sensor, and methods
US7713240B2 (en) 2005-09-13 2010-05-11 Medtronic Minimed, Inc. Modular external infusion device
US7725148B2 (en) * 2005-09-23 2010-05-25 Medtronic Minimed, Inc. Sensor with layered electrodes
US9072476B2 (en) 2005-09-23 2015-07-07 Medtronic Minimed, Inc. Flexible sensor apparatus
US7846311B2 (en) * 2005-09-27 2010-12-07 Abbott Diabetes Care Inc. In vitro analyte sensor and methods of use
CN101273266B (en) 2005-09-30 2012-08-22 拜尔健康护理有限责任公司 Gated voltammetry
US9521968B2 (en) 2005-09-30 2016-12-20 Abbott Diabetes Care Inc. Analyte sensor retention mechanism and methods of use
US7749371B2 (en) * 2005-09-30 2010-07-06 Lifescan, Inc. Method and apparatus for rapid electrochemical analysis
US8880138B2 (en) 2005-09-30 2014-11-04 Abbott Diabetes Care Inc. Device for channeling fluid and methods of use
JP4965955B2 (en) * 2005-09-30 2012-07-04 キヤノン株式会社 Enzyme electrode, sensor using the same, and biofuel cell
US20070095661A1 (en) 2005-10-31 2007-05-03 Yi Wang Method of making, and, analyte sensor
US7766829B2 (en) * 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US7918975B2 (en) * 2005-11-17 2011-04-05 Abbott Diabetes Care Inc. Analytical sensors for biological fluid
US7955484B2 (en) * 2005-12-14 2011-06-07 Nova Biomedical Corporation Glucose biosensor and method
US8455088B2 (en) 2005-12-23 2013-06-04 Boston Scientific Scimed, Inc. Spun nanofiber, medical devices, and methods
US7674864B2 (en) * 2005-12-23 2010-03-09 Boston Scientific Scimed, Inc. Polymeric hybrid precursors, polymeric hybrid precursor composite matrices, medical devices, and methods
US11298058B2 (en) 2005-12-28 2022-04-12 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US7985330B2 (en) * 2005-12-30 2011-07-26 Medtronic Minimed, Inc. Method and system for detecting age, hydration, and functional states of sensors using electrochemical impedance spectroscopy
US8114268B2 (en) 2005-12-30 2012-02-14 Medtronic Minimed, Inc. Method and system for remedying sensor malfunctions detected by electrochemical impedance spectroscopy
US20070169533A1 (en) * 2005-12-30 2007-07-26 Medtronic Minimed, Inc. Methods and systems for detecting the hydration of sensors
US7774038B2 (en) * 2005-12-30 2010-08-10 Medtronic Minimed, Inc. Real-time self-calibrating sensor system and method
US8114269B2 (en) 2005-12-30 2012-02-14 Medtronic Minimed, Inc. System and method for determining the point of hydration and proper time to apply potential to a glucose sensor
US20070173712A1 (en) * 2005-12-30 2007-07-26 Medtronic Minimed, Inc. Method of and system for stabilization of sensors
US9757061B2 (en) 2006-01-17 2017-09-12 Dexcom, Inc. Low oxygen in vivo analyte sensor
US7736310B2 (en) 2006-01-30 2010-06-15 Abbott Diabetes Care Inc. On-body medical device securement
US7826879B2 (en) 2006-02-28 2010-11-02 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US7885698B2 (en) 2006-02-28 2011-02-08 Abbott Diabetes Care Inc. Method and system for providing continuous calibration of implantable analyte sensors
US7811430B2 (en) 2006-02-28 2010-10-12 Abbott Diabetes Care Inc. Biosensors and methods of making
US20070205114A1 (en) * 2006-03-01 2007-09-06 Mathur Vijaywanth P Method of detecting biosensor filling
US7887682B2 (en) * 2006-03-29 2011-02-15 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US8346335B2 (en) 2008-03-28 2013-01-01 Abbott Diabetes Care Inc. Analyte sensor calibration management
US9392969B2 (en) 2008-08-31 2016-07-19 Abbott Diabetes Care Inc. Closed loop control and signal attenuation detection
US8224415B2 (en) 2009-01-29 2012-07-17 Abbott Diabetes Care Inc. Method and device for providing offset model based calibration for analyte sensor
US9326709B2 (en) 2010-03-10 2016-05-03 Abbott Diabetes Care Inc. Systems, devices and methods for managing glucose levels
US8140312B2 (en) 2007-05-14 2012-03-20 Abbott Diabetes Care Inc. Method and system for determining analyte levels
US9339217B2 (en) 2011-11-25 2016-05-17 Abbott Diabetes Care Inc. Analyte monitoring system and methods of use
US8219173B2 (en) 2008-09-30 2012-07-10 Abbott Diabetes Care Inc. Optimizing analyte sensor calibration
US7630748B2 (en) 2006-10-25 2009-12-08 Abbott Diabetes Care Inc. Method and system for providing analyte monitoring
US9675290B2 (en) 2012-10-30 2017-06-13 Abbott Diabetes Care Inc. Sensitivity calibration of in vivo sensors used to measure analyte concentration
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US8473022B2 (en) 2008-01-31 2013-06-25 Abbott Diabetes Care Inc. Analyte sensor with time lag compensation
US7801582B2 (en) 2006-03-31 2010-09-21 Abbott Diabetes Care Inc. Analyte monitoring and management system and methods therefor
US7653425B2 (en) 2006-08-09 2010-01-26 Abbott Diabetes Care Inc. Method and system for providing calibration of an analyte sensor in an analyte monitoring system
US8374668B1 (en) 2007-10-23 2013-02-12 Abbott Diabetes Care Inc. Analyte sensor with lag compensation
US7618369B2 (en) 2006-10-02 2009-11-17 Abbott Diabetes Care Inc. Method and system for dynamically updating calibration parameters for an analyte sensor
US7620438B2 (en) 2006-03-31 2009-11-17 Abbott Diabetes Care Inc. Method and system for powering an electronic device
GB0607205D0 (en) * 2006-04-10 2006-05-17 Diagnoswiss Sa Miniaturised biosensor with optimized anperimetric detection
US8073008B2 (en) 2006-04-28 2011-12-06 Medtronic Minimed, Inc. Subnetwork synchronization and variable transmit synchronization techniques for a wireless medical device network
US7942844B2 (en) 2006-04-28 2011-05-17 Medtronic Minimed, Inc. Remote monitoring for networked fluid infusion systems
US7966859B2 (en) 2006-05-03 2011-06-28 Bayer Healthcare Llc Underfill detection system for a biosensor
BRPI0711337A2 (en) 2006-05-08 2011-08-30 Bayer Healthcare Llc electrochemical test sensor with reduced sample volume
US7920907B2 (en) 2006-06-07 2011-04-05 Abbott Diabetes Care Inc. Analyte monitoring system and method
US8492130B2 (en) 2006-06-29 2013-07-23 Ikeda Food Research Co., Ltd. FAD-conjugated glucose dehydrogenase gene
US20080020452A1 (en) * 2006-07-18 2008-01-24 Natasha Popovich Diagnostic strip coding system with conductive layers
EP1882745A1 (en) * 2006-07-25 2008-01-30 The Swatch Group Research and Development Ltd. Electrochemical system for dosing of a biological compound by an enzyme
US20080083618A1 (en) * 2006-09-05 2008-04-10 Neel Gary T System and Methods for Determining an Analyte Concentration Incorporating a Hematocrit Correction
US7831287B2 (en) 2006-10-04 2010-11-09 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US7655120B2 (en) * 2006-10-11 2010-02-02 Infopia Co., Ltd. Biosensor
CN101162213B (en) * 2006-10-13 2012-03-07 因福皮亚有限公司 Biologic sensor
US8052618B2 (en) * 2006-10-15 2011-11-08 Roche Diagnostics Operations, Inc. Diagnostic test element and process for its production
WO2008049074A2 (en) * 2006-10-18 2008-04-24 Agamatrix, Inc. Error detection in analyte measurements based on measurement of system resistance
EP2083674B1 (en) 2006-10-24 2018-03-07 Ascensia Diabetes Care Holdings AG Transient decay amperometry
CN101636104B (en) 2006-10-26 2012-07-18 雅培糖尿病护理公司 Method, system for real-time detection of sensitivity decline in analyte sensors
US7740580B2 (en) * 2006-10-31 2010-06-22 Abbott Diabetes Care Inc. Analyte monitoring
US8158081B2 (en) * 2006-10-31 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring devices
US7822557B2 (en) * 2006-10-31 2010-10-26 Abbott Diabetes Care Inc. Analyte sensors and methods
US20080139910A1 (en) * 2006-12-06 2008-06-12 Metronic Minimed, Inc. Analyte sensor and method of using the same
US7932034B2 (en) 2006-12-20 2011-04-26 The Board Of Trustees Of The Leland Stanford Junior University Heat and pH measurement for sequencing of DNA
WO2008082987A2 (en) * 2006-12-26 2008-07-10 Abbott Diabetes Care Inc Analyte meter protectors and methods
WO2008085251A1 (en) * 2007-01-05 2008-07-17 Bayer Healthcare Llc Electrochemical test sensor with light guide
US10154804B2 (en) * 2007-01-31 2018-12-18 Medtronic Minimed, Inc. Model predictive method and system for controlling and supervising insulin infusion
US20080199894A1 (en) 2007-02-15 2008-08-21 Abbott Diabetes Care, Inc. Device and method for automatic data acquisition and/or detection
US8121857B2 (en) 2007-02-15 2012-02-21 Abbott Diabetes Care Inc. Device and method for automatic data acquisition and/or detection
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
KR100874158B1 (en) * 2007-03-14 2008-12-15 주식회사 아이센스 Electrochemical Biosensors and Measuring Instruments
US20080237040A1 (en) * 2007-03-27 2008-10-02 Paul Wessel Test strip and monitoring device
ES2817503T3 (en) 2007-04-14 2021-04-07 Abbott Diabetes Care Inc Procedure and apparatus for providing data processing and control in a medical communication system
EP2146623B1 (en) 2007-04-14 2014-01-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
CA2683962C (en) 2007-04-14 2017-06-06 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
EP2146624B1 (en) 2007-04-14 2020-03-25 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US9304141B2 (en) * 2007-04-18 2016-04-05 Becton, Dickinson And Company Method and apparatus for determing dispense volume
US20080269714A1 (en) 2007-04-25 2008-10-30 Medtronic Minimed, Inc. Closed loop/semi-closed loop therapy modification system
US20080267823A1 (en) * 2007-04-27 2008-10-30 Abbott Diabetes Care, Inc. Identification Of A Strip Type By The Meter Using Conductive Patterns On The Strip
US8461985B2 (en) 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US20080281179A1 (en) * 2007-05-08 2008-11-13 Abbott Diabetes Care, Inc. Analyte monitoring system and methods
US8665091B2 (en) 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US7928850B2 (en) 2007-05-08 2011-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8444560B2 (en) 2007-05-14 2013-05-21 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8239166B2 (en) 2007-05-14 2012-08-07 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8260558B2 (en) 2007-05-14 2012-09-04 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9125548B2 (en) 2007-05-14 2015-09-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US10002233B2 (en) 2007-05-14 2018-06-19 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8103471B2 (en) 2007-05-14 2012-01-24 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8560038B2 (en) 2007-05-14 2013-10-15 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8600681B2 (en) 2007-05-14 2013-12-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9063070B2 (en) * 2007-05-18 2015-06-23 Luoxis Diagnostics, Inc. Measurement and uses of oxidative status
US8709709B2 (en) 2007-05-18 2014-04-29 Luoxis Diagnostics, Inc. Measurement and uses of oxidative status
WO2008150917A1 (en) 2007-05-31 2008-12-11 Abbott Diabetes Care, Inc. Insertion devices and methods
US8080153B2 (en) * 2007-05-31 2011-12-20 Abbott Diabetes Care Inc. Analyte determination methods and devices
US20080300572A1 (en) * 2007-06-01 2008-12-04 Medtronic Minimed, Inc. Wireless monitor for a personal medical device system
AU2008262018A1 (en) 2007-06-08 2008-12-18 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
GB0711780D0 (en) * 2007-06-18 2007-07-25 Oxford Biosensors Ltd Electrochemical data rejection methodology
GB0711849D0 (en) * 2007-06-19 2007-07-25 Oxford Biosensors Ltd Redox Mediators
WO2008157821A1 (en) 2007-06-21 2008-12-24 Abbott Diabetes Care, Inc. Health monitor
AU2008265541B2 (en) 2007-06-21 2014-07-17 Abbott Diabetes Care, Inc. Health management devices and methods
US8160900B2 (en) 2007-06-29 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring and management device and method to analyze the frequency of user interaction with the device
US7875461B2 (en) * 2007-07-24 2011-01-25 Lifescan Scotland Limited Test strip and connector
US8834366B2 (en) 2007-07-31 2014-09-16 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor calibration
WO2009032760A2 (en) 2007-08-30 2009-03-12 Pepex Biomedical Llc Electrochmical sensor and method for manufacturing
