US20100222003A1 - Radio communication system, radio base station device, and transmission control method - Google Patents

Radio communication system, radio base station device, and transmission control method Download PDF

Info

Publication number
US20100222003A1
US20100222003A1 US12/678,099 US67809908A US2010222003A1 US 20100222003 A1 US20100222003 A1 US 20100222003A1 US 67809908 A US67809908 A US 67809908A US 2010222003 A1 US2010222003 A1 US 2010222003A1
Authority
US
United States
Prior art keywords
interference
base station
section
adjacent cells
interference reports
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/678,099
Other versions
US9226301B2 (en
Inventor
Isamu Yoshii
Atsushi Sumasu
Tomohiro Imai
Naoya Yosoku
Hidenori Kayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sovereign Peak Ventures LLC
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Assigned to PANASONIC CORPORATION reassignment PANASONIC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KAYAMA, HIDENORI, IMAI, TOMOHIRO, YOSOKU, NAOYA, SUMASU, ATSUSHI, YOSHII, ISAMU
Publication of US20100222003A1 publication Critical patent/US20100222003A1/en
Assigned to PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AMERICA reassignment PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AMERICA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PANASONIC CORPORATION
Application granted granted Critical
Publication of US9226301B2 publication Critical patent/US9226301B2/en
Assigned to SOVEREIGN PEAK VENTURES, LLC reassignment SOVEREIGN PEAK VENTURES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AMERICA
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present invention relates to a transmission control method, wireless communication system and wireless base station apparatus.
  • the present invention relates to a transmission control method, wireless communication system and wireless base station apparatus adopting adaptive FFR (Fractional Frequency Reuse).
  • adaptive FFR Fractional Frequency Reuse
  • adaptive FFR As a technique for improving throughput degradation due to inter-cell interference, adaptive FFR is proposed.
  • a transmission use band is divided into the high power transmission band and the low power transmission band.
  • transmission power is variable in a stepwise manner, and the mode to support each stage is provided (see FIG. 1 ).
  • a base station selects a mode based on an interference report transmitted from a wireless terminal (UE), sets the transmission power associated with this selected mode and then performs downlink transmission. Afterward, it is reported to an adjacent NB that the mode was changed, and, in response to this, the adjacent NB changes the mode.
  • increasing the mode number is equivalent to lowering a reuse factor.
  • Non-Patent Document 1 LTE contribution [3GPP TSG-RAN WG1 R1-071449 (Nortel)]
  • the wireless communication system of the present invention including a plurality of wireless base stations provided in a target cell and a plurality of adjacent cells that are adjacent to the target cell, and a plurality of wireless terminals that are present in the cells, where: the plurality of terminals that are present in the plurality of adjacent cells transmit interference reports using a shared radio resource that is shared between the plurality of adjacent cells; and the wireless base station of the target cell employs a configuration having: an interference report receiving section that receives the interference reports transmitted by the shared radio resource from the plurality of wireless terminals that are present in the plurality of adjacent cells; and an adaptive fractional frequency reuse control section that controls adaptive fractional frequency reuse processing in downlink of the target cell, based on the received interference reports.
  • the wireless base station apparatus of the present invention employs a configuration having: an interference report receiving section that receives interference reports transmitted by a shared radio resource from a plurality of wireless terminals that are present in a plurality of adjacent cells that are adjacent to a target cell, the shared radio resource being shared between the plurality of adjacent cells; and an adaptive fractional frequency reuse control section that controls adaptive fractional frequency reuse processing in downlink of the target cell, based on the received interference reports.
  • the transmission control method of the present invention includes: an interference report receiving step of receiving interference reports transmitted by a shared radio resource from wireless terminals that are present in the adjacent cells that are adjacent to a target cell, the shared radio resource being shared between adjacent cells; and a controlling step of controlling adaptive fractional frequency reuse processing in the target cell, based on the interference reports.
  • the present invention it is possible to provide a wireless communication system, wireless base station apparatus and transmission control method for shortening the time it takes to improve inter-cell interference and improving the system throughput.
  • FIG. 1 illustrates adaptive FFR (Fractional Frequency Reuse);
  • FIG. 2 is a block diagram showing the configuration of a wireless terminal (UE) according to Embodiment 1 of the present invention
  • FIG. 3 is a block diagram showing the configuration of a base station (NB) according to Embodiment 1;
  • FIG. 4 illustrates a wireless communication system according to Embodiment 1
  • FIG. 5 illustrates a shared radio resource according to Embodiment 1
  • FIG. 6 illustrates a shared radio resource according to Embodiment 1
  • FIG. 7 illustrates interference report transmission from a wireless terminal to a base station according to Embodiment 1;
  • FIG. 8 illustrates the receiving condition of interference reports in base stations according to Embodiment 1;
  • FIG. 9 illustrates adaptive FFR processing in the base station of FIG. 3 ;
  • FIG. 10 is a block diagram showing the configuration of a wireless terminal according to Embodiment 2.
  • FIG. 11 is a block diagram showing the configuration of a base station according to Embodiment 2.
  • FIG. 12 illustrates the receiving condition of interference reports in base stations according to Embodiment 2;
  • FIG. 13 illustrates the receiving condition of interference reports in base stations according to Embodiment 2;
  • FIG. 14 is a block diagram showing the configuration of a base station according to Embodiment 3.
  • FIG. 15 illustrates adaptive FFR processing in the base station of FIG. 14 ;
  • FIG. 16 is a block diagram showing the configuration of a base station according to Embodiment 4.
  • FIG. 17 is a block diagram showing the configuration of a wireless terminal according to Embodiment 5.
  • FIG. 18 is a block diagram showing the configuration of a base station according to Embodiment 5.
  • FIG. 19 illustrates the operations in a wireless communication system according to Embodiment 5.
  • FIG. 20 illustrates the operations in a wireless communication system according to Embodiment 5.
  • FIG. 21 illustrates the receiving condition of interference reports in base stations according to Embodiment 5.
  • FIG. 22 is a block diagram showing the configuration of a wireless terminal according to Embodiment 6;
  • FIG. 23 is a block diagram showing the configuration of a wireless terminal according to Embodiment 7.
  • FIG. 24 is a block diagram showing the configuration of a base station according to Embodiment 7.
  • FIG. 25 illustrates the receiving condition of interference reports in base stations according to Embodiment 7.
  • FIG. 26 is a block diagram showing the configuration of a wireless terminal according to Embodiment 8.
  • FIG. 27 illustrates an antenna directivity formed by the wireless terminal of FIG. 26 ;
  • FIG. 28 illustrates the receiving condition of interference reports in base stations according to Embodiment 8.
  • FIG. 29 is a block diagram showing the configuration of a wireless terminal according to Embodiment 9.
  • FIG. 30 is a block diagram showing the configuration of a base station according to Embodiment 9.
  • wireless terminal (UE) 100 As shown in FIG. 2 , wireless terminal (UE) 100 according to the present embodiment is provided with FFT section 110 , interference power measuring section 120 , interference report generating section 130 , modulating section, mapping section 150 and IFFT section 160 .
  • FFT section 110 receives as input an OFDM signal received via an antenna, and performs a Fourier transform of this input signal.
  • the signal subjected to a Fourier transform is outputted to interference power measuring section 120 .
  • the input OFDM signal is acquired by performing predetermined radio receiving processing (such as down-conversion and AID conversion) of a radio reception signal in a radio reception processing section (not shown).
  • Interference power measuring section 120 measures the power (interference power) of interference signals other than the receiving target signals (i.e. desired signals), using the received signal subjected to a Fourier transform. Further, interference power measuring section 120 outputs the interference power measurement value to interference report generating section 130 .
  • Interference report generating section 130 generates an interference report signal corresponding to the interference power measurement value received from interference power measuring section 120 . Further, if the interference power measurement value is greater than a report generation decision threshold, interference report generating section 130 decides that there is interference, and generates an interference report signal. For example, if it is decided that there is interference, a one-bit signal representing bit “ 1 ” is generated as an interference report signal. By contrast, if it is decided that there is no interference, a one-bit signal representing bit “ 0 ” is generated as an interference report signal.
  • Modulating section 140 modulates an interference report signal generated in interference report generating section 130 , and outputs the modulated interference report signal to mapping section 150 .
  • Mapping section 150 maps the interference report signal received from modulating section 140 on a predetermined “radio resource.”
  • the “radio resource” is defined by a carrier, timing and spreading code.
  • IFFT section 160 forms an OFDM signal by transforming a signal sequence on which an interference report is mapped, from the frequency domain into the time domain.
  • This OFDM signal is subjected to predetermined radio transmission processing (such as D/A conversion and up-conversion) in a radio transmitting section (not shown) and transmitted via an antenna.
  • base station (NB) 200 As shown in FIG. 3 , base station (NB) 200 according to the present embodiment is provided with FFT section 210 , power measuring section 220 , adaptive FFR (Fractional Frequency Reuse) processing section 230 , scheduler 240 and IFFT section 250 .
  • FFT section 210 FFT section 210
  • power measuring section 220 adaptive FFR (Fractional Frequency Reuse) processing section 230
  • scheduler 240 IFFT section 250 .
  • FFT section 210 received as input an OFDM signal received via an antenna, and performs a Fourier transform of the input signal.
  • the received signal subjected to a Fourier transform is outputted to power measuring section 220 .
  • the input OFDM signal is acquired by performing predetermined radio receiving processing (such as down-conversion and A/D conversion) of a radio reception signal in a radio reception processing section (not shown).
  • Power measuring section 220 measures the power in a predetermined radio resource on which the above interference report signal is superimposed.
  • This predetermined radio resource is shared by wireless terminals 100 that exist in cells (adjacent cells) adjacent to the cell of base station 200 (i.e. the subject cell). Therefore, this predetermined radio resource may be referred to as a “shared radio resource.”
  • Adaptive FFR processing section 230 controls adaptive FFR processing based on interference reports transmitted from wireless terminals 100 .
  • Adaptive FFR processing section 230 compares the measured power value of the shared radio resource, which was measured in power measuring section 220 , and a mode change decision threshold, and changes the transmission mode based on this comparison result. Further, if the measured power value of the shared radio resource is greater than the mode change decision threshold, adaptive FFR processing section 230 decides that interference from other cells to the adjacent cells is large, and changes the transmission mode to reduce the interference given from the subject cell to the adjacent cells.
  • adaptive FFR processing section 230 changes the transmission mode to the mode of the next higher number than the currently set mode. That is, adaptive FFR processing section 230 changes the reuse factor to the next lower reuse factor than the currently set reuse factor.
  • Scheduler 240 changes the allocation of downlink resources to support wireless terminal 100 in the subject cell after the mode is changed. Scheduler 240 forms a downlink transmission signal sequence according to that allocation.
  • IFFT section 250 receives as input the transmission signal sequence formed in scheduler 240 and a pilot signal, and forms an OFDM signal by performing an inverse Fourier transform of the input signal.
  • This OFDM signal is subjected to predetermined radio transmission processing (such as D/A conversion and up-conversion) in a radio transmitting section (not shown) and transmitted via an antenna.
  • the cell of one base station 200 is surrounded by adjacent cells, and other base stations 200 are provided in adjacent cell, respectively.
  • base station 200 in cell A is represented as NB-A
  • base station 200 in cell B is represented as NB-B
  • base station 200 in cell C is represented as NB-C.
  • cell A there are wireless terminals 100 represented as UE-A, UE-B and UE-C.
  • cell B there are UE-D, UE-E and UE-F
  • UE-G, UE-H and UE-I there are wireless terminals 100 represented as UE-A, UE-B and UE-C.
  • NB-A receives interference reports transmitted by a shared radio resource from UE-D, UE-E, UE-F, UE-G, UE-H and UE-I that are present in cells B and C adjacent to cell A.
  • one specific subcarrier is used as a shared radio resource (see FIG. 5 ).