WO2009051901A2 (en) * 2007-08-30 2009-04-23 Pepex Biomedical, Llc Electrochemical sensor and method for manufacturing
WO2009027445A2 (en) * 2007-08-31 2009-03-05 Evonik Degussa Gmbh Plug-type connection between a flexible component part and a contact plug
WO2009034284A1 (en) * 2007-09-05 2009-03-19 Lifescan Scotland Ltd Strip for an electrochemical meter
US20090082648A1 (en) * 2007-09-25 2009-03-26 Isense Corporation Method and apparatus for treating skin prior to biosensor insertion
EP2201136B1 (en) 2007-10-01 2017-12-06 Nabsys 2.0 LLC Nanopore sequencing by hybridization of probes to form ternary complexes and variable range alignment
US8377031B2 (en) 2007-10-23 2013-02-19 Abbott Diabetes Care Inc. Closed loop control system with safety parameters and methods
US8000918B2 (en) 2007-10-23 2011-08-16 Edwards Lifesciences Corporation Monitoring and compensating for temperature-related error in an electrochemical sensor
US8409093B2 (en) 2007-10-23 2013-04-02 Abbott Diabetes Care Inc. Assessing measures of glycemic variability
US8417312B2 (en) 2007-10-25 2013-04-09 Dexcom, Inc. Systems and methods for processing sensor data
TWI516601B (en) * 2007-10-26 2016-01-11 環球生物醫療感測器私人有限公司 Apparatus and method for electrochemical detection
US20090112626A1 (en) * 2007-10-30 2009-04-30 Cary Talbot Remote wireless monitoring, processing, and communication of patient data
US20090115435A1 (en) * 2007-11-02 2009-05-07 Tomlinson Douglas F Processing System and Method for Hand-Held Impedance Spectroscopy Analysis Device for Determining Biofuel Properties
US20090188811A1 (en) 2007-11-28 2009-07-30 Edwards Lifesciences Corporation Preparation and maintenance of sensors
WO2009076302A1 (en) 2007-12-10 2009-06-18 Bayer Healthcare Llc Control markers for auto-detection of control solution and methods of use
US8290559B2 (en) 2007-12-17 2012-10-16 Dexcom, Inc. Systems and methods for processing sensor data
US20090164239A1 (en) 2007-12-19 2009-06-25 Abbott Diabetes Care, Inc. Dynamic Display Of Glucose Information
US8313467B2 (en) 2007-12-27 2012-11-20 Medtronic Minimed, Inc. Reservoir pressure equalization systems and methods
EP2252196A4 (en) 2008-02-21 2013-05-15 Dexcom Inc Systems and methods for processing, transmitting and displaying sensor data
US8396528B2 (en) 2008-03-25 2013-03-12 Dexcom, Inc. Analyte sensor
US20090259217A1 (en) * 2008-04-09 2009-10-15 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Methods and systems associated with delivery of one or more agents to an individual
US20090259214A1 (en) * 2008-04-09 2009-10-15 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Agent delivery device
US8252229B2 (en) 2008-04-10 2012-08-28 Abbott Diabetes Care Inc. Method and system for sterilizing an analyte sensor
US9386944B2 (en) 2008-04-11 2016-07-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte detecting device
US8262874B2 (en) * 2008-04-14 2012-09-11 Abbott Diabetes Care Inc. Biosensor coating composition and methods thereof
US9295786B2 (en) 2008-05-28 2016-03-29 Medtronic Minimed, Inc. Needle protective device for subcutaneous sensors
US7826382B2 (en) 2008-05-30 2010-11-02 Abbott Diabetes Care Inc. Close proximity communication device and methods
US8591410B2 (en) 2008-05-30 2013-11-26 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US8924159B2 (en) 2008-05-30 2014-12-30 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
JP5405916B2 (en) * 2008-06-24 2014-02-05 パナソニック株式会社 Biosensor, method for manufacturing the same, and detection system including the same
US8876755B2 (en) 2008-07-14 2014-11-04 Abbott Diabetes Care Inc. Closed loop control system interface and methods
US7896703B2 (en) * 2008-07-17 2011-03-01 Abbott Diabetes Care Inc. Strip connectors for measurement devices
GB0814238D0 (en) * 2008-08-04 2008-09-10 Oxford Biosensors Ltd Enhancement of electrochemical response
EP2329255A4 (en) 2008-08-27 2014-04-09 Edwards Lifesciences Corp Analyte sensor
US20100057040A1 (en) 2008-08-31 2010-03-04 Abbott Diabetes Care, Inc. Robust Closed Loop Control And Methods
US9943644B2 (en) 2008-08-31 2018-04-17 Abbott Diabetes Care Inc. Closed loop control with reference measurement and methods thereof
US9650668B2 (en) 2008-09-03 2017-05-16 Nabsys 2.0 Llc Use of longitudinally displaced nanoscale electrodes for voltage sensing of biomolecules and other analytes in fluidic channels
US8262879B2 (en) 2008-09-03 2012-09-11 Nabsys, Inc. Devices and methods for determining the length of biopolymers and distances between probes bound thereto
CN102186989B (en) * 2008-09-03 2021-06-29 纳伯塞斯2.0有限责任公司 Use of longitudinally displaced nanoscale electrodes for voltage sensing of biomolecules and other analytes in fluidic channels
WO2010033724A2 (en) 2008-09-19 2010-03-25 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
CA2738731A1 (en) * 2008-09-30 2010-04-08 Menai Medical Technologies Limited Sample measurement system
EP2169391B1 (en) * 2008-09-30 2013-04-03 ibidi GmbH Device for mounting a sample chamber and system consisting of the sample chamber and the mounting device
US8986208B2 (en) 2008-09-30 2015-03-24 Abbott Diabetes Care Inc. Analyte sensor sensitivity attenuation mitigation
EP2341829A4 (en) 2008-10-03 2012-11-28 Abbott Diabetes Care Inc Integrated lancet and analyte testing apparatus
KR101003077B1 (en) * 2008-10-16 2010-12-21 세종공업 주식회사 Electrochemical biosensor structure and measuring method using the same
WO2010052849A1 (en) 2008-11-04 2010-05-14 パナソニック株式会社 Measurement device, insulin infusion device, measurement method, method for controlling insulin infusion device, and program
US8208973B2 (en) 2008-11-05 2012-06-26 Medtronic Minimed, Inc. System and method for variable beacon timing with wireless devices
US9326707B2 (en) 2008-11-10 2016-05-03 Abbott Diabetes Care Inc. Alarm characterization for analyte monitoring devices and systems
US8951377B2 (en) 2008-11-14 2015-02-10 Pepex Biomedical, Inc. Manufacturing electrochemical sensor module
WO2010056878A2 (en) 2008-11-14 2010-05-20 Pepex Biomedical, Llc Electrochemical sensor module
WO2010056876A2 (en) 2008-11-14 2010-05-20 Pepex Biomedical, Llc Manufacturing electrochemical sensor module
US9330237B2 (en) 2008-12-24 2016-05-03 Medtronic Minimed, Inc. Pattern recognition and filtering in a therapy management system
US8103456B2 (en) 2009-01-29 2012-01-24 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US9402544B2 (en) 2009-02-03 2016-08-02 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
WO2011034629A1 (en) * 2009-02-05 2011-03-24 Abbott Diabetes Care Inc. Devices and methods for metering insoluble active agent particles
LT3714788T (en) 2009-02-26 2023-04-11 Abbott Diabetes Care, Inc. Method of making improved analyte sensors
US9339229B2 (en) 2009-02-26 2016-05-17 Abbott Diabetes Care Inc. Analyte monitoring devices and methods
US8497777B2 (en) 2009-04-15 2013-07-30 Abbott Diabetes Care Inc. Analyte monitoring system having an alert
US8758583B2 (en) 2009-04-28 2014-06-24 Abbott Diabetes Care Inc. Smart sensor ports and methods of using same
WO2010127050A1 (en) 2009-04-28 2010-11-04 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
WO2010129302A1 (en) * 2009-04-28 2010-11-11 Innovative Laboratory Technologies, Inc. Lateral-flow immuno-chromatographic assay devices
US8368556B2 (en) 2009-04-29 2013-02-05 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
WO2010127051A1 (en) 2009-04-29 2010-11-04 Abbott Diabetes Care Inc. Method and system for providing real time analyte sensor calibration with retrospective backfill
US8236254B2 (en) * 2009-05-14 2012-08-07 Abbott Diabetes Care Inc. Cap-linked test strip carrier for vial augmentation
US9184490B2 (en) 2009-05-29 2015-11-10 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations
EP2434944B1 (en) 2009-05-29 2014-12-03 Abbott Diabetes Care, Inc. Glucose monitoring system with wireless communications
WO2010141922A1 (en) 2009-06-04 2010-12-09 Abbott Diabetes Care Inc. Method and system for updating a medical device
EP2266458A1 (en) * 2009-06-23 2010-12-29 Roche Diagnostics GmbH Sensor for in-vivo measurements
US8000763B2 (en) * 2009-06-30 2011-08-16 Abbott Diabetes Care Inc. Integrated devices having extruded electrode structures and methods of using same
US8437827B2 (en) * 2009-06-30 2013-05-07 Abbott Diabetes Care Inc. Extruded analyte sensors and methods of using same
US8613892B2 (en) 2009-06-30 2013-12-24 Abbott Diabetes Care Inc. Analyte meter with a moveable head and methods of using the same
US20110027458A1 (en) 2009-07-02 2011-02-03 Dexcom, Inc. Continuous analyte sensors and methods of making same
US9351677B2 (en) 2009-07-02 2016-05-31 Dexcom, Inc. Analyte sensor with increased reference capacity
US8344847B2 (en) 2009-07-09 2013-01-01 Medtronic Minimed, Inc. Coordination of control commands in a medical device system having at least one therapy delivery device and at least one wireless controller device
US9795326B2 (en) 2009-07-23 2017-10-24 Abbott Diabetes Care Inc. Continuous analyte measurement systems and systems and methods for implanting them
US9125603B2 (en) 2009-08-11 2015-09-08 Abbott Diabetes Care Inc. Analyte sensor ports
US20110040208A1 (en) * 2009-08-11 2011-02-17 Abbott Diabetes Care Inc. Integrated lancet and test strip and methods of making and using same
EP2473099A4 (en) 2009-08-31 2015-01-14 Abbott Diabetes Care Inc Analyte monitoring system and methods for managing power and noise
US8357276B2 (en) 2009-08-31 2013-01-22 Abbott Diabetes Care Inc. Small volume test strips with large sample fill ports, supported test strips, and methods of making and using same
EP2473963A4 (en) 2009-08-31 2014-01-08 Abbott Diabetes Care Inc Medical devices and methods
WO2011026147A1 (en) 2009-08-31 2011-03-03 Abbott Diabetes Care Inc. Analyte signal processing device and methods
EP4070729A1 (en) 2009-08-31 2022-10-12 Abbott Diabetes Care, Inc. Displays for a medical device
US8487758B2 (en) 2009-09-02 2013-07-16 Medtronic Minimed, Inc. Medical device having an intelligent alerting scheme, and related operating methods
US9320461B2 (en) 2009-09-29 2016-04-26 Abbott Diabetes Care Inc. Method and apparatus for providing notification function in analyte monitoring systems
US8185181B2 (en) 2009-10-30 2012-05-22 Abbott Diabetes Care Inc. Method and apparatus for detecting false hypoglycemic conditions
US8386042B2 (en) 2009-11-03 2013-02-26 Medtronic Minimed, Inc. Omnidirectional accelerometer device and medical device incorporating same
BR112012009291A2 (en) * 2009-11-10 2016-05-31 Bayer Healthcare Llc underfill recognition system for a biosensor
US9354226B2 (en) 2009-12-17 2016-05-31 Ascensia Diabetes Care Holdings Ag Transdermal systems, devices, and methods to optically analyze an analyte
US8574201B2 (en) 2009-12-22 2013-11-05 Medtronic Minimed, Inc. Syringe piston with check valve seal
US8755269B2 (en) 2009-12-23 2014-06-17 Medtronic Minimed, Inc. Ranking and switching of wireless channels in a body area network of medical devices
US8828330B2 (en) * 2010-01-28 2014-09-09 Abbott Diabetes Care Inc. Universal test strip port
US20110186428A1 (en) * 2010-01-29 2011-08-04 Roche Diagnostics Operations, Inc. Electrode arrangements for biosensors
USD924406S1 (en) 2010-02-01 2021-07-06 Abbott Diabetes Care Inc. Analyte sensor inserter
US10591436B2 (en) * 2010-03-22 2020-03-17 Ascensia Diabetes Care Holdings Ag Residual compensation including underfill error
EP2549918B2 (en) 2010-03-24 2023-01-25 Abbott Diabetes Care, Inc. Medical device inserters and processes of inserting and using medical devices
GB201005357D0 (en) 2010-03-30 2010-05-12 Menai Medical Technologies Ltd Sampling plate
GB201005359D0 (en) 2010-03-30 2010-05-12 Menai Medical Technologies Ltd Sampling plate
EP2557987B1 (en) 2010-04-16 2018-09-19 Abbott Diabetes Care, Inc. Analyte monitoring device and methods
WO2013066362A1 (en) 2011-02-17 2013-05-10 Abbott Diabetes Care Inc. Analyte meter communication module
US8919607B2 (en) 2010-04-16 2014-12-30 Abbott Diabetes Care Inc. Analyte test strip vial
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
WO2011133768A1 (en) 2010-04-22 2011-10-27 Abbott Diabetes Care Inc. Devices, systems, and methods related to analyte monitoring and management
US8235897B2 (en) 2010-04-27 2012-08-07 A.D. Integrity Applications Ltd. Device for non-invasively measuring glucose
US8726266B2 (en) 2010-05-24 2014-05-13 Abbott Diabetes Care Inc. Method and system for updating a medical device
CA2798031C (en) 2010-06-07 2019-08-20 Bayer Healthcare Llc Underfill management system for a biosensor
US8635046B2 (en) 2010-06-23 2014-01-21 Abbott Diabetes Care Inc. Method and system for evaluating analyte sensor response characteristics
US10092229B2 (en) 2010-06-29 2018-10-09 Abbott Diabetes Care Inc. Calibration of analyte measurement system
US11064921B2 (en) 2010-06-29 2021-07-20 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US8790591B2 (en) 2010-07-09 2014-07-29 Case Western Reserve University In vitro point-of-care sensor and method of use
AU2011282711A1 (en) 2010-07-28 2013-01-10 Abbott Diabetes Care Inc. Analyte sensors having temperature independent membranes
US8715933B2 (en) 2010-09-27 2014-05-06 Nabsys, Inc. Assay methods using nicking endonucleases
US8757386B2 (en) 2010-09-30 2014-06-24 Abbott Diabetes Care Inc. Analyte test strip containers and inserts
US9184099B2 (en) 2010-10-04 2015-11-10 The Board Of Trustees Of The Leland Stanford Junior University Biosensor devices, systems and methods therefor
AU2011312218B2 (en) 2010-10-04 2015-11-05 Sequencing Health, Inc. Systems and methods for automated reusable parallel biological reactions
US8562565B2 (en) 2010-10-15 2013-10-22 Medtronic Minimed, Inc. Battery shock absorber for a portable medical device
US8603033B2 (en) 2010-10-15 2013-12-10 Medtronic Minimed, Inc. Medical device and related assembly having an offset element for a piezoelectric speaker
US8603032B2 (en) 2010-10-15 2013-12-10 Medtronic Minimed, Inc. Medical device with membrane keypad sealing element, and related manufacturing method
US8479595B2 (en) 2010-10-20 2013-07-09 Medtronic Minimed, Inc. Sensor assembly and medical device incorporating same
US8474332B2 (en) 2010-10-20 2013-07-02 Medtronic Minimed, Inc. Sensor assembly and medical device incorporating same
US8495918B2 (en) 2010-10-20 2013-07-30 Medtronic Minimed, Inc. Sensor assembly and medical device incorporating same
WO2012058237A1 (en) 2010-10-26 2012-05-03 Abbott Diabetes Care Inc. Analyte measurement devices and systems, and components and methods related thereto
EP2635899A1 (en) * 2010-11-01 2013-09-11 Capsenze HB A method of measuring a capacitance and a use
US20130229288A1 (en) * 2010-11-15 2013-09-05 Lifescan Scotland Limited Server-side initiated communication with analyte meter-side completed data transfer
EP2640849B1 (en) 2010-11-16 2016-04-06 Nabsys 2.0 LLC Methods for sequencing a biomolecule by detecting relative positions of hybridized probes
US8702928B2 (en) 2010-11-22 2014-04-22 Abbott Diabetes Care Inc. Modular analyte measurement system with extendable strip port
US9713440B2 (en) 2010-12-08 2017-07-25 Abbott Diabetes Care Inc. Modular analyte measurement systems, modular components thereof and related methods
CA2814205A1 (en) 2010-12-09 2012-06-14 Abbott Diabetes Care Inc. Analyte sensors with a sensing surface having small sensing spots
US8628510B2 (en) 2010-12-22 2014-01-14 Medtronic Minimed, Inc. Monitoring the operating health of a force sensor in a fluid infusion device
US8690855B2 (en) 2010-12-22 2014-04-08 Medtronic Minimed, Inc. Fluid reservoir seating procedure for a fluid infusion device
US8197444B1 (en) 2010-12-22 2012-06-12 Medtronic Minimed, Inc. Monitoring the seating status of a fluid reservoir in a fluid infusion device
US8469942B2 (en) 2010-12-22 2013-06-25 Medtronic Minimed, Inc. Occlusion detection for a fluid infusion device
US9760679B2 (en) 2011-02-11 2017-09-12 Abbott Diabetes Care Inc. Data synchronization between two or more analyte detecting devices in a database
US11274341B2 (en) 2011-02-11 2022-03-15 NABsys, 2.0 LLC Assay methods using DNA binding proteins
US20140088392A1 (en) 2011-02-11 2014-03-27 Abbott Diabetes Care Inc. Feedback from Cloud or HCP to Payer or Patient via Meter or Cell Phone
WO2012108938A1 (en) 2011-02-11 2012-08-16 Abbott Diabetes Care Inc. Software applications residing on handheld analyte determining devices
US9283318B2 (en) 2011-02-22 2016-03-15 Medtronic Minimed, Inc. Flanged sealing element and needle guide pin assembly for a fluid infusion device having a needled fluid reservoir
US9463309B2 (en) 2011-02-22 2016-10-11 Medtronic Minimed, Inc. Sealing assembly and structure for a fluid infusion device having a needled fluid reservoir
US8864726B2 (en) 2011-02-22 2014-10-21 Medtronic Minimed, Inc. Pressure vented fluid reservoir having a movable septum
US9393399B2 (en) 2011-02-22 2016-07-19 Medtronic Minimed, Inc. Sealing assembly for a fluid reservoir of a fluid infusion device
US8614596B2 (en) 2011-02-28 2013-12-24 Medtronic Minimed, Inc. Systems and methods for initializing a voltage bus and medical devices incorporating same
US10136845B2 (en) 2011-02-28 2018-11-27 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
MX2013004852A (en) 2011-02-28 2013-10-01 Luoxis Diagnostics Inc Method and apparatus for measuring oxidation-reduction potential.
CA2827196A1 (en) 2011-02-28 2012-11-15 Jai Karan Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
US9101305B2 (en) 2011-03-09 2015-08-11 Medtronic Minimed, Inc. Glucose sensor product and related manufacturing and packaging methods
US10010273B2 (en) 2011-03-10 2018-07-03 Abbott Diabetes Care, Inc. Multi-function analyte monitor device and methods of use
CA2830082A1 (en) * 2011-03-15 2012-09-20 Carclo Technical Plastics Limited Surface preparation
US8564447B2 (en) 2011-03-18 2013-10-22 Medtronic Minimed, Inc. Battery life indication techniques for an electronic device
US9018893B2 (en) 2011-03-18 2015-04-28 Medtronic Minimed, Inc. Power control techniques for an electronic device
JP5818275B2 (en) * 2011-03-29 2015-11-18 株式会社テクノメデイカ Biosensor
DK3575796T3 (en) 2011-04-15 2021-01-18 Dexcom Inc ADVANCED ANALYZE SENSOR CALIBRATION AND ERROR DETECTION
US8956518B2 (en) * 2011-04-20 2015-02-17 Lifescan, Inc. Electrochemical sensors with carrier field
US9504162B2 (en) 2011-05-20 2016-11-22 Pepex Biomedical, Inc. Manufacturing electrochemical sensor modules
US9926596B2 (en) 2011-05-27 2018-03-27 Genapsys, Inc. Systems and methods for genetic and biological analysis
US8585973B2 (en) 2011-05-27 2013-11-19 The Board Of Trustees Of The Leland Stanford Junior University Nano-sensor array
EP2720612B1 (en) 2011-06-16 2019-02-06 Abbott Diabetes Care, Inc. Temperature-compensated analyte monitoring devices, systems, and methods thereof
US9289164B2 (en) 2011-06-30 2016-03-22 Abbott Diabetes Care Inc. Methods for generating hybrid analyte level output, and devices and systems related thereto
US8560251B2 (en) * 2011-08-16 2013-10-15 Instrumentation Laboratory Company System and method of increasing sample throughput by estimation of a sensor endpoint
US9113833B2 (en) 2011-08-16 2015-08-25 Instrumentation Laboratory Company System and method of increasing sample throughput
ES2757909T3 (en) 2011-09-21 2020-04-30 Ascensia Diabetes Care Holdings Ag Compensation analysis including segmented signals
WO2013049381A1 (en) 2011-09-28 2013-04-04 Abbott Diabetes Care Inc. Methods for analyte monitoring management and analyte measurement data management, and articles of manufacture related thereto
US20130093605A1 (en) * 2011-10-17 2013-04-18 Ching-Te CHEN Signal generation circuit for keyboards
USD680454S1 (en) 2011-10-25 2013-04-23 Abbott Diabetes Care Inc. Analyte meter and strip port
WO2013066849A1 (en) 2011-10-31 2013-05-10 Abbott Diabetes Care Inc. Model based variable risk false glucose threshold alarm prevention mechanism
US9069536B2 (en) 2011-10-31 2015-06-30 Abbott Diabetes Care Inc. Electronic devices having integrated reset systems and methods thereof
AU2012335830B2 (en) 2011-11-07 2017-05-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods
US9317656B2 (en) 2011-11-23 2016-04-19 Abbott Diabetes Care Inc. Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof
US8710993B2 (en) 2011-11-23 2014-04-29 Abbott Diabetes Care Inc. Mitigating single point failure of devices in an analyte monitoring system and methods thereof
JP6193252B2 (en) 2011-12-01 2017-09-06 ジナプシス インコーポレイテッド System and method for high efficiency electronic sequencing and detection
US8887911B2 (en) 2011-12-09 2014-11-18 Abbott Diabetes Care Inc. Packages and kits for analyte monitoring devices, and methods related thereto
EP4056105B1 (en) 2011-12-11 2023-10-11 Abbott Diabetes Care, Inc. Analyte sensor devices
US9610401B2 (en) 2012-01-13 2017-04-04 Medtronic Minimed, Inc. Infusion set component with modular fluid channel element
US8603027B2 (en) 2012-03-20 2013-12-10 Medtronic Minimed, Inc. Occlusion detection using pulse-width modulation and medical device incorporating same
US8603026B2 (en) 2012-03-20 2013-12-10 Medtronic Minimed, Inc. Dynamic pulse-width modulation motor control and medical device incorporating same
US8523803B1 (en) 2012-03-20 2013-09-03 Medtronic Minimed, Inc. Motor health monitoring and medical device incorporating same
WO2013158985A1 (en) 2012-04-19 2013-10-24 Luoxis Diagnostics, Inc. Multiple layer gel
US20130338629A1 (en) 2012-06-07 2013-12-19 Medtronic Minimed, Inc. Diabetes therapy management system for recommending basal pattern adjustments
US9333292B2 (en) 2012-06-26 2016-05-10 Medtronic Minimed, Inc. Mechanically actuated fluid infusion device
DE102012210921A1 (en) * 2012-06-27 2014-01-23 Robert Bosch Gmbh Contact element for connection to a printed circuit board, contact system and method
US9535027B2 (en) 2012-07-25 2017-01-03 Abbott Diabetes Care Inc. Analyte sensors and methods of using same
US8808269B2 (en) 2012-08-21 2014-08-19 Medtronic Minimed, Inc. Reservoir plunger position monitoring and medical device incorporating same
EP2890297B1 (en) 2012-08-30 2018-04-11 Abbott Diabetes Care, Inc. Dropout detection in continuous analyte monitoring data during data excursions
US9526834B2 (en) 2012-08-30 2016-12-27 Medtronic Minimed, Inc. Safeguarding measures for a closed-loop insulin infusion system
US10496797B2 (en) 2012-08-30 2019-12-03 Medtronic Minimed, Inc. Blood glucose validation for a closed-loop operating mode of an insulin infusion system
US10130767B2 (en) 2012-08-30 2018-11-20 Medtronic Minimed, Inc. Sensor model supervisor for a closed-loop insulin infusion system
US9878096B2 (en) 2012-08-30 2018-01-30 Medtronic Minimed, Inc. Generation of target glucose values for a closed-loop operating mode of an insulin infusion system
US9849239B2 (en) 2012-08-30 2017-12-26 Medtronic Minimed, Inc. Generation and application of an insulin limit for a closed-loop operating mode of an insulin infusion system
US9662445B2 (en) 2012-08-30 2017-05-30 Medtronic Minimed, Inc. Regulating entry into a closed-loop operating mode of an insulin infusion system
US9623179B2 (en) 2012-08-30 2017-04-18 Medtronic Minimed, Inc. Safeguarding techniques for a closed-loop insulin infusion system
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
US10004439B2 (en) 2012-09-21 2018-06-26 Abbott Diabetes Care Inc. In vivo sensors having ceria nanoparticle electrodes
WO2014052136A1 (en) 2012-09-26 2014-04-03 Abbott Diabetes Care Inc. Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data
CA2847665A1 (en) 2012-10-23 2014-04-23 Raphael Bar-Or Methods and systems for measuring and using the oxidation-reduction potential of a biological sample
US8870818B2 (en) 2012-11-15 2014-10-28 Medtronic Minimed, Inc. Systems and methods for alignment and detection of a consumable component
WO2014089058A1 (en) 2012-12-03 2014-06-12 Pepex Biomedical, Inc. Sensor module and method of using a sensor module
US9157882B2 (en) 2012-12-20 2015-10-13 Cilag Gmbh International Analytical test strip
US8926369B2 (en) * 2012-12-20 2015-01-06 Lifescan Scotland Limited Electrical connector for substrate having conductive tracks
US9914966B1 (en) 2012-12-20 2018-03-13 Nabsys 2.0 Llc Apparatus and methods for analysis of biomolecules using high frequency alternating current excitation