  • interference reports are not always superimposed on that subcarrier. Instead, the interference reports are superimposed only on part of a frame (e.g. one specific symbol in the frame) (see FIG. 6 ).
  • NB-A receives interference reports transmitted by the shared radio resource, from UE-A, UE-B and UE-C that are present in the subject cell.
  • NB-A receives interference reports transmitted by a shared radio resource from the UE's that are present in the subject cell and adjacent cells.
  • NB-B and NB-C each receive interference reports transmitted by the shared radio resource from the UE's that are present in the subject cell and adjacent cells.
  • power measuring sections 220 in NB-A, NB-B and NB-C each measure the receiving power of interference reports transmitted by the shared radio resource. That is, the combined receiving power combining the receiving powers of interference reports transmitted by the shared radio resource from the UE's that are present in the subject cell and adjacent cells, is measured.
  • adaptive FFR processing sections 230 in NB-A NB-B and NB-C control adaptive FFR processing based on the respective combined receiving powers.
  • this figure shows the case of cell A.
  • NB-A transmits a reference signal (“RS”) and data to UE's that are present in cell A.
  • This transmission signal is an interference signal for other UE's.
  • UE's that are present in cell A and adjacent cells transmit interference reports generated in interference report generating sections 130 , using a shared radio resource.
  • adaptive FFR processing section 230 decides that interference given from other cells is large in adjacent cells, and changes the transmission mode to reduce the interference given from the subject cell to the adjacent cells. In this case, the mode number is increased by one stage.
  • scheduler 240 of NB-A transmits an RS and data after changing the allocation of downlink resources to support wireless terminals 100 in the subject cell. Afterward, the UE's that are present in cell A and adjacent cells transmit interference reports generated in interference report generating sections 130 , using the shared radio resource.
  • the transmission mode number is further increased by one stage.
  • the combined receiving power of the shared radio resource shown in the right part of FIG. 9 is measured in power measuring section 220 of NB-A, the combined receiving power is less than the mode change decision threshold.
  • adaptive FFR processing section 230 performs processing for lowering the transmission mode by one stage.
  • a radio receiving section (not shown) and FFT section 210 which are interference report receiving sections, receive interference reports transmitted by a shared radio resource that is shared between adjacent cells, from a plurality of wireless terminals 100 that are present in respective adjacent cells, and adaptive FFR processing section 230 controls adaptive FFR processing in downlink in the subject cell based on the received interference reports.
  • one symbol i.e. one specific timing of one specific carrier
  • one symbol is used regardless of the number of wireless terminals 100 that are present in the subject cell and adjacent cells.
  • the transmission mode is changed one by one based on the comparison result between the combined receiving power of interference reports and a mode change decision threshold.
  • the following processing may be performed.
  • two thresholds of a mode-up change threshold and a mode-down change threshold of a smaller value than the mode-up change threshold are provided. Further, if the combined receiving power is greater than the mode-up change threshold, the transmission mode is improved by one stage. Also, if the combined receiving power is less than the mode-down change threshold, the transmission mode is lowered by one stage. Also, if the combined receiving power is between the two thresholds, the current transmission mode is maintained.
  • Embodiment 1 one carrier is used as a shared radio resource.
  • a plurality of carriers are used as a shared radio resource.
  • wireless terminal 300 is provided with interference level selecting section 310 , interference report signal generating section 320 , carrier selecting section 330 and mapping section 340 .
  • Interference level selecting section 310 stores interference levels based on interference power values. For example, the interference level is 4 in the region where the received SIR is equal to or less than ⁇ 6 dB, the interference level is 3 in the region where the received SIR is between ⁇ 6 dB and ⁇ 3 dB, the interference level is 2 in the region where the received SIR is between ⁇ 3 dB and 0 dB, and the interference level is 1 in the region where the received SIR is greater than 0 dB.
  • Interference level selecting section 310 selects the interference level to match an interference power measurement value received from interference power measuring section 120 .
  • the selected interference level is outputted to interference report signal generating section 320 and carrier selecting section 330 .
  • Interference report signal generating section 320 generates an interference report signal according to the input interference level received as input from interference level selecting section 310 .
  • Carrier selecting section selects a carrier to match the input interference level from a plurality of carriers forming the shared radio resource.
  • Mapping section 340 maps an interference report signal acquired via modulating section 140 , on the carrier selected in carrier selecting section 330 .
  • base station 400 has power measuring section 410 and adaptive FFR processing section 420 .
  • Power measuring section 410 measures the power of a predetermined radio resource on which an interference report signal is superimposed.
  • Power measuring section 410 has carrier power measuring sections 411 - 1 to 411 -n respectively associated with n carriers forming the shared radio resource. The figure shows a case where n is 3.
  • Carrier power measuring sections 411 measure the powers of the corresponding carriers and output the measurement results to adaptive FFR processing section 420 .
  • Adaptive FFR processing section 420 has interference level deciding section 421 and mode selecting section 422 .
  • Adaptive FFR processing section 420 switches the transmission mode to the transmission mode to match a carrier having the power measurement result received from power measuring section 410 in a predetermined period greater than a predetermined threshold.
  • interference level deciding section 421 compares the power measurement results received from carrier power measuring sections 411 and an interference evaluation decision threshold, and outputs, to mode selecting section 422 , carrier identification information indicating the carrier having the power measurement result greater than the interference evaluation decision threshold. Further, mode selecting section 422 selects the transmission mode to match the carrier identification information received from interference level deciding section 421 .
  • NB-A receives interference reports transmitted by a shared radio resource from the US's that are present in the subject cell and adjacent cells.
  • the shared radio resource includes a plurality of carriers.
  • a UE selects a carrier to match downlink received quality (e.g. received SIR) from the plurality of carriers, and transmits an interference report using the selected carrier. Also, the present embodiment does not provide a carrier to match the transmission mode selected in the case of the best received quality.
  • downlink received quality e.g. received SIR
  • interference reports from UE's are received in, for example, NB-A, in the power distributions shown in FIG. 12 .
  • NB-A changes the transmission mode based on a carrier having the power measurement value of the carrier greater than an interference evaluation decision threshold.
  • This transmission mode can be changed by the following methods.
  • the transmission mode is changed to the transmission mode to match the carrier of the lowest downlink received quality among the carriers having the power measurement values greater than an interference evaluation decision threshold.
  • the transmission mode is changed to the transmission mode to match the carrier of the highest power measurement value among the carriers having the power measurement values greater than an interference evaluation decision threshold.
  • the transmission mode selected in the case of the best received quality (e.g. mode 1 in FIG. 12 ) is selected when the power measurement values of the carriers to match other transmission modes than that transmission mode are all lower than an interference evaluation decision threshold.
  • mode 4 is selected in the first method and mode 2 is selected in the second method.
  • mode 3 is selected in both the first method and the second method.
  • carrier selecting section 330 selects a carrier based on a received SIR from a shared radio resource, and mapping section 340 maps an interference report signal on the selected carrier.
  • the receiving side of interference report signals specifies the carrier on which interference report signals are superimposed, so that it is possible to understand the interference level in wireless terminals 300 that transmit the interference report signals.
  • a base station which is the receiving side of interference report signals, receives interference report signals from wireless terminals 300 that are present in the subject cell and adjacent cells, so that it is possible to understand the interference level distributions in the subject cell and adjacent cells.
  • adaptive FFR processing section 420 switches the transmission mode to the transmission mode to match the carrier used to transmit a plurality of interference reports received in the same period.
  • Embodiment 1 that switches the transmission mode in a stepwise manner, the transmission mode is directly changed to the transmission mode to match the carrier on which interference reports are superimposed, so that it is possible to switch the transmission mode to an adequate transmission mode fast.
  • the transmission mode is changed in a stepwise manner based on a comparison result between the measured power value of a shared radio resource and a mode change decision threshold.
  • the present embodiment associates transmission modes and the power value ranges in advance, and changes the transmission mode directly to the transmission mode associated with a power value range to which a measured power value belongs.
  • base station 500 As shown in FIG. 14 , base station 500 according to the present embodiment has adaptive FFR processing section 510 .
  • Adaptive FFR processing section 510 changes the transmission mode to the transmission mode associated with the measured power value of the shared radio resource.
  • Adaptive FFR processing section 510 holds in advance the mode change decision thresholds that are the boundaries of adjacent transmission modes and that are used for mode change decision. Further, adaptive FFR processing section 510 specifies two mode change decision thresholds that sandwich the measured power value of the shared radio resource, and selects the transmission mode associated with the range defined by these two mode change decision thresholds. Further, adaptive FFR processing section 510 directly changes the transmission mode from the current transmission mode to this selected transmission mode.
  • adaptive FFR processing section 510 holds mode change decision thresholds Th 1 to Th 3 . Further, if the measured power value shown in FIG. 15 is acquired, the transmission mode is changed to mode 3 defined by mode decision thresholds Th 2 and Th 3 .
  • adaptive FFR processing section 510 associates transmission modes and power value ranges in advance, and directly changes the transmission mode to the transmission mode associated with the power value range to which the combined receiving power value belongs.
  • Embodiment 1 that changes the transmission mode in a stepwise manner, the transmission mode is directly changed to the transmission mode associated with the power value range to which the combined receiving power belongs, so that it is possible to change the transmission mode to an adequate transmission mode fast.
  • a time average section that averages the receiving power in the time domain is provided in the configuration of the base station of Embodiment 3.
  • base station 600 of the present embodiment provides time average section 610 between FFT section 210 and power measuring section 220 .
  • Time average section 610 averages the power of an input signal for power measuring section 220 in the time domain.
  • the receiving power levels of reference reports transmitted from UE's vary. Further, interference report signals weaken or strengthen each other, and therefore the power of the shared radio resource is likely to fluctuate (Rayleigh distribution). Consequently, if the fluctuation is significant, there is a possibility that the transmission mode (reuse factor) is not selected adequately.
  • the power of an input signal to power measuring section 220 is averaged in the time domain to remove the influence of power fluctuation in a shared radio resource to reuse factor selection.
  • the distribution of signal powers becomes low, so that it is possible to reduce power fluctuation in the shared radio resource and, as a result, select the reuse factor adequately.
  • interference reports transmitted from wireless terminals that are present in the subject cell are also used as a criterion for deciding the mode change. That is, the transmission mode is determined taking into account the influence of interference given to UE's in the subject cell.
  • the present embodiment shows a transmission mode change method where interference reports from wireless terminals that are present in the subject cell are excluded from criteria for deciding a mode change. Especially, an example case will be explained where that method is applied to Embodiment 3.
  • wireless terminal 700 of the present embodiment has transmission stop timing signal detecting section 710 and timing adjusting section 720 .
  • Transmission stop timing signal detecting section 710 detects a transmission stop timing signal included in a signal received via FFT section 110 . Further, transmission stop timing signal detecting section 710 detects a transmission stop timing signal transmitted from the base station of the cell in which wireless terminal 700 locates.
  • Timing adjusting section 720 adjusts the transmission timing of an interference report based on the transmission stop timing signal detected in transmission stop timing signal detecting section 710 .
  • base station 800 of the present embodiment has transmission stop timing signal generating section 810 .
  • Transmission stop timing signal generating section 810 generates a transmission stop timing signal for controlling interference reports of wireless terminals 700 in the subject cell not to be transmitted during the transmission period of interference reports in adjacent cells. This transmission stop timing signal is transmitted to wireless terminals 700 that are present in the subject cell.
  • NB-A, NB-B and NB-C each transmit an RS and data to UE's.
  • UE's that are present in cells A, B and C measure the SIR's.
  • NB-A performs processing for changing the transmission mode based on interference reports from UE's that are present in adjacent cells.
  • UE's that are present in cells B and C generate interference report signals based on the measured SIR's and transmit these interference report signals using the shared radio resource.
  • NB-A stops transmission of interference reports in the UE's that are present in cell A. That is, as shown in FIG. 20A , UE-A to UE-C that are present in cell A stop transmitting interference report signals at the timings when UE-D to UE-I (circled in the figure) that are present in cells B and C transmit interference report signals.
  • NB-A can receive only interference reports transmitted from adjacent cells (see the left part of FIG. 21 ).
  • NB-A determines the reuse factor based on the interference reports transmitted from adjacent cells and changes the reuse factor to this determined reuse factor.
  • NB-A changes downlink allocation and thereupon transmits an RS and data to UE's.
  • NB-B and NB-C also transmit an RS and data to UE's.
  • the UE's that are present in cells A, B and C each measure the SIR.
  • NB-B performs processing for changing the transmission mode based on interference reports from the UE's that are present in adjacent cells.
  • NB-B performs processing for changing the transmission mode, and therefore transmission of interference reports in the UE's that are present in cell B is stopped. That is, as shown in FIG. 20B , UE-D to UE-F stop transmitting interference report signals at the timings when UE-A to UE-C and UE-E to UE-I (circled in the figure) that are present in cells A and C transmit interference report signals.
  • NB-B can receive only interference reports transmitted from adjacent cells (see the central part of FIG. 21 ).
  • NB-C can also receive interference reports transmitted from adjacent cells (see the right part of FIG. 21 ).
  • a plurality of contiguous base stations each stop transmission of interference reports in the subject cell in order, so that each base station can acquire only interference reports of adjacent cells in the stop period of the subject cell.
  • transmission stop timing signal generating section 810 transmits a transmission stop timing signal for stopping transmission of interference reports in wireless terminals in the subject cell during the transmission period where a plurality of wireless terminals in adjacent cells stop transmitting interference reports.
  • base station 800 can select the transmission mode based on only interference reports from adjacent cells excluding interference reports from the subject cell, so that it is possible to change the transmission more adequately.
  • Embodiment 5 by sequentially stopping transmission of interference reports in UE's between adjacent cells, the transmission mode is changed based on only interference reports transmitted from adjacent cells.
  • the wireless terminals based on a downlink signal transmitted from a base station of the cell in which transmission of interference reports in wireless terminals is stopped, the wireless terminals measure the downlink path loss to that base station. Further, wireless terminals that are present in adjacent cells to the base station, control transmission power based on the path loss and then transmit interference reports.
  • wireless terminal 900 of the present embodiment has path loss measuring section 910 , transmission power setting section 920 and amplifying section 930 .
  • Transmission power setting section 920 controls transmission power based on the measured path loss values to match adjacent cells to a cell in which the subject wireless terminal is present. Transmission power setting section 920 sets the amplification factor of amplifying section 930 based on the measured path loss values to match the adjacent cells to the cell in which the subject terminal is present.
  • Amplifying section 930 amplifies interference reports at the amplification factor set in transmission power setting section 920 .
  • the receiving power levels of reference reports transmitted from UE's vary. Further, interference report signals weaken or strengthen each other, and therefore the power of the shared radio resource is likely to fluctuate (Rayleigh distribution). Consequently, if the fluctuation is significant, the transmission mode (reuse factor) may not be selected adequately.
  • wireless terminal 900 controls transmission power based on measured path loss values to match adjacent cells to a cell in which the subject wireless terminal is present.
  • the average receiving power of interference report signals in a base station is fixed, so that it is possible to reduce the fluctuation of the combined receiving power of interference report signals in the shared radio resource. This is based on the fact that, when the average receiving power is fixed in transmission diversity of equal gain combination and the number of transmission antennas increases, distribution is reduced. In view of the above, in a base station, it is possible to select the reuse factor adequately.
  • the present embodiment shows a transmission mode change method where interference reports from wireless terminals that are present in the subject cell are excluded from criteria for deciding a mode change.
  • interference reports are transmitted by different carriers between cells. By this means, it is possible to change the transmission mode based on only interference reports transmitted from adjacent cells.
  • wireless terminal 1000 of the present embodiment has carrier report signal detecting section 1010 and mapping section 1020 .
  • Carrier report signal detecting section 1010 detects a carrier report signal included in a signal received via FFT section 110 .
  • This detected carrier report signal refers to a signal transmitted from the base station of the cell in which the subject wireless terminal is present, and indicates a carrier used for transmitting interference reports in wireless terminals 1000 that are present in that cell, among a plurality of carriers forming a shared radio resource.
  • Mapping section 1020 maps an interference report signal on the carrier indicated by the carrier report signal detected in carrier communication signal detecting section 1010 .
  • base station 1100 of the present embodiment has adaptive FFR processing section 1110 and carrier report signal generating section 1120 .
  • Adaptive FFR processing section 1110 adds all measured power values in carriers associated with adjacent cells, among the plurality of carriers forming the shared radio resource. Further, adaptive FFR processing section 1110 changes the transmission mode based on the addition result.
  • Carrier report signal generating section 1120 generates a carrier report signal indicating a carrier that should be used by wireless terminals 1000 that are present in the cell covered by base station 1100 , among the plurality of carriers forming the shared radio resource.
  • FIG. 25 shows examples of power distributions observed in NB-A in the case where the wireless communication system is in the condition shown in FIG. 4 .
  • carrier 1 is used in cell A
  • carriers 2 and 3 are used in cells B and C, respectively. Therefore, NB-A changes the transmission mode based on the added power value adding the combined receiving powers observed in carriers 2 and 3 .
  • the transmission mode is determined based on only interference given from the subject cell to adjacent cells, so that it is possible to change the transmission mode more adequately.
  • adaptive FFR processing section 1110 changes the transmission mode based on the combined receiving powers combining receiving powers of interference reports in carriers to match adjacent cells. Also, the carriers used for transmitting interference reports vary between adjacent cells.
  • base station 1100 can change the transmission mode based on only interference reports from adjacent cells excluding interference reports from the subject cell, so that it is possible to change the transmission mode more adequately.
  • the present embodiment shows a transmission mode change method where interference reports from wireless terminals that are present in the subject cell are excluded from criteria for deciding a mode change.
  • a wireless terminal controls an antenna directivity such that the direction of low transmission power (i.e. the null direction) is directed toward the base station of the cell in which the wireless terminal is present, and the wireless terminal transmits an interference report.
  • wireless terminal 1200 of the present embodiment has directivity formation calculating section 1210 and directivity control section 1220 .
  • Directivity formation calculating section 1210 calculates a directional weight coefficient so that the null direction is directed toward the base station of the cell in which the wireless terminal is present.
  • directivity formation calculating section 1210 specifies the received directional weight coefficient in the case of the best received quality of a signal transmitted from the base station of the cell in which the wireless terminal is present.
  • This specified, received directional weight coefficient is the weight coefficient in the case where directivity is formed against the base station of the cell in which the subject wireless terminal is present, and where the null direction is directed opposite to the base station.
  • directivity formation calculating section 1210 calculates a directional weight coefficient so that the null direction is directed toward the base station of the cell in which the wireless terminal is present.
  • Directivity control section 1220 controls the antenna directivity using the directional weight coefficient calculated in directivity formation calculating section 1210 , and transmits an interference report signal that is received via IFFT section 160 .
  • Each wireless terminal 1200 in each cell in the wireless communication system controls the antenna directivity so that the null direction is directed toward the base station of the cell in which the subject wireless terminal is present, and therefore the wireless communication system is in the condition shown in FIG. 27 .
  • each of the base stations in the wireless communication system the combined receiving powers excluding interference reports transmitted from wireless terminals 1200 in the subject cell are observed.
  • base stations having the same configuration as base station 500 explained in Embodiment 3.
  • directivity formation calculating section 1210 calculates a directional weight coefficient so that the null direction is directed toward the base station of the cell in which the subject wireless terminal is present, and directivity control section 1220 controls the antenna directivity using the directional weight coefficient calculated in directivity formation calculating section 1210 and transmits an interference report signal.
  • a base station can select the transmission mode based on only interference reports from adjacent cells excluding interference reports from the subject cell, so that it is possible to change the transmission mode more adequately.
  • the present embodiment shows a transmission mode change method where interference reports from wireless terminals that are present in the subject cell are excluded from criteria for deciding a mode change.
  • interference reports spread using varying spreading codes between cells are transmitted. By this means, it is possible to change the transmission mode based on only interference reports transmitted from adjacent cells.
  • wireless terminal 1300 of the present embodiment has spread sequence report signal detecting section 1310 and spreading section 1320 .
  • Spreading sequence report signal detecting section 1310 detects a spreading sequence report signal included in a signal received via FFT section 110 .
  • This detected spreading sequence report signal is the signal transmitted from the base station of the cell in which the subject wireless terminal is present, and represents the spreading sequence used by wireless terminals 1000 that are present in that cell.
  • Spreading section 1320 spreads an interference signal using the spreading sequence detected in spreading sequence report signal detecting section 1310 .
  • base station 1400 of the present embodiment has despreading section 1410 , combining section 1420 and spreading sequence report signal generating section 1430 .
  • Despreading section 1410 has m despreading sections 1411 associated with adjacent cells, respectively. Here, different spreading sequences are allocated to m adjacent cells.
  • Despreading sections 1411 despread signals received via FFT section 210 , using spreading sequences allocated to the associated adjacent cells.
  • Combining section 1420 combines in power the signals subjected to despreading in despreading sections 1411 , and outputs the combined signal to power measuring section 220 .
  • Power measuring section 220 measures the power of this combined signal.
  • Spreading sequence report signal generating section 1430 generates a spreading sequence report signal representing a spreading sequence allocated to the subject cell. This spreading sequence report signal is transmitted via IFFT section 250 .
  • each embodiment as a shared radio resource, it is possible to use a carrier comprised of direct-current components (i.e. DC carrier) among the subcarriers used in OFDM communication.
  • DC carrier direct-current components
  • the wireless communication system, wireless base station apparatus and transmission control method are effective for shortening the time it takes to improve inter-cell interference and improving the system throughput.