EP2935615B1 (en) 2012-12-21 2018-03-07 Abbott Diabetes Care, Inc. Method for improving measurement accuracy and devices and systems related thereto
US20140186866A1 (en) * 2012-12-27 2014-07-03 General Electric Company Glucose Control Test Strip
EP2956550B1 (en) 2013-01-18 2020-04-08 Nabsys 2.0 LLC Enhanced probe binding
US9107994B2 (en) 2013-01-18 2015-08-18 Medtronic Minimed, Inc. Systems for fluid reservoir retention
US9033924B2 (en) 2013-01-18 2015-05-19 Medtronic Minimed, Inc. Systems for fluid reservoir retention
US9522223B2 (en) 2013-01-18 2016-12-20 Medtronic Minimed, Inc. Systems for fluid reservoir retention
US9308321B2 (en) 2013-02-18 2016-04-12 Medtronic Minimed, Inc. Infusion device having gear assembly initialization
US9097659B2 (en) 2013-03-14 2015-08-04 Bayer Healthcare Llc Maintaining electrode function during manufacture with a protective layer
US9474475B1 (en) 2013-03-15 2016-10-25 Abbott Diabetes Care Inc. Multi-rate analyte sensor data collection with sample rate configurable signal processing
CN105377118B (en) 2013-03-15 2019-09-17 雅培糖尿病护理公司 Equipment, system and method associated with analyte supervision equipment and the equipment comprising it
US10076285B2 (en) 2013-03-15 2018-09-18 Abbott Diabetes Care Inc. Sensor fault detection using analyte sensor data pattern comparison
US10168313B2 (en) 2013-03-15 2019-01-01 Agamatrix, Inc. Analyte detection meter and associated method of use
US10041901B2 (en) 2013-03-15 2018-08-07 Roche Diabetes Care, Inc. Electrode configuration for a biosensor
WO2014152625A1 (en) 2013-03-15 2014-09-25 Genapsys, Inc. Systems and methods for biological analysis
US10433773B1 (en) 2013-03-15 2019-10-08 Abbott Diabetes Care Inc. Noise rejection methods and apparatus for sparsely sampled analyte sensor data
US8920381B2 (en) 2013-04-12 2014-12-30 Medtronic Minimed, Inc. Infusion set with improved bore configuration
US10213141B2 (en) 2013-04-30 2019-02-26 Abbott Diabetes Care Inc. Systems, devices, and methods for energy efficient electrical device activation
KR101447970B1 (en) 2013-06-13 2014-10-13 명지대학교 산학협력단 Sensor strip for blood glucose monitoring, method of manufacturing the sensor strip, and monitoring device using the same
US9433731B2 (en) 2013-07-19 2016-09-06 Medtronic Minimed, Inc. Detecting unintentional motor motion and infusion device incorporating same
JP6437549B2 (en) * 2013-08-12 2018-12-12 アセンシア・ディアベティス・ケア・ホールディングス・アーゲー Washable analyte measuring device, sealed connector, manufacturing method thereof and usage method thereof
US9402949B2 (en) 2013-08-13 2016-08-02 Medtronic Minimed, Inc. Detecting conditions associated with medical device operations using matched filters
US9889257B2 (en) 2013-08-21 2018-02-13 Medtronic Minimed, Inc. Systems and methods for updating medical devices
US9880528B2 (en) 2013-08-21 2018-01-30 Medtronic Minimed, Inc. Medical devices and related updating methods and systems
US9259528B2 (en) 2013-08-22 2016-02-16 Medtronic Minimed, Inc. Fluid infusion device with safety coupling
US20150096906A1 (en) * 2013-10-07 2015-04-09 Cilag Gmbh International Biosensor with bypass electrodes
WO2015069563A1 (en) 2013-11-05 2015-05-14 Abbott Diabetes Care Inc. Systems, devices, and methods for control of a power supply connection
US9750878B2 (en) 2013-12-11 2017-09-05 Medtronic Minimed, Inc. Closed-loop control of glucose according to a predicted blood glucose trajectory
US9750877B2 (en) 2013-12-11 2017-09-05 Medtronic Minimed, Inc. Predicted time to assess and/or control a glycemic state
WO2015089238A1 (en) 2013-12-11 2015-06-18 Genapsys, Inc. Systems and methods for biological analysis and computation
US9849240B2 (en) 2013-12-12 2017-12-26 Medtronic Minimed, Inc. Data modification for predictive operations and devices incorporating same
US10105488B2 (en) 2013-12-12 2018-10-23 Medtronic Minimed, Inc. Predictive infusion device operations and related methods and systems
US9694132B2 (en) 2013-12-19 2017-07-04 Medtronic Minimed, Inc. Insertion device for insertion set
EP4343784A2 (en) 2013-12-27 2024-03-27 Abbott Diabetes Care Inc. Application interface and display control in an analyte monitoring environment
US9544313B2 (en) 2013-12-27 2017-01-10 Abbott Diabetes Care Inc. Systems, devices, and methods for authentication in an analyte monitoring environment
CN105899132B (en) 2013-12-31 2020-02-18 雅培糖尿病护理公司 Self-powered analyte sensor and devices using same
JP6346749B2 (en) * 2014-01-27 2018-06-20 株式会社タニタ Defective physical condition determination apparatus, method, and program
US9399096B2 (en) 2014-02-06 2016-07-26 Medtronic Minimed, Inc. Automatic closed-loop control adjustments and infusion systems incorporating same
US9861748B2 (en) 2014-02-06 2018-01-09 Medtronic Minimed, Inc. User-configurable closed-loop notifications and infusion systems incorporating same
US9610402B2 (en) 2014-03-24 2017-04-04 Medtronic Minimed, Inc. Transcutaneous conduit insertion mechanism with a living hinge for use with a fluid infusion patch pump device
EP3865063A1 (en) 2014-03-30 2021-08-18 Abbott Diabetes Care, Inc. Method and apparatus for determining meal start and peak events in analyte monitoring systems
US10001450B2 (en) 2014-04-18 2018-06-19 Medtronic Minimed, Inc. Nonlinear mapping technique for a physiological characteristic sensor
EP3132060B1 (en) 2014-04-18 2019-03-13 Genapsys Inc. Methods and systems for nucleic acid amplification
US10232113B2 (en) 2014-04-24 2019-03-19 Medtronic Minimed, Inc. Infusion devices and related methods and systems for regulating insulin on board
US10275572B2 (en) 2014-05-01 2019-04-30 Medtronic Minimed, Inc. Detecting blockage of a reservoir cavity during a seating operation of a fluid infusion device
US9681828B2 (en) 2014-05-01 2017-06-20 Medtronic Minimed, Inc. Physiological characteristic sensors and methods for forming such sensors
JP2015232550A (en) * 2014-05-13 2015-12-24 アークレイ株式会社 Sensor body, manufacturing method of sensor body, and sensor cartridge
US10007765B2 (en) 2014-05-19 2018-06-26 Medtronic Minimed, Inc. Adaptive signal processing for infusion devices and related methods and systems
US10152049B2 (en) 2014-05-19 2018-12-11 Medtronic Minimed, Inc. Glucose sensor health monitoring and related methods and systems
US10274349B2 (en) 2014-05-19 2019-04-30 Medtronic Minimed, Inc. Calibration factor adjustments for infusion devices and related methods and systems
CN107003264B (en) 2014-06-04 2020-02-21 普佩克斯生物医药有限公司 Electrochemical sensor and method of manufacturing an electrochemical sensor using advanced printing techniques
US10042006B2 (en) * 2014-06-11 2018-08-07 GM Global Technology Operations LLC Battery state of health estimation using charging resistance equivalent
GB201413628D0 (en) * 2014-07-31 2014-09-17 Inside Biometrics Ltd Method and device for determining volumetric sufficiency in an electrochemical test strip
US9839753B2 (en) 2014-09-26 2017-12-12 Medtronic Minimed, Inc. Systems for managing reservoir chamber pressure
US9833563B2 (en) 2014-09-26 2017-12-05 Medtronic Minimed, Inc. Systems for managing reservoir chamber pressure
US10279126B2 (en) 2014-10-07 2019-05-07 Medtronic Minimed, Inc. Fluid conduit assembly with gas trapping filter in the fluid flow path
US9833564B2 (en) 2014-11-25 2017-12-05 Medtronic Minimed, Inc. Fluid conduit assembly with air venting features
US10195341B2 (en) 2014-11-26 2019-02-05 Medtronic Minimed, Inc. Systems and methods for fluid infusion device with automatic reservoir fill
US9987420B2 (en) 2014-11-26 2018-06-05 Medtronic Minimed, Inc. Systems and methods for fluid infusion device with automatic reservoir fill
US9943645B2 (en) 2014-12-04 2018-04-17 Medtronic Minimed, Inc. Methods for operating mode transitions and related infusion devices and systems
US9636453B2 (en) 2014-12-04 2017-05-02 Medtronic Minimed, Inc. Advance diagnosis of infusion device operating mode viability
US9937292B2 (en) 2014-12-09 2018-04-10 Medtronic Minimed, Inc. Systems for filling a fluid infusion device reservoir
US10265031B2 (en) 2014-12-19 2019-04-23 Medtronic Minimed, Inc. Infusion devices and related methods and systems for automatic alert clearing
US10307535B2 (en) 2014-12-19 2019-06-04 Medtronic Minimed, Inc. Infusion devices and related methods and systems for preemptive alerting
WO2016106320A2 (en) * 2014-12-22 2016-06-30 Siemens Healthcare Diagnostics Inc. Foldable opposing sensor array
US10161897B2 (en) * 2015-01-09 2018-12-25 Xerox Corporation Sensors incorporating palladium electrodes
US10307528B2 (en) 2015-03-09 2019-06-04 Medtronic Minimed, Inc. Extensible infusion devices and related methods
US9904890B2 (en) 2015-03-13 2018-02-27 Instrumentation Laboratory Company Detecting a transient error in a body fluid sample
US10449298B2 (en) 2015-03-26 2019-10-22 Medtronic Minimed, Inc. Fluid injection devices and related methods
GB201507508D0 (en) * 2015-04-30 2015-06-17 Inside Biometrics Ltd Electrochemical Test Device
US10213139B2 (en) 2015-05-14 2019-02-26 Abbott Diabetes Care Inc. Systems, devices, and methods for assembling an applicator and sensor control device
CA2984939A1 (en) 2015-05-14 2016-11-17 Abbott Diabetes Care Inc. Compact medical device inserters and related systems and methods
US9999721B2 (en) 2015-05-26 2018-06-19 Medtronic Minimed, Inc. Error handling in infusion devices with distributed motor control and related operating methods
US10137243B2 (en) 2015-05-26 2018-11-27 Medtronic Minimed, Inc. Infusion devices with distributed motor control and related operating methods
US10575767B2 (en) 2015-05-29 2020-03-03 Medtronic Minimed, Inc. Method for monitoring an analyte, analyte sensor and analyte monitoring apparatus
US9987425B2 (en) 2015-06-22 2018-06-05 Medtronic Minimed, Inc. Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and sensor contact elements
US9879668B2 (en) 2015-06-22 2018-01-30 Medtronic Minimed, Inc. Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and an optical sensor
US9993594B2 (en) 2015-06-22 2018-06-12 Medtronic Minimed, Inc. Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and rotor position sensors
US10010668B2 (en) 2015-06-22 2018-07-03 Medtronic Minimed, Inc. Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and a force sensor
US9878095B2 (en) 2015-06-22 2018-01-30 Medtronic Minimed, Inc. Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and multiple sensor contact elements
GB201511299D0 (en) * 2015-06-26 2015-08-12 Inside Biometrics Ltd Test device and method of using a test device
US10888272B2 (en) 2015-07-10 2021-01-12 Abbott Diabetes Care Inc. Systems, devices, and methods for meal information collection, meal assessment, and analyte data correlation
JP6986007B2 (en) 2015-07-10 2021-12-22 アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. Systems, devices and methods of dynamic glucose profile response to physiological parameters
US10201657B2 (en) 2015-08-21 2019-02-12 Medtronic Minimed, Inc. Methods for providing sensor site rotation feedback and related infusion devices and systems
US20170053084A1 (en) 2015-08-21 2017-02-23 Medtronic Minimed, Inc. Data analytics and reporting of glucose-related information
US10293108B2 (en) 2015-08-21 2019-05-21 Medtronic Minimed, Inc. Infusion devices and related patient ratio adjustment methods
US10543314B2 (en) 2015-08-21 2020-01-28 Medtronic Minimed, Inc. Personalized parameter modeling with signal calibration based on historical data
US10463297B2 (en) 2015-08-21 2019-11-05 Medtronic Minimed, Inc. Personalized event detection methods and related devices and systems
US10117992B2 (en) 2015-09-29 2018-11-06 Medtronic Minimed, Inc. Infusion devices and related rescue detection methods
US11501867B2 (en) 2015-10-19 2022-11-15 Medtronic Minimed, Inc. Medical devices and related event pattern presentation methods
US11666702B2 (en) 2015-10-19 2023-06-06 Medtronic Minimed, Inc. Medical devices and related event pattern treatment recommendation methods
US10146911B2 (en) 2015-10-23 2018-12-04 Medtronic Minimed, Inc. Medical devices and related methods and systems for data transfer
US10037722B2 (en) 2015-11-03 2018-07-31 Medtronic Minimed, Inc. Detecting breakage in a display element
US20170127985A1 (en) * 2015-11-11 2017-05-11 Medtronic Minimed, Inc. Sensor set
US10827959B2 (en) * 2015-11-11 2020-11-10 Medtronic Minimed, Inc. Sensor set
US10449306B2 (en) 2015-11-25 2019-10-22 Medtronics Minimed, Inc. Systems for fluid delivery with wicking membrane
CN205282702U (en) * 2015-12-03 2016-06-01 美国莫列斯有限公司 Electronic card connector
KR101723785B1 (en) * 2016-02-01 2017-04-19 주식회사 아이센스 Strip Discharger for Portable Blood Glucose Tester
KR102145676B1 (en) * 2016-03-08 2020-08-19 에프. 호프만-라 로슈 아게 Test Element Analysis System
CN108882850B (en) * 2016-04-02 2023-04-07 史蒂芬·R·皮博迪 Medical diagnostic apparatus, system and method of use
US10589038B2 (en) 2016-04-27 2020-03-17 Medtronic Minimed, Inc. Set connector systems for venting a fluid reservoir
CN116397014A (en) 2016-07-20 2023-07-07 测序健康公司 Systems and methods for nucleic acid sequencing
US11097051B2 (en) 2016-11-04 2021-08-24 Medtronic Minimed, Inc. Methods and apparatus for detecting and reacting to insufficient hypoglycemia response
US10238030B2 (en) 2016-12-06 2019-03-26 Medtronic Minimed, Inc. Wireless medical device with a complementary split ring resonator arrangement for suppression of electromagnetic interference
WO2018118822A1 (en) 2016-12-20 2018-06-28 Abbott Diabetes Care Inc. Systems, devices and methods for wireless communications in analyte monitoring devices
US10272201B2 (en) 2016-12-22 2019-04-30 Medtronic Minimed, Inc. Insertion site monitoring methods and related infusion devices and systems
CN110461217B (en) 2017-01-23 2022-09-16 雅培糖尿病护理公司 Systems, devices, and methods for analyte sensor insertion
US10532165B2 (en) 2017-01-30 2020-01-14 Medtronic Minimed, Inc. Fluid reservoir and systems for filling a fluid reservoir of a fluid infusion device
US10500135B2 (en) 2017-01-30 2019-12-10 Medtronic Minimed, Inc. Fluid reservoir and systems for filling a fluid reservoir of a fluid infusion device
US10552580B2 (en) 2017-02-07 2020-02-04 Medtronic Minimed, Inc. Infusion system consumables and related calibration methods
US10363365B2 (en) 2017-02-07 2019-07-30 Medtronic Minimed, Inc. Infusion devices and related consumable calibration methods
US10646649B2 (en) 2017-02-21 2020-05-12 Medtronic Minimed, Inc. Infusion devices and fluid identification apparatuses and methods
US11207463B2 (en) 2017-02-21 2021-12-28 Medtronic Minimed, Inc. Apparatuses, systems, and methods for identifying an infusate in a reservoir of an infusion device
EP3600014A4 (en) 2017-03-21 2020-10-21 Abbott Diabetes Care Inc. Methods, devices and system for providing diabetic condition diagnosis and therapy
KR101953012B1 (en) * 2017-03-28 2019-02-27 고려대학교 산학협력단 Chamber chip, blood testing device including the chamber chip and method of manufacturing the blood testing device
JP2019002738A (en) 2017-06-13 2019-01-10 アークレイ株式会社 Biosensor and measurement method using the same
WO2019035073A2 (en) 2017-08-18 2019-02-21 Abbott Diabetes Care Inc. Systems, devices, and methods related to the individualized calibration and/or manufacturing of medical devices
CA3076378A1 (en) 2017-09-21 2019-03-28 Genapsys, Inc. Systems and methods for nucleic acid sequencing
GB2567681B (en) * 2017-10-20 2022-05-04 Palintest Ltd Amperometric instrument for an electrochemical sensor
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors
CN209606445U (en) 2017-10-24 2019-11-08 德克斯康公司 Pre-connection analyte sensor
CA3089729A1 (en) 2018-02-05 2019-08-08 Abbott Diabetes Care Inc. Notes and event log information associated with analyte sensors
GB201804812D0 (en) * 2018-03-26 2018-05-09 Univ Swansea Biosensor
TWI696830B (en) * 2019-06-05 2020-06-21 國立中山大學 Combined electrochemical analyzing device
USD1002852S1 (en) 2019-06-06 2023-10-24 Abbott Diabetes Care Inc. Analyte sensor device
TWI706131B (en) * 2019-08-26 2020-10-01 臺灣塑膠工業股份有限公司 Urine testing strip and urine testing system
USD957438S1 (en) 2020-07-29 2022-07-12 Abbott Diabetes Care Inc. Display screen or portion thereof with graphical user interface
USD999913S1 (en) 2020-12-21 2023-09-26 Abbott Diabetes Care Inc Analyte sensor inserter
EP4016068A1 (en) * 2020-12-21 2022-06-22 F. Hoffmann-La Roche AG Sensor assembly
CA3205353A1 (en) 2021-01-26 2022-08-04 Shridhara A. Karinka Systems, devices, and methods related to ketone sensors
JP2023116144A (en) 2022-02-09 2023-08-22 アークレイ株式会社 Testing tool and measurement apparatus
TWI814562B (en) * 2022-08-31 2023-09-01 超極生技股份有限公司 Electrochemical test strip for measuring gas ph

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5435735A (en) * 1993-02-22 1995-07-25 The Whitaker Corporation Catalytic converter sensor connector
US6635167B1 (en) * 1997-12-04 2003-10-21 Roche Diagnostics Corporation Apparatus and method for determining the concentration of a component of a sample
US20030203498A1 (en) * 2002-04-25 2003-10-30 Home Diagnostics, Inc. System and methods for blood glucose sensing
US20080283396A1 (en) * 1999-11-04 2008-11-20 Abbot Diabetes Care, Inc. Analyte Sensor with Insertion Monitor, and Methods
US20090029479A1 (en) * 2007-07-24 2009-01-29 Lifescan Scotland Ltd. Test strip and connector

Family Cites Families (355)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3260656A (en) 1962-09-27 1966-07-12 Corning Glass Works Method and apparatus for electrolytically determining a species in a fluid
US3653841A (en) 1969-12-19 1972-04-04 Hoffmann La Roche Methods and compositions for determining glucose in blood
US3776832A (en) 1970-11-10 1973-12-04 Energetics Science Electrochemical detection cell
US3719564A (en) 1971-05-10 1973-03-06 Philip Morris Inc Method of determining a reducible gas concentration and sensor therefor
US3837339A (en) 1972-02-03 1974-09-24 Whittaker Corp Blood glucose level monitoring-alarm system and method therefor
US3908657A (en) 1973-01-15 1975-09-30 Univ Johns Hopkins System for continuous withdrawal of blood
GB1394171A (en) 1973-05-16 1975-05-14 Whittaker Corp Blood glucose level monitoring-alarm system and method therefor
US4100048A (en) 1973-09-20 1978-07-11 U.S. Philips Corporation Polarographic cell
US3972320A (en) 1974-08-12 1976-08-03 Gabor Ujhelyi Kalman Patient monitoring system
US3979274A (en) 1975-09-24 1976-09-07 The Yellow Springs Instrument Company, Inc. Membrane for enzyme electrodes
US4016866A (en) 1975-12-18 1977-04-12 General Electric Company Implantable electrochemical sensor
US4055175A (en) 1976-05-07 1977-10-25 Miles Laboratories, Inc. Blood glucose control apparatus
DE2625834B2 (en) 1976-06-09 1978-10-12 Boehringer Mannheim Gmbh, 6800 Mannheim Method for the determination of substrates or enzyme activities
US4059406A (en) 1976-07-12 1977-11-22 E D T Supplies Limited Electrochemical detector system
US4076596A (en) 1976-10-07 1978-02-28 Leeds & Northrup Company Apparatus for electrolytically determining a species in a fluid and method of use
FR2387659A1 (en) 1977-04-21 1978-11-17 Armines GLYCEMIA CONTROL AND REGULATION DEVICE
US4098574A (en) 1977-08-01 1978-07-04 Eastman Kodak Company Glucose detection system free from fluoride-ion interference
US4178916A (en) 1977-09-26 1979-12-18 Mcnamara Elger W Diabetic insulin alarm system
JPS5912135B2 (en) 1977-09-28 1984-03-21 松下電器産業株式会社 enzyme electrode
US4151845A (en) 1977-11-25 1979-05-01 Miles Laboratories, Inc. Blood glucose control apparatus
JPS5921500B2 (en) 1978-01-28 1984-05-21 東洋紡績株式会社 Enzyme membrane for oxygen electrode
DK151000C (en) 1978-02-17 1988-06-13 Radiometer As PROCEDURE AND APPARATUS FOR DETERMINING A PATIENT'S IN VIVO PLASMA-PH VALUE
US4172770A (en) 1978-03-27 1979-10-30 Technicon Instruments Corporation Flow-through electrochemical system analytical method
DE2817363C2 (en) 1978-04-20 1984-01-26 Siemens AG, 1000 Berlin und 8000 München Method for determining the concentration of sugar and a suitable electrocatalytic sugar sensor
DE2966707D1 (en) 1978-08-15 1984-03-29 Nat Res Dev Enzymatic processes
HU177369B (en) 1978-09-08 1981-09-28 Radelkis Electrokemiai Industrial molecule-selective sensing device and method for producing same
US4240438A (en) 1978-10-02 1980-12-23 Wisconsin Alumni Research Foundation Method for monitoring blood glucose levels and elements
JPS584982B2 (en) 1978-10-31 1983-01-28 松下電器産業株式会社 enzyme electrode
US4247297A (en) 1979-02-23 1981-01-27 Miles Laboratories, Inc. Test means and method for interference resistant determination of oxidizing substances
US4573994A (en) 1979-04-27 1986-03-04 The Johns Hopkins University Refillable medication infusion apparatus
US4365637A (en) 1979-07-05 1982-12-28 Dia-Med, Inc. Perspiration indicating alarm for diabetics
US4271119A (en) 1979-07-23 1981-06-02 Eastman Kodak Company Capillary transport device having connected transport zones
US4401122A (en) 1979-08-02 1983-08-30 Children's Hospital Medical Center Cutaneous methods of measuring body substances
DE3114441A1 (en) 1980-04-11 1982-03-04 Radiometer A/S, 2400 Koebenhavn ELECTROCHEMICAL MEASURING ELECTRODE DEVICE
US4450842A (en) 1980-04-25 1984-05-29 Cordis Corporation Solid state reference electrode
US4340458A (en) 1980-06-02 1982-07-20 Joslin Diabetes Center, Inc. Glucose sensor
US4404066A (en) 1980-08-25 1983-09-13 The Yellow Springs Instrument Company Method for quantitatively determining a particular substrate catalyzed by a multisubstrate enzyme
US4356074A (en) 1980-08-25 1982-10-26 The Yellow Springs Instrument Company, Inc. Substrate specific galactose oxidase enzyme electrodes
US4444892A (en) 1980-10-20 1984-04-24 Malmros Mark K Analytical device having semiconductive organic polymeric element associated with analyte-binding substance
US4407959A (en) 1980-10-29 1983-10-04 Fuji Electric Co., Ltd. Blood sugar analyzing apparatus
US4420564A (en) 1980-11-21 1983-12-13 Fuji Electric Company, Ltd. Blood sugar analyzer having fixed enzyme membrane sensor
US4483924A (en) 1980-12-09 1984-11-20 Fuji Electric Company, Ltd. System for controlling a printer in a blood sugar analyzer
US4436094A (en) 1981-03-09 1984-03-13 Evreka, Inc. Monitor for continuous in vivo measurement of glucose concentration
AT369254B (en) 1981-05-07 1982-12-27 Otto Dipl Ing Dr Tech Prohaska MEDICAL PROBE
FR2508305B1 (en) 1981-06-25 1986-04-11 Slama Gerard DEVICE FOR CAUSING A LITTLE BITE TO COLLECT A BLOOD DROP
US4440175A (en) 1981-08-10 1984-04-03 University Patents, Inc. Membrane electrode for non-ionic species
DE3278334D1 (en) 1981-10-23 1988-05-19 Genetics Int Inc Sensor for components of a liquid mixture
US4431004A (en) 1981-10-27 1984-02-14 Bessman Samuel P Implantable glucose sensor
US4418148A (en) 1981-11-05 1983-11-29 Miles Laboratories, Inc. Multilayer enzyme electrode membrane
JPS5886083A (en) 1981-11-12 1983-05-23 Wako Pure Chem Ind Ltd Stabilizing agent for glycerol-3-phosphoric acid oxidase
JPS58153154A (en) 1982-03-09 1983-09-12 Ajinomoto Co Inc Qualified electrode
US4581336A (en) 1982-04-26 1986-04-08 Uop Inc. Surface-modified electrodes
DE3221339A1 (en) 1982-06-05 1983-12-08 Basf Ag, 6700 Ludwigshafen METHOD FOR THE ELECTROCHEMICAL HYDRATION OF NICOTINAMIDADENINE-DINUCLEOTIDE
US4427770A (en) 1982-06-14 1984-01-24 Miles Laboratories, Inc. High glucose-determining analytical element
US4534356A (en) 1982-07-30 1985-08-13 Diamond Shamrock Chemicals Company Solid state transcutaneous blood gas sensors
DE3228551A1 (en) 1982-07-30 1984-02-02 Siemens AG, 1000 Berlin und 8000 München METHOD FOR DETERMINING SUGAR CONCENTRATION
US4571292A (en) 1982-08-12 1986-02-18 Case Western Reserve University Apparatus for electrochemical measurements
US4595479A (en) 1982-11-09 1986-06-17 Ajinomoto Co., Inc. Modified electrode
US4552840A (en) 1982-12-02 1985-11-12 California And Hawaiian Sugar Company Enzyme electrode and method for dextran analysis
US4461691A (en) 1983-02-10 1984-07-24 The United States Of America As Represented By The United States Department Of Energy Organic conductive films for semiconductor electrodes
US4679562A (en) 1983-02-16 1987-07-14 Cardiac Pacemakers, Inc. Glucose sensor
DE3483761D1 (en) 1983-03-11 1991-01-31 Matsushita Electric Ind Co Ltd Biosensor.