Abstract

It is possible to provide a transmission control method, a radio communication system, and a radio base station device which can reduce the time required until an inter-cell interference is reduced so as to improve the system throughput. A base station (200) includes: an FFT unit (210) which receives an interference report transmitted by using a common radio resource common to adjacent cells from a plurality of radio terminals (100) existing in different adjacent cells; and an adaptive FFR processing unit (230) which controls adaptive FFR processing in a downstream line of the local cell according to the reception interference report. Thus, by receiving an interference report directly from the radio terminals (100) existing in adjacent cells, it is possible to modify the transmission mode by considering the interference state in the adjacent cells. This eliminates the need of sending a report on a transmission mode modification which has been conventionally sent between adjacent base stations (200). This reduces the signaling required in the system, which improves the system throughput.

Description

    TECHNICAL FIELD
  • The present invention relates to a transmission control method, wireless communication system and wireless base station apparatus. In particular, the present invention relates to a transmission control method, wireless communication system and wireless base station apparatus adopting adaptive FFR (Fractional Frequency Reuse).
  • BACKGROUND ART
  • As a technique for improving throughput degradation due to inter-cell interference, adaptive FFR is proposed. In the adaptive FFR, a transmission use band is divided into the high power transmission band and the low power transmission band. In the low transmission band, transmission power is variable in a stepwise manner, and the mode to support each stage is provided (see FIG. 1).
  • In a wireless communication system adopting this adaptive FFR, a base station (NB) selects a mode based on an interference report transmitted from a wireless terminal (UE), sets the transmission power associated with this selected mode and then performs downlink transmission. Afterward, it is reported to an adjacent NB that the mode was changed, and, in response to this, the adjacent NB changes the mode. Here, increasing the mode number is equivalent to lowering a reuse factor.
  • Thus, it is possible to remove interference between adjacent cells and improve throughput.
  • Non-Patent Document 1: LTE contribution [3GPP TSG-RAN WG1 R1-071449 (Nortel)]
  • DISCLOSURE OF INVENTION Problems to be Solved by the Invention
  • However, upon changing modes, the mode over adjacent cells is not changed until a mode change report is communicated between base stations, and, consequently, delay may occur until inter-cell interference is improved. Here, there arises a problem that this delay due to communication between base stations degrades the system throughput.
  • It is therefore an object of the present invention to provide a wireless communication system, wireless base station apparatus and transmission control method for shortening the time it takes to improve inter-cell interference and improving the system throughput.
  • Means for Solving the Problem
  • The wireless communication system of the present invention including a plurality of wireless base stations provided in a target cell and a plurality of adjacent cells that are adjacent to the target cell, and a plurality of wireless terminals that are present in the cells, where: the plurality of terminals that are present in the plurality of adjacent cells transmit interference reports using a shared radio resource that is shared between the plurality of adjacent cells; and the wireless base station of the target cell employs a configuration having: an interference report receiving section that receives the interference reports transmitted by the shared radio resource from the plurality of wireless terminals that are present in the plurality of adjacent cells; and an adaptive fractional frequency reuse control section that controls adaptive fractional frequency reuse processing in downlink of the target cell, based on the received interference reports.
  • The wireless base station apparatus of the present invention employs a configuration having: an interference report receiving section that receives interference reports transmitted by a shared radio resource from a plurality of wireless terminals that are present in a plurality of adjacent cells that are adjacent to a target cell, the shared radio resource being shared between the plurality of adjacent cells; and an adaptive fractional frequency reuse control section that controls adaptive fractional frequency reuse processing in downlink of the target cell, based on the received interference reports.
  • The transmission control method of the present invention includes: an interference report receiving step of receiving interference reports transmitted by a shared radio resource from wireless terminals that are present in the adjacent cells that are adjacent to a target cell, the shared radio resource being shared between adjacent cells; and a controlling step of controlling adaptive fractional frequency reuse processing in the target cell, based on the interference reports.
  • Advantageous Effect of the Invention
  • According to the present invention, it is possible to provide a wireless communication system, wireless base station apparatus and transmission control method for shortening the time it takes to improve inter-cell interference and improving the system throughput.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 illustrates adaptive FFR (Fractional Frequency Reuse);
  • FIG. 2 is a block diagram showing the configuration of a wireless terminal (UE) according to Embodiment 1 of the present invention;
  • FIG. 3 is a block diagram showing the configuration of a base station (NB) according to Embodiment 1;
  • FIG. 4 illustrates a wireless communication system according to Embodiment 1;
  • FIG. 5 illustrates a shared radio resource according to Embodiment 1;
  • FIG. 6 illustrates a shared radio resource according to Embodiment 1;
  • FIG. 7 illustrates interference report transmission from a wireless terminal to a base station according to Embodiment 1;
  • FIG. 8 illustrates the receiving condition of interference reports in base stations according to Embodiment 1;
  • FIG. 9 illustrates adaptive FFR processing in the base station of FIG. 3;
  • FIG. 10 is a block diagram showing the configuration of a wireless terminal according to Embodiment 2;
  • FIG. 11 is a block diagram showing the configuration of a base station according to Embodiment 2;
  • FIG. 12 illustrates the receiving condition of interference reports in base stations according to Embodiment 2;
  • FIG. 13 illustrates the receiving condition of interference reports in base stations according to Embodiment 2;
  • FIG. 14 is a block diagram showing the configuration of a base station according to Embodiment 3;
  • FIG. 15 illustrates adaptive FFR processing in the base station of FIG. 14;
  • FIG. 16 is a block diagram showing the configuration of a base station according to Embodiment 4;
  • FIG. 17 is a block diagram showing the configuration of a wireless terminal according to Embodiment 5;
  • FIG. 18 is a block diagram showing the configuration of a base station according to Embodiment 5;
  • FIG. 19 illustrates the operations in a wireless communication system according to Embodiment 5;
  • FIG. 20 illustrates the operations in a wireless communication system according to Embodiment 5;
  • FIG. 21 illustrates the receiving condition of interference reports in base stations according to Embodiment 5;
  • FIG. 22 is a block diagram showing the configuration of a wireless terminal according to Embodiment 6;
  • FIG. 23 is a block diagram showing the configuration of a wireless terminal according to Embodiment 7;
  • FIG. 24 is a block diagram showing the configuration of a base station according to Embodiment 7;
  • FIG. 25 illustrates the receiving condition of interference reports in base stations according to Embodiment 7;
  • FIG. 26 is a block diagram showing the configuration of a wireless terminal according to Embodiment 8;
  • FIG. 27 illustrates an antenna directivity formed by the wireless terminal of FIG. 26;
  • FIG. 28 illustrates the receiving condition of interference reports in base stations according to Embodiment 8;
  • FIG. 29 is a block diagram showing the configuration of a wireless terminal according to Embodiment 9; and
  • FIG. 30 is a block diagram showing the configuration of a base station according to Embodiment 9.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • Embodiments of the present invention will be explained below in detail with reference to the accompanying drawings. Also, in the embodiments, the same components will be assigned the same reference numerals and their explanation will be omitted.
  • Embodiment 1
  • As shown in FIG. 2, wireless terminal (UE) 100 according to the present embodiment is provided with FFT section 110, interference power measuring section 120, interference report generating section 130, modulating section, mapping section 150 and IFFT section 160.
  • FFT section 110 receives as input an OFDM signal received via an antenna, and performs a Fourier transform of this input signal. The signal subjected to a Fourier transform is outputted to interference power measuring section 120. Here, the input OFDM signal is acquired by performing predetermined radio receiving processing (such as down-conversion and AID conversion) of a radio reception signal in a radio reception processing section (not shown).
  • Interference power measuring section 120 measures the power (interference power) of interference signals other than the receiving target signals (i.e. desired signals), using the received signal subjected to a Fourier transform. Further, interference power measuring section 120 outputs the interference power measurement value to interference report generating section 130.
  • Interference report generating section 130 generates an interference report signal corresponding to the interference power measurement value received from interference power measuring section 120. Further, if the interference power measurement value is greater than a report generation decision threshold, interference report generating section 130 decides that there is interference, and generates an interference report signal. For example, if it is decided that there is interference, a one-bit signal representing bit “1” is generated as an interference report signal. By contrast, if it is decided that there is no interference, a one-bit signal representing bit “0” is generated as an interference report signal.
  • Modulating section 140 modulates an interference report signal generated in interference report generating section 130, and outputs the modulated interference report signal to mapping section 150.
  • Mapping section 150 maps the interference report signal received from modulating section 140 on a predetermined “radio resource.”
  • Here, the “radio resource” is defined by a carrier, timing and spreading code.
  • IFFT section 160 forms an OFDM signal by transforming a signal sequence on which an interference report is mapped, from the frequency domain into the time domain. This OFDM signal is subjected to predetermined radio transmission processing (such as D/A conversion and up-conversion) in a radio transmitting section (not shown) and transmitted via an antenna.
  • As shown in FIG. 3, base station (NB) 200 according to the present embodiment is provided with FFT section 210, power measuring section 220, adaptive FFR (Fractional Frequency Reuse) processing section 230, scheduler 240 and IFFT section 250.
  • FFT section 210 received as input an OFDM signal received via an antenna, and performs a Fourier transform of the input signal. The received signal subjected to a Fourier transform is outputted to power measuring section 220. Here, the input OFDM signal is acquired by performing predetermined radio receiving processing (such as down-conversion and A/D conversion) of a radio reception signal in a radio reception processing section (not shown).
  • Power measuring section 220 measures the power in a predetermined radio resource on which the above interference report signal is superimposed. This predetermined radio resource is shared by wireless terminals 100 that exist in cells (adjacent cells) adjacent to the cell of base station 200 (i.e. the subject cell). Therefore, this predetermined radio resource may be referred to as a “shared radio resource.”
  • Also, with the present embodiment, even wireless terminals 100 that exist in the subject cell use this “shared radio resource.”
  • Adaptive FFR processing section 230 controls adaptive FFR processing based on interference reports transmitted from wireless terminals 100.
  • Adaptive FFR processing section 230 compares the measured power value of the shared radio resource, which was measured in power measuring section 220, and a mode change decision threshold, and changes the transmission mode based on this comparison result. Further, if the measured power value of the shared radio resource is greater than the mode change decision threshold, adaptive FFR processing section 230 decides that interference from other cells to the adjacent cells is large, and changes the transmission mode to reduce the interference given from the subject cell to the adjacent cells.
  • For example, in the transmission mode explained in the background art, when the mode number increases, the transmission power in the low power transmission band is set lower. That is, when the mode number increases, the reuse factor is set lower. When such a transmission mode is provided in base station 200, adaptive FFR processing section 230 changes the transmission mode to the mode of the next higher number than the currently set mode. That is, adaptive FFR processing section 230 changes the reuse factor to the next lower reuse factor than the currently set reuse factor.
  • Scheduler 240 changes the allocation of downlink resources to support wireless terminal 100 in the subject cell after the mode is changed. Scheduler 240 forms a downlink transmission signal sequence according to that allocation.
  • IFFT section 250 receives as input the transmission signal sequence formed in scheduler 240 and a pilot signal, and forms an OFDM signal by performing an inverse Fourier transform of the input signal. This OFDM signal is subjected to predetermined radio transmission processing (such as D/A conversion and up-conversion) in a radio transmitting section (not shown) and transmitted via an antenna.
  • Next, a wireless communication system formed with wireless terminals 100 and base stations 200 having the above configurations, will be explained.
  • As shown in FIG. 4, in a wireless communication system, the cell of one base station 200 is surrounded by adjacent cells, and other base stations 200 are provided in adjacent cell, respectively. In the figure, base station 200 in cell A is represented as NB-A, and, similarly, base station 200 in cell B is represented as NB-B, and base station 200 in cell C is represented as NB-C. In cell A, there are wireless terminals 100 represented as UE-A, UE-B and UE-C. In cell B, there are UE-D, UE-E and UE-F, and, in cell C, there are UE-G, UE-H and UE-I.
  • NB-A receives interference reports transmitted by a shared radio resource from UE-D, UE-E, UE-F, UE-G, UE-H and UE-I that are present in cells B and C adjacent to cell A. With the present embodiment, one specific subcarrier is used as a shared radio resource (see FIG. 5). Further, interference reports are not always superimposed on that subcarrier. Instead, the interference reports are superimposed only on part of a frame (e.g. one specific symbol in the frame) (see FIG. 6). Also, with the present embodiment, NB-A receives interference reports transmitted by the shared radio resource, from UE-A, UE-B and UE-C that are present in the subject cell.
  • That is, as shown in FIG. 7, NB-A receives interference reports transmitted by a shared radio resource from the UE's that are present in the subject cell and adjacent cells. Similarly, NB-B and NB-C each receive interference reports transmitted by the shared radio resource from the UE's that are present in the subject cell and adjacent cells.
  • As shown in FIG. 8, power measuring sections 220 in NB-A, NB-B and NB-C each measure the receiving power of interference reports transmitted by the shared radio resource. That is, the combined receiving power combining the receiving powers of interference reports transmitted by the shared radio resource from the UE's that are present in the subject cell and adjacent cells, is measured.