IT1170375B (en) 1983-04-19 1987-06-03 Giuseppe Bombardieri Implantable device for measuring body fluid parameters
US5509410A (en) 1983-06-06 1996-04-23 Medisense, Inc. Strip electrode including screen printing of a single layer
CA1219040A (en) 1983-05-05 1987-03-10 Elliot V. Plotkin Measurement of enzyme-catalysed reactions
CA1226036A (en) 1983-05-05 1987-08-25 Irving J. Higgins Analytical equipment and sensor electrodes therefor
CA1218704A (en) 1983-05-05 1987-03-03 Graham Davis Assay systems using more than one enzyme
GB2154003B (en) 1983-12-16 1988-02-17 Genetics Int Inc Diagnostic aid
CA1220818A (en) 1983-05-05 1987-04-21 Hugh A.O. Hill Assay techniques utilising specific binding agents
US4650547A (en) 1983-05-19 1987-03-17 The Regents Of The University Of California Method and membrane applicable to implantable sensor
US4484987A (en) 1983-05-19 1984-11-27 The Regents Of The University Of California Method and membrane applicable to implantable sensor
US4580564A (en) * 1983-06-07 1986-04-08 Andersen Michael A Finger pricking device
US4524114A (en) 1983-07-05 1985-06-18 Allied Corporation Bifunctional air electrode
US4538616A (en) 1983-07-25 1985-09-03 Robert Rogoff Blood sugar level sensing and monitoring transducer
US4655880A (en) 1983-08-01 1987-04-07 Case Western Reserve University Apparatus and method for sensing species, substances and substrates using oxidase
US4543955A (en) 1983-08-01 1985-10-01 Cordis Corporation System for controlling body implantable action device
SE8305704D0 (en) 1983-10-18 1983-10-18 Leo Ab Cuvette
US4560534A (en) 1983-11-02 1985-12-24 Miles Laboratories, Inc. Polymer catalyst transducers
US4522690A (en) 1983-12-01 1985-06-11 Honeywell Inc. Electrochemical sensing of carbon monoxide
EP0149339B1 (en) 1983-12-16 1989-08-23 MediSense, Inc. Assay for nucleic acids
SU1281988A1 (en) 1984-03-15 1987-01-07 Институт биохимии АН ЛитССР Electrochemical transducer for measuring glucose concentration
US4654127A (en) 1984-04-11 1987-03-31 Sentech Medical Corporation Self-calibrating single-use sensing device for clinical chemistry and method of use
WO1985005119A1 (en) 1984-04-30 1985-11-21 Stiftung, R., E. Process for the sensitization of an oxidoreduction photocalatyst, and photocatalyst thus obtained
AU581669B2 (en) 1984-06-13 1989-03-02 Applied Research Systems Ars Holding N.V. Photometric instruments, their use in methods of optical analysis, and ancillary devices therefor
US5141868A (en) 1984-06-13 1992-08-25 Internationale Octrooi Maatschappij "Octropa" Bv Device for use in chemical test procedures
GB8417301D0 (en) 1984-07-06 1984-08-08 Serono Diagnostics Ltd Assay
DK8601218A (en) 1984-07-18 1986-03-17
US4820399A (en) 1984-08-31 1989-04-11 Shimadzu Corporation Enzyme electrodes
CA1254091A (en) 1984-09-28 1989-05-16 Vladimir Feingold Implantable medication infusion system
GB2168815A (en) 1984-11-13 1986-06-25 Genetics Int Inc Bioelectrochemical assay electrode
US5034192A (en) 1984-11-23 1991-07-23 Massachusetts Institute Of Technology Molecule-based microelectronic devices
US4936956A (en) 1984-11-23 1990-06-26 Massachusetts Institute Of Technology Microelectrochemical devices based on inorganic redox active material and method for sensing
US4721601A (en) 1984-11-23 1988-01-26 Massachusetts Institute Of Technology Molecule-based microelectronic devices
US4717673A (en) 1984-11-23 1988-01-05 Massachusetts Institute Of Technology Microelectrochemical devices
JPH0617889B2 (en) 1984-11-27 1994-03-09 株式会社日立製作所 Biochemical sensor
DE3585915T2 (en) 1984-12-28 1993-04-15 Terumo Corp ION SENSOR.
GB8500729D0 (en) 1985-01-11 1985-02-13 Hill H A O Surface-modified electrode
EP0200321A3 (en) 1985-03-20 1987-03-11 Ingeborg J. Hochmair Transcutaneous signal transmission system
US4627445A (en) 1985-04-08 1986-12-09 Garid, Inc. Glucose medical monitoring system
US4781798A (en) 1985-04-19 1988-11-01 The Regents Of The University Of California Transparent multi-oxygen sensor array and method of using same
US4671288A (en) 1985-06-13 1987-06-09 The Regents Of The University Of California Electrochemical cell sensor for continuous short-term use in tissues and blood
EP0230472B2 (en) 1985-06-21 2000-12-13 Matsushita Electric Industrial Co., Ltd. Biosensor and method of manufacturing same
US5185256A (en) 1985-06-21 1993-02-09 Matsushita Electric Industrial Co., Ltd. Method for making a biosensor
US4938860A (en) 1985-06-28 1990-07-03 Miles Inc. Electrode for electrochemical sensors
US4805624A (en) 1985-09-09 1989-02-21 The Montefiore Hospital Association Of Western Pa Low-potential electrochemical redox sensors
GB8522834D0 (en) 1985-09-16 1985-10-23 Ici Plc Sensor
US4680268A (en) 1985-09-18 1987-07-14 Children's Hospital Medical Center Implantable gas-containing biosensor and method for measuring an analyte such as glucose
US4890620A (en) 1985-09-20 1990-01-02 The Regents Of The University Of California Two-dimensional diffusion glucose substrate sensing electrode
US5140393A (en) 1985-10-08 1992-08-18 Sharp Kabushiki Kaisha Sensor device
CA1254616A (en) 1985-11-11 1989-05-23 Calum J. Mcneil Electrochemical enzymic assay procedures
US4714874A (en) * 1985-11-12 1987-12-22 Miles Inc. Test strip identification and instrument calibration
GB8529300D0 (en) 1985-11-28 1986-01-02 Ici Plc Membrane
US4794736A (en) * 1985-12-27 1989-01-03 Citizen Watch Co., Ltd. Arrangement for mechanically and accurately processing a workpiece with a position detecting pattern or patterns
US4776944A (en) 1986-03-20 1988-10-11 Jiri Janata Chemical selective sensors utilizing admittance modulated membranes
US4685463A (en) 1986-04-03 1987-08-11 Williams R Bruce Device for continuous in vivo measurement of blood glucose concentrations
GB8608700D0 (en) 1986-04-10 1986-05-14 Genetics Int Inc Measurement of electroactive species in solution
US4726378A (en) 1986-04-11 1988-02-23 Minnesota Mining And Manufacturing Company Adjustable magnetic supercutaneous device and transcutaneous coupling apparatus
US4757022A (en) 1986-04-15 1988-07-12 Markwell Medical Institute, Inc. Biological fluid measuring device
US4994167A (en) 1986-04-15 1991-02-19 Markwell Medical Institute, Inc. Biological fluid measuring device
US4909908A (en) 1986-04-24 1990-03-20 Pepi Ross Electrochemical cncentration detector method
DE3614821A1 (en) 1986-05-02 1987-11-05 Siemens Ag IMPLANTABLE, CALIBRABLE MEASURING DEVICE FOR A BODY SUBSTANCE AND CALIBRATION METHOD
US4703756A (en) 1986-05-06 1987-11-03 The Regents Of The University Of California Complete glucose monitoring system with an implantable, telemetered sensor module
GB8612861D0 (en) 1986-05-27 1986-07-02 Cambridge Life Sciences Immobilised enzyme biosensors
US4750496A (en) 1987-01-28 1988-06-14 Xienta, Inc. Method and apparatus for measuring blood glucose concentration
US4911794A (en) 1986-06-20 1990-03-27 Molecular Devices Corporation Measuring with zero volume cell
JPS636451A (en) 1986-06-27 1988-01-12 Terumo Corp Enzyme sensor
US4764416A (en) 1986-07-01 1988-08-16 Mitsubishi Denki Kabushiki Kaisha Electric element circuit using oxidation-reduction substances
US4784736A (en) 1986-07-07 1988-11-15 Bend Research, Inc. Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers
GB8618022D0 (en) 1986-07-23 1986-08-28 Unilever Plc Electrochemical measurements
US4894137A (en) 1986-09-12 1990-01-16 Omron Tateisi Electronics Co. Enzyme electrode
US4897162A (en) 1986-11-14 1990-01-30 The Cleveland Clinic Foundation Pulse voltammetry
JPS63131057A (en) 1986-11-20 1988-06-03 Terumo Corp Enzyme sensor
DE3782921T2 (en) 1986-12-05 1993-04-08 Sumitomo Electric Industries AUTOMATIC CALIBRATION DEVICE FOR PARTIAL PRESSURE SENSOR.
DE3700119A1 (en) 1987-01-03 1988-07-14 Inst Diabetestechnologie Gemei IMPLANTABLE ELECTROCHEMICAL SENSOR
EP0278647A3 (en) 1987-02-09 1989-09-20 AT&T Corp. Electronchemical processes involving enzymes
GB2201248B (en) 1987-02-24 1991-04-17 Ici Plc Enzyme electrode sensors
US4848351A (en) 1987-03-04 1989-07-18 Sentry Medical Products, Inc. Medical electrode assembly
GB2204408A (en) 1987-03-04 1988-11-09 Plessey Co Plc Biosensor device
US4923586A (en) 1987-03-31 1990-05-08 Daikin Industries, Ltd. Enzyme electrode unit
IL82131A0 (en) 1987-04-07 1987-10-30 Univ Ramot Coulometric assay system
US4935345A (en) 1987-04-07 1990-06-19 Arizona Board Of Regents Implantable microelectronic biochemical sensor incorporating thin film thermopile
US4759828A (en) 1987-04-09 1988-07-26 Nova Biomedical Corporation Glucose electrode and method of determining glucose
US5352348A (en) 1987-04-09 1994-10-04 Nova Biomedical Corporation Method of using enzyme electrode
US5094931A (en) * 1987-04-15 1992-03-10 Hoechst Celanese Corporation Image transfer to diverse paper stocks
US5286364A (en) 1987-06-08 1994-02-15 Rutgers University Surface-modified electochemical biosensor
US4822337A (en) 1987-06-22 1989-04-18 Stanley Newhouse Insulin delivery method and apparatus
DE3721237A1 (en) 1987-06-27 1989-01-05 Boehringer Mannheim Gmbh DIAGNOSTIC TEST CARRIER AND METHOD FOR THE PRODUCTION THEREOF
JPH07122624B2 (en) 1987-07-06 1995-12-25 ダイキン工業株式会社 Biosensor
GB8718430D0 (en) 1987-08-04 1987-09-09 Ici Plc Sensor
JPS6423155A (en) 1987-07-17 1989-01-25 Daikin Ind Ltd Electrode refreshing device for biosensor
US5037527A (en) 1987-08-28 1991-08-06 Kanzaki Paper Mfg. Co., Ltd. Reference electrode and a measuring apparatus using the same
US4974929A (en) 1987-09-22 1990-12-04 Baxter International, Inc. Fiber optical probe connector for physiologic measurement devices
NL8702370A (en) 1987-10-05 1989-05-01 Groningen Science Park METHOD AND SYSTEM FOR GLUCOSE DETERMINATION AND USEABLE MEASURING CELL ASSEMBLY.
US4815469A (en) 1987-10-08 1989-03-28 Siemens-Pacesetter, Inc. Implantable blood oxygen sensor and method of use
JPH01140054A (en) 1987-11-26 1989-06-01 Nec Corp Glucose sensor
US4813424A (en) 1987-12-23 1989-03-21 University Of New Mexico Long-life membrane electrode for non-ionic species
US5126247A (en) 1988-02-26 1992-06-30 Enzymatics, Inc. Method, system and devices for the assay and detection of biochemical molecules
US5128015A (en) 1988-03-15 1992-07-07 Tall Oak Ventures Method and apparatus for amperometric diagnostic analysis
US5108564A (en) 1988-03-15 1992-04-28 Tall Oak Ventures Method and apparatus for amperometric diagnostic analysis
WO1989009397A1 (en) 1988-03-31 1989-10-05 Matsushita Electric Industrial Co., Ltd. Biosensor and process for its production
US4954087A (en) 1988-04-27 1990-09-04 I-Stat Corporation Static-free interrogating connector for electric components
US4942127A (en) 1988-05-06 1990-07-17 Molecular Devices Corporation Polyredox couples in analyte determinations
US5206145A (en) 1988-05-19 1993-04-27 Thorn Emi Plc Method of measuring the concentration of a substance in a sample solution
US5094951A (en) 1988-06-21 1992-03-10 Chiron Corporation Production of glucose oxidase in recombinant systems
US5599479A (en) 1988-06-24 1997-02-04 Canon Kabushiki Kaisha Ferroelectric chiral smectic liquid crystal composition and liquid crystal device using same
GB8817421D0 (en) 1988-07-21 1988-08-24 Medisense Inc Bioelectrochemical electrodes
US5264106A (en) 1988-10-07 1993-11-23 Medisense, Inc. Enhanced amperometric sensor
US4895147A (en) * 1988-10-28 1990-01-23 Sherwood Medical Company Lancet injector
US5282050A (en) * 1988-10-31 1994-01-25 Canon Kabushiki Kaisha Dual-side recording apparatus
JPH02128152A (en) 1988-11-08 1990-05-16 Nec Corp Immobilization of enzyme and biosensor
US5200051A (en) 1988-11-14 1993-04-06 I-Stat Corporation Wholly microfabricated biosensors and process for the manufacture and use thereof
DE3842700A1 (en) 1988-12-19 1990-06-21 Boehringer Mannheim Gmbh METHOD FOR PROTEIN IMMOBILIZATION ON A SOLID PHASE, PROTEIN-CARRYING SOLID PHASE PRODUCED THEREOF AND THE USE THEREOF
AT392847B (en) 1989-01-27 1991-06-25 Avl Verbrennungskraft Messtech SENSOR ELECTRODE ARRANGEMENT
US5053199A (en) 1989-02-21 1991-10-01 Boehringer Mannheim Corporation Electronically readable information carrier
US5205920A (en) 1989-03-03 1993-04-27 Noboru Oyama Enzyme sensor and method of manufacturing the same
JPH02298855A (en) 1989-03-20 1990-12-11 Assoc Univ Inc Electrochemical biosensor using immobilized enzyme and redox polymer
US5089112A (en) 1989-03-20 1992-02-18 Associated Universities, Inc. Electrochemical biosensor based on immobilized enzymes and redox polymers
US5054499A (en) * 1989-03-27 1991-10-08 Swierczek Remi D Disposable skin perforator and blood testing device
US4953552A (en) 1989-04-21 1990-09-04 Demarzo Arthur P Blood glucose monitoring system
US4918860A (en) * 1989-05-09 1990-04-24 Dennis Breadner Tree branch spreader
US5096560A (en) 1989-05-30 1992-03-17 Mitsubishi Petrochemical Co., Ltd. Electrode for electrochemical detectors
US5236567A (en) 1989-05-31 1993-08-17 Nakano Vinegar Co., Ltd. Enzyme sensor
US5198367A (en) 1989-06-09 1993-03-30 Masuo Aizawa Homogeneous amperometric immunoassay
CH677149A5 (en) 1989-07-07 1991-04-15 Disetronic Ag
US5272060A (en) 1989-07-13 1993-12-21 Kyoto Daiichi Kagaku Co., Ltd. Method for determination of glucose concentration in whole blood
JPH0737991B2 (en) 1989-07-13 1995-04-26 株式会社京都第一科学 Method for measuring glucose concentration
US4986271A (en) 1989-07-19 1991-01-22 The University Of New Mexico Vivo refillable glucose sensor
US5320725A (en) 1989-08-02 1994-06-14 E. Heller & Company Electrode and method for the detection of hydrogen peroxide
US5262035A (en) 1989-08-02 1993-11-16 E. Heller And Company Enzyme electrodes
US5101814A (en) 1989-08-11 1992-04-07 Palti Yoram Prof System for monitoring and controlling blood glucose
US5026388A (en) 1989-09-26 1991-06-25 Ingalz Thomas J Single-use skin puncture device
FR2652736A1 (en) 1989-10-06 1991-04-12 Neftel Frederic IMPLANTABLE DEVICE FOR EVALUATING THE RATE OF GLUCOSE.