  • Further, as shown in FIG. 9, adaptive FFR processing sections 230 in NB-A NB-B and NB-C control adaptive FFR processing based on the respective combined receiving powers. Here, this figure shows the case of cell A.
  • First, NB-A transmits a reference signal (“RS”) and data to UE's that are present in cell A. This transmission signal is an interference signal for other UE's. UE's that are present in cell A and adjacent cells transmit interference reports generated in interference report generating sections 130, using a shared radio resource.
  • In this case, if the combined receiving power of the shared radio resource shown in the left part of FIG. 9 is measured in power measuring section 220 of NB-A, the combined receiving power is beyond the mode change decision threshold. Therefore, adaptive FFR processing section 230 decides that interference given from other cells is large in adjacent cells, and changes the transmission mode to reduce the interference given from the subject cell to the adjacent cells. In this case, the mode number is increased by one stage.
  • After this transmission mode change, scheduler 240 of NB-A transmits an RS and data after changing the allocation of downlink resources to support wireless terminals 100 in the subject cell. Afterward, the UE's that are present in cell A and adjacent cells transmit interference reports generated in interference report generating sections 130, using the shared radio resource.
  • If the combined receiving power of the shared radio resource shown in the central part of FIG. 9 is measured in power measuring section 220 of NB-A, the combined receiving power is still beyond the mode change decision threshold. Therefore, the transmission mode number is further increased by one stage.
  • After this transmission mode change, an RS and data are transmitted again, and, furthermore, interference reports are transmitted.
  • If the combined receiving power of the shared radio resource shown in the right part of FIG. 9 is measured in power measuring section 220 of NB-A, the combined receiving power is less than the mode change decision threshold. In this case, if there are modes of lower numbers than the number of the current transmission mode, adaptive FFR processing section 230 performs processing for lowering the transmission mode by one stage.
  • Thus, according to the present embodiment, in base station 200, a radio receiving section (not shown) and FFT section 210, which are interference report receiving sections, receive interference reports transmitted by a shared radio resource that is shared between adjacent cells, from a plurality of wireless terminals 100 that are present in respective adjacent cells, and adaptive FFR processing section 230 controls adaptive FFR processing in downlink in the subject cell based on the received interference reports.
  • Thus, by receiving interference reports directly from wireless terminals 100 that are present in adjacent cells, it is possible to change the transmission mode taking into account the interference states in adjacent cells. Therefore, a transmission mode change between adjacent base stations 200, which is performed in the prior art, needs not be reported. As a result, the signaling required in the system is reduced, so that it is possible to improve the system throughput.
  • Further, according to the present embodiment, as a shared radio resource, one symbol (i.e. one specific timing of one specific carrier) is used regardless of the number of wireless terminals 100 that are present in the subject cell and adjacent cells. By this means, it is possible to allocate many radio resources to transmission data other than control signals such as interference reports.
  • Also, according to the present embodiment, the transmission mode is changed one by one based on the comparison result between the combined receiving power of interference reports and a mode change decision threshold.
  • By this means, even if interference reports are transmitted by one shared symbol in the subject cell and adjacent cells as above, it is possible to change the transmission mode adequately.
  • Also, instead of such transmission mode change processing, the following processing may be performed. First, two thresholds of a mode-up change threshold and a mode-down change threshold of a smaller value than the mode-up change threshold, are provided. Further, if the combined receiving power is greater than the mode-up change threshold, the transmission mode is improved by one stage. Also, if the combined receiving power is less than the mode-down change threshold, the transmission mode is lowered by one stage. Also, if the combined receiving power is between the two thresholds, the current transmission mode is maintained.
  • Embodiment 2
  • In Embodiment 1, one carrier is used as a shared radio resource. By contrast with this, with the present embodiment, a plurality of carriers are used as a shared radio resource.
  • As shown in FIG. 10, wireless terminal 300 is provided with interference level selecting section 310, interference report signal generating section 320, carrier selecting section 330 and mapping section 340.
  • Interference level selecting section 310 stores interference levels based on interference power values. For example, the interference level is 4 in the region where the received SIR is equal to or less than −6 dB, the interference level is 3 in the region where the received SIR is between −6 dB and −3 dB, the interference level is 2 in the region where the received SIR is between −3 dB and 0 dB, and the interference level is 1 in the region where the received SIR is greater than 0 dB.
  • Interference level selecting section 310 selects the interference level to match an interference power measurement value received from interference power measuring section 120. The selected interference level is outputted to interference report signal generating section 320 and carrier selecting section 330.
  • Interference report signal generating section 320 generates an interference report signal according to the input interference level received as input from interference level selecting section 310.
  • Carrier selecting section selects a carrier to match the input interference level from a plurality of carriers forming the shared radio resource.
  • Mapping section 340 maps an interference report signal acquired via modulating section 140, on the carrier selected in carrier selecting section 330.
  • As shown in FIG. 11, base station 400 has power measuring section 410 and adaptive FFR processing section 420.
  • Power measuring section 410 measures the power of a predetermined radio resource on which an interference report signal is superimposed. Power measuring section 410 has carrier power measuring sections 411-1 to 411-n respectively associated with n carriers forming the shared radio resource. The figure shows a case where n is 3. Carrier power measuring sections 411 measure the powers of the corresponding carriers and output the measurement results to adaptive FFR processing section 420.
  • Adaptive FFR processing section 420 has interference level deciding section 421 and mode selecting section 422. Adaptive FFR processing section 420 switches the transmission mode to the transmission mode to match a carrier having the power measurement result received from power measuring section 410 in a predetermined period greater than a predetermined threshold. To be more specific, interference level deciding section 421 compares the power measurement results received from carrier power measuring sections 411 and an interference evaluation decision threshold, and outputs, to mode selecting section 422, carrier identification information indicating the carrier having the power measurement result greater than the interference evaluation decision threshold. Further, mode selecting section 422 selects the transmission mode to match the carrier identification information received from interference level deciding section 421.
  • Next, a wireless communication system formed with wireless terminals 300 and base station 400 having the above configurations, will be explained. Here, a case will be explained assuming the system is in the condition shown in F1G. 4.
  • As in Embodiment 1, NB-A receives interference reports transmitted by a shared radio resource from the US's that are present in the subject cell and adjacent cells. However, with Embodiment 2, the shared radio resource includes a plurality of carriers.
  • A UE selects a carrier to match downlink received quality (e.g. received SIR) from the plurality of carriers, and transmits an interference report using the selected carrier. Also, the present embodiment does not provide a carrier to match the transmission mode selected in the case of the best received quality.
  • Thus, interference reports from UE's are received in, for example, NB-A, in the power distributions shown in FIG. 12.
  • NB-A changes the transmission mode based on a carrier having the power measurement value of the carrier greater than an interference evaluation decision threshold. This transmission mode can be changed by the following methods.
  • With the first method, the transmission mode is changed to the transmission mode to match the carrier of the lowest downlink received quality among the carriers having the power measurement values greater than an interference evaluation decision threshold. By this means, it is possible to reduce the interference level in all UE's that are present in the subject cell and adjacent cells.
  • With the second method, the transmission mode is changed to the transmission mode to match the carrier of the highest power measurement value among the carriers having the power measurement values greater than an interference evaluation decision threshold. By this means, it is possible to change the transmission mode to the transmission mode to match the carrier used upon transmitting interference reports by the largest number of UE's.
  • Also, with either method, the transmission mode selected in the case of the best received quality (e.g. mode 1 in FIG. 12) is selected when the power measurement values of the carriers to match other transmission modes than that transmission mode are all lower than an interference evaluation decision threshold.
  • That is, if the power distributions shown in FIG. 12 are observed in NB-A, mode 4 is selected in the first method and mode 2 is selected in the second method. Also, if the power distributions shown in FIG. 13 are observed in NB-A, mode 3 is selected in both the first method and the second method.
  • Thus, according to the present embodiment, in wireless terminal 300, carrier selecting section 330 selects a carrier based on a received SIR from a shared radio resource, and mapping section 340 maps an interference report signal on the selected carrier.
  • By this means, the receiving side of interference report signals specifies the carrier on which interference report signals are superimposed, so that it is possible to understand the interference level in wireless terminals 300 that transmit the interference report signals. Also, a base station, which is the receiving side of interference report signals, receives interference report signals from wireless terminals 300 that are present in the subject cell and adjacent cells, so that it is possible to understand the interference level distributions in the subject cell and adjacent cells.
  • Also, in base station 400, adaptive FFR processing section 420 switches the transmission mode to the transmission mode to match the carrier used to transmit a plurality of interference reports received in the same period.
  • By this means, unlike Embodiment 1 that switches the transmission mode in a stepwise manner, the transmission mode is directly changed to the transmission mode to match the carrier on which interference reports are superimposed, so that it is possible to switch the transmission mode to an adequate transmission mode fast.
  • Embodiment 3
  • In Embodiment 1, the transmission mode is changed in a stepwise manner based on a comparison result between the measured power value of a shared radio resource and a mode change decision threshold. By contrast with this, the present embodiment associates transmission modes and the power value ranges in advance, and changes the transmission mode directly to the transmission mode associated with a power value range to which a measured power value belongs.
  • As shown in FIG. 14, base station 500 according to the present embodiment has adaptive FFR processing section 510.
  • Adaptive FFR processing section 510 changes the transmission mode to the transmission mode associated with the measured power value of the shared radio resource.
  • Adaptive FFR processing section 510 holds in advance the mode change decision thresholds that are the boundaries of adjacent transmission modes and that are used for mode change decision. Further, adaptive FFR processing section 510 specifies two mode change decision thresholds that sandwich the measured power value of the shared radio resource, and selects the transmission mode associated with the range defined by these two mode change decision thresholds. Further, adaptive FFR processing section 510 directly changes the transmission mode from the current transmission mode to this selected transmission mode.
  • For example, as shown in FIG. 15, adaptive FFR processing section 510 holds mode change decision thresholds Th1 to Th3. Further, if the measured power value shown in FIG. 15 is acquired, the transmission mode is changed to mode 3 defined by mode decision thresholds Th2 and Th3.
  • Thus, according to the present embodiment, in base station 500, adaptive FFR processing section 510 associates transmission modes and power value ranges in advance, and directly changes the transmission mode to the transmission mode associated with the power value range to which the combined receiving power value belongs.
  • By this means, unlike Embodiment 1 that changes the transmission mode in a stepwise manner, the transmission mode is directly changed to the transmission mode associated with the power value range to which the combined receiving power belongs, so that it is possible to change the transmission mode to an adequate transmission mode fast.
  • Embodiment 4
  • With the present embodiment, a time average section that averages the receiving power in the time domain is provided in the configuration of the base station of Embodiment 3.
  • As shown in FIG. 16, base station 600 of the present embodiment provides time average section 610 between FFT section 210 and power measuring section 220.
  • Time average section 610 averages the power of an input signal for power measuring section 220 in the time domain.
  • Here, strictly speaking, the receiving power levels of reference reports transmitted from UE's vary. Further, interference report signals weaken or strengthen each other, and therefore the power of the shared radio resource is likely to fluctuate (Rayleigh distribution). Consequently, if the fluctuation is significant, there is a possibility that the transmission mode (reuse factor) is not selected adequately.
  • Therefore, with the present embodiment, by providing time average section 610, the power of an input signal to power measuring section 220 is averaged in the time domain to remove the influence of power fluctuation in a shared radio resource to reuse factor selection. By this means, the distribution of signal powers becomes low, so that it is possible to reduce power fluctuation in the shared radio resource and, as a result, select the reuse factor adequately.
  • Embodiment 5
  • In Embodiments 1 to 4, interference reports transmitted from wireless terminals that are present in the subject cell are also used as a criterion for deciding the mode change. That is, the transmission mode is determined taking into account the influence of interference given to UE's in the subject cell.
  • To change the transmission mode more adequately, it is preferable to determine the transmission mode based on only interference given from the subject cell to adjacent cells. Therefore, the present embodiment shows a transmission mode change method where interference reports from wireless terminals that are present in the subject cell are excluded from criteria for deciding a mode change. Especially, an example case will be explained where that method is applied to Embodiment 3.
  • As shown in FIG. 17, wireless terminal 700 of the present embodiment has transmission stop timing signal detecting section 710 and timing adjusting section 720.
  • Transmission stop timing signal detecting section 710 detects a transmission stop timing signal included in a signal received via FFT section 110. Further, transmission stop timing signal detecting section 710 detects a transmission stop timing signal transmitted from the base station of the cell in which wireless terminal 700 locates.
  • Timing adjusting section 720 adjusts the transmission timing of an interference report based on the transmission stop timing signal detected in transmission stop timing signal detecting section 710.
  • As shown in FIG. 18, base station 800 of the present embodiment has transmission stop timing signal generating section 810.
  • Transmission stop timing signal generating section 810 generates a transmission stop timing signal for controlling interference reports of wireless terminals 700 in the subject cell not to be transmitted during the transmission period of interference reports in adjacent cells. This transmission stop timing signal is transmitted to wireless terminals 700 that are present in the subject cell.
  • Next, a wireless communication system formed with wireless terminals 700 and base stations 800 having the above configurations, will be explained. Here, even in this case, a case will be explained where the wireless communication system is in the condition shown in FIG. 4.
  • As shown in FIG. 19, NB-A, NB-B and NB-C each transmit an RS and data to UE's. UE's that are present in cells A, B and C measure the SIR's.
  • First, NB-A performs processing for changing the transmission mode based on interference reports from UE's that are present in adjacent cells.
  • To be more specific, UE's that are present in cells B and C generate interference report signals based on the measured SIR's and transmit these interference report signals using the shared radio resource. In this case, by transmitting a transmission stop timing signal, NB-A stops transmission of interference reports in the UE's that are present in cell A. That is, as shown in FIG. 20A, UE-A to UE-C that are present in cell A stop transmitting interference report signals at the timings when UE-D to UE-I (circled in the figure) that are present in cells B and C transmit interference report signals. By this means, NB-A can receive only interference reports transmitted from adjacent cells (see the left part of FIG. 21).
  • Further, NB-A determines the reuse factor based on the interference reports transmitted from adjacent cells and changes the reuse factor to this determined reuse factor.
  • Further, after changing the reuse factor, NB-A changes downlink allocation and thereupon transmits an RS and data to UE's. At the same time, NB-B and NB-C also transmit an RS and data to UE's. Further, the UE's that are present in cells A, B and C each measure the SIR.
  • Next, NB-B performs processing for changing the transmission mode based on interference reports from the UE's that are present in adjacent cells.
  • This time, NB-B performs processing for changing the transmission mode, and therefore transmission of interference reports in the UE's that are present in cell B is stopped. That is, as shown in FIG. 20B, UE-D to UE-F stop transmitting interference report signals at the timings when UE-A to UE-C and UE-E to UE-I (circled in the figure) that are present in cells A and C transmit interference report signals. By this means, NB-B can receive only interference reports transmitted from adjacent cells (see the central part of FIG. 21).
  • Similarly, NB-C can also receive interference reports transmitted from adjacent cells (see the right part of FIG. 21). As described above, in the wireless communication system of the present embodiment, a plurality of contiguous base stations each stop transmission of interference reports in the subject cell in order, so that each base station can acquire only interference reports of adjacent cells in the stop period of the subject cell.
  • Thus, according to the present embodiment, in base station 800, transmission stop timing signal generating section 810 transmits a transmission stop timing signal for stopping transmission of interference reports in wireless terminals in the subject cell during the transmission period where a plurality of wireless terminals in adjacent cells stop transmitting interference reports.
  • By this means, base station 800 can select the transmission mode based on only interference reports from adjacent cells excluding interference reports from the subject cell, so that it is possible to change the transmission more adequately.
  • Embodiment 6
  • In Embodiment 5, by sequentially stopping transmission of interference reports in UE's between adjacent cells, the transmission mode is changed based on only interference reports transmitted from adjacent cells. With the present embodiment, based on a downlink signal transmitted from a base station of the cell in which transmission of interference reports in wireless terminals is stopped, the wireless terminals measure the downlink path loss to that base station. Further, wireless terminals that are present in adjacent cells to the base station, control transmission power based on the path loss and then transmit interference reports.
  • As shown in FIG. 22, wireless terminal 900 of the present embodiment has path loss measuring section 910, transmission power setting section 920 and amplifying section 930.
  • Path loss measuring section 910 has m path loss measuring sections 911 associated with adjacent cells to the subject cell. The figure shows the case of m=2. That is, path loss measuring section 910 has three path loss measuring sections 911-1 to 911-3 including path loss measuring section 911 associated with the subject cell. Path loss measuring sections 911-1 to 911-3 each measure the downlink path loss between the base station and the subject wireless terminal in the corresponding cell, using a downlink signal transmitted from that cell during the period where transmission of interference reports is stopped in that cell.
  • Transmission power setting section 920 controls transmission power based on the measured path loss values to match adjacent cells to a cell in which the subject wireless terminal is present. Transmission power setting section 920 sets the amplification factor of amplifying section 930 based on the measured path loss values to match the adjacent cells to the cell in which the subject terminal is present.
  • Amplifying section 930 amplifies interference reports at the amplification factor set in transmission power setting section 920.
  • Here, as described above, the receiving power levels of reference reports transmitted from UE's vary. Further, interference report signals weaken or strengthen each other, and therefore the power of the shared radio resource is likely to fluctuate (Rayleigh distribution). Consequently, if the fluctuation is significant, the transmission mode (reuse factor) may not be selected adequately.
  • Therefore, with the present embodiment, wireless terminal 900 controls transmission power based on measured path loss values to match adjacent cells to a cell in which the subject wireless terminal is present. By this means, the average receiving power of interference report signals in a base station is fixed, so that it is possible to reduce the fluctuation of the combined receiving power of interference report signals in the shared radio resource. This is based on the fact that, when the average receiving power is fixed in transmission diversity of equal gain combination and the number of transmission antennas increases, distribution is reduced. In view of the above, in a base station, it is possible to select the reuse factor adequately.
  • Embodiment 7
  • As in Embodiment 5, the present embodiment shows a transmission mode change method where interference reports from wireless terminals that are present in the subject cell are excluded from criteria for deciding a mode change. To be more specific, interference reports are transmitted by different carriers between cells. By this means, it is possible to change the transmission mode based on only interference reports transmitted from adjacent cells.
  • As shown in FIG. 23, wireless terminal 1000 of the present embodiment has carrier report signal detecting section 1010 and mapping section 1020.
  • Carrier report signal detecting section 1010 detects a carrier report signal included in a signal received via FFT section 110. This detected carrier report signal refers to a signal transmitted from the base station of the cell in which the subject wireless terminal is present, and indicates a carrier used for transmitting interference reports in wireless terminals 1000 that are present in that cell, among a plurality of carriers forming a shared radio resource.
  • Mapping section 1020 maps an interference report signal on the carrier indicated by the carrier report signal detected in carrier communication signal detecting section 1010.
  • As shown in FIG. 24, base station 1100 of the present embodiment has adaptive FFR processing section 1110 and carrier report signal generating section 1120.
  • Adaptive FFR processing section 1110 adds all measured power values in carriers associated with adjacent cells, among the plurality of carriers forming the shared radio resource. Further, adaptive FFR processing section 1110 changes the transmission mode based on the addition result.
  • Carrier report signal generating section 1120 generates a carrier report signal indicating a carrier that should be used by wireless terminals 1000 that are present in the cell covered by base station 1100, among the plurality of carriers forming the shared radio resource.
  • FIG. 25 shows examples of power distributions observed in NB-A in the case where the wireless communication system is in the condition shown in FIG. 4. For transmitting interference reports, carrier 1 is used in cell A, and carriers 2 and 3 are used in cells B and C, respectively. Therefore, NB-A changes the transmission mode based on the added power value adding the combined receiving powers observed in carriers 2 and 3.
  • By this means, the transmission mode is determined based on only interference given from the subject cell to adjacent cells, so that it is possible to change the transmission mode more adequately.
  • Thus, according to the present embodiment, in base station 1100, adaptive FFR processing section 1110 changes the transmission mode based on the combined receiving powers combining receiving powers of interference reports in carriers to match adjacent cells. Also, the carriers used for transmitting interference reports vary between adjacent cells.
  • By this means, base station 1100 can change the transmission mode based on only interference reports from adjacent cells excluding interference reports from the subject cell, so that it is possible to change the transmission mode more adequately.
  • Embodiment 8
  • As in Embodiment 5, the present embodiment shows a transmission mode change method where interference reports from wireless terminals that are present in the subject cell are excluded from criteria for deciding a mode change. To be more specific, a wireless terminal controls an antenna directivity such that the direction of low transmission power (i.e. the null direction) is directed toward the base station of the cell in which the wireless terminal is present, and the wireless terminal transmits an interference report. By this means, it is possible to change the transmission mode based on only interference reports transmitted from adjacent cells.
  • As shown in F1G. 26, wireless terminal 1200 of the present embodiment has directivity formation calculating section 1210 and directivity control section 1220.
  • Directivity formation calculating section 1210 calculates a directional weight coefficient so that the null direction is directed toward the base station of the cell in which the wireless terminal is present. Here, for example, directivity formation calculating section 1210 specifies the received directional weight coefficient in the case of the best received quality of a signal transmitted from the base station of the cell in which the wireless terminal is present. This specified, received directional weight coefficient is the weight coefficient in the case where directivity is formed against the base station of the cell in which the subject wireless terminal is present, and where the null direction is directed opposite to the base station. Based on this specified, received directional weight coefficient, directivity formation calculating section 1210 calculates a directional weight coefficient so that the null direction is directed toward the base station of the cell in which the wireless terminal is present.
  • Directivity control section 1220 controls the antenna directivity using the directional weight coefficient calculated in directivity formation calculating section 1210, and transmits an interference report signal that is received via IFFT section 160.
  • Each wireless terminal 1200 in each cell in the wireless communication system controls the antenna directivity so that the null direction is directed toward the base station of the cell in which the subject wireless terminal is present, and therefore the wireless communication system is in the condition shown in FIG. 27.
  • In each of the base stations in the wireless communication system, the combined receiving powers excluding interference reports transmitted from wireless terminals 1200 in the subject cell are observed. With the present embodiment, it is possible to use base stations having the same configuration as base station 500 explained in Embodiment 3.
  • As described above, according to the present embodiment, in wireless terminal 1200, directivity formation calculating section 1210 calculates a directional weight coefficient so that the null direction is directed toward the base station of the cell in which the subject wireless terminal is present, and directivity control section 1220 controls the antenna directivity using the directional weight coefficient calculated in directivity formation calculating section 1210 and transmits an interference report signal.
  • By this means, a base station can select the transmission mode based on only interference reports from adjacent cells excluding interference reports from the subject cell, so that it is possible to change the transmission mode more adequately.
  • Embodiment 9
  • As in Embodiment 5, the present embodiment shows a transmission mode change method where interference reports from wireless terminals that are present in the subject cell are excluded from criteria for deciding a mode change. To be more specific, interference reports spread using varying spreading codes between cells, are transmitted. By this means, it is possible to change the transmission mode based on only interference reports transmitted from adjacent cells.
  • As shown in FIG. 29, wireless terminal 1300 of the present embodiment has spread sequence report signal detecting section 1310 and spreading section 1320.
  • Spreading sequence report signal detecting section 1310 detects a spreading sequence report signal included in a signal received via FFT section 110. This detected spreading sequence report signal is the signal transmitted from the base station of the cell in which the subject wireless terminal is present, and represents the spreading sequence used by wireless terminals 1000 that are present in that cell.
  • Spreading section 1320 spreads an interference signal using the spreading sequence detected in spreading sequence report signal detecting section 1310.
  • As shown in FIG. 30, base station 1400 of the present embodiment has despreading section 1410, combining section 1420 and spreading sequence report signal generating section 1430.
  • Despreading section 1410 has m despreading sections 1411 associated with adjacent cells, respectively. Here, different spreading sequences are allocated to m adjacent cells. Despreading sections 1411 despread signals received via FFT section 210, using spreading sequences allocated to the associated adjacent cells.
  • Combining section 1420 combines in power the signals subjected to despreading in despreading sections 1411, and outputs the combined signal to power measuring section 220. Power measuring section 220 measures the power of this combined signal.
  • Spreading sequence report signal generating section 1430 generates a spreading sequence report signal representing a spreading sequence allocated to the subject cell. This spreading sequence report signal is transmitted via IFFT section 250.
  • Also, in each embodiment, as a shared radio resource, it is possible to use a carrier comprised of direct-current components (i.e. DC carrier) among the subcarriers used in OFDM communication. Thus, it is possible to efficiently use a DC carrier that is not used in normal data transmission.
  • The disclosure of Japanese Patent Application No. 2007-49896, filed on Sep. 26, 2007, including the specification, drawings and abstract, is incorporated herein by reference in its entirety.
  • INDUSTRIAL APPLICABILITY
  • The wireless communication system, wireless base station apparatus and transmission control method are effective for shortening the time it takes to improve inter-cell interference and improving the system throughput.