DE69025134T2 (en) 1989-11-24 1996-08-14 Matsushita Electric Ind Co Ltd Method of manufacturing a biosensor
US5082550A (en) 1989-12-11 1992-01-21 The United States Of America As Represented By The Department Of Energy Enzyme electrochemical sensor electrode and method of making it
US5508171A (en) 1989-12-15 1996-04-16 Boehringer Mannheim Corporation Assay method with enzyme electrode system
DE69020908T2 (en) 1989-12-15 1996-02-15 Boehringer Mannheim Corp REDOX MEDIATION REAGENT AND BIOSENSOR.
US4999582A (en) 1989-12-15 1991-03-12 Boehringer Mannheim Corp. Biosensor electrode excitation circuit
US5078854A (en) 1990-01-22 1992-01-07 Mallinckrodt Sensor Systems, Inc. Polarographic chemical sensor with external reference electrode
US5286362A (en) 1990-02-03 1994-02-15 Boehringer Mannheim Gmbh Method and sensor electrode system for the electrochemical determination of an analyte or an oxidoreductase as well as the use of suitable compounds therefor
US5109850A (en) 1990-02-09 1992-05-05 Massachusetts Institute Of Technology Automatic blood monitoring for medication delivery method and apparatus
US5501956A (en) 1990-03-23 1996-03-26 Molecular Devices Corporation Polyredox couples in analyte determinations
US5161532A (en) 1990-04-19 1992-11-10 Teknekron Sensor Development Corporation Integral interstitial fluid sensor
US5165407A (en) 1990-04-19 1992-11-24 The University Of Kansas Implantable glucose sensor
DE4014109A1 (en) 1990-05-02 1991-11-07 Siemens Ag ELECROCHEMICAL DETERMINATION OF THE OXYGEN CONCENTRATION
GB2245665A (en) 1990-06-30 1992-01-08 Draftex Ind Ltd Flexible protective bellows.
US5202261A (en) 1990-07-19 1993-04-13 Miles Inc. Conductive sensors and their use in diagnostic assays
US5250439A (en) 1990-07-19 1993-10-05 Miles Inc. Use of conductive sensors in diagnostic assays
US5320732A (en) 1990-07-20 1994-06-14 Matsushita Electric Industrial Co., Ltd. Biosensor and measuring apparatus using the same
JPH0820412B2 (en) * 1990-07-20 1996-03-04 松下電器産業株式会社 Quantitative analysis method and device using disposable sensor
US5120421A (en) 1990-08-31 1992-06-09 The United States Of America As Represented By The United States Department Of Energy Electrochemical sensor/detector system and method
GB9019126D0 (en) 1990-09-01 1990-10-17 Cranfield Biotech Ltd Electrochemical biosensor stability
US5160278A (en) 1990-10-22 1992-11-03 Miles Inc. Reagent strip calibration system
NL9002764A (en) 1990-12-14 1992-07-01 Tno ELECTRODE, FITTED WITH A POLYMER COATING WITH A REDOX ENZYM BOND TO IT.
FR2673183B1 (en) 1991-02-21 1996-09-27 Asulab Sa MONO, BIS OR TRIS (2,2'-BIPYRIDINE SUBSTITUTED) COMPLEXES OF A SELECTED METAL AMONG IRON, RUTHENIUM, OSMIUM OR VANADIUM AND THEIR PREPARATION PROCESSES.
FR2673289B1 (en) 1991-02-21 1994-06-17 Asulab Sa SENSOR FOR MEASURING THE QUANTITY OF A COMPONENT IN SOLUTION.
US5262305A (en) 1991-03-04 1993-11-16 E. Heller & Company Interferant eliminating biosensors
US5593852A (en) 1993-12-02 1997-01-14 Heller; Adam Subcutaneous glucose electrode
CA2050057A1 (en) 1991-03-04 1992-09-05 Adam Heller Interferant eliminating biosensors
US5192415A (en) 1991-03-04 1993-03-09 Matsushita Electric Industrial Co., Ltd. Biosensor utilizing enzyme and a method for producing the same
US5208154A (en) 1991-04-08 1993-05-04 The United States Of America As Represented By The Department Of Energy Reversibly immobilized biological materials in monolayer films on electrodes
US5192416A (en) 1991-04-09 1993-03-09 New Mexico State University Technology Transfer Corporation Method and apparatus for batch injection analysis
US5293546A (en) 1991-04-17 1994-03-08 Martin Marietta Corporation Oxide coated metal grid electrode structure in display devices
JP3118015B2 (en) 1991-05-17 2000-12-18 アークレイ株式会社 Biosensor and separation and quantification method using the same
DE4123348A1 (en) 1991-07-15 1993-01-21 Boehringer Mannheim Gmbh ELECTROCHEMICAL ANALYSIS SYSTEM
JP2740587B2 (en) 1991-07-18 1998-04-15 工業技術院長 Micro composite electrode and method of manufacturing the same
US5264103A (en) 1991-10-18 1993-11-23 Matsushita Electric Industrial Co., Ltd. Biosensor and a method for measuring a concentration of a substrate in a sample
US5217595A (en) 1991-10-25 1993-06-08 The Yellow Springs Instrument Company, Inc. Electrochemical gas sensor
JPH05149910A (en) * 1991-11-29 1993-06-15 Kanzaki Paper Mfg Co Ltd Cell for electrochemical measurement
US5271815A (en) 1991-12-26 1993-12-21 Via Medical Corporation Method for measuring glucose
WO1993013408A1 (en) 1991-12-31 1993-07-08 Abbott Laboratories Composite membrane
NL9200207A (en) 1992-02-05 1993-09-01 Nedap Nv IMPLANTABLE BIOMEDICAL SENSOR DEVICE, IN PARTICULAR FOR MEASUREMENT OF THE GLUCOSE CONCENTRATION.
GR1002549B (en) 1992-05-12 1997-01-28 Lifescan Inc. Fluid conducting test strip with Transport Medium
US5227042A (en) 1992-05-15 1993-07-13 The United States Of America As Represented By The United States Department Of Energy Catalyzed enzyme electrodes
US5580527A (en) 1992-05-18 1996-12-03 Moltech Corporation Polymeric luminophores for sensing of oxygen
GB9211402D0 (en) 1992-05-29 1992-07-15 Univ Manchester Sensor devices
JP2541081B2 (en) 1992-08-28 1996-10-09 日本電気株式会社 Biosensor and method of manufacturing and using biosensor
US5278079A (en) 1992-09-02 1994-01-11 Enzymatics, Inc. Sealing device and method for inhibition of flow in capillary measuring devices
US5421816A (en) 1992-10-14 1995-06-06 Endodermic Medical Technologies Company Ultrasonic transdermal drug delivery system
US5387327A (en) 1992-10-19 1995-02-07 Duquesne University Of The Holy Ghost Implantable non-enzymatic electrochemical glucose sensor
ZA938555B (en) 1992-11-23 1994-08-02 Lilly Co Eli Technique to improve the performance of electrochemical sensors
DK148592D0 (en) 1992-12-10 1992-12-10 Novo Nordisk As APPARATUS
FR2701117B1 (en) 1993-02-04 1995-03-10 Asulab Sa Electrochemical measurement system with multizone sensor, and its application to glucose measurement.
CH685458A5 (en) 1993-03-01 1995-07-14 Disetronic Ag Sensor array for selective detection or measurement of at least one material component in an aqueous solution.
DE4311166C2 (en) * 1993-04-05 1995-01-12 Danfoss As Hydraulic machine
US5364797A (en) 1993-05-20 1994-11-15 Mobil Oil Corp. Sensor device containing mesoporous crystalline material
JP3713516B2 (en) 1993-05-29 2005-11-09 ケンブリッジ ライフ サイエンシズ パブリック リミテッド カンパニー Sensors based on polymer transformations
DE4318519C2 (en) 1993-06-03 1996-11-28 Fraunhofer Ges Forschung Electrochemical sensor
EP0702789B8 (en) 1993-06-08 2006-06-14 Roche Diagnostics Operations, Inc. Biosensing meter which detects proper electrode engagement and distinguishes sample and check strips
US5366609A (en) * 1993-06-08 1994-11-22 Boehringer Mannheim Corporation Biosensing meter with pluggable memory key
US5352351A (en) 1993-06-08 1994-10-04 Boehringer Mannheim Corporation Biosensing meter with fail/safe procedures to prevent erroneous indications
US5413690A (en) 1993-07-23 1995-05-09 Boehringer Mannheim Corporation Potentiometric biosensor and the method of its use
US5410474A (en) 1993-07-27 1995-04-25 Miles Inc. Buttonless memory system for an electronic measurement device
JP3494183B2 (en) 1993-08-10 2004-02-03 株式会社アドバンス Simple blood collection device
US5837546A (en) 1993-08-24 1998-11-17 Metrika, Inc. Electronic assay device and method
FR2710413B1 (en) 1993-09-21 1995-11-03 Asulab Sa Measuring device for removable sensors.