Claims (11)

1-11. (canceled)
12. A wireless base station apparatus comprising:
an interference report receiving section that receives interference reports transmitted by a shared radio resource from a plurality of wireless terminals that are present in a plurality of adjacent cells that are adjacent to a target cell, the shared radio resource being shared between the plurality of adjacent cells; and
an adaptive fractional frequency reuse control section that controls adaptive fractional frequency reuse processing in downlink of the target cell, based on the received interference reports.
13. The wireless base station apparatus according to claim 12, wherein the adaptive fractional frequency reuse control section switches transmission modes based on a combined receiving power combining receiving powers of the plurality of interference reports.
14. The wireless base station apparatus according to claim 12, wherein the adaptive fractional frequency reuse control section memorizes association relationships between transmission modes and power ranges associated with the transmission modes, and selects a transmission mode associated with a power range to which a combined receiving power combining receiving powers of the plurality of interference reports belongs.
15. The wireless base station apparatus according to claim 14, further comprising an averaging section that averages the combined receiving power in a time domain.
16. The wireless base station apparatus according to claim 12, wherein:
the shared radio resource comprises a plurality of carriers of different frequencies;
the interference reports are transmitted using a carrier selected based on downlink received quality from the plurality of carriers by wireless terminals having transmitted the interference reports; and
the adaptive fractional frequency reuse control section selects a transmission mode to match a receiving power distribution of the transmitted interference reports.
17. The wireless base station apparatus according to claim 12, wherein:
the shared radio resource comprises a plurality of carriers that have different frequencies and that are associated with the plurality of adjacent cells, respectively;
the interference reports are transmitted using a carrier selected, based on adjacent cells in which wireless terminals having transmitted the interference reports are present, from the plurality of carriers by the wireless terminals having transmitted the interference reports; and
the adaptive fractional frequency reuse control section switches transmission modes based on a combined receiving power combining receiving powers of interference reports in the plurality of carriers.
18. The wireless base station apparatus according to claim 12, further comprising a stop signal transmitting section that transmits an interference report stop signal for stopping wireless terminals that are present in the target cell to transmit interference reports during a shared transmission period in which the plurality of wireless terminals that are present in the plurality of adjacent cells transmit the interference reports,
wherein the adaptive fractional frequency reuse control section switches transmission modes based on a combined receiving power combining receiving powers of the interference reports transmitted from the plurality of wireless terminals during the shared transmission period.
19. The wireless base station apparatus according to claim 12, wherein:
the wireless base station apparatus comprises:
a despreading section that receives interference reports spread by different spreading sequences between the plurality of adjacent cells, despreads the received interference reports by spreading codes of the adjacent cells and outputs despread signals; and
a power combining section that combines powers of the despread signals of the plurality of adjacent cells; and
the adaptive fractional frequency reuse control section switches transmission modes based on a power value of a power combining the powers of the despread signals in the power combining section.
20. The wireless base station apparatus according to claim 12, wherein the shared radio resource comprises a direct current carrier.
21. A transmission control method comprising:
an interference report receiving step of receiving interference reports transmitted by a shared radio resource from wireless terminals that are present in the adjacent cells that are adjacent to a target cell, the shared radio resource being shared between adjacent cells; and
a controlling step of controlling adaptive fractional frequency reuse processing in the target cell, based on the interference reports.
US12/678,099 2007-09-26 2008-09-25 System and method to shorten the time taken to improve inter-cell interference mitigation performance using adaptive fractional frequency reuse Expired - Fee Related US9226301B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007-249896 2007-09-26
JP2007249896 2007-09-26
PCT/JP2008/002656 WO2009041040A1 (en) 2007-09-26 2008-09-25 Radio communication system, radio base station device, and transmission control method

Publications (2)

Publication Number Publication Date
US20100222003A1 true US20100222003A1 (en) 2010-09-02
US9226301B2 US9226301B2 (en) 2015-12-29

Family

ID=40510945

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/678,099 Expired - Fee Related US9226301B2 (en) 2007-09-26 2008-09-25 System and method to shorten the time taken to improve inter-cell interference mitigation performance using adaptive fractional frequency reuse

Country Status (5)

Country Link
US (1) US9226301B2 (en)
EP (1) EP2194741A1 (en)
JP (1) JP5121838B2 (en)
CN (1) CN101810021A (en)
WO (1) WO2009041040A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120028584A1 (en) * 2010-07-27 2012-02-02 Futurewei Technologies, Inc. System and Method for Self-Organized Inter-Cell Interference Coordination
US20140254516A1 (en) * 2013-03-07 2014-09-11 Samsung Electronics Co., Ltd. Method and apparatus for controlling interference in wireless communication system
US20140294115A1 (en) * 2012-04-11 2014-10-02 Huawei Technologies Co., Ltd. Method and apparatus for configuring transmission mode
US20140313948A1 (en) * 2011-01-04 2014-10-23 Nokia Corporation Frame structure and signaling arrangement for interference aware scheduling
US20170006555A1 (en) * 2014-03-14 2017-01-05 Sharp Kabushiki Kaisha Terminal, base station, and communication method
US10085154B2 (en) 2012-10-17 2018-09-25 Huawei Technologies Co., Ltd. System and method for dynamic inter-cell interference coordination
US10454718B2 (en) 2015-06-26 2019-10-22 Telefonaktiebolaget Lm Ericsson (Publ) Methods used in control node and serving radio node, and associated devices
US11563593B2 (en) 2020-08-19 2023-01-24 Charter Communications Operating, Llc Methods and apparatus for coordination between wireline backhaul and wireless systems
US11582055B2 (en) 2020-08-18 2023-02-14 Charter Communications Operating, Llc Methods and apparatus for wireless device attachment in a managed network architecture
US11844057B2 (en) 2020-09-09 2023-12-12 Charter Communications Operating, Llc Methods and apparatus for wireless data traffic management in wireline backhaul systems

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8718658B2 (en) 2009-06-25 2014-05-06 Samsung Electronics Co., Ltd. Communication system for distributedly managing interference using feedback message
US8428629B2 (en) * 2010-03-31 2013-04-23 Qualcomm Incorporated Methods and apparatus for determining a communications mode and/or using a determined communications mode
CN102238718B (en) * 2010-04-30 2015-09-16 中兴通讯股份有限公司 Transmitting diversity implementation method in a kind of multi-user system and equipment
EP2630831A4 (en) * 2010-10-20 2016-10-26 Nokia Technologies Oy Interference-aware scheduling with broadcast/multicast signaling
JP5769190B2 (en) * 2011-03-14 2015-08-26 国立研究開発法人情報通信研究機構 Self-coexistence mechanism when merging cells in wireless networks
CN105554885A (en) * 2015-03-17 2016-05-04 西安电子科技大学 Adaptive-frequency-spectrum-reuse-based femtocell interference reduction method
US10085206B2 (en) * 2016-03-08 2018-09-25 Wipro Limited Methods and systems for optimization of cell selection in TD-SCDMA networks
CN109086225B (en) * 2018-07-23 2021-06-04 广州慧睿思通信息科技有限公司 Data processing method for removing direct current carrier and outputting segmented shift by FFTC (frequency filter time division multiple access) output based on PKTDMA (public key time division multiple access)
WO2024011039A1 (en) * 2022-07-08 2024-01-11 Cisco Technology, Inc. Coordinating puncturing in wireless access points

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108769A1 (en) * 2006-03-21 2007-09-27 Telefonaktiebolaget Lm Ericsson (Publ) Measurement-assisted dynamic frequency-reuse in cellular telecommuncations networks
WO2007112547A1 (en) * 2006-03-20 2007-10-11 Nortel Networks Limited Method & system for fractional frequency reuse in a wireless communication network
US20070274343A1 (en) * 2004-03-30 2007-11-29 Akihiko Nishio Base Station Device, Mobile Station Device, And Data Channel Allocation Method
US20070280170A1 (en) * 2005-02-18 2007-12-06 Yoshihiro Kawasaki Base station and interference reduction method in base station
US20070291702A1 (en) * 2004-10-19 2007-12-20 Hideo Nanba Base Station Apparatus,Wireless Communication System,And Wireless Transmission Method
US20080039131A1 (en) * 2006-08-10 2008-02-14 Alcatel Lucent Method and apparatus for interference limitation in uplink communication in a cellular communication system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070274343A1 (en) * 2004-03-30 2007-11-29 Akihiko Nishio Base Station Device, Mobile Station Device, And Data Channel Allocation Method
US20070291702A1 (en) * 2004-10-19 2007-12-20 Hideo Nanba Base Station Apparatus,Wireless Communication System,And Wireless Transmission Method
US20070280170A1 (en) * 2005-02-18 2007-12-06 Yoshihiro Kawasaki Base station and interference reduction method in base station
WO2007112547A1 (en) * 2006-03-20 2007-10-11 Nortel Networks Limited Method & system for fractional frequency reuse in a wireless communication network
US20090061778A1 (en) * 2006-03-20 2009-03-05 Nortel Networks Limited Method and system for fractional frequency reuse in a wireless communication network
WO2007108769A1 (en) * 2006-03-21 2007-09-27 Telefonaktiebolaget Lm Ericsson (Publ) Measurement-assisted dynamic frequency-reuse in cellular telecommuncations networks
US20080039131A1 (en) * 2006-08-10 2008-02-14 Alcatel Lucent Method and apparatus for interference limitation in uplink communication in a cellular communication system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8731567B2 (en) 2010-07-27 2014-05-20 Futurewei Technologies, Inc. System and method for automatic fractional frequency reuse planning
US9585024B2 (en) * 2010-07-27 2017-02-28 Huawei Technologies Co., Ltd. System and method for self-organized inter-cell interference coordination
US20120028584A1 (en) * 2010-07-27 2012-02-02 Futurewei Technologies, Inc. System and Method for Self-Organized Inter-Cell Interference Coordination
US9420485B2 (en) * 2011-01-04 2016-08-16 Nokia Technologies Oy Frame structure and signaling arrangement for interference aware scheduling
US20140313948A1 (en) * 2011-01-04 2014-10-23 Nokia Corporation Frame structure and signaling arrangement for interference aware scheduling
US20140294115A1 (en) * 2012-04-11 2014-10-02 Huawei Technologies Co., Ltd. Method and apparatus for configuring transmission mode
US9197301B2 (en) * 2012-04-11 2015-11-24 Huawei Technologies Co., Ltd. Method and apparatus for configuring transmission mode
US10085154B2 (en) 2012-10-17 2018-09-25 Huawei Technologies Co., Ltd. System and method for dynamic inter-cell interference coordination
US20140254516A1 (en) * 2013-03-07 2014-09-11 Samsung Electronics Co., Ltd. Method and apparatus for controlling interference in wireless communication system
US10485021B2 (en) * 2013-03-07 2019-11-19 Samsung Electronics Co., Ltd Method and apparatus for controlling interference in wireless communication system
US20170006555A1 (en) * 2014-03-14 2017-01-05 Sharp Kabushiki Kaisha Terminal, base station, and communication method
US10454718B2 (en) 2015-06-26 2019-10-22 Telefonaktiebolaget Lm Ericsson (Publ) Methods used in control node and serving radio node, and associated devices
US11582055B2 (en) 2020-08-18 2023-02-14 Charter Communications Operating, Llc Methods and apparatus for wireless device attachment in a managed network architecture
US11563593B2 (en) 2020-08-19 2023-01-24 Charter Communications Operating, Llc Methods and apparatus for coordination between wireline backhaul and wireless systems
US11844057B2 (en) 2020-09-09 2023-12-12 Charter Communications Operating, Llc Methods and apparatus for wireless data traffic management in wireline backhaul systems

Also Published As

Publication number Publication date
JP5121838B2 (en) 2013-01-16
EP2194741A1 (en) 2010-06-09
US9226301B2 (en) 2015-12-29
JPWO2009041040A1 (en) 2011-01-20
CN101810021A (en) 2010-08-18
WO2009041040A1 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
US9226301B2 (en) System and method to shorten the time taken to improve inter-cell interference mitigation performance using adaptive fractional frequency reuse
US8391245B2 (en) Terminal device, base station device, and frequency resource allocation method
EP2074763B1 (en) A method and apparatus for fast other sector interference (osi) adjustment
KR100355328B1 (en) Radio communication device and method of controlling transmission rate
US9042900B2 (en) User terminal
JP5281688B2 (en) Interference reduction in communication networks by scheduling and link adaptation
CN102714529B (en) Method and apparatus for uplink multi-carrier transmit diversity
US8644175B2 (en) Radio communication system, scheduling method, radio base station device, and radio terminal
US20100048237A1 (en) Base station apparatus, user equipment, and method used in mobile communication system
EP2005629B1 (en) Channel quality signaling
EP1892972A1 (en) Method and system for interference mitigation in a mobile communications system
EP2890190B1 (en) Wireless communication system, base station apparatus, mobile station apparatus, and communication method
EP3340678B1 (en) Wireless communication system and wireless communication method
US20160204919A1 (en) Method and Controlling Node for Controlling Radio Communication in a Cellular Network
US8805295B2 (en) System and method utilizing transmit diversity
US9246556B2 (en) Radio network control

Legal Events

Date Code Title Description
AS Assignment

Owner name: PANASONIC CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YOSHII, ISAMU;SUMASU, ATSUSHI;IMAI, TOMOHIRO;AND OTHERS;SIGNING DATES FROM 20100301 TO 20100306;REEL/FRAME:024347/0333

AS Assignment

Owner name: PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AMERICA, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:033033/0163

Effective date: 20140527

Owner name: PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AME

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:033033/0163

Effective date: 20140527

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: SOVEREIGN PEAK VENTURES, LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AMERICA;REEL/FRAME:047914/0784

Effective date: 20181012

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20191229