EP0644266A1 (en) 1993-09-22 1995-03-22 Siemens Aktiengesellschaft Working electrode for electrochemical-enzymatical sensor systems
US5582184A (en) 1993-10-13 1996-12-10 Integ Incorporated Interstitial fluid collection and constituent measurement
JPH07128338A (en) * 1993-11-02 1995-05-19 Kyoto Daiichi Kagaku:Kk Convenient blood sugar meter and data managing method therefor
US5781455A (en) 1993-11-02 1998-07-14 Kyoto Daiichi Kagaku Co., Ltd. Article of manufacture comprising computer usable medium for a portable blood sugar value measuring apparatus
US5791344A (en) 1993-11-19 1998-08-11 Alfred E. Mann Foundation For Scientific Research Patient monitoring system
US5497772A (en) 1993-11-19 1996-03-12 Alfred E. Mann Foundation For Scientific Research Glucose monitoring system
US5478751A (en) 1993-12-29 1995-12-26 Abbott Laboratories Self-venting immunodiagnositic devices and methods of performing assays
US5589326A (en) 1993-12-30 1996-12-31 Boehringer Mannheim Corporation Osmium-containing redox mediator
EP0752099A1 (en) 1994-02-09 1997-01-08 Abbott Laboratories Diagnostic flow cell device
FI95574C (en) 1994-02-16 1996-02-26 Valtion Teknillinen Electron-conducting molecular preparations
US5437999A (en) 1994-02-22 1995-08-01 Boehringer Mannheim Corporation Electrochemical sensor
US5390671A (en) 1994-03-15 1995-02-21 Minimed Inc. Transcutaneous sensor insertion set
US5391250A (en) 1994-03-15 1995-02-21 Minimed Inc. Method of fabricating thin film sensors
US5569186A (en) 1994-04-25 1996-10-29 Minimed Inc. Closed loop infusion pump system with removable glucose sensor
JP3061351B2 (en) 1994-04-25 2000-07-10 松下電器産業株式会社 Method and apparatus for quantifying specific compounds
EP0758377A1 (en) 1994-05-03 1997-02-19 Novo Nordisk A/S Alkaline glucose oxidase
DE4415896A1 (en) 1994-05-05 1995-11-09 Boehringer Mannheim Gmbh Analysis system for monitoring the concentration of an analyte in the blood of a patient
JPH07326439A (en) * 1994-05-31 1995-12-12 Sumitomo Wiring Syst Ltd Structure for attaching flat cable to printed board and connector for printed board
JP3027306B2 (en) 1994-06-02 2000-04-04 松下電器産業株式会社 Biosensor and manufacturing method thereof
US5494562A (en) 1994-06-27 1996-02-27 Ciba Corning Diagnostics Corp. Electrochemical sensors
US5514253A (en) 1994-07-13 1996-05-07 I-Stat Corporation Method of measuring gas concentrations and microfabricated sensing device for practicing same
DE4430023A1 (en) 1994-08-24 1996-02-29 Boehringer Mannheim Gmbh Electrochemical sensor
US5526120A (en) 1994-09-08 1996-06-11 Lifescan, Inc. Test strip with an asymmetrical end insuring correct insertion for measuring
ATE209355T1 (en) 1994-09-08 2001-12-15 Lifescan Inc ANALYTE DETECTION STRIP WITH A STANDARD ON THE STRIP
US6153069A (en) 1995-02-09 2000-11-28 Tall Oak Ventures Apparatus for amperometric Diagnostic analysis
US5568806A (en) 1995-02-16 1996-10-29 Minimed Inc. Transcutaneous sensor insertion set
US5586553A (en) 1995-02-16 1996-12-24 Minimed Inc. Transcutaneous sensor insertion set
US5651869A (en) 1995-02-28 1997-07-29 Matsushita Electric Industrial Co., Ltd. Biosensor
US5596150A (en) 1995-03-08 1997-01-21 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Capacitance probe for fluid flow and volume measurements
JPH08247987A (en) 1995-03-15 1996-09-27 Omron Corp Portable measuring instrument
US5650062A (en) 1995-03-17 1997-07-22 Matsushita Electric Industrial Co., Ltd. Biosensor, and a method and a device for quantifying a substrate in a sample liquid using the same
US5582697A (en) 1995-03-17 1996-12-10 Matsushita Electric Industrial Co., Ltd. Biosensor, and a method and a device for quantifying a substrate in a sample liquid using the same
JP3498105B2 (en) 1995-04-07 2004-02-16 アークレイ株式会社 Sensor, method for manufacturing the same, and measuring method using the sensor
US5571132A (en) 1995-06-06 1996-11-05 International Technidyne Corporation Self activated finger lancet
US5567302A (en) 1995-06-07 1996-10-22 Molecular Devices Corporation Electrochemical system for rapid detection of biochemical agents that catalyze a redox potential change
JP3732869B2 (en) * 1995-06-07 2006-01-11 株式会社日立製作所 External storage device
JP3638958B2 (en) * 1995-07-28 2005-04-13 アプルス株式会社 Assembly for adjusting the penetration depth of the lancet
DE19530376C2 (en) 1995-08-18 1999-09-02 Fresenius Ag Biosensor
US5873990A (en) * 1995-08-22 1999-02-23 Andcare, Inc. Handheld electromonitor device
US5682233A (en) 1995-09-08 1997-10-28 Integ, Inc. Interstitial fluid sampler
US5665215A (en) 1995-09-25 1997-09-09 Bayer Corporation Method and apparatus for making predetermined events with a biosensor
US5628890A (en) 1995-09-27 1997-05-13 Medisense, Inc. Electrochemical sensor
JP2976327B2 (en) * 1995-09-29 1999-11-10 日本航空電子工業株式会社 connector
US5741211A (en) 1995-10-26 1998-04-21 Medtronic, Inc. System and method for continuous monitoring of diabetes-related blood constituents
US5711861A (en) 1995-11-22 1998-01-27 Ward; W. Kenneth Device for monitoring changes in analyte concentration
JP3365184B2 (en) 1996-01-10 2003-01-08 松下電器産業株式会社 Biosensor
US5830341A (en) 1996-01-23 1998-11-03 Gilmartin; Markas A. T. Electrodes and metallo isoindole ringed compounds
US5708247A (en) 1996-02-14 1998-01-13 Selfcare, Inc. Disposable glucose test strips, and methods and compositions for making same
US5801057A (en) 1996-03-22 1998-09-01 Smart; Wilson H. Microsampling device and method of construction
US6332871B1 (en) 1996-05-17 2001-12-25 Amira Medical Blood and interstitial fluid sampling device
US5879311A (en) 1996-05-17 1999-03-09 Mercury Diagnostics, Inc. Body fluid sampling device and methods of use
US5857983A (en) 1996-05-17 1999-01-12 Mercury Diagnostics, Inc. Methods and apparatus for sampling body fluid
US6015392A (en) * 1996-05-17 2000-01-18 Mercury Diagnostics, Inc. Apparatus for sampling body fluid
SE9602298D0 (en) 1996-06-11 1996-06-11 Siemens Elema Ab Arrangement for analyzing body fluids
US5804048A (en) 1996-08-15 1998-09-08 Via Medical Corporation Electrode assembly for assaying glucose
US5856195A (en) * 1996-10-30 1999-01-05 Bayer Corporation Method and apparatus for calibrating a sensor element
DE19653436C1 (en) * 1996-12-20 1998-08-13 Inst Chemo Biosensorik Electrochemical sensor
JP3394262B2 (en) * 1997-02-06 2003-04-07 セラセンス、インク. Small volume in vitro analyte sensor
JP3181850B2 (en) 1997-02-14 2001-07-03 キヤノン株式会社 Ink jet recording apparatus and recording method
AUPO581397A0 (en) * 1997-03-21 1997-04-17 Memtec America Corporation Sensor connection means
US5759364A (en) 1997-05-02 1998-06-02 Bayer Corporation Electrochemical biosensor
JP3702582B2 (en) * 1997-06-03 2005-10-05 Nok株式会社 Measuring method using biosensor
CA2294610A1 (en) * 1997-06-16 1998-12-23 George Moshe Katz Methods of calibrating and testing a sensor for in vivo measurement of an analyte and devices for use in such methods
US5934933A (en) * 1997-06-20 1999-08-10 Cts Corporation Snap lock membrane connector
US6168957B1 (en) * 1997-06-25 2001-01-02 Lifescan, Inc. Diagnostic test strip having on-strip calibration
US6599406B1 (en) 1997-07-22 2003-07-29 Kyoto Daiichi Kagaku Co., Ltd. Concentration measuring apparatus, test strip for the concentration measuring apparatus, biosensor system and method for forming terminal on the test strip
JP3510461B2 (en) * 1997-09-30 2004-03-29 セラセンス インコーポレーテッド Biosensor device
US6071391A (en) 1997-09-12 2000-06-06 Nok Corporation Enzyme electrode structure
US5964718A (en) 1997-11-21 1999-10-12 Mercury Diagnostics, Inc. Body fluid sampling device
US5971941A (en) 1997-12-04 1999-10-26 Hewlett-Packard Company Integrated system and method for sampling blood and analysis
US5997817A (en) 1997-12-05 1999-12-07 Roche Diagnostics Corporation Electrochemical biosensor test strip
US6033866A (en) 1997-12-08 2000-03-07 Biomedix, Inc. Highly sensitive amperometric bi-mediator-based glucose biosensor
DE19815684A1 (en) * 1998-04-08 1999-10-14 Roche Diagnostics Gmbh Process for the preparation of analytical aids
US6053930A (en) 1998-05-11 2000-04-25 Ruppert; Norbert Single use lancet assembly
US6162397A (en) 1998-08-13 2000-12-19 Lifescan, Inc. Visual blood glucose test strip
DE29814996U1 (en) 1998-08-20 1998-12-03 Lre Technology Partner Gmbh Measuring device for the amperometric measurement of test strips
EP1117326A1 (en) * 1998-09-29 2001-07-25 Mallinckrodt Inc. Oximeter sensor with encoded temperature characteristic
US6338790B1 (en) 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6377894B1 (en) 1998-11-30 2002-04-23 Abbott Laboratories Analyte test instrument having improved calibration and communication processes
US6287451B1 (en) * 1999-06-02 2001-09-11 Handani Winarta Disposable sensor and method of making
US6258229B1 (en) 1999-06-02 2001-07-10 Handani Winarta Disposable sub-microliter volume sensor and method of making
US6558402B1 (en) 1999-08-03 2003-05-06 Becton, Dickinson And Company Lancer
US6283982B1 (en) 1999-10-19 2001-09-04 Facet Technologies, Inc. Lancing device and method of sample collection
US20060091006A1 (en) 1999-11-04 2006-05-04 Yi Wang Analyte sensor with insertion monitor, and methods
EP1152239A4 (en) 1999-11-15 2009-05-27 Panasonic Corp Biosensor, method of forming thin-film electrode, and method and apparatus for quantitative determination
EP2096437B1 (en) 2000-11-30 2014-11-19 Panasonic Healthcare Co., Ltd. Biosensor for quantifying substrate
US6562625B2 (en) 2001-02-28 2003-05-13 Home Diagnostics, Inc. Distinguishing test types through spectral analysis
US6766817B2 (en) 2001-07-25 2004-07-27 Tubarc Technologies, Llc Fluid conduction utilizing a reversible unsaturated siphon with tubarc porosity action
US6814844B2 (en) 2001-08-29 2004-11-09 Roche Diagnostics Corporation Biosensor with code pattern
WO2003029804A1 (en) 2001-09-28 2003-04-10 Arkray, Inc. Measurement instrument and concentration measurement apparatus
US6866758B2 (en) * 2002-03-21 2005-03-15 Roche Diagnostics Corporation Biosensor
US6881578B2 (en) * 2002-04-02 2005-04-19 Lifescan, Inc. Analyte concentration determination meters and methods of using the same
US6780645B2 (en) 2002-08-21 2004-08-24 Lifescan, Inc. Diagnostic kit with a memory storing test strip calibration codes and related methods
US7340309B2 (en) * 2002-12-16 2008-03-04 Meagan Medical, Inc. Method and apparatus for controlling the depth of percutaneous applications
US8206565B2 (en) * 2003-06-20 2012-06-26 Roche Diagnostics Operation, Inc. System and method for coding information on a biosensor test strip
CN103353475B (en) * 2004-05-21 2017-03-01 埃葛梅崔克斯股份有限公司 Electrochemical cell and the method producing electrochemical cell
US20060029479A1 (en) * 2004-08-03 2006-02-09 Ford Motor Company Tool holder assembly
US7749371B2 (en) * 2005-09-30 2010-07-06 Lifescan, Inc. Method and apparatus for rapid electrochemical analysis
WO2008057479A2 (en) 2006-11-07 2008-05-15 Bayer Healthcare Llc Method of making an auto-calibrating test sensor
USD587142S1 (en) * 2006-12-22 2009-02-24 Abbott Diabetes Care Inc. Sensors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5435735A (en) * 1993-02-22 1995-07-25 The Whitaker Corporation Catalytic converter sensor connector
US6635167B1 (en) * 1997-12-04 2003-10-21 Roche Diagnostics Corporation Apparatus and method for determining the concentration of a component of a sample
US20080283396A1 (en) * 1999-11-04 2008-11-20 Abbot Diabetes Care, Inc. Analyte Sensor with Insertion Monitor, and Methods
US20030203498A1 (en) * 2002-04-25 2003-10-30 Home Diagnostics, Inc. System and methods for blood glucose sensing
US20090029479A1 (en) * 2007-07-24 2009-01-29 Lifescan Scotland Ltd. Test strip and connector

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090093695A1 (en) * 2005-06-27 2009-04-09 National Institute Of Advanced Industrial Science And Technology Biosensor
US9214753B2 (en) 2012-06-05 2015-12-15 Panasonic Healthcare Holdings Co., Ltd. Connector for biological information measurement, and biological information measurement device using same
US8858884B2 (en) 2013-03-15 2014-10-14 American Sterilizer Company Coupled enzyme-based method for electronic monitoring of biological indicator
US9121050B2 (en) 2013-03-15 2015-09-01 American Sterilizer Company Non-enzyme based detection method for electronic monitoring of biological indicator
WO2016011308A1 (en) * 2014-07-17 2016-01-21 Siemens Healthcare Diagnostics Inc. Sensor array
JP2017522562A (en) * 2014-07-17 2017-08-10 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. Sensor array
US9945804B2 (en) 2014-07-17 2018-04-17 Siemens Healthcare Diagnostics Inc. Sensor array
US10670550B2 (en) 2014-07-17 2020-06-02 Siemens Healthcare Diagnostics Inc. Sensor array
US11382185B2 (en) * 2016-01-08 2022-07-05 Siemens Healthcare Diagnostics Inc. Heating element for sensor array

Also Published As

Publication number Publication date
KR100495935B1 (en) 2005-06-16
KR20010093785A (en) 2001-10-29
US20020148739A2 (en) 2002-10-17
DE60020076T2 (en) 2006-03-16
AU776764B2 (en) 2004-09-23
US6942518B2 (en) 2005-09-13
US20080283396A1 (en) 2008-11-20
CA2358993A1 (en) 2001-05-10
US20020053523A1 (en) 2002-05-09
ATE295538T1 (en) 2005-05-15
US20020157948A2 (en) 2002-10-31
US6749740B2 (en) 2004-06-15
US20090260985A1 (en) 2009-10-22
JP2003513279A (en) 2003-04-08
US8066858B2 (en) 2011-11-29
CN1322299A (en) 2001-11-14
JP4885508B2 (en) 2012-02-29
DE60020076D1 (en) 2005-06-16
JP2006091022A (en) 2006-04-06
US6616819B1 (en) 2003-09-09
CN1201149C (en) 2005-05-11
EP1145000A1 (en) 2001-10-17
US20090260986A1 (en) 2009-10-22
WO2001033216A1 (en) 2001-05-10
US20020084196A1 (en) 2002-07-04
US20040225230A1 (en) 2004-11-11
EP1145000B1 (en) 2005-05-11
EP1145000B8 (en) 2005-09-14
CA2358993C (en) 2005-08-02
AU1234701A (en) 2001-05-14

Similar Documents

Publication Publication Date Title
US8066858B2 (en) Analyte sensor with insertion monitor, and methods
US20060091006A1 (en) Analyte sensor with insertion monitor, and methods
US9465005B2 (en) Analyte sensors and methods of use
AU2007281648B2 (en) Methods of making calibrated analyte sensors
US7887682B2 (en) Analyte sensors and methods of use
US20100068093A1 (en) Identification of a Strip Type by the Meter Using Conductive Patterns on the Strip

Legal Events

Date Code Title Description
AS Assignment

Owner name: ABBOTT DIABETES CARE INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WANG, YI;VIVOLO, JOSEPH A.;KARINKA, SHRIDHARA ALVA;SIGNING DATES FROM 20060111 TO 20060112;REEL/FRAME:024008/0732

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION