US20100270514A1 - High work function transparent conductors - Google Patents

High work function transparent conductors Download PDF

Info

Publication number
US20100270514A1
US20100270514A1 US12/829,515 US82951510A US2010270514A1 US 20100270514 A1 US20100270514 A1 US 20100270514A1 US 82951510 A US82951510 A US 82951510A US 2010270514 A1 US2010270514 A1 US 2010270514A1
Authority
US
United States
Prior art keywords
transparent conductor
fluorinated
polymer
acid
ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/829,515
Inventor
Che-Hsiung Hsu
Hjalti Skulason
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Priority to US12/829,515 priority Critical patent/US20100270514A1/en
Publication of US20100270514A1 publication Critical patent/US20100270514A1/en
Priority to US13/075,404 priority patent/US8409476B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/778Nanostructure within specified host or matrix material, e.g. nanocomposite films
    • Y10S977/783Organic host/matrix, e.g. lipid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/778Nanostructure within specified host or matrix material, e.g. nanocomposite films
    • Y10S977/784Electrically conducting, semi-conducting, or semi-insulating host material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/788Of specified organic or carbon-based composition

Definitions

  • This disclosure relates in general to transparent conductors having workfunction greater than 4.7 eV for use in electronic devices.
  • Organic electronic devices define a category of products that include an active layer. Such devices convert electrical energy into radiation, detect signals through electronic processes, convert radiation into electrical energy, or include one or more organic semiconductor layers.
  • OLEDs are organic electronic devices comprising an organic layer capable of electroluminescence.
  • OLEDs containing conducting polymers can have the following configuration which may include additional optional layers, materials or compositions:
  • the anode is typically any material that has the ability to inject holes into the electroluminescent (“EL”) material, such as, for example, indium/tin oxide (ITO).
  • EL electroluminescent
  • ITO indium/tin oxide
  • the anode is optionally supported on a glass or plastic substrate.
  • the buffer layer is typically an electrically conducting polymer and facilitates the injection of holes from the anode into the EL material layer.
  • EL materials include fluorescent compounds, fluorescent and phosphorescent metal complexes, conjugated polymers, and combinations and mixtures thereof.
  • the cathode is typically any material (such as, e.g., Ca or Ba) that has the ability to inject electrons into the EL material. At least one of the anode or cathode is transparent or semi-transparent to allow for light emission.
  • ITO is frequently used as the transparent anode.
  • the work function of ITO is relatively low, typically in the range of 4.6 eV. This low work function results in less effective injection of holes into the EL material.
  • the work function of ITO can be improved (i.e., raised) by surface treatment. However, these treatments are sometime not stable and result in reduced device lifetime.
  • CNT conductive carbon nanotube
  • the films have conductivity of about 6 ⁇ 10 3 S/cm (Science, p 1273 - 1276, vol 305, Aug. 27, 2004), which is similar to the conductivity of indium/tin oxide vapor-deposited on substrates. It is evident that CNT film could replace ITO as a transparent anode. However, the work function of CNT is in the same range as that of ITO and is not high enough to inject holes to the light emitting layer for OLEDs applications.
  • a transparent conductor comprising conductive nanoparticles and at least one of (a) a fluorinated acid polymer and (b) a semiconductive polymer doped with a fluorinated acid polymer.
  • an electronic device comprising the transparent conductor.
  • FIG. 1 is a diagram illustrating contact angle.
  • FIG. 2 is a schematic diagram of an organic electronic device.
  • a transparent conductor having workfunction greater than 4.7 eV comprising conductive nanoparticles and at least one of (a) a fluorinated acid polymer and (b) a semiconductive polymer doped with a fluorinated acid polymer.
  • the workfunction is defined as the energy required to remove an electron from the material to vaccum level. It is typically measured by Ultraviolet Photoemission Spectroscopy. It can also be obtained by the Kelvin probe technique.
  • the term “transparent” refers to a material which transmits at least 50% of incident light, in the visible range.
  • conductive nanoparticles refers to materials which have one or more dimension less than 100 nm, and which, when formed into a film, have a conductivity greater than 1 S/cm. It is understood that the particles can have any shape, including circular, rectangular, polygonal, fibril, and irregular shapes.
  • fluorinated acid polymer refers to a polymer having acidic groups, where at least some of the hydrogens have been replaced by fluorine. This fluorination may occur on the polymer backbone, on side chains attached to the backbone, pendant groups, or combinations of these.
  • the term “acidic group” refers to a group capable of ionizing to donate a hydrogen ion to a base to form a salt.
  • the term “semiconductive polymer” refers to any polymer or oligomer which is inherently or intrinsically capable of electrical conductivity without the addition of carbon black or conductive metal particles.
  • the term “polymer” encompasses homopolymers and copolymers. Copolymers may be formed of monomers having different structures or monomers of the same structure with different substituents.
  • doped is intended to mean that the semiconductive polymer has a polymeric counterion derived from a polymeric acid to balance the charge on the conductive polymer.
  • the conductive nanoparticles form films having conductivity greater than 10 S/cm. In one embodiment, the conductivity is greater than 20 S/cm. In one embodiment, the conductive nanoparticles have at least one dimension less than 50 nm. In one embodiment, the conductive nanoparticles have at least one dimension less than 30 nm.
  • conductive nanoparticles include, but are not limited to, carbon nanotubes and nanofibers, metal nanoparticles, and metal nanofibers.
  • Carbon nanotubes are elongated fullerenes where the walls of the tubes comprise hexagonal polyhedra formed by groups of six carbon atoms and are often capped at ends.
  • Fullerenes are any of various cagelike, hollow molecules composed of hexagonal and pentagonal groups of atoms that constitute the third form of carbon after diamond and graphite.
  • Carbon nanotubes may be only a few nanometers in diameter, yet up to a millimeter long, so that the length-to-width aspect ratio is extremely high. Carbon nanotubes also include nano-mat of carbon nanotubes. Carbon nanotubes and dispersions of carbon nanotubes in various solvents are commercially available.
  • Carbon nanofibers are similar to carbon nanotubes in shape and diameter, but comprise carbon composites in a non-hollow, fibrous form, whereas carbon nanotubes are in the form of a hollow tube. Carbon nanofibers can be formed using a method similar to the synthetic methods for carbon nanotubes.
  • the metal nanoparticles and nanofibers can be made from any conductive metals, including, but not limited to, silver, nickel, gold, copper, palladium, and mixtures thereof. Metal nanoparticles are available commercially. The formation of nanofibers is possible through a number of different approaches that are well known to those of skill in the art.
  • the conductive nano-particles are in the form of an aqueous dispersion.
  • the aqueous dispersion further comprises a surfactant, which can be an anionic, cationic, or non-ionic surfactant.
  • the conductive nanoparticles are in the form of a non-aqueous dispersion.
  • any semiconductive polymer doped with a fluorinated acid polymer can be used in the new composition.
  • the doped semiconductive polymer will form a film which has a conductivity of at least 10 ⁇ 7 S/cm.
  • the semiconductive polymers suitable for the new composition can be homopolymers, or they can be copolymers of two or more respective monomers.
  • the monomer from which the conductive polymer is formed, is referred to as a “precursor monomer”.
  • a copolymer will have more than one precursor monomer.
  • the semiconductive polymer is made from at least one precursor monomer selected from thiophenes, pyrroles, anilines, and polycyclic aromatics.
  • the polymers made from these monomers are referred to herein as polythiophenes, polypyrroles, polyanilines, and polycyclic aromatic polymers, respectively.
  • polycyclic aromatic refers to compounds having more than one aromatic ring. The rings may be joined by one or more bonds, or they may be fused together.
  • aromatic ring is intended to include heteroaromatic rings.
  • a “polycyclic heteroaromatic” compound has at least one heteroaromatic ring.
  • thiophene monomers contemplated for use to form the semiconductive polymer comprise Formula I below:
  • alkyl refers to a group derived from an aliphatic hydrocarbon and includes linear, branched and cyclic groups which may be unsubstituted or substituted.
  • heteroalkyl is intended to mean an alkyl group, wherein one or more of the carbon atoms within the alkyl group has been replaced by another atom, such as nitrogen, oxygen, sulfur, and the like.
  • alkylene refers to an alkyl group having two points of attachment.
  • alkenyl refers to a group derived from an aliphatic hydrocarbon having at least one carbon-carbon double bond, and includes linear, branched and cyclic groups which may be unsubstituted or substituted.
  • heteroalkenyl is intended to mean an alkenyl group, wherein one or more of the carbon atoms within the alkenyl group has been replaced by another atom, such as nitrogen, oxygen, sulfur, and the like.
  • alkenylene refers to an alkenyl group having two points of attachment.
  • both R 1 together form —O—(CHY) m —O—, where m is 2 or 3, and Y is the same or different at each occurrence and is selected from hydrogen, halogen, alkyl, alcohol, amidosulfonate, benzyl, carboxylate, ether, ether carboxylate, ether sulfonate, ester sulfonate, and urethane, where the Y groups may be partially or fully fluorinated. In one embodiment, all Y are hydrogen.
  • the polythiophene is poly(3,4-ethylenedioxythiophene).
  • at least one Y group is not hydrogen.
  • at least one Y group is a substituent having F substituted for at least one hydrogen.
  • at least one Y group is perfluorinated.
  • the thiophene monomer has Formula I(a):
  • m is two, one R 7 is an alkyl group of more than 5 carbon atoms, and all other R 7 are hydrogen.
  • at least one R 7 group is fluorinated.
  • at least one R 7 group has at least one fluorine substituent.
  • the R 7 group is fully fluorinated.
  • the R 7 substituents on the fused alicyclic ring on the thiophene offer improved solubility of the monomers in water and facilitate polymerization in the presence of the fluorinated acid polymer.
  • m is 2, one R 7 is sulfonic acid-propylene-ether-methylene and all other R 7 are hydrogen. In one embodiment, m is 2, one R 7 is propyl-ether-ethylene and all other R 7 are hydrogen. In one embodiment, m is 2, one R 7 is methoxy and all other R 7 are hydrogen. In one embodiment, one R 7 is sulfonic acid difluoromethylene ester methylene (—CH 2 —O—C(O)—CF 2 —SO 3 H), and all other R 7 are hydrogen.
  • pyrrole monomers contemplated for use to form the semiconductive polymer comprise Formula II below.
  • R 1 is the same or different at each occurrence and is independently selected from hydrogen, alkyl, alkenyl, alkoxy, cycloalkyl, cycloalkenyl, alcohol, benzyl, carboxylate, ether, amidosulfonate, ether carboxylate, ether sulfonate, ester sulfonate, urethane, epoxy, silane, siloxane, and alkyl substituted with one or more of sulfonic acid, carboxylic acid, acrylic acid, phosphoric acid, phosphonic acid, halogen, nitro, cyano, hydroxyl, epoxy, silane, or siloxane moieties.
  • R 2 is selected from hydrogen, alkyl, and alkyl substituted with one or more of sulfonic acid, carboxylic acid, acrylic acid, phosphoric acid, phosphonic acid, halogen, cyano, hydroxyl, epoxy, silane, or siloxane moieties.
  • the pyrrole monomer is unsubstituted and both R 1 and R 2 are hydrogen.
  • both R 1 together form a 6- or 7-membered alicyclic ring, which is further substituted with a group selected from alkyl, heteroalkyl, alcohol, benzyl, carboxylate, ether, ether carboxylate, ether sulfonate, ester sulfonate, and urethane. These groups can improve the solubility of the monomer and the resulting polymer.
  • both R 1 together form a 6- or 7-membered alicyclic ring, which is further substituted with an alkyl group.
  • both R 1 together form a 6- or 7-membered alicyclic ring, which is further substituted with an alkyl group having at least 1 carbon atom.
  • both R 1 together form —O—(CHY) m —O—, where m is 2 or 3, and Y is the same or different at each occurrence and is selected from hydrogen, alkyl, alcohol, benzyl, carboxylate, amidosulfonate, ether, ether carboxylate, ether sulfonate, ester sulfonate, and urethane.
  • at least one Y group is not hydrogen.
  • at least one Y group is a substituent having F substituted for at least one hydrogen.
  • at least one Y group is perfluorinated.
  • aniline monomers contemplated for use to form the semiconductive polymer comprise Formula III below.
  • a is 0 or an integer from 1 to 4;
  • R 1 is independently selected so as to be the same or different at each occurrence and is selected from hydrogen, alkyl, alkenyl, alkoxy, alkanoyl, alkythio, aryloxy, alkylthioalkyl, alkylaryl, arylalkyl, amino, alkylamino, dialkylamino, aryl, alkylsulfinyl, alkoxyalkyl, alkylsulfonyl, arylthio, arylsulfinyl, alkoxycarbonyl, arylsulfonyl, acrylic acid, phosphoric acid, phosphonic acid, halogen, nitro, cyano, hydroxyl, epoxy, silane, siloxane, alcohol, benzyl, carboxylate, ether, ether carboxylate, amidosulfonate, ether sulfonate, ester sulfon
  • the aniline monomeric unit can have Formula IV(a) or Formula IV(b) shown below, or a combination of both formulae.
  • a is not 0 and at least one R 1 is fluorinated. In one embodiment, at least one R 1 is perfluorinated.
  • fused polycylic heteroaromatic monomers contemplated for use to form the semiconductive polymer have two or more fused aromatic rings, at least one of which is heteroaromatic.
  • the fused polycyclic heteroaromatic monomer has Formula V:
  • the fused polycyclic heteroaromatic monomer has Formula V(a), V(b), V(c), V(d), V(e), V(f), and V(g):
  • the fused polycyclic heteroaromatic monomer is a thieno(thiophene).
  • thieno(thiophene) is selected from thieno(2,3-b)thiophene, thieno(3,2-b)thiophene, and thieno(3,4-b)thiophene.
  • the thieno(thiophene) monomer is substituted with at least one group selected from alkyl, heteroalkyl, alcohol, benzyl, carboxylate, ether, ether carboxylate, ether sulfonate, ester sulfonate, and urethane.
  • the substituent groups are fluorinated. In one embodiment, the substituent groups are fully fluorinated.
  • polycyclic heteroaromatic monomers contemplated for use to form the copolymer in the new composition comprise Formula VI:
  • the semiconductive polymer is a copolymer of a precursor monomer and at least one second monomer. Any type of second monomer can be used, so long as it does not detrimentally affect the desired properties of the copolymer.
  • the second monomer comprises no more than 50% of the copolymer, based on the total number of monomer units. In one embodiment, the second monomer comprises no more than 30%, based on the total number of monomer units. In one embodiment, the second monomer comprises no more than 10%, based on the total number of monomer units.
  • Exemplary types of second precursor monomers include, but are not limited to, alkenyl, alkynyl, arylene, and heteroarylene.
  • second monomers include, but are not limited to, fluorene, oxadiazole, thiadiazole, benzothiadiazole, phenylenevinylene, phenyleneethynylene, pyridine, diazines, and triazines, all of which may be further substituted.
  • the copolymers are made by first forming an intermediate precursor monomer having the structure A-B-C, where A and C represent first precursor monomers, which can be the same or different, and B represents a second precursor monomer.
  • the A-B-C intermediate precursor monomer can be prepared using standard synthetic organic techniques, such as Yamamoto, Stille, Grignard metathesis, Suzuki, and Negishi couplings.
  • the copolymer is then formed by oxidative polymerization of the intermediate precursor monomer alone, or with one or more additional precursor monomers.
  • the semiconductive polymer is a copolymer of two or more precursor monomers.
  • the first precursor monomers are selected from a thiophene, a pyrrole, an aniline, and a polycyclic aromatic.
  • the fluorinated acid polymer (hereinafter referred to as “FAP”) can be any polymer which is fluorinated and has acidic groups.
  • fluorinated means that at least one hydrogen bonded to a carbon has been replaced with a fluorine.
  • the term includes partially and fully fluorinated materials.
  • the fluorinated acid polymer is highly fluorinated.
  • highly fluorinated means that at least 50% of the available hydrogens bonded to a carbon, have been replaced with fluorine.
  • acidic group refers to a group capable of ionizing to donate a hydrogen ion to a Br ⁇ nsted base to form a salt.
  • the acidic groups supply an ionizable proton.
  • the acidic group has a pKa of less than 3.
  • the acidic group has a pKa of less than 0.
  • the acidic group has a pKa of less than ⁇ 5.
  • the acidic group can be attached directly to the polymer backbone, or it can be attached to side chains on the polymer backbone. Examples of acidic groups include, but are not limited to, carboxylic acid groups, sulfonic acid groups, sulfonimide groups, phosphoric acid groups, phosphonic acid groups, and combinations thereof.
  • the acidic groups can all be the same, or the polymer may have more than one type of acidic group.
  • the FAP is organic solvent wettable (“wettable FAP”).
  • organic solvent wettable refers to a material which, when formed into a film, is wettable by organic solvents. The term also includes polymeric acids which are not film-forming alone, but which when doped into a semiconductive polymer will form a film which is wettable.
  • the organic solvent wettable material forms a film which is wettable by phenylhexane with a contact angle less than 40°.
  • the FAP is organic solvent non-wettable (“non-wettable FAP”).
  • organic solvent non-wettable refers to a material which, when formed into a film, is not wettable by organic solvents.
  • the term also includes polymeric acids which are not film-forming alone, but which when doped into a semiconductive polymer will form a film which is non-wettable.
  • the organic solvent non-wettable material forms a film on which phenylhexane has a contact angle greater than 40°.
  • the term “contact angle” is intended to mean the angle ⁇ shown in FIG. 1 .
  • angle ⁇ is defined by the intersection of the plane of the surface and a line from the outer edge of the droplet to the surface.
  • angle ⁇ is measured after the droplet has reached an equilibrium position on the surface after being applied, i.e. “static contact angle”.
  • the film of the organic solvent wettable fluorinated polymeric acid is represented as the surface.
  • the contact angle is no greater than 35°. In one embodiment, the contact angle is no greater than 30°. The methods for measuring contact angles are well known.
  • the FAP is water-soluble. In one embodiment, the FAP is dispersible in water. In one embodiment, the FAP forms a colloidal dispersion in water.
  • the polymer backbone is fluorinated.
  • suitable polymeric backbones include, but are not limited to, polyolefins, polyacrylates, polymethacrylates, polyimides, polyamides, polyaramids, polyacrylamides, polystyrenes, and copolymers thereof.
  • the polymer backbone is highly fluorinated. In one embodiment, the polymer backbone is fully fluorinated.
  • the acidic groups are selected from sulfonic acid groups and sulfonimide groups. In one embodiment, the acidic groups are on a fluorinated side chain. In one embodiment, the fluorinated side chains are selected from alkyl groups, alkoxy groups, amido groups, ether groups, and combinations thereof.
  • the wettable FAP has a fluorinated olefin backbone, with pendant fluorinated ether sulfonate, fluorinated ester sulfonate, or fluorinated ether sulfonimide groups.
  • the polymer is a copolymer of 1,1-difluoroethylene and 2-(1,1-difluoro-2-(trifluoromethyl)allyloxy)-1,1,2,2-tetrafluoroethanesulfonic acid.
  • the polymer is a copolymer of ethylene and 2-(2-(1,2,2-trifluorovinyloxy)-1,1,2,3,3,3-hexafluoropropoxy)-1,1,2,2-tetrafluoroethanesulfonic acid.
  • These copolymers can be made as the corresponding sulfonyl fluoride polymer and then can be converted to the sulfonic acid form.
  • the wettable FAP is homopolymer or copolymer of a fluorinated and partially sulfonated poly(arylene ether sulfone).
  • the copolymer can be a block copolymer.
  • comonomers include, but are not limited to butadiene, butylene, isobutylene, styrene, and combinations thereof.
  • the wettable FAP is a homopolymer or copolymer of monomers having Formula VII:
  • the polymer After polymerization, the polymer can be converted to the acid form.
  • the wettable FAP is a homopolymer or copolymer of a trifluorostyrene having acidic groups.
  • the trifluorostyrene monomer has Formula VIII:
  • the wettable FAP is a sulfonimide polymer having Formula IX:
  • the wettable FAP comprises a fluorinated polymer backbone and a side chain having Formula X:
  • the wettable FAP has Formula XI:
  • the wettable FAP comprises at least one repeat unit derived from an ethylenically unsaturated compound having Formula XII:
  • R 17 to R 20 is Y, R 4 Y or OR 4 Y.
  • R 4 , R 5 , and R 17 to R 20 may optionally be substituted by halogen or ether oxygen.
  • R 21 is a group capable of forming or rearranging to a tertiary cation, more typically an alkyl group of 1 to 20 carbon atoms, and most typically t-butyl.
  • the reaction may be conducted at temperatures ranging from about 0° C. to about 200° C., more typically from about 30° C. to about 150° C. in the absence or presence of an inert solvent such as diethyl ether.
  • an inert solvent such as diethyl ether.
  • a closed reactor is typically used to avoid loss of volatile components.
  • may be prepared by reaction of compounds of structure (XII) with d 0 with cyclopentadiene, as is known in the art.
  • the wettable FAP is a copolymer which also comprises a repeat unit derived from at least one fluoroolefin, which is an ethylenically unsaturated compound containing at least one fluorine atom attached to an ethylenically unsaturated carbon.
  • the fluoroolefin comprises 2 to 20 carbon atoms.
  • fluoroolefins include, but are not limited to, tetrafluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, vinylidene fluoride, vinyl fluoride, perfluoro-(2,2-dimethyl-1,3-dioxole), perfluoro-(2-methylene-4-methyl-1,3-dioxolane), CF 2 ⁇ CFO(CF 2 ) t CF ⁇ CF 2 , where t is 1 or 2, and R f ′′OCF ⁇ CF 2 wherein R f ′′ is a saturated fluoroalkyl group of from 1 to about ten carbon atoms.
  • the comonomer is tetrafluoroethylene.
  • the non-wettable FAP comprises a polymeric backbone having pendant groups comprising siloxane sulfonic acid.
  • the siloxane pendant groups have the formula below:
  • the non-wettable FAP has a fluorinated backbone and pendant groups represented by the Formula (XIV)
  • the non-wettable FAP has formula (XV)
  • the pendant group is present at a concentration of 3-10 mol-%.
  • Q 1 is H, k ⁇ 0, and Q 2 is F, which may be synthesized according to the teachings of Connolly et al., U.S. Pat. No. 3,282,875.
  • Q 1 is H
  • Q 2 is H
  • g 0
  • R f 2 is F
  • Still other embodiments may be synthesized according to the various teachings in Drysdale et al., WO 9831716(A1), and co-pending US applications Choi et al, WO 99/52954(A1), and 60/176,881.
  • the non-wettable FAP is a colloid-forming polymeric acid.
  • colloid-forming refers to materials that are insoluble in water, and form colloids when dispersed into an aqueous medium.
  • the colloid-forming polymeric acids typically have a molecular weight in the range of about 10,000 to about 4,000,000. In one embodiment, the polymeric acids have a molecular weight of about 100,000 to about 2,000,000.
  • Colloid particle size typically ranges from 2 nanometers (nm) to about 140 nm. In one embodiment, the colloids have a particle size of 2 nm to about 30 nm. Any colloid-forming polymeric material having acidic protons can be used.
  • the colloid-forming fluorinated polymeric acid has acidic groups selected from carboxylic groups, sulfonic acid groups, and sulfonimide groups. In one embodiment, the colloid-forming fluorinated polymeric acid is a polymeric sulfonic acid. In one embodiment, the colloid-forming polymeric sulfonic acid is perfluorinated. In one embodiment, the colloid-forming polymeric sulfonic acid is a perfluoroalkylenesulfonic acid.
  • the non-wettable colloid-forming FAP is a highly-fluorinated sulfonic acid polymer (“FSA polymer”).
  • FSA polymer highly-fluorinated sulfonic acid polymer
  • “Highly fluorinated” means that at least about 50% of the total number of halogen and hydrogen atoms in the polymer are fluorine atoms, an in one embodiment at least about 75%, and in another embodiment at least about 90%.
  • the polymer is perfluorinated.
  • sulfonate functional group refers to either to sulfonic acid groups or salts of sulfonic acid groups, and in one embodiment alkali metal or ammonium salts.
  • E 5 is a cation, also known as a “counterion”.
  • E 5 may be H, Li, Na, K or N(R 1 )(R 2 )(R 3 )(R 4 ), and R 1 , R 2 , R 3 , and R 4 are the same or different and are and in one embodiment H, CH 3 or C 2 H 5 .
  • E 5 is H, in which case the polymer is said to be in the “acid form”.
  • E 5 may also be multivalent, as represented by such ions as Ca ++ , and Al +++ . It is clear to the skilled artisan that in the case of multivalent counterions, represented generally as M x+ , the number of sulfonate functional groups per counterion will be equal to the valence “x”.
  • the FSA polymer comprises a polymer backbone with recurring side chains attached to the backbone, the side chains carrying cation exchange groups.
  • Polymers include homopolymers or copolymers of two or more monomers. Copolymers are typically formed from a nonfunctional monomer and a second monomer carrying the cation exchange group or its precursor, e.g., a sulfonyl fluoride group (—SO 2 F), which can be subsequently hydrolyzed to a sulfonate functional group.
  • a sulfonyl fluoride group e.g., a sulfonyl fluoride group (—SO 2 F)
  • —SO 2 F sulfonyl fluoride group
  • Possible first monomers include tetrafluoroethylene (TFE), hexafluoropropylene, vinyl fluoride, vinylidine fluoride, trifluoroethylene, chlorotrifluoroethylene, perfluoro(alkyl vinyl ether), and combinations thereof.
  • TFE is a preferred first monomer.
  • possible second monomers include fluorinated vinyl ethers with sulfonate functional groups or precursor groups which can provide the desired side chain in the polymer. Additional monomers, including ethylene, propylene, and R—CH ⁇ CH 2 where R is a perfluorinated alkyl group of 1 to 10 carbon atoms, can be incorporated into these polymers if desired.
  • the polymers may be of the type referred to herein as random copolymers, that is, copolymers made by polymerization in which the relative concentrations of the comonomers are kept as constant as possible, so that the distribution of the monomer units along the polymer chain is in accordance with their relative concentrations and relative reactivities. Less random copolymers, made by varying relative concentrations of monomers in the course of the polymerization, may also be used. Polymers of the type called block copolymers, such as that disclosed in European Patent Application No. 1 026 152 A1, may also be used.
  • FSA polymers for use in the present invention include a highly fluorinated, and in one embodiment perfluorinated, carbon backbone and side chains represented by the formula
  • E 5 is H.
  • E 5 may also be multivalent.
  • the FSA polymers include, for example, polymers disclosed in U.S. Pat. No. 3,282,875 and in U.S. Pat. Nos. 4,358,545 and 4,940,525.
  • An example of preferred FSA polymer comprises a perfluorocarbon backbone and the side chain represented by the formula
  • FSA polymers of this type are disclosed in U.S. Pat. No. 3,282,875 and can be made by copolymerization of tetrafluoroethylene (TFE) and the perfluorinated vinyl ether CF 2 ⁇ CF—O—CF 2 CF(CF 3 )—O—CF 2 CF 2 SO 2 F, perfluoro(3,6-dioxa-4-methyl-7-octenesulfonyl fluoride) (PDMOF), followed by conversion to sulfonate groups by hydrolysis of the sulfonyl fluoride groups and ion exchanged as necessary to convert them to the desired ionic form.
  • TFE tetrafluoroethylene
  • PMMAF perfluoro(3,6-dioxa-4-methyl-7-octenesulfonyl fluoride)
  • polymer of the type disclosed in U.S. Pat. Nos. 4,358,545 and 4,940,525 has the side chain —O—CF 2 CF 2 SO 3 E 5 , wherein E 5 is as defined above.
  • This polymer can be made by copolymerization of tetrafluoroethylene (TFE) and the perfluorinated vinyl ether CF 2 ⁇ CF—O—CF 2 CF 2 SO 2 F, perfluoro(3-oxa-4-pentenesulfonyl fluoride) (POPF), followed by hydrolysis and further ion exchange as necessary.
  • TFE tetrafluoroethylene
  • POPF perfluoro(3-oxa-4-pentenesulfonyl fluoride)
  • the FSA polymers for use in this invention typically have an ion exchange ratio of less than about 33.
  • “ion exchange ratio” or “IXR” is defined as number of carbon atoms in the polymer backbone in relation to the cation exchange groups. Within the range of less than about 33, IXR can be varied as desired for the particular application. In one embodiment, the IXR is about 3 to about 33, and in another embodiment about 8 to about 23.
  • equivalent weight is defined to be the weight of the polymer in acid form required to neutralize one equivalent of sodium hydroxide.
  • equivalent weight range which corresponds to an IXR of about 8 to about 23 is about 750 EW to about 1500 EW.
  • IXR sulfonate polymers disclosed in U.S. Pat. Nos. 4,358,545 and 4,940,525, e.g., the polymer having the side chain —O—CF 2 CF 2 SO 3 H (or a salt thereof), the equivalent weight is somewhat lower because of the lower molecular weight of the monomer unit containing a cation exchange group.
  • the corresponding equivalent weight range is about 575 EW to about 1325 EW.
  • the FSA polymers can be prepared as colloidal aqueous dispersions. They may also be in the form of dispersions in other media, examples of which include, but are not limited to, alcohol, water-soluble ethers, such as tetrahydrofuran, mixtures of water-soluble ethers, and combinations thereof. In making the dispersions, the polymer can be used in acid form.
  • U.S. Pat. Nos. 4,433,082, 6,150,426 and WO 03/006537 disclose methods for making of aqueous alcoholic dispersions. After the dispersion is made, concentration and the dispersing liquid composition can be adjusted by methods known in the art.
  • Aqueous dispersions of the colloid-forming polymeric acids typically have particle sizes as small as possible and an EW as small as possible, so long as a stable colloid is formed.
  • Aqueous dispersions of FSA polymer are available commercially as Nafion® dispersions, from E.I. du Pont de Nemours and Company (Wilmington, Del.).
  • the doped semiconductive polymers are formed by oxidative polymerization of the precursor monomer in the presence of at least one FAP.
  • the doped semiconductive polymers are abbreviated hereinafter as “SCP/FAP”.
  • the polymerization is generally carried out in a homogeneous aqueous solution.
  • the polymerization for obtaining the electrically conducting polymer is carried out in an emulsion of water and an organic solvent. In general, some water is present in order to obtain adequate solubility of the oxidizing agent and/or catalyst. Oxidizing agents such as ammonium persulfate, sodium persulfate, potassium persulfate, and the like, can be used.
  • a catalyst, such as ferric chloride, or ferric sulfate may also be present.
  • the resulting polymerized product will be a solution, dispersion, or emulsion of the doped semiconductive polymer.
  • the method of making an aqueous dispersion of the semiconductive polymer doped with FAP includes forming a reaction mixture by combining water, at least one precursor monomer, at least one FAP, and an oxidizing agent, in any order, provided that at least a portion of the FAP is present when at least one of the precursor monomer and the oxidizing agent is added.
  • the term “at least one precursor monomer” encompasses more than one type of monomer.
  • the method of making an aqueous dispersion of the doped semiconductive polymer includes forming a reaction mixture by combining water, at least one precursor monomer, at least one FAP, and an oxidizing agent, in any order, provided that at least a portion of the FAP is present when at least one of the precursor monomer and the oxidizing agent is added.
  • the method of making the doped semiconductive polymer comprises:
  • the precursor monomer is added to the aqueous solution or dispersion of the FAP prior to adding the oxidizer. Step (b) above, which is adding oxidizing agent, is then carried out.
  • a mixture of water and the precursor monomer is formed, in a concentration typically in the range of about 0.5% by weight to about 4.0% by weight total precursor monomer.
  • This precursor monomer mixture is added to the aqueous solution or dispersion of the FAP, and steps (b) above which is adding oxidizing agent is carried out.
  • the aqueous polymerization mixture may include a polymerization catalyst, such as ferric sulfate, ferric chloride, and the like.
  • the catalyst is added before the last step.
  • a catalyst is added together with an oxidizing agent.
  • the polymerization is carried out in the presence of co-dispersing liquids which are miscible with water.
  • suitable co-dispersing liquids include, but are not limited to ethers, alcohols, alcohol ethers, cyclic ethers, ketones, nitriles, sulfoxides, amides, and combinations thereof.
  • the co-dispersing liquid is an alcohol.
  • the co-dispersing liquid is an organic solvent selected from n-propanol, isopropanol, t-butanol, dimethylacetamide, dimethylformamide, N-methylpyrrolidone, and mixtures thereof.
  • the amount of co-dispersing liquid should be less than about 60% by volume.
  • the amount of co-dispersing liquid is less than about 30% by volume. In one embodiment, the amount of co-dispersing liquid is between 5 and 50% by volume.
  • the use of a co-dispersing liquid in the polymerization significantly reduces particle size and improves filterability of the dispersions.
  • buffer materials obtained by this process show an increased viscosity and films prepared from these dispersions are of high quality.
  • the co-dispersing liquid can be added to the reaction mixture at any point in the process.
  • the polymerization is carried out in the presence of a co-acid which is a Br ⁇ nsted acid.
  • the acid can be an inorganic acid, such as HCl, sulfuric acid, and the like, or an organic acid, such as acetic acid or p-toluenesulfonic acid.
  • the acid can be a water soluble polymeric acid such as poly(styrenesulfonic acid), poly(2-acrylamido-2-methyl-1-propanesulfonic acid, or the like, or a second fluorinated acid polymer, as described above. Combinations of acids can be used.
  • the co-acid can be added to the reaction mixture at any point in the process prior to the addition of either the oxidizer or the precursor monomer, whichever is added last. In one embodiment, the co-acid is added before both the precursor monomers and the fluorinated acid polymer, and the oxidizer is added last. In one embodiment the co-acid is added prior to the addition of the precursor monomers, followed by the addition of the fluorinated acid polymer, and the oxidizer is added last.
  • the polymerization is carried out in the presence of both a co-dispersing liquid and a co-acid.
  • the molar ratio of oxidizer to total precursor monomer is generally in the range of 0.1 to 3.0; and in one embodiment is 0.4 to 1.5.
  • the molar ratio of FAP to total precursor monomer is generally in the range of 0.2 to 10. In one embodiment, the ratio is in the range of 1 to 5.
  • the overall solid content is generally in the range of about 0.5% to 12% in weight percentage; and in one embodiment of about 2% to 6%.
  • the reaction temperature is generally in the range of about 4° C. to 50° C.; in one embodiment about 20° C. to 35° C.
  • the molar ratio of optional co-acid to precursor monomer is about 0.05 to 4.
  • the addition time of the oxidizer influences particle size and viscosity.
  • the particle size can be reduced by slowing down the addition speed.
  • the viscosity is increased by slowing down the addition speed.
  • the reaction time is generally in the range of about 1 to about 30 hours.
  • the aqueous dispersions of the doped semiconductive polymers generally have a very low pH.
  • the pH of the dispersion can be adjusted to about 1.5 to about 4.
  • the pH is adjusted to between 2 and 3. It has been found that the pH can be adjusted using known techniques, for example, ion exchange or by titration with an aqueous basic solution.
  • the as-formed aqueous dispersion of FAP-doped semiconductive polymer is contacted with at least one ion exchange resin under conditions suitable to remove any remaining decomposed species, side reaction products, and unreacted monomers, and to adjust pH, thus producing a stable, aqueous dispersion with a desired pH.
  • the as-formed doped semiconductive polymer dispersion is contacted with a first ion exchange resin and a second ion exchange resin, in any order.
  • the as-formed doped semiconductive polymer dispersion can be treated with both the first and second ion exchange resins simultaneously, or it can be treated sequentially with one and then the other.
  • the two doped semiconductive polymers are combined as-synthesized, and then treated with one or more ion exchange resins.
  • Ion exchange is a reversible chemical reaction wherein an ion in a fluid medium (such as an aqueous dispersion) is exchanged for a similarly charged ion attached to an immobile solid particle that is insoluble in the fluid medium.
  • a fluid medium such as an aqueous dispersion
  • the term “ion exchange resin” is used herein to refer to all such substances. The resin is rendered insoluble due to the crosslinked nature of the polymeric support to which the ion exchanging groups are attached.
  • Ion exchange resins are classified as cation exchangers or anion exchangers. Cation exchangers have positively charged mobile ions available for exchange, typically protons or metal ions such as sodium ions.
  • Anion exchangers have exchangeable ions which are negatively charged, typically hydroxide ions.
  • the first ion exchange resin is a cation, acid exchange resin which can be in protonic or metal ion, typically sodium ion, form.
  • the second ion exchange resin is a basic, anion exchange resin. Both acidic, cation including proton exchange resins and basic, anion exchange resins are contemplated for use in the practice of the invention.
  • the acidic, cation exchange resin is an inorganic acid, cation exchange resin, such as a sulfonic acid cation exchange resin.
  • Sulfonic acid cation exchange resins contemplated for use in the practice of the invention include, for example, sulfonated styrene-divinylbenzene copolymers, sulfonated crosslinked styrene polymers, phenol-formaldehyde-sulfonic acid resins, benzene-formaldehyde-sulfonic acid resins, and mixtures thereof.
  • the acidic, cation exchange resin is an organic acid, cation exchange resin, such as carboxylic acid, acrylic or phosphorous cation exchange resin.
  • mixtures of different cation exchange resins can be used.
  • the basic, anionic exchange resin is a tertiary amine anion exchange resin.
  • Tertiary amine anion exchange resins contemplated for use in the practice of the invention include, for example, tertiary-aminated styrene-divinylbenzene copolymers, tertiary-aminated crosslinked styrene polymers, tertiary-aminated phenol-formaldehyde resins, tertiary-aminated benzene-formaldehyde resins, and mixtures thereof.
  • the basic, anionic exchange resin is a quaternary amine anion exchange resin, or mixtures of these and other exchange resins.
  • the first and second ion exchange resins may contact the as-formed aqueous dispersion either simultaneously, or consecutively.
  • both resins are added simultaneously to an as-formed aqueous dispersion of an electrically conducting polymer, and allowed to remain in contact with the dispersion for at least about 1 hour, e.g., about 2 hours to about 20 hours.
  • the ion exchange resins can then be removed from the dispersion by filtration.
  • the size of the filter is chosen so that the relatively large ion exchange resin particles will be removed while the smaller dispersion particles will pass through.
  • the ion exchange resins quench polymerization and effectively remove ionic and non-ionic impurities and most of unreacted monomer from the as-formed aqueous dispersion.
  • the basic, anion exchange and/or acidic, cation exchange resins renders the acidic sites more basic, resulting in increased pH of the dispersion. In general, about one to five grams of ion exchange resin is used per gram of semiconductive polymer composition.
  • the basic ion exchange resin can be used to adjust the pH to the desired level.
  • the pH can be further adjusted with an aqueous basic solution such as a solution of sodium hydroxide, ammonium hydroxide, tetra-methylammonium hydroxide, or the like.
  • the new transparent conductors can be formed by first blending the conductive nanoparticles with the FAP or the SCP/FAP. This can be accomplished by adding an aqueous dispersion of the conductive nanoparticles to an aqueous dispersion of the FAP or the SCP/FAP. In one embodiment, the composition is further treated using sonication or microfluidization to ensure mixing of the components.
  • one or both of the components are isolated in solid form.
  • the solid material can be redispersed in water or in an aqueous solution or dispersion of the other component.
  • conductive nanoparticle solids can be dispersed in an aqueous solution or dispersion of a semiconductive polymer doped with an FAP.
  • the solid transparent conductor can then be formed using any liquid deposition technique.
  • Liquid deposition methods are well known.
  • Continuous liquid deposition techniques include but are not limited to, spin coating, gravure coating, curtain coating, dip coating, slot-die coating, spray coating, and continuous nozzle coating.
  • Discontinuous liquid deposition techniques include, but are not limited to, ink jet printing, gravure printing, and screen printing.
  • the conductor can be in the form of a continuous or patterned layer.
  • electroactive when referring to a layer or material is intended to mean a layer or material that exhibits electronic or electro-radiative properties.
  • An electroactive layer material may emit radiation or exhibit a change in concentration of electron-hole pairs when receiving radiation in the applications, for example photovoltaic cells.
  • high workfunction transparent conductors function as electrode of drain, source and drain in field-effect transistor.
  • one embodiment of a device, 100 has an anode layer 110 , an optional buffer layer 120 , an electroactive layer 130 , and a cathode layer 150 . Adjacent to the cathode layer 150 is an optional electron-injection/transport layer 140 .
  • the new transparent conductor has particular utility as the anode 110 .
  • the transparent conductor is formed by liquid deposition methods.
  • the deposited transparent conductor films are heat-treated to coalesce the films.
  • the device may include a support or substrate (not shown) that can be adjacent to the anode layer 110 or the cathode layer 150 . Most frequently, the support is adjacent the anode layer 110 .
  • the support can be flexible or rigid, organic or inorganic. Examples of support materials include, but are not limited to, glass, ceramic, metal, and plastic films.
  • buffer layer or “buffer material” is intended to mean electrically conductive or semiconductive materials and may have one or more functions in an organic electronic device, including but not limited to, planarization of the underlying layer, charge transport and/or charge injection properties, scavenging of impurities such as oxygen or metal ions, and other aspects to facilitate or to improve the performance of the organic electronic device.
  • Buffer materials may be polymers, oligomers, or small molecules, and may be in the form of solutions, dispersions, suspensions, emulsions, colloidal mixtures, or other compositions.
  • the buffer layer comprises hole transport material. Examples of hole transport materials for layer 120 have been summarized for example, in Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition, Vol. 18, p.
  • hole transporting molecules include, but are not limited to: 4,4′,4′′-tris(N,N-diphenyl-amino)triphenylamine (TDATA); 4,4′,4′′-tris(N-3-methylphenyl-N-phenyl-amino)triphenylamine (MTDATA); N,N′-diphenyl-N,N′-bis(3-methylphenyl)-[1,1′-biphenyl]-4,4′-diamine (TPD); 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC); N,N′-bis(4-methylphenyl)-N,N′-bis(4-ethylphenyl)-[1,1′-(3,3′-dimethyl)biphenyl]-4,4′-diamine (ETPD); te
  • hole transporting polymers include, but are not limited to, poly(9,9,-dioctylfluorene-co-N-(4-butylphenyl)diphenylaminer), and the like, polyvinylcarbazole, (phenylmethyl)polysilane, poly(dioxythiophenes), polyanilines, and polypyrroles. It is also possible to obtain hole transporting polymers by doping hole transporting molecules such as those mentioned above into polymers such as polystyrene and polycarbonate.
  • the electroactive layer 130 can be a light-emitting layer that is activated by an applied voltage (such as in a light-emitting diode or light-emitting electrochemical cell), a layer of material that responds to radiant energy and generates a signal with or without an applied bias voltage (such as in a photodetector).
  • the electroactive material is an organic electroluminescent (“EL”) material. Any EL material can be used in the devices, including, but not limited to, small molecule organic fluorescent compounds, fluorescent and phosphorescent metal complexes, conjugated polymers, and mixtures thereof.
  • fluorescent compounds include, but are not limited to, pyrene, perylene, rubrene, coumarin, derivatives thereof, and mixtures thereof.
  • metal complexes include, but are not limited to, metal chelated oxinoid compounds, such as tris(8-hydroxyquinolato)aluminum (Alq3); cyclometalated iridium and platinum electroluminescent compounds, such as complexes of iridium with phenylpyridine, phenylquinoline, or phenylpyrimidine ligands as disclosed in Petrov et al., U.S. Pat. No.
  • Electroluminescent emissive layers comprising a charge carrying host material and a metal complex have been described by Thompson et al., in U.S. Pat. No. 6,303,238, and by Burrows and Thompson in published PCT applications WO 00/70655 and WO 01/41512.
  • conjugated polymers include, but are not limited to poly(phenylenevinylenes), polyfluorenes, poly(spirobifluorenes), polythiophenes, poly(p-phenylenes), copolymers thereof, and mixtures thereof.
  • Optional layer 140 can function both to facilitate electron injection/transport, and can also serve as a confinement layer to prevent quenching reactions at layer interfaces. More specifically, layer 140 may promote electron mobility and reduce the likelihood of a quenching reaction if layers 130 and 150 would otherwise be in direct contact.
  • materials for optional layer 140 include, but are not limited to, metal chelated oxinoid compounds, such as bis(2-methyl-8-quinolinolato)(para-phenyl-phenolato)aluminum(III) (BAIQ), tetra(8-hydroxyquinolato)zirconium (ZrQ), and tris(8-hydroxyquinolato)aluminum (Alq 3 ); azole compounds such as 2-(4-biphenylyl)-5-(4-t-butylphenyl)-1,3,4-oxadiazole (PBD), 3-(4-biphenylyl)-4-phenyl-5-(4-t-butylphenyl)-1,2,4-triazole (TAZ), and 1,3,5-tri(phenyl-2-benzimidazole)benzene (TPBI); quinoxaline derivatives such as 2,3-bis(4-fluorophenyl)quinoxaline; phenanthroline derivatives such as 9,10
  • the cathode layer 150 is an electrode that is particularly efficient for injecting electrons or negative charge carriers.
  • the cathode layer 150 can be any metal or nonmetal having a lower work function than the first electrical contact layer (in this case, the anode layer 110 ).
  • Materials for the cathode layer can be selected from alkali metals of Group 1 (e.g., Li, Na, K, Rb, Cs,), the Group 2 metals (e.g., Mg, Ca, Ba, or the like), the Group 12 metals, the lanthanides (e.g., Ce, Sm, Eu, or the like), and the actinides (e.g., Th, U, or the like). Materials such as aluminum, indium, yttrium, and combinations thereof, may also be used. Specific non-limiting examples of materials for the cathode layer 150 include, but are not limited to, barium, lithium, cerium, cesium, europium, rubidium, yttrium, magnesium, samarium, and alloys and combinations thereof.
  • the cathode layer 150 is usually formed by a chemical or physical vapor deposition process. In some embodiments, the cathode layer will be patterned, as discussed above in reference to the anode layer 110 .
  • Other layers in the device can be made of any materials which are known to be useful in such layers upon consideration of the function to be served by such layers.
  • an encapsulation layer (not shown) is deposited over the contact layer 150 to prevent entry of undesirable components, such as water and oxygen, into the device 100 . Such components can have a deleterious effect on the organic layer 130 .
  • the encapsulation layer is a barrier layer or film.
  • the encapsulation layer is a glass lid.
  • the device 100 may comprise additional layers though such layers are not shown in FIG. 2 .
  • Other layers that are known in the art or otherwise may be used.
  • any of the above-described layers may comprise two or more sub-layers or may form a laminar structure.
  • some or all of anode layer 110 the optional buffer layer 120 , the electron transport layer 140 , cathode layer 150 , and other layers may be treated, especially surface treated, to increase charge carrier transport efficiency or other physical properties of the devices.
  • the choice of materials for each of the component layers is preferably determined by balancing the goals of providing a device with high device efficiency with device operational lifetime considerations, fabrication time and complexity factors and other considerations appreciated by persons skilled in the art. It will be appreciated that determining optimal components, component configurations, and compositional identities would be routine to those of ordinary skill of in the art.
  • the different layers have the following ranges of thicknesses: anode 110 , 10-2000 ⁇ , in one embodiment 50-500 ⁇ ; optional buffer layer 120 , 50-2000 ⁇ , in one embodiment 200-1000 ⁇ ; photoactive layer 130 , 10-2000 ⁇ , in one embodiment 100-1000 ⁇ ; optional electron transport layer 140 , 50-2000 ⁇ , in one embodiment 100-1000 ⁇ ; cathode 150 , 200-10000 ⁇ , in one embodiment 300-5000 ⁇ .
  • the location of the electron-hole recombination zone in the device, and thus the emission spectrum of the device, can be affected by the relative thickness of each layer.
  • the thickness of the electron-transport layer should be chosen so that the electron-hole recombination zone is in the light-emitting layer.
  • the desired ratio of layer thicknesses will depend on the exact nature of the materials used.
  • a voltage from an appropriate power supply (not depicted) is applied to the device 100 .
  • Current therefore passes across the layers of the device 100 . Electrons enter the organic polymer layer, releasing photons.
  • OLEDs called active matrix OLED displays
  • individual deposits of photoactive organic films may be independently excited by the passage of current, leading to individual pixels of light emission.
  • OLEDs called passive matrix OLED displays
  • deposits of photoactive organic films may be excited by rows and columns of electrical contact layers.
  • the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion.
  • a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
  • “or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
  • the term “layer” is used interchangeably with the term “film” and refers to a coating covering a desired area.
  • the meaning of the term is not limited by considerations of device or component size.
  • the area can be as large as an entire device or as small as a specific functional area such as the actual visual display, or as small as a single sub-pixel.
  • Layers and films can be formed by any conventional deposition technique, including vapor deposition, liquid deposition (continuous and discontinuous techniques), and thermal transfer.
  • Continuous deposition techniques include but are not limited to, spin coating, gravure coating, curtain coating, dip coating, slot-die coating, spray coating, and continuous nozzle coating.
  • Discontinuous deposition techniques include, but are not limited to, ink jet printing, gravure printing, and screen printing.
  • work function is intended to mean the minimum energy needed to remove an electron from a material to a point at infinite distance away from the surface.
  • Group numbers corresponding to columns within the periodic table of the elements use the “New Notation” convention as seen in the CRC Handbook of Chemistry and Physics, 81 st Edition (2000), where the groups are numbered from left to right as 1-18.
  • This example illustrates preparation of an aqueous carbon nanotube (“CNT”) dispersion, and work function of the film spin-coated from the dispersion:
  • Triton-X-100 is a trade mark for octylphenoxy polyethoxy ethanol. It is a non-ionic surfactant and has no influence in affecting Wf of CNT.
  • a stock solution was made by dissolving 1.035 g Triton X-100 in 98.9922 g deionized water, which amounts to 1.05% (w/w) in water.
  • CNT used in this example is L0200 single wall CNT (Laser/raw grade) purchased from CNI at Houston, Tex., USA.
  • the dispersion was spin-coated to form a film on a substrate for ultraviolet photoelectron spectroscopy for measurement of work function (Wf).
  • Wf energy level is usually determined from second electron cut-off with respect to the position of vacuum level using He I (21.22 eV) radiation.
  • Wf of the film was measured to be 4.5 eV to 4.6 eV, which is very low for effective injection of holes to the light emitting material layer.
  • Nafion® is a trade name for poly(perfluoroethylene sulfonic acid) from E. I. du Pont de Nemours and Company, Wilmington, Del.:
  • Example 1 L0200 single wall CNT (Laser/raw grade) in Example 1 was used in this Example.
  • Nafion® used for dispersing CNT is DE1020.
  • a stock dispersion of the Nafion® was prepared first by mixing 19.7753 g DE1020 with 162.119 g deionized water and 18.0151 g n-propanol. The resulting dispersion contained 1.13% Nafion® polymer.
  • 32.5063 g of the dispersion were mixed with 0.0688 g CNT in a glass jug. The mixture was then subjected to sonication for 15 minutes continuously using a Branson Sonifier Model 450 having power set at #3.
  • the glass jug was immersed in ice water contained in a tray to remove heat produced from intense cavitation.
  • the CNT formed a smooth, stable dispersion without any sign of sedimentation for many weeks.
  • the dispersion was spin-coated to form transparent film on a substrate for measurement of work function (Wf) by Ultraviolet Photoelectron Spectroscopy.
  • Wf energy level is usually determined from second electron cut-off with respect to the position of vacuum level using He I (21.22 eV) radiation.
  • Wf of the film was measured to be 6.2 eV.
  • the Wf is much higher than that (4.5 eV to 4.6 eV) of CNT as illustrated in Example 1.
  • This example illustrates preparation of an aqueous dispersion of CNT with Nafion® and conductivity of CNT/Nafion® film
  • CNT used in this example is HIPco CE608, also purchased from CNI (Carbon Nanotechnologies, Inc.) at Houston, Tex., USA.
  • CE608 contains 3-4% residual catalyst.
  • Nafion® used for dispersing CNT is DE1021.
  • a stock dispersion of the Nafion® was prepared first by mixing 6.0263 g DE1021 with 151.097 g deionized water and 16.797 g n-propanol. The resulting dispersion contained 0.39% Nafion® polymer. 34.9968 g of the dispersion were mixed with 0.0707 g CNT in a glass jug. The mixture was then subjected to sonication for 15 minutes continuously using a Branson Sonifier Model 450 having power set at #3. The glass jug was immersed in ice water contained in a tray to remove heat produced from intense cavitation. The CNT formed a smooth, stable dispersion without any sign of sedimentation for many weeks.
  • a couple of drops of the dispersion were placed on a microscope slide to form a thin, transparent film.
  • the thin film was painted with a room temperature silver paste to form two parallel lines as electrodes for measurement of resistance.
  • the resistance was converted to conductivity by taking a thickness of the film, separating the two electrodes along the length of the electrodes.
  • Conductivity was determined to be 140 S/cm at room temperature. The conductivity is very close to that of indium/tin oxide film.
  • This example illustrates preparation of electrically conducting poly(3,4, ethylenedioxythiophene) complexed with Nafion® for forming a top layer on a CNT film.
  • a 12.0% (w/w) Nafion® with an EW of 1050 is made using a procedure similar to the procedure in U.S. Pat. No. 6,150,426, Example 1, Part 2, except that the temperature is approximately 270° C.
  • reaction mixture is stirred for 15 min at 276 RPM using an overhead stirrer fitted with a double-stage-propeller-type blade.
  • the end of the Teflon® tube connecting the (NH 4 ) 2 S 2 O 8 /water solution was placed above the reaction mixture such that the injection involved individual drops falling from the end of the tube.
  • the reaction is stopped 7 hours after the addition of monomer has finished by adding 200 g of each Lewatit MP62WS and Lewatit Monoplus S100 ion-exchange resins, and 250 g of de-ionized water to the reaction mixture and stirring it further for 7 hours at 130 RPM.
  • the ion-exchange resin is finally filtered from the dispersion using Whatman No. 54 filter paper.
  • the pH of the PEDOT-Nafion® dispersion is 3.2 and dried films derived from the dispersion have conductivity of 3.2 ⁇ 10 ⁇ 4 S/cm at room temperature.
  • UPS has shown that PEDOT- Nafion® has Wf of about 5.4 at that pH, which is much higher than Wf of the CNT film shown in Example 1.

Abstract

There is provided a transparent conductor including conductive nanoparticles and at least one of (a) a fluorinated acid polymer and (b) a semiconductive polymer doped with a fluorinated acid polymer. The nanoparticles are carbon nanoparticles, metal nanoparticles, or combinations thereof. The carbon and metal nanoparticles are selected from nanotubes, fullerenes, and nanofibers. The acid polymers are fluorinated or highly fluorinated and have acidic groups including carboxylic acid groups, sulfonic acid groups, sulfonimide groups, phosphoric acid groups, phosphonic acid groups, and combinations thereof. The semiconductive polymers comprise homopolymers and copolymers derived from monomers selected from substituted and unsubstituted thiophenes, pyrroles, anilines, and cyclic heteroaromatics, and combinations of those. The compositions may be used in organic electronic devices (OLEDs).

Description

    RELATED U.S. APPLICATIONS
  • This application is a division of U.S. application Ser. No. 11/476,979, filed Jun. 28, 2006, currently allowed, and claims priority under 35 U.S.C. 119(e) to Provisional Application No. 60/694,793, filed Jun. 28, 2005, which is incorporated by reference in its entirety.
  • BACKGROUND INFORMATION
  • 1. Field of the Disclosure
  • This disclosure relates in general to transparent conductors having workfunction greater than 4.7 eV for use in electronic devices.
  • 2. Description of the Related Art
  • Organic electronic devices define a category of products that include an active layer. Such devices convert electrical energy into radiation, detect signals through electronic processes, convert radiation into electrical energy, or include one or more organic semiconductor layers.
  • Organic light-emitting diodes (OLEDs) are organic electronic devices comprising an organic layer capable of electroluminescence. OLEDs containing conducting polymers can have the following configuration which may include additional optional layers, materials or compositions:

  • anode/buffer layer/EL material/cathode
  • The anode is typically any material that has the ability to inject holes into the electroluminescent (“EL”) material, such as, for example, indium/tin oxide (ITO). The anode is optionally supported on a glass or plastic substrate. The buffer layer is typically an electrically conducting polymer and facilitates the injection of holes from the anode into the EL material layer. EL materials include fluorescent compounds, fluorescent and phosphorescent metal complexes, conjugated polymers, and combinations and mixtures thereof. The cathode is typically any material (such as, e.g., Ca or Ba) that has the ability to inject electrons into the EL material. At least one of the anode or cathode is transparent or semi-transparent to allow for light emission.
  • ITO is frequently used as the transparent anode. However, the work function of ITO is relatively low, typically in the range of 4.6 eV. This low work function results in less effective injection of holes into the EL material. In some cases, the work function of ITO can be improved (i.e., raised) by surface treatment. However, these treatments are sometime not stable and result in reduced device lifetime.
  • It is known that conductive carbon nanotube (“CNT”) dispersions can be used to form transparent, conductive films. The films have conductivity of about 6×103 S/cm (Science, p 1273 - 1276, vol 305, Aug. 27, 2004), which is similar to the conductivity of indium/tin oxide vapor-deposited on substrates. It is evident that CNT film could replace ITO as a transparent anode. However, the work function of CNT is in the same range as that of ITO and is not high enough to inject holes to the light emitting layer for OLEDs applications.
  • Thus, there is a continuing need for improved materials to form transparent anodes.
  • SUMMARY
  • There is provided a transparent conductor comprising conductive nanoparticles and at least one of (a) a fluorinated acid polymer and (b) a semiconductive polymer doped with a fluorinated acid polymer.
  • In another embodiment, there is provided an electronic device comprising the transparent conductor.
  • The foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the disclosure and the appended claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention is illustrated by way of example and not limitation in the accompanying figures.
  • FIG. 1 is a diagram illustrating contact angle.
  • FIG. 2 is a schematic diagram of an organic electronic device.
  • Skilled artisans appreciate that objects in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the objects in the figures may be enlarged relative to other objects to help to improve understanding of embodiments.
  • DETAILED DESCRIPTION
  • There is provided a transparent conductor having workfunction greater than 4.7 eV comprising conductive nanoparticles and at least one of (a) a fluorinated acid polymer and (b) a semiconductive polymer doped with a fluorinated acid polymer. The workfunction is defined as the energy required to remove an electron from the material to vaccum level. It is typically measured by Ultraviolet Photoemission Spectroscopy. It can also be obtained by the Kelvin probe technique.
  • Many aspects and embodiments are described herein and are exemplary and not limiting. After reading this specification, skilled artisans will appreciate that other aspects and embodiments are possible without departing from the scope of the invention.
  • As used herein, the term “transparent” refers to a material which transmits at least 50% of incident light, in the visible range. The term “conductive nanoparticles” refers to materials which have one or more dimension less than 100 nm, and which, when formed into a film, have a conductivity greater than 1 S/cm. It is understood that the particles can have any shape, including circular, rectangular, polygonal, fibril, and irregular shapes. The term “fluorinated acid polymer” refers to a polymer having acidic groups, where at least some of the hydrogens have been replaced by fluorine. This fluorination may occur on the polymer backbone, on side chains attached to the backbone, pendant groups, or combinations of these. The term “acidic group” refers to a group capable of ionizing to donate a hydrogen ion to a base to form a salt. As used herein, the term “semiconductive polymer” refers to any polymer or oligomer which is inherently or intrinsically capable of electrical conductivity without the addition of carbon black or conductive metal particles. The term “polymer” encompasses homopolymers and copolymers. Copolymers may be formed of monomers having different structures or monomers of the same structure with different substituents. The term “doped” is intended to mean that the semiconductive polymer has a polymeric counterion derived from a polymeric acid to balance the charge on the conductive polymer.
  • 1. Conductive Nanoparticles
  • In one embodiment, the conductive nanoparticles form films having conductivity greater than 10 S/cm. In one embodiment, the conductivity is greater than 20 S/cm. In one embodiment, the conductive nanoparticles have at least one dimension less than 50 nm. In one embodiment, the conductive nanoparticles have at least one dimension less than 30 nm.
  • Some exemplary types of conductive nanoparticles include, but are not limited to, carbon nanotubes and nanofibers, metal nanoparticles, and metal nanofibers.
  • Carbon nanotubes are elongated fullerenes where the walls of the tubes comprise hexagonal polyhedra formed by groups of six carbon atoms and are often capped at ends. Fullerenes are any of various cagelike, hollow molecules composed of hexagonal and pentagonal groups of atoms that constitute the third form of carbon after diamond and graphite. Presently, there are three main approaches for the synthesis of single- and multi-walled carbon nanotubes. These include the electric arc discharge of graphite rod (Journet et al. Nature 388: 756 (1997)), the laser ablation of carbon (Thess et al. Science 273: 483 (1996)), and the chemical vapor deposition of hydrocarbons (Ivanov et al. Chem. Phys. Lett 223: 329 (1994); Li et al. Science 274: 1701 (1996)). Carbon nanotubes may be only a few nanometers in diameter, yet up to a millimeter long, so that the length-to-width aspect ratio is extremely high. Carbon nanotubes also include nano-mat of carbon nanotubes. Carbon nanotubes and dispersions of carbon nanotubes in various solvents are commercially available.
  • Carbon nanofibers are similar to carbon nanotubes in shape and diameter, but comprise carbon composites in a non-hollow, fibrous form, whereas carbon nanotubes are in the form of a hollow tube. Carbon nanofibers can be formed using a method similar to the synthetic methods for carbon nanotubes.
  • The metal nanoparticles and nanofibers can be made from any conductive metals, including, but not limited to, silver, nickel, gold, copper, palladium, and mixtures thereof. Metal nanoparticles are available commercially. The formation of nanofibers is possible through a number of different approaches that are well known to those of skill in the art.
  • In one embodiment, the conductive nano-particles are in the form of an aqueous dispersion. In one embodiment, the aqueous dispersion further comprises a surfactant, which can be an anionic, cationic, or non-ionic surfactant.
  • In one embodiment, the conductive nanoparticles are in the form of a non-aqueous dispersion.
  • 2. Semiconductive Polymer
  • Any semiconductive polymer doped with a fluorinated acid polymer can be used in the new composition. In one embodiment, the doped semiconductive polymer will form a film which has a conductivity of at least 10−7 S/cm. The semiconductive polymers suitable for the new composition can be homopolymers, or they can be copolymers of two or more respective monomers. The monomer from which the conductive polymer is formed, is referred to as a “precursor monomer”. A copolymer will have more than one precursor monomer.
  • In one embodiment, the semiconductive polymer is made from at least one precursor monomer selected from thiophenes, pyrroles, anilines, and polycyclic aromatics. The polymers made from these monomers are referred to herein as polythiophenes, polypyrroles, polyanilines, and polycyclic aromatic polymers, respectively. The term “polycyclic aromatic” refers to compounds having more than one aromatic ring. The rings may be joined by one or more bonds, or they may be fused together. The term “aromatic ring” is intended to include heteroaromatic rings. A “polycyclic heteroaromatic” compound has at least one heteroaromatic ring.
  • In one embodiment, thiophene monomers contemplated for use to form the semiconductive polymer comprise Formula I below:
  • Figure US20100270514A1-20101028-C00001
  • wherein:
      • R1 is independently selected so as to be the same or different at each occurrence and is selected from hydrogen, alkyl, alkenyl, alkoxy, alkanoyl, alkythio, aryloxy, alkylthioalkyl, alkylaryl, arylalkyl, amino, alkylamino, dialkylamino, aryl, alkylsulfinyl, alkoxyalkyl, alkylsulfonyl, arylthio, arylsulfinyl, alkoxycarbonyl, arylsulfonyl, acrylic acid, phosphoric acid, phosphonic acid, halogen, nitro, cyano, hydroxyl, epoxy, silane, siloxane, alcohol, benzyl, carboxylate, ether, ether carboxylate, amidosulfonate, ether sulfonate, ester sulfonate, and urethane; or both R1 groups together may form an alkylene or alkenylene chain completing a 3, 4, 5, 6, or 7-membered aromatic or alicyclic ring, which ring may optionally include one or more divalent nitrogen, sulfur or oxygen atoms.
  • As used herein, the term “alkyl” refers to a group derived from an aliphatic hydrocarbon and includes linear, branched and cyclic groups which may be unsubstituted or substituted. The term “heteroalkyl” is intended to mean an alkyl group, wherein one or more of the carbon atoms within the alkyl group has been replaced by another atom, such as nitrogen, oxygen, sulfur, and the like. The term “alkylene” refers to an alkyl group having two points of attachment.
  • As used herein, the term “alkenyl” refers to a group derived from an aliphatic hydrocarbon having at least one carbon-carbon double bond, and includes linear, branched and cyclic groups which may be unsubstituted or substituted. The term “heteroalkenyl” is intended to mean an alkenyl group, wherein one or more of the carbon atoms within the alkenyl group has been replaced by another atom, such as nitrogen, oxygen, sulfur, and the like. The term “alkenylene” refers to an alkenyl group having two points of attachment.
  • As used herein, the following terms for substituent groups refer to the formulae given below:
      • “alcohol” -R3—OH
      • “amido” -R3—C(O)N(R6)R6
      • “amidosulfonate” -R3—C(O)N(R6)R4—SO3Z
      • “benzyl” —CH2—C6H5
      • “carboxylate” -R3—C(O)O—Z or -R3—O—C(O)—Z
      • “ether” -R3—(O—R5)p—O—R5
      • “ether carboxylate” -R3—O—R4—C(O)O—Z or -R3—O—R4—O—C(O)—Z
      • “ether sulfonate” -R3—O—R4—SO3Z
      • “ester sulfonate” -R3—O—C(O)—R4—SO3Z
      • “sulfonimide” -R3—SO2—NH—SO2—R5
      • “urethane” -R3—O—C(O)—N(R6)2
      • where all “R” groups are the same or different at each occurrence and:
        • R3 is a single bond or an alkylene group
        • R4 is an alkylene group
        • R5 is an alkyl group
        • R6 is hydrogen or an alkyl group
        • p is 0 or an integer from 1 to 20
        • Z is H, alkali metal, alkaline earth metal, N(R5)4 or R5
          Any of the above groups may further be unsubstituted or substituted, and any group may have F substituted for one or more hydrogens, including perfluorinated groups. In one embodiment, the alkyl and alkylene groups have from 1-20 carbon atoms.
  • In one embodiment, in the thiophene monomer, both R1 together form —O—(CHY)m—O—, where m is 2 or 3, and Y is the same or different at each occurrence and is selected from hydrogen, halogen, alkyl, alcohol, amidosulfonate, benzyl, carboxylate, ether, ether carboxylate, ether sulfonate, ester sulfonate, and urethane, where the Y groups may be partially or fully fluorinated. In one embodiment, all Y are hydrogen. In one embodiment, the polythiophene is poly(3,4-ethylenedioxythiophene). In one embodiment, at least one Y group is not hydrogen. In one embodiment, at least one Y group is a substituent having F substituted for at least one hydrogen. In one embodiment, at least one Y group is perfluorinated.
  • In one embodiment, the thiophene monomer has Formula I(a):
  • Figure US20100270514A1-20101028-C00002
  • wherein:
      • R7 is the same or different at each occurrence and is selected from hydrogen, alkyl, heteroalkyl, alkenyl, heteroalkenyl, alcohol, amidosulfonate, benzyl, carboxylate, ether, ether carboxylate, ether sulfonate, ester sulfonate, and urethane, with the proviso that at least one R7 is not hydrogen, and
      • m is 2 or 3.
  • In one embodiment of Formula I(a), m is two, one R7 is an alkyl group of more than 5 carbon atoms, and all other R7 are hydrogen. In one embodiment of Formula I(a), at least one R7 group is fluorinated. In one embodiment, at least one R7 group has at least one fluorine substituent. In one embodiment, the R7 group is fully fluorinated.
  • In one embodiment of Formula I(a), the R7 substituents on the fused alicyclic ring on the thiophene offer improved solubility of the monomers in water and facilitate polymerization in the presence of the fluorinated acid polymer.
  • In one embodiment of Formula I(a), m is 2, one R7 is sulfonic acid-propylene-ether-methylene and all other R7 are hydrogen. In one embodiment, m is 2, one R7 is propyl-ether-ethylene and all other R7 are hydrogen. In one embodiment, m is 2, one R7 is methoxy and all other R7 are hydrogen. In one embodiment, one R7 is sulfonic acid difluoromethylene ester methylene (—CH2—O—C(O)—CF2—SO3H), and all other R7 are hydrogen.
  • In one embodiment, pyrrole monomers contemplated for use to form the semiconductive polymer comprise Formula II below.
  • Figure US20100270514A1-20101028-C00003
  • where in Formula II:
      • R1 is independently selected so as to be the same or different at each occurrence and is selected from hydrogen, alkyl, alkenyl, alkoxy, alkanoyl, alkythio, aryloxy, alkylthioalkyl, alkylaryl, arylalkyl, amino, alkylamino, dialkylamino, aryl, alkylsulfinyl, alkoxyalkyl, alkylsulfonyl, arylthio, arylsulfinyl, alkoxycarbonyl, arylsulfonyl, acrylic acid, phosphoric acid, phosphonic acid, halogen, nitro, cyano, hydroxyl, epoxy, silane, siloxane, alcohol, benzyl, carboxylate, ether, amidosulfonate, ether carboxylate, ether sulfonate, ester sulfonate, and urethane; or both R1 groups together may form an alkylene or alkenylene chain completing a 3, 4, 5, 6, or 7-membered aromatic or alicyclic ring, which ring may optionally include one or more divalent nitrogen, sulfur or oxygen atoms; and
      • R2 is independently selected so as to be the same or different at each occurrence and is selected from hydrogen, alkyl, alkenyl, aryl, alkanoyl, alkylthioalkyl, alkylaryl, arylalkyl, amino, epoxy, silane, siloxane, alcohol, benzyl, carboxylate, ether, ether carboxylate, ether sulfonate, ester sulfonate, and urethane.
  • In one embodiment, R1 is the same or different at each occurrence and is independently selected from hydrogen, alkyl, alkenyl, alkoxy, cycloalkyl, cycloalkenyl, alcohol, benzyl, carboxylate, ether, amidosulfonate, ether carboxylate, ether sulfonate, ester sulfonate, urethane, epoxy, silane, siloxane, and alkyl substituted with one or more of sulfonic acid, carboxylic acid, acrylic acid, phosphoric acid, phosphonic acid, halogen, nitro, cyano, hydroxyl, epoxy, silane, or siloxane moieties.
  • In one embodiment, R2 is selected from hydrogen, alkyl, and alkyl substituted with one or more of sulfonic acid, carboxylic acid, acrylic acid, phosphoric acid, phosphonic acid, halogen, cyano, hydroxyl, epoxy, silane, or siloxane moieties.
  • In one embodiment, the pyrrole monomer is unsubstituted and both R1 and R2 are hydrogen.
  • In one embodiment, both R1 together form a 6- or 7-membered alicyclic ring, which is further substituted with a group selected from alkyl, heteroalkyl, alcohol, benzyl, carboxylate, ether, ether carboxylate, ether sulfonate, ester sulfonate, and urethane. These groups can improve the solubility of the monomer and the resulting polymer. In one embodiment, both R1 together form a 6- or 7-membered alicyclic ring, which is further substituted with an alkyl group. In one embodiment, both R1 together form a 6- or 7-membered alicyclic ring, which is further substituted with an alkyl group having at least 1 carbon atom.
  • In one embodiment, both R1 together form —O—(CHY)m—O—, where m is 2 or 3, and Y is the same or different at each occurrence and is selected from hydrogen, alkyl, alcohol, benzyl, carboxylate, amidosulfonate, ether, ether carboxylate, ether sulfonate, ester sulfonate, and urethane. In one embodiment, at least one Y group is not hydrogen. In one embodiment, at least one Y group is a substituent having F substituted for at least one hydrogen. In one embodiment, at least one Y group is perfluorinated.
  • In one embodiment, aniline monomers contemplated for use to form the semiconductive polymer comprise Formula III below.
  • Figure US20100270514A1-20101028-C00004
  • wherein:
  • a is 0 or an integer from 1 to 4;
  • b is an integer from 1 to 5, with the proviso that a+b=5; and R1 is independently selected so as to be the same or different at each occurrence and is selected from hydrogen, alkyl, alkenyl, alkoxy, alkanoyl, alkythio, aryloxy, alkylthioalkyl, alkylaryl, arylalkyl, amino, alkylamino, dialkylamino, aryl, alkylsulfinyl, alkoxyalkyl, alkylsulfonyl, arylthio, arylsulfinyl, alkoxycarbonyl, arylsulfonyl, acrylic acid, phosphoric acid, phosphonic acid, halogen, nitro, cyano, hydroxyl, epoxy, silane, siloxane, alcohol, benzyl, carboxylate, ether, ether carboxylate, amidosulfonate, ether sulfonate, ester sulfonate, and urethane; or both R1 groups together may form an alkylene or alkenylene chain completing a 3, 4, 5, 6, or 7-membered aromatic or alicyclic ring, which ring may optionally include one or more divalent nitrogen, sulfur or oxygen atoms.
  • When polymerized, the aniline monomeric unit can have Formula IV(a) or Formula IV(b) shown below, or a combination of both formulae.
  • Figure US20100270514A1-20101028-C00005
  • Figure US20100270514A1-20101028-C00006
  • where a, b and R1 are as defined above.
  • In one embodiment, the aniline monomer is unsubstituted and a=0.
  • In one embodiment, a is not 0 and at least one R1 is fluorinated. In one embodiment, at least one R1 is perfluorinated.
  • In one embodiment, fused polycylic heteroaromatic monomers contemplated for use to form the semiconductive polymer have two or more fused aromatic rings, at least one of which is heteroaromatic. In one embodiment, the fused polycyclic heteroaromatic monomer has Formula V:
  • Figure US20100270514A1-20101028-C00007
  • wherein:
      • Q is S or NR6;
      • R6 is hydrogen or alkyl;
      • R8, R9, R10, and R11 are independently selected so as to be the same or different at each occurrence and are selected from hydrogen, alkyl, alkenyl, alkoxy, alkanoyl, alkythio, aryloxy, alkylthioalkyl, alkylaryl, arylalkyl, amino, alkylamino, dialkylamino, aryl, alkylsulfinyl, alkoxyalkyl, alkylsulfonyl, arylthio, arylsulfinyl, alkoxycarbonyl, arylsulfonyl, acrylic acid, phosphoric acid, phosphonic acid, halogen, nitro, nitrile, cyano, hydroxyl, epoxy, silane, siloxane, alcohol, benzyl, carboxylate, ether, ether carboxylate, amidosulfonate, ether sulfonate, ester sulfonate, and urethane; and
      • at least one of R8 and R9, R9 and R10, and R10 and R11 together form an alkenylene chain completing a 5 or 6-membered aromatic ring, which ring may optionally include one or more divalent nitrogen, sulfur or oxygen atoms.
  • In one embodiment, the fused polycyclic heteroaromatic monomer has Formula V(a), V(b), V(c), V(d), V(e), V(f), and V(g):
  • Figure US20100270514A1-20101028-C00008
  • wherein:
      • Q is S or NH; and
      • T is the same or different at each occurrence and is selected from
      • S, NR6, O, SiR6 2, Se, and PR6;
      • R6 is hydrogen or alkyl.
        The fused polycyclic heteroaromatic monomers may be substituted with groups selected from alkyl, heteroalkyl, alcohol, benzyl, carboxylate, ether, ether carboxylate, ether sulfonate, ester sulfonate, and urethane. In one embodiment, the substituent groups are fluorinated. In one embodiment, the substituent groups are fully fluorinated.
  • In one embodiment, the fused polycyclic heteroaromatic monomer is a thieno(thiophene). Such compounds have been discussed in, for example, Macromolecules, 34, 5746-5747 (2001); and Macromolecules, 35, 7281-7286 (2002). In one embodiment, the thieno(thiophene) is selected from thieno(2,3-b)thiophene, thieno(3,2-b)thiophene, and thieno(3,4-b)thiophene. In one embodiment, the thieno(thiophene) monomer is substituted with at least one group selected from alkyl, heteroalkyl, alcohol, benzyl, carboxylate, ether, ether carboxylate, ether sulfonate, ester sulfonate, and urethane. In one embodiment, the substituent groups are fluorinated. In one embodiment, the substituent groups are fully fluorinated.
  • In one embodiment, polycyclic heteroaromatic monomers contemplated for use to form the copolymer in the new composition comprise Formula VI:
  • Figure US20100270514A1-20101028-C00009
  • wherein:
      • Q is S or NR6;
      • T is selected from S, NR6, O, SiR6 2, Se, and PR6;
      • E is selected from alkenylene, arylene, and heteroarylene;
      • R6 is hydrogen or alkyl;
        • R12 is the same or different at each occurrence and is selected from hydrogen, alkyl, alkenyl, alkoxy, alkanoyl, alkythio, aryloxy, alkylthioalkyl, alkylaryl, arylalkyl, amino, alkylamino, dialkylamino, aryl, alkylsulfinyl, alkoxyalkyl, alkylsulfonyl, arylthio, arylsulfinyl, alkoxycarbonyl, arylsulfonyl, acrylic acid, phosphoric acid, phosphonic acid, halogen, nitro, nitrile, cyano, hydroxyl, epoxy, silane, siloxane, alcohol, benzyl, carboxylate, ether, ether carboxylate, amidosulfonate, ether sulfonate, ester sulfonate, and urethane; or both R12 groups together may form an alkylene or alkenylene chain completing a 3, 4, 5, 6, or 7-membered aromatic or alicyclic ring, which ring may optionally include one or more divalent nitrogen, sulfur or oxygen atoms.
  • In one embodiment, the semiconductive polymer is a copolymer of a precursor monomer and at least one second monomer. Any type of second monomer can be used, so long as it does not detrimentally affect the desired properties of the copolymer. In one embodiment, the second monomer comprises no more than 50% of the copolymer, based on the total number of monomer units. In one embodiment, the second monomer comprises no more than 30%, based on the total number of monomer units. In one embodiment, the second monomer comprises no more than 10%, based on the total number of monomer units.
  • Exemplary types of second precursor monomers include, but are not limited to, alkenyl, alkynyl, arylene, and heteroarylene. Examples of second monomers include, but are not limited to, fluorene, oxadiazole, thiadiazole, benzothiadiazole, phenylenevinylene, phenyleneethynylene, pyridine, diazines, and triazines, all of which may be further substituted.
  • In one embodiment, the copolymers are made by first forming an intermediate precursor monomer having the structure A-B-C, where A and C represent first precursor monomers, which can be the same or different, and B represents a second precursor monomer. The A-B-C intermediate precursor monomer can be prepared using standard synthetic organic techniques, such as Yamamoto, Stille, Grignard metathesis, Suzuki, and Negishi couplings. The copolymer is then formed by oxidative polymerization of the intermediate precursor monomer alone, or with one or more additional precursor monomers.
  • In one embodiment, the semiconductive polymer is a copolymer of two or more precursor monomers. In one embodiment, the first precursor monomers are selected from a thiophene, a pyrrole, an aniline, and a polycyclic aromatic.
  • 3. Fluorinated Acid Polymer
  • The fluorinated acid polymer (hereinafter referred to as “FAP”) can be any polymer which is fluorinated and has acidic groups. As used herein, the term “fluorinated” means that at least one hydrogen bonded to a carbon has been replaced with a fluorine. The term includes partially and fully fluorinated materials. In one embodiment, the fluorinated acid polymer is highly fluorinated. The term “highly fluorinated” means that at least 50% of the available hydrogens bonded to a carbon, have been replaced with fluorine. The term “acidic group” refers to a group capable of ionizing to donate a hydrogen ion to a Brønsted base to form a salt. The acidic groups supply an ionizable proton. In one embodiment, the acidic group has a pKa of less than 3. In one embodiment, the acidic group has a pKa of less than 0. In one embodiment, the acidic group has a pKa of less than −5. The acidic group can be attached directly to the polymer backbone, or it can be attached to side chains on the polymer backbone. Examples of acidic groups include, but are not limited to, carboxylic acid groups, sulfonic acid groups, sulfonimide groups, phosphoric acid groups, phosphonic acid groups, and combinations thereof. The acidic groups can all be the same, or the polymer may have more than one type of acidic group.
  • In one embodiment, the FAP is organic solvent wettable (“wettable FAP”). The term “organic solvent wettable” refers to a material which, when formed into a film, is wettable by organic solvents. The term also includes polymeric acids which are not film-forming alone, but which when doped into a semiconductive polymer will form a film which is wettable. In one embodiment, the organic solvent wettable material forms a film which is wettable by phenylhexane with a contact angle less than 40°.
  • In one embodiment, the FAP is organic solvent non-wettable (“non-wettable FAP”). The term “organic solvent non-wettable” refers to a material which, when formed into a film, is not wettable by organic solvents. The term also includes polymeric acids which are not film-forming alone, but which when doped into a semiconductive polymer will form a film which is non-wettable. In one embodiment, the organic solvent non-wettable material forms a film on which phenylhexane has a contact angle greater than 40°.
  • As used herein, the term “contact angle” is intended to mean the angle φ shown in FIG. 1. For a droplet of liquid medium, angle φ is defined by the intersection of the plane of the surface and a line from the outer edge of the droplet to the surface. Furthermore, angle φ is measured after the droplet has reached an equilibrium position on the surface after being applied, i.e. “static contact angle”. The film of the organic solvent wettable fluorinated polymeric acid is represented as the surface. In one embodiment, the contact angle is no greater than 35°. In one embodiment, the contact angle is no greater than 30°. The methods for measuring contact angles are well known.
  • In one embodiment, the FAP is water-soluble. In one embodiment, the FAP is dispersible in water. In one embodiment, the FAP forms a colloidal dispersion in water.
  • In one embodiment, the polymer backbone is fluorinated. Examples of suitable polymeric backbones include, but are not limited to, polyolefins, polyacrylates, polymethacrylates, polyimides, polyamides, polyaramids, polyacrylamides, polystyrenes, and copolymers thereof. In one embodiment, the polymer backbone is highly fluorinated. In one embodiment, the polymer backbone is fully fluorinated.
  • In one embodiment, the acidic groups are selected from sulfonic acid groups and sulfonimide groups. In one embodiment, the acidic groups are on a fluorinated side chain. In one embodiment, the fluorinated side chains are selected from alkyl groups, alkoxy groups, amido groups, ether groups, and combinations thereof.
  • In one embodiment, the wettable FAP has a fluorinated olefin backbone, with pendant fluorinated ether sulfonate, fluorinated ester sulfonate, or fluorinated ether sulfonimide groups. In one embodiment, the polymer is a copolymer of 1,1-difluoroethylene and 2-(1,1-difluoro-2-(trifluoromethyl)allyloxy)-1,1,2,2-tetrafluoroethanesulfonic acid. In one embodiment, the polymer is a copolymer of ethylene and 2-(2-(1,2,2-trifluorovinyloxy)-1,1,2,3,3,3-hexafluoropropoxy)-1,1,2,2-tetrafluoroethanesulfonic acid. These copolymers can be made as the corresponding sulfonyl fluoride polymer and then can be converted to the sulfonic acid form.
  • In one embodiment, the wettable FAP is homopolymer or copolymer of a fluorinated and partially sulfonated poly(arylene ether sulfone). The copolymer can be a block copolymer. Examples of comonomers include, but are not limited to butadiene, butylene, isobutylene, styrene, and combinations thereof.
  • In one embodiment, the wettable FAP is a homopolymer or copolymer of monomers having Formula VII:
  • Figure US20100270514A1-20101028-C00010
  • where:
      • b is an integer from 1 to 5,
      • R13 is OH or NHR14, and
      • R14 is alkyl, fluoroalkyl, sulfonylalkyl, or sulfonylfluoroalkyl.
        In one embodiment, the monomer is “SFS” or SFSI” shown below:
  • Figure US20100270514A1-20101028-C00011
  • After polymerization, the polymer can be converted to the acid form.
  • In one embodiment, the wettable FAP is a homopolymer or copolymer of a trifluorostyrene having acidic groups. In one embodiment, the trifluorostyrene monomer has Formula VIII:
  • Figure US20100270514A1-20101028-C00012
  • where:
      • W is selected from (CF2)q, O(CF2)q, S(CF2)q, (CF2)gO(CF2)r, and SO2(CF2)q,
      • b is independently an integer from 1 to 5,
      • R13 is OH or NHR14, and
      • R14 is alkyl, fluoroalkyl, sulfonylalkyl, or sulfonylfluoroalkyl.
        In one embodiment, the monomer containing W equal to S(CF2)g is polymerized then oxidized to give the polymer containing W equal to SO2(CF2)g. In one embodiment, the polymer containing R13 equal to F is converted its acid form where R13 is equal to OH or NHR14.
  • In one embodiment, the wettable FAP is a sulfonimide polymer having Formula IX:
  • Figure US20100270514A1-20101028-C00013
  • where:
      • Rf is selected from fluorinated alkylene, fluorinated heteroalkylene, fluorinated arylene, or fluorinated heteroarylene;
      • Rg is selected from fluorinated alkylene, fluorinated heteroalkylene, fluorinated arylene, fluorinated heteroarylene, arylene, or heteroarylene; and
      • n is at least 4.
        In one embodiment of Formula IX, Rf and Rg are perfluoroalkylene groups. In one embodiment, Rf and Rg are perfluorobutylene groups. In one embodiment, Rf and Rg contain ether oxygens. In one embodiment, n is greater than 20.
  • In one embodiment, the wettable FAP comprises a fluorinated polymer backbone and a side chain having Formula X:
  • Figure US20100270514A1-20101028-C00014
  • where:
      • Rg is selected from fluorinated alkylene, fluorinated heteroalkylene, fluorinated arylene, fluorinated heteroarylene, arylene, or heteroarylene;
      • R15 is a fluorinated alkylene group or a fluorinated heteroalkylene group;
      • R16 is a fluorinated alkyl or a fluorinated aryl group; and
      • p is 0 or an integer from 1 to 4.
  • In one embodiment, the wettable FAP has Formula XI:
  • Figure US20100270514A1-20101028-C00015
  • where:
      • R16 is a fluorinated alkyl or a fluorinated aryl group;
      • a, b, c, d, and e are each independently 0 or an integer from 1 to 4; and
      • n is at least 4.
  • The synthesis of these fluorinated acid polymers has been described in, for example, A. Feiring et al., J. Fluorine Chemistry 2000, 105, 129-135; A. Feiring et al., Macromolecules 2000, 33, 9262-9271; D. D. Desmarteau, J. Fluorine Chem. 1995, 72, 203-208; A. J. Appleby et al., J. Electrochem. Soc. 1993, 140(1), 109-111; and Desmarteau, U.S. Pat. No. 5,463,005.
  • In one embodiment, the wettable FAP comprises at least one repeat unit derived from an ethylenically unsaturated compound having Formula XII:
  • Figure US20100270514A1-20101028-C00016
      • wherein d is 0, 1, or 2;
      • R17 to R20 are independently H, halogen, alkyl or alkoxy of 1 to 10 carbon atoms, Y, C(Rf′)(Rf′)OR21, R4Y or OR4Y;
      • Y is COE2, SO2 E2, or sulfonimide;
      • R21 is hydrogen or an acid-labile protecting group;
      • Rf′ is the same or different at each occurrence and is a fluoroalkyl group of 1 to 10 carbon atoms, or taken together are (CF2)e where e is 2 to 10;
      • R4 is an alkylene group;
      • E2 is OH, halogen, or OR7; and
      • R5 is an alkyl group;
  • with the proviso that at least one of R17 to R20 is Y, R4Y or OR4Y. R4, R5, and R17 to R20 may optionally be substituted by halogen or ether oxygen.
  • Some illustrative, but nonlimiting, examples of representative monomers of Formula XII are presented below as Formulas XIIa-XIIe:
  • Figure US20100270514A1-20101028-C00017
  • wherein R21 is a group capable of forming or rearranging to a tertiary cation, more typically an alkyl group of 1 to 20 carbon atoms, and most typically t-butyl.
  • Compounds of Formula XII wherein d=0, (e.g., Formula XII-a), may be prepared by cycloaddition reaction of unsaturated compounds of structure (XIII) with quadricyclane (tetracyclo[2.2.1.02,6O3,5]heptane) as shown in the equation below.
  • Figure US20100270514A1-20101028-C00018
  • The reaction may be conducted at temperatures ranging from about 0° C. to about 200° C., more typically from about 30° C. to about 150° C. in the absence or presence of an inert solvent such as diethyl ether. For reactions conducted at or above the boiling point of one or more of the reagents or solvent, a closed reactor is typically used to avoid loss of volatile components. Compounds of structure (XII) with higher values of d (i.e., d=1 or 2) may be prepared by reaction of compounds of structure (XII) with d=0 with cyclopentadiene, as is known in the art.
  • In one embodiment, the wettable FAP is a copolymer which also comprises a repeat unit derived from at least one fluoroolefin, which is an ethylenically unsaturated compound containing at least one fluorine atom attached to an ethylenically unsaturated carbon. The fluoroolefin comprises 2 to 20 carbon atoms. Representative fluoroolefins include, but are not limited to, tetrafluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, vinylidene fluoride, vinyl fluoride, perfluoro-(2,2-dimethyl-1,3-dioxole), perfluoro-(2-methylene-4-methyl-1,3-dioxolane), CF2═CFO(CF2)tCF═CF2, where t is 1 or 2, and Rf″OCF═CF2 wherein Rf″ is a saturated fluoroalkyl group of from 1 to about ten carbon atoms. In one embodiment, the comonomer is tetrafluoroethylene.
  • In one embodiment, the non-wettable FAP comprises a polymeric backbone having pendant groups comprising siloxane sulfonic acid. In one embodiment, the siloxane pendant groups have the formula below:

  • —OaSi(OH)b-aR22 3-bR23RfSO3H
  • wherein:
      • a is from 1 to b;
      • b is from 1 to 3;
      • R22 is a non-hydrolyzable group independently selected from the group consisting of alkyl, aryl, and arylalkyl;
      • R23 is a bidentate alkylene radical, which may be substituted by one or more ether oxygen atoms, with the proviso that R23 has at least two carbon atoms linearly disposed between Si and Rf; and
      • Rf is a perfluoralkylene radical, which may be substituted by one or more ether oxygen atoms.
        In one embodiment, the non-wettable FAP having pendant siloxane groups has a fluorinated backbone. In one embodiment, the backbone is perfluorinated.
  • In one embodiment, the non-wettable FAP has a fluorinated backbone and pendant groups represented by the Formula (XIV)

  • —Og—[CF(Rf 2)CF—Oh]i—CF2CF2SO3H  (XIV)
  • wherein Rf 2 is F or a perfluoroalkyl radical having 1-10 carbon atoms either unsubstituted or substituted by one or more ether oxygen atoms, h=0 or 1, i=0 to 3, and g=0 or 1.
  • In one embodiment, the non-wettable FAP has formula (XV)
  • Figure US20100270514A1-20101028-C00019
  • where j≧0, k≧0 and 4≦(j+k)≦199, Q1 and Q2are F or H, Rf 2 is F or a perfluoroalkyl radical having 1-10 carbon atoms either unsubstituted or substituted by one or more ether oxygen atoms, h=0 or 1, i=0 to 3, g=0 or 1, and E4 is H or an alkali metal. In one embodiment Rf 2 is —CF3, g=1, h=1, and i=1. In one embodiment the pendant group is present at a concentration of 3-10 mol-%.
  • In one embodiment, Q1 is H, k≧0, and Q2 is F, which may be synthesized according to the teachings of Connolly et al., U.S. Pat. No. 3,282,875. In another preferred embodiment, Q1 is H, Q2 is H, g=0, Rf 2 is F, h=1, and i-1, which may be synthesized according to the teachings of co-pending application Ser. No. 60/105,662. Still other embodiments may be synthesized according to the various teachings in Drysdale et al., WO 9831716(A1), and co-pending US applications Choi et al, WO 99/52954(A1), and 60/176,881.
  • In one embodiment, the non-wettable FAP is a colloid-forming polymeric acid. As used herein, the term “colloid-forming” refers to materials that are insoluble in water, and form colloids when dispersed into an aqueous medium. The colloid-forming polymeric acids typically have a molecular weight in the range of about 10,000 to about 4,000,000. In one embodiment, the polymeric acids have a molecular weight of about 100,000 to about 2,000,000. Colloid particle size typically ranges from 2 nanometers (nm) to about 140 nm. In one embodiment, the colloids have a particle size of 2 nm to about 30 nm. Any colloid-forming polymeric material having acidic protons can be used. In one embodiment, the colloid-forming fluorinated polymeric acid has acidic groups selected from carboxylic groups, sulfonic acid groups, and sulfonimide groups. In one embodiment, the colloid-forming fluorinated polymeric acid is a polymeric sulfonic acid. In one embodiment, the colloid-forming polymeric sulfonic acid is perfluorinated. In one embodiment, the colloid-forming polymeric sulfonic acid is a perfluoroalkylenesulfonic acid.
  • In one embodiment, the non-wettable colloid-forming FAP is a highly-fluorinated sulfonic acid polymer (“FSA polymer”). “Highly fluorinated” means that at least about 50% of the total number of halogen and hydrogen atoms in the polymer are fluorine atoms, an in one embodiment at least about 75%, and in another embodiment at least about 90%. In one embodiment, the polymer is perfluorinated. The term “sulfonate functional group” refers to either to sulfonic acid groups or salts of sulfonic acid groups, and in one embodiment alkali metal or ammonium salts. The functional group is represented by the formula —SO3E5 where E5 is a cation, also known as a “counterion”. E5 may be H, Li, Na, K or N(R1)(R2)(R3)(R4), and R1, R2, R3, and R4 are the same or different and are and in one embodiment H, CH3 or C2H5. In another embodiment, E5 is H, in which case the polymer is said to be in the “acid form”. E5 may also be multivalent, as represented by such ions as Ca++, and Al+++. It is clear to the skilled artisan that in the case of multivalent counterions, represented generally as Mx+, the number of sulfonate functional groups per counterion will be equal to the valence “x”.
  • In one embodiment, the FSA polymer comprises a polymer backbone with recurring side chains attached to the backbone, the side chains carrying cation exchange groups. Polymers include homopolymers or copolymers of two or more monomers. Copolymers are typically formed from a nonfunctional monomer and a second monomer carrying the cation exchange group or its precursor, e.g., a sulfonyl fluoride group (—SO2F), which can be subsequently hydrolyzed to a sulfonate functional group. For example, copolymers of a first fluorinated vinyl monomer together with a second fluorinated vinyl monomer having a sulfonyl fluoride group (—SO2F) can be used. Possible first monomers include tetrafluoroethylene (TFE), hexafluoropropylene, vinyl fluoride, vinylidine fluoride, trifluoroethylene, chlorotrifluoroethylene, perfluoro(alkyl vinyl ether), and combinations thereof. TFE is a preferred first monomer. In other embodiments, possible second monomers include fluorinated vinyl ethers with sulfonate functional groups or precursor groups which can provide the desired side chain in the polymer. Additional monomers, including ethylene, propylene, and R—CH═CH2 where R is a perfluorinated alkyl group of 1 to 10 carbon atoms, can be incorporated into these polymers if desired. The polymers may be of the type referred to herein as random copolymers, that is, copolymers made by polymerization in which the relative concentrations of the comonomers are kept as constant as possible, so that the distribution of the monomer units along the polymer chain is in accordance with their relative concentrations and relative reactivities. Less random copolymers, made by varying relative concentrations of monomers in the course of the polymerization, may also be used. Polymers of the type called block copolymers, such as that disclosed in European Patent Application No. 1 026 152 A1, may also be used.
  • In one embodiment, FSA polymers for use in the present invention include a highly fluorinated, and in one embodiment perfluorinated, carbon backbone and side chains represented by the formula

  • —(O—CF2CFRf 3)a—O—CF2CFRf 4SO3E5
  • wherein Rf 3 and Rf 4 are independently selected from F, Cl or a perfluorinated alkyl group having 1 to 10 carbon atoms, a=0, 1 or 2, and E5 is H, Li, Na, K or N(R1)(R2)(R3)(R4) and R1, R2, R3, and R4 are the same or different and are and in one embodiment H, CH3 or C2H5. In another embodiment E5 is H. As stated above, E5 may also be multivalent.
  • In one embodiment, the FSA polymers include, for example, polymers disclosed in U.S. Pat. No. 3,282,875 and in U.S. Pat. Nos. 4,358,545 and 4,940,525. An example of preferred FSA polymer comprises a perfluorocarbon backbone and the side chain represented by the formula

  • —O—CF2CF(CF3)—O—CF2CF2SO3E5
  • where X is as defined above. FSA polymers of this type are disclosed in U.S. Pat. No. 3,282,875 and can be made by copolymerization of tetrafluoroethylene (TFE) and the perfluorinated vinyl ether CF2═CF—O—CF2CF(CF3)—O—CF2CF2SO2F, perfluoro(3,6-dioxa-4-methyl-7-octenesulfonyl fluoride) (PDMOF), followed by conversion to sulfonate groups by hydrolysis of the sulfonyl fluoride groups and ion exchanged as necessary to convert them to the desired ionic form. An example of a polymer of the type disclosed in U.S. Pat. Nos. 4,358,545 and 4,940,525 has the side chain —O—CF2CF2SO3E5, wherein E5 is as defined above. This polymer can be made by copolymerization of tetrafluoroethylene (TFE) and the perfluorinated vinyl ether CF2═CF—O—CF2CF2SO2F, perfluoro(3-oxa-4-pentenesulfonyl fluoride) (POPF), followed by hydrolysis and further ion exchange as necessary.
  • In one embodiment, the FSA polymers for use in this invention typically have an ion exchange ratio of less than about 33. In this application, “ion exchange ratio” or “IXR” is defined as number of carbon atoms in the polymer backbone in relation to the cation exchange groups. Within the range of less than about 33, IXR can be varied as desired for the particular application. In one embodiment, the IXR is about 3 to about 33, and in another embodiment about 8 to about 23.
  • The cation exchange capacity of a polymer is often expressed in terms of equivalent weight (EW). For the purposes of this application, equivalent weight (EW) is defined to be the weight of the polymer in acid form required to neutralize one equivalent of sodium hydroxide. In the case of a sulfonate polymer where the polymer has a perfluorocarbon backbone and the side chain is —O—CF2—CF(CF3)—O—CF2—CF2—SO3H (or a salt thereof), the equivalent weight range which corresponds to an IXR of about 8 to about 23 is about 750 EW to about 1500 EW. IXR for this polymer can be related to equivalent weight using the formula: 50 IXR+344=EW. While the same IXR range is used for sulfonate polymers disclosed in U.S. Pat. Nos. 4,358,545 and 4,940,525, e.g., the polymer having the side chain —O—CF2CF2SO3H (or a salt thereof), the equivalent weight is somewhat lower because of the lower molecular weight of the monomer unit containing a cation exchange group. For the preferred IXR range of about 8 to about 23, the corresponding equivalent weight range is about 575 EW to about 1325 EW. IXR for this polymer can be related to equivalent weight using the formula: 50 IXR+178=EW.
  • The FSA polymers can be prepared as colloidal aqueous dispersions. They may also be in the form of dispersions in other media, examples of which include, but are not limited to, alcohol, water-soluble ethers, such as tetrahydrofuran, mixtures of water-soluble ethers, and combinations thereof. In making the dispersions, the polymer can be used in acid form. U.S. Pat. Nos. 4,433,082, 6,150,426 and WO 03/006537 disclose methods for making of aqueous alcoholic dispersions. After the dispersion is made, concentration and the dispersing liquid composition can be adjusted by methods known in the art.
  • Aqueous dispersions of the colloid-forming polymeric acids, including FSA polymers, typically have particle sizes as small as possible and an EW as small as possible, so long as a stable colloid is formed.
  • Aqueous dispersions of FSA polymer are available commercially as Nafion® dispersions, from E.I. du Pont de Nemours and Company (Wilmington, Del.).
  • 4. Preparing Doped Semiconductive Polymers
  • In one embodiment, the doped semiconductive polymers are formed by oxidative polymerization of the precursor monomer in the presence of at least one FAP. The doped semiconductive polymers are abbreviated hereinafter as “SCP/FAP”. The polymerization is generally carried out in a homogeneous aqueous solution. In another embodiment, the polymerization for obtaining the electrically conducting polymer is carried out in an emulsion of water and an organic solvent. In general, some water is present in order to obtain adequate solubility of the oxidizing agent and/or catalyst. Oxidizing agents such as ammonium persulfate, sodium persulfate, potassium persulfate, and the like, can be used. A catalyst, such as ferric chloride, or ferric sulfate may also be present. The resulting polymerized product will be a solution, dispersion, or emulsion of the doped semiconductive polymer.
  • In one embodiment, the method of making an aqueous dispersion of the semiconductive polymer doped with FAP includes forming a reaction mixture by combining water, at least one precursor monomer, at least one FAP, and an oxidizing agent, in any order, provided that at least a portion of the FAP is present when at least one of the precursor monomer and the oxidizing agent is added. It will be understood that, in the case of semiconductive copolymers, the term “at least one precursor monomer” encompasses more than one type of monomer.
  • In one embodiment, the method of making an aqueous dispersion of the doped semiconductive polymer includes forming a reaction mixture by combining water, at least one precursor monomer, at least one FAP, and an oxidizing agent, in any order, provided that at least a portion of the FAP is present when at least one of the precursor monomer and the oxidizing agent is added.
  • In one embodiment, the method of making the doped semiconductive polymer comprises:
      • (a) providing an aqueous solution or dispersion of a FAP;
      • (b) adding an oxidizer to the solutions or dispersion of step (a); and
      • (c) adding at least one precursor monomer to the mixture of step (b).
  • In another embodiment, the precursor monomer is added to the aqueous solution or dispersion of the FAP prior to adding the oxidizer. Step (b) above, which is adding oxidizing agent, is then carried out.
  • In another embodiment, a mixture of water and the precursor monomer is formed, in a concentration typically in the range of about 0.5% by weight to about 4.0% by weight total precursor monomer. This precursor monomer mixture is added to the aqueous solution or dispersion of the FAP, and steps (b) above which is adding oxidizing agent is carried out.
  • In another embodiment, the aqueous polymerization mixture may include a polymerization catalyst, such as ferric sulfate, ferric chloride, and the like. The catalyst is added before the last step. In another embodiment, a catalyst is added together with an oxidizing agent.
  • In one embodiment, the polymerization is carried out in the presence of co-dispersing liquids which are miscible with water. Examples of suitable co-dispersing liquids include, but are not limited to ethers, alcohols, alcohol ethers, cyclic ethers, ketones, nitriles, sulfoxides, amides, and combinations thereof. In one embodiment, the co-dispersing liquid is an alcohol. In one embodiment, the co-dispersing liquid is an organic solvent selected from n-propanol, isopropanol, t-butanol, dimethylacetamide, dimethylformamide, N-methylpyrrolidone, and mixtures thereof. In general, the amount of co-dispersing liquid should be less than about 60% by volume. In one embodiment, the amount of co-dispersing liquid is less than about 30% by volume. In one embodiment, the amount of co-dispersing liquid is between 5 and 50% by volume. The use of a co-dispersing liquid in the polymerization significantly reduces particle size and improves filterability of the dispersions. In addition, buffer materials obtained by this process show an increased viscosity and films prepared from these dispersions are of high quality.
  • The co-dispersing liquid can be added to the reaction mixture at any point in the process.
  • In one embodiment, the polymerization is carried out in the presence of a co-acid which is a Brønsted acid. The acid can be an inorganic acid, such as HCl, sulfuric acid, and the like, or an organic acid, such as acetic acid or p-toluenesulfonic acid. Alternatively, the acid can be a water soluble polymeric acid such as poly(styrenesulfonic acid), poly(2-acrylamido-2-methyl-1-propanesulfonic acid, or the like, or a second fluorinated acid polymer, as described above. Combinations of acids can be used.
  • The co-acid can be added to the reaction mixture at any point in the process prior to the addition of either the oxidizer or the precursor monomer, whichever is added last. In one embodiment, the co-acid is added before both the precursor monomers and the fluorinated acid polymer, and the oxidizer is added last. In one embodiment the co-acid is added prior to the addition of the precursor monomers, followed by the addition of the fluorinated acid polymer, and the oxidizer is added last.
  • In one embodiment, the polymerization is carried out in the presence of both a co-dispersing liquid and a co-acid. In the method of making the doped semiconductive polymer, the molar ratio of oxidizer to total precursor monomer is generally in the range of 0.1 to 3.0; and in one embodiment is 0.4 to 1.5. The molar ratio of FAP to total precursor monomer is generally in the range of 0.2 to 10. In one embodiment, the ratio is in the range of 1 to 5. The overall solid content is generally in the range of about 0.5% to 12% in weight percentage; and in one embodiment of about 2% to 6%. The reaction temperature is generally in the range of about 4° C. to 50° C.; in one embodiment about 20° C. to 35° C. The molar ratio of optional co-acid to precursor monomer is about 0.05 to 4. The addition time of the oxidizer influences particle size and viscosity. Thus, the particle size can be reduced by slowing down the addition speed. In parallel, the viscosity is increased by slowing down the addition speed. The reaction time is generally in the range of about 1 to about 30 hours.
  • (a) pH Treatment
  • As synthesized, the aqueous dispersions of the doped semiconductive polymers generally have a very low pH. When the semiconductive polymer is doped with a FAP, it has been found that the pH can be adjusted to higher values, without adversely affecting the properties in devices. In one embodiment, the pH of the dispersion can be adjusted to about 1.5 to about 4. In one embodiment, the pH is adjusted to between 2 and 3. It has been found that the pH can be adjusted using known techniques, for example, ion exchange or by titration with an aqueous basic solution.
  • In one embodiment, the as-formed aqueous dispersion of FAP-doped semiconductive polymer is contacted with at least one ion exchange resin under conditions suitable to remove any remaining decomposed species, side reaction products, and unreacted monomers, and to adjust pH, thus producing a stable, aqueous dispersion with a desired pH. In one embodiment, the as-formed doped semiconductive polymer dispersion is contacted with a first ion exchange resin and a second ion exchange resin, in any order. The as-formed doped semiconductive polymer dispersion can be treated with both the first and second ion exchange resins simultaneously, or it can be treated sequentially with one and then the other. In one embodiment, the two doped semiconductive polymers are combined as-synthesized, and then treated with one or more ion exchange resins.
  • Ion exchange is a reversible chemical reaction wherein an ion in a fluid medium (such as an aqueous dispersion) is exchanged for a similarly charged ion attached to an immobile solid particle that is insoluble in the fluid medium. The term “ion exchange resin” is used herein to refer to all such substances. The resin is rendered insoluble due to the crosslinked nature of the polymeric support to which the ion exchanging groups are attached. Ion exchange resins are classified as cation exchangers or anion exchangers. Cation exchangers have positively charged mobile ions available for exchange, typically protons or metal ions such as sodium ions. Anion exchangers have exchangeable ions which are negatively charged, typically hydroxide ions.
  • In one embodiment, the first ion exchange resin is a cation, acid exchange resin which can be in protonic or metal ion, typically sodium ion, form. The second ion exchange resin is a basic, anion exchange resin. Both acidic, cation including proton exchange resins and basic, anion exchange resins are contemplated for use in the practice of the invention. In one embodiment, the acidic, cation exchange resin is an inorganic acid, cation exchange resin, such as a sulfonic acid cation exchange resin. Sulfonic acid cation exchange resins contemplated for use in the practice of the invention include, for example, sulfonated styrene-divinylbenzene copolymers, sulfonated crosslinked styrene polymers, phenol-formaldehyde-sulfonic acid resins, benzene-formaldehyde-sulfonic acid resins, and mixtures thereof. In another embodiment, the acidic, cation exchange resin is an organic acid, cation exchange resin, such as carboxylic acid, acrylic or phosphorous cation exchange resin. In addition, mixtures of different cation exchange resins can be used.
  • In another embodiment, the basic, anionic exchange resin is a tertiary amine anion exchange resin. Tertiary amine anion exchange resins contemplated for use in the practice of the invention include, for example, tertiary-aminated styrene-divinylbenzene copolymers, tertiary-aminated crosslinked styrene polymers, tertiary-aminated phenol-formaldehyde resins, tertiary-aminated benzene-formaldehyde resins, and mixtures thereof. In a further embodiment, the basic, anionic exchange resin is a quaternary amine anion exchange resin, or mixtures of these and other exchange resins.
  • The first and second ion exchange resins may contact the as-formed aqueous dispersion either simultaneously, or consecutively. For example, in one embodiment both resins are added simultaneously to an as-formed aqueous dispersion of an electrically conducting polymer, and allowed to remain in contact with the dispersion for at least about 1 hour, e.g., about 2 hours to about 20 hours. The ion exchange resins can then be removed from the dispersion by filtration. The size of the filter is chosen so that the relatively large ion exchange resin particles will be removed while the smaller dispersion particles will pass through. Without wishing to be bound by theory, it is believed that the ion exchange resins quench polymerization and effectively remove ionic and non-ionic impurities and most of unreacted monomer from the as-formed aqueous dispersion. Moreover, the basic, anion exchange and/or acidic, cation exchange resins renders the acidic sites more basic, resulting in increased pH of the dispersion. In general, about one to five grams of ion exchange resin is used per gram of semiconductive polymer composition.
  • In many cases, the basic ion exchange resin can be used to adjust the pH to the desired level. In some cases, the pH can be further adjusted with an aqueous basic solution such as a solution of sodium hydroxide, ammonium hydroxide, tetra-methylammonium hydroxide, or the like.
  • 5. Preparing High Workfunction Transparent Conductors
  • The new transparent conductors can be formed by first blending the conductive nanoparticles with the FAP or the SCP/FAP. This can be accomplished by adding an aqueous dispersion of the conductive nanoparticles to an aqueous dispersion of the FAP or the SCP/FAP. In one embodiment, the composition is further treated using sonication or microfluidization to ensure mixing of the components.
  • In one embodiment, one or both of the components are isolated in solid form. The solid material can be redispersed in water or in an aqueous solution or dispersion of the other component. For example, conductive nanoparticle solids can be dispersed in an aqueous solution or dispersion of a semiconductive polymer doped with an FAP.
  • The solid transparent conductor can then be formed using any liquid deposition technique. Liquid deposition methods are well known. Continuous liquid deposition techniques, include but are not limited to, spin coating, gravure coating, curtain coating, dip coating, slot-die coating, spray coating, and continuous nozzle coating. Discontinuous liquid deposition techniques include, but are not limited to, ink jet printing, gravure printing, and screen printing. The conductor can be in the form of a continuous or patterned layer.
  • 6. Electronic Devices
  • In another embodiment of the invention, there are provided electronic devices comprising at least one electroactive layer positioned between two electrical contact layers, wherein the device further includes the new transparent conductor. The term “electroactive” when referring to a layer or material is intended to mean a layer or material that exhibits electronic or electro-radiative properties. An electroactive layer material may emit radiation or exhibit a change in concentration of electron-hole pairs when receiving radiation in the applications, for example photovoltaic cells. In another embodiment of the invention, there are provided electronic devices where high workfunction transparent conductors function as electrode of drain, source and drain in field-effect transistor.
  • As shown in FIG. 2, one embodiment of a device, 100, has an anode layer 110, an optional buffer layer 120, an electroactive layer 130, and a cathode layer 150. Adjacent to the cathode layer 150 is an optional electron-injection/transport layer 140.
  • The new transparent conductor has particular utility as the anode 110. In one embodiment, the transparent conductor is formed by liquid deposition methods. In one embodiment, the deposited transparent conductor films are heat-treated to coalesce the films. The device may include a support or substrate (not shown) that can be adjacent to the anode layer 110 or the cathode layer 150. Most frequently, the support is adjacent the anode layer 110. The support can be flexible or rigid, organic or inorganic. Examples of support materials include, but are not limited to, glass, ceramic, metal, and plastic films.
  • The term “buffer layer” or “buffer material” is intended to mean electrically conductive or semiconductive materials and may have one or more functions in an organic electronic device, including but not limited to, planarization of the underlying layer, charge transport and/or charge injection properties, scavenging of impurities such as oxygen or metal ions, and other aspects to facilitate or to improve the performance of the organic electronic device. Buffer materials may be polymers, oligomers, or small molecules, and may be in the form of solutions, dispersions, suspensions, emulsions, colloidal mixtures, or other compositions. In one embodiment, the buffer layer comprises hole transport material. Examples of hole transport materials for layer 120 have been summarized for example, in Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition, Vol. 18, p. 837-860, 1996, by Y. Wang. Both hole transporting molecules and polymers can be used. Commonly used hole transporting molecules include, but are not limited to: 4,4′,4″-tris(N,N-diphenyl-amino)triphenylamine (TDATA); 4,4′,4″-tris(N-3-methylphenyl-N-phenyl-amino)triphenylamine (MTDATA); N,N′-diphenyl-N,N′-bis(3-methylphenyl)-[1,1′-biphenyl]-4,4′-diamine (TPD); 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC); N,N′-bis(4-methylphenyl)-N,N′-bis(4-ethylphenyl)-[1,1′-(3,3′-dimethyl)biphenyl]-4,4′-diamine (ETPD); tetrakis-(3-methylphenyl)-N,N,N′,N′-2,5-phenylenediamine (PDA); α-phenyl-4-N,N-diphenylaminostyrene (TPS); p-(diethylamino)benzaldehyde diphenylhydrazone (DEH); triphenylamine (TPA); bis[4-(N,N-diethylamino)-2-methylphenyl](4-methylphenyl)methane (MPMP); 1-phenyl-3-[p-(diethylamino)styryl]-5-[p-(diethylamino)phenyl]pyrazoline (PPR or DEASP); 1,2-trans-bis(9H-carbazol-9-yl)cyclobutane (DCZB); N,N,N′,N′-tetrakis(4-methylphenyl)-(1,1′-biphenyl)-4,4′-diamine (TTB); N,N′-bis(naphthalen-1-yl)-N,N′-bis-(phenyl)benzidine (α-NPB); and porphyrinic compounds, such as copper phthalocyanine. Commonly used hole transporting polymers include, but are not limited to, poly(9,9,-dioctylfluorene-co-N-(4-butylphenyl)diphenylaminer), and the like, polyvinylcarbazole, (phenylmethyl)polysilane, poly(dioxythiophenes), polyanilines, and polypyrroles. It is also possible to obtain hole transporting polymers by doping hole transporting molecules such as those mentioned above into polymers such as polystyrene and polycarbonate.
  • Depending upon the application of the device, the electroactive layer 130 can be a light-emitting layer that is activated by an applied voltage (such as in a light-emitting diode or light-emitting electrochemical cell), a layer of material that responds to radiant energy and generates a signal with or without an applied bias voltage (such as in a photodetector). In one embodiment, the electroactive material is an organic electroluminescent (“EL”) material. Any EL material can be used in the devices, including, but not limited to, small molecule organic fluorescent compounds, fluorescent and phosphorescent metal complexes, conjugated polymers, and mixtures thereof. Examples of fluorescent compounds include, but are not limited to, pyrene, perylene, rubrene, coumarin, derivatives thereof, and mixtures thereof. Examples of metal complexes include, but are not limited to, metal chelated oxinoid compounds, such as tris(8-hydroxyquinolato)aluminum (Alq3); cyclometalated iridium and platinum electroluminescent compounds, such as complexes of iridium with phenylpyridine, phenylquinoline, or phenylpyrimidine ligands as disclosed in Petrov et al., U.S. Pat. No. 6,670,645 and Published PCT Applications WO 03/063555 and WO 2004/016710, and organometallic complexes described in, for example, Published PCT Applications WO 03/008424, WO 03/091688, and WO 03/040257, and mixtures thereof. Electroluminescent emissive layers comprising a charge carrying host material and a metal complex have been described by Thompson et al., in U.S. Pat. No. 6,303,238, and by Burrows and Thompson in published PCT applications WO 00/70655 and WO 01/41512. Examples of conjugated polymers include, but are not limited to poly(phenylenevinylenes), polyfluorenes, poly(spirobifluorenes), polythiophenes, poly(p-phenylenes), copolymers thereof, and mixtures thereof.
  • Optional layer 140 can function both to facilitate electron injection/transport, and can also serve as a confinement layer to prevent quenching reactions at layer interfaces. More specifically, layer 140 may promote electron mobility and reduce the likelihood of a quenching reaction if layers 130 and 150 would otherwise be in direct contact. Examples of materials for optional layer 140 include, but are not limited to, metal chelated oxinoid compounds, such as bis(2-methyl-8-quinolinolato)(para-phenyl-phenolato)aluminum(III) (BAIQ), tetra(8-hydroxyquinolato)zirconium (ZrQ), and tris(8-hydroxyquinolato)aluminum (Alq3); azole compounds such as 2-(4-biphenylyl)-5-(4-t-butylphenyl)-1,3,4-oxadiazole (PBD), 3-(4-biphenylyl)-4-phenyl-5-(4-t-butylphenyl)-1,2,4-triazole (TAZ), and 1,3,5-tri(phenyl-2-benzimidazole)benzene (TPBI); quinoxaline derivatives such as 2,3-bis(4-fluorophenyl)quinoxaline; phenanthroline derivatives such as 9,10-diphenylphenanthroline (DPA) and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (DDPA); and any one or more combinations thereof. Alternatively, optional layer 140 may be inorganic and comprise BaO, LiF, Li2O, or the like.
  • The cathode layer 150 is an electrode that is particularly efficient for injecting electrons or negative charge carriers. The cathode layer 150 can be any metal or nonmetal having a lower work function than the first electrical contact layer (in this case, the anode layer 110).
  • Materials for the cathode layer can be selected from alkali metals of Group 1 (e.g., Li, Na, K, Rb, Cs,), the Group 2 metals (e.g., Mg, Ca, Ba, or the like), the Group 12 metals, the lanthanides (e.g., Ce, Sm, Eu, or the like), and the actinides (e.g., Th, U, or the like). Materials such as aluminum, indium, yttrium, and combinations thereof, may also be used. Specific non-limiting examples of materials for the cathode layer 150 include, but are not limited to, barium, lithium, cerium, cesium, europium, rubidium, yttrium, magnesium, samarium, and alloys and combinations thereof.
  • The cathode layer 150 is usually formed by a chemical or physical vapor deposition process. In some embodiments, the cathode layer will be patterned, as discussed above in reference to the anode layer 110.
  • Other layers in the device can be made of any materials which are known to be useful in such layers upon consideration of the function to be served by such layers.
  • In some embodiments, an encapsulation layer (not shown) is deposited over the contact layer 150 to prevent entry of undesirable components, such as water and oxygen, into the device 100. Such components can have a deleterious effect on the organic layer 130. In one embodiment, the encapsulation layer is a barrier layer or film. In one embodiment, the encapsulation layer is a glass lid.
  • It is understood that the device 100 may comprise additional layers though such layers are not shown in FIG. 2. Other layers that are known in the art or otherwise may be used. In addition, any of the above-described layers may comprise two or more sub-layers or may form a laminar structure. Alternatively, some or all of anode layer 110 the optional buffer layer 120, the electron transport layer 140, cathode layer 150, and other layers may be treated, especially surface treated, to increase charge carrier transport efficiency or other physical properties of the devices. The choice of materials for each of the component layers is preferably determined by balancing the goals of providing a device with high device efficiency with device operational lifetime considerations, fabrication time and complexity factors and other considerations appreciated by persons skilled in the art. It will be appreciated that determining optimal components, component configurations, and compositional identities would be routine to those of ordinary skill of in the art.
  • In various embodiments, the different layers have the following ranges of thicknesses: anode 110, 10-2000 Å, in one embodiment 50-500 Å; optional buffer layer 120, 50-2000 Å, in one embodiment 200-1000 Å; photoactive layer 130, 10-2000 Å, in one embodiment 100-1000 Å; optional electron transport layer 140, 50-2000 Å, in one embodiment 100-1000 Å; cathode 150, 200-10000 Å, in one embodiment 300-5000 Å. The location of the electron-hole recombination zone in the device, and thus the emission spectrum of the device, can be affected by the relative thickness of each layer. Thus the thickness of the electron-transport layer should be chosen so that the electron-hole recombination zone is in the light-emitting layer. The desired ratio of layer thicknesses will depend on the exact nature of the materials used.
  • In operation, a voltage from an appropriate power supply (not depicted) is applied to the device 100. Current therefore passes across the layers of the device 100. Electrons enter the organic polymer layer, releasing photons. In some OLEDs, called active matrix OLED displays, individual deposits of photoactive organic films may be independently excited by the passage of current, leading to individual pixels of light emission. In some OLEDs, called passive matrix OLED displays, deposits of photoactive organic films may be excited by rows and columns of electrical contact layers.
  • As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Further, unless expressly stated to the contrary, “or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
  • As used herein, the term “layer” is used interchangeably with the term “film” and refers to a coating covering a desired area. The meaning of the term is not limited by considerations of device or component size. The area can be as large as an entire device or as small as a specific functional area such as the actual visual display, or as small as a single sub-pixel. Layers and films can be formed by any conventional deposition technique, including vapor deposition, liquid deposition (continuous and discontinuous techniques), and thermal transfer. Continuous deposition techniques, include but are not limited to, spin coating, gravure coating, curtain coating, dip coating, slot-die coating, spray coating, and continuous nozzle coating. Discontinuous deposition techniques include, but are not limited to, ink jet printing, gravure printing, and screen printing.
  • The term “work function” is intended to mean the minimum energy needed to remove an electron from a material to a point at infinite distance away from the surface.
  • Group numbers corresponding to columns within the periodic table of the elements use the “New Notation” convention as seen in the CRC Handbook of Chemistry and Physics, 81st Edition (2000), where the groups are numbered from left to right as 1-18.
  • Also, use of “a” or “an” are employed to describe elements and components of the invention. This is done merely for convenience and to give a general sense of the invention. This description should be read to include one or at least one and the singular also includes the plural unless it is obvious that it is meant otherwise.
  • Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
  • EXAMPLES Example 1
  • This example illustrates preparation of an aqueous carbon nanotube (“CNT”) dispersion, and work function of the film spin-coated from the dispersion:
  • In this example, dispersing CNT in water was accomplished using Triton-X-100 as a dispersing agent. Triton X-100 is a trade mark for octylphenoxy polyethoxy ethanol. It is a non-ionic surfactant and has no influence in affecting Wf of CNT. A stock solution was made by dissolving 1.035 g Triton X-100 in 98.9922 g deionized water, which amounts to 1.05% (w/w) in water. CNT used in this example is L0200 single wall CNT (Laser/raw grade) purchased from CNI at Houston, Tex., USA. 0.0709 g CNT were placed in a small glass jug to which 8.5802 g of the Triton X-100 solution and 25.5112 g de-ionized water were added. The mixture was subjected to sonication for 15 minutes continuously using a Branson Sonifier Model 450 having power set at #3. The glass jug was immersed in ice water contained in a tray to remove heat produced from intense cavitation. The CNT formed a smooth, stable dispersion without any sign of sedimentation for many weeks.
  • The dispersion was spin-coated to form a film on a substrate for ultraviolet photoelectron spectroscopy for measurement of work function (Wf). Wf energy level is usually determined from second electron cut-off with respect to the position of vacuum level using He I (21.22 eV) radiation. Wf of the film was measured to be 4.5 eV to 4.6 eV, which is very low for effective injection of holes to the light emitting material layer.
  • Example 2
  • This example illustrates preparation of an aqueous dispersion of CNT with Nafion® having enhanced Wf of CNT. Nafion® is a trade name for poly(perfluoroethylene sulfonic acid) from E. I. du Pont de Nemours and Company, Wilmington, Del.:
  • L0200 single wall CNT (Laser/raw grade) in Example 1 was used in this Example. Nafion® used for dispersing CNT is DE1020. A stock dispersion of the Nafion® was prepared first by mixing 19.7753 g DE1020 with 162.119 g deionized water and 18.0151 g n-propanol. The resulting dispersion contained 1.13% Nafion® polymer. 32.5063 g of the dispersion were mixed with 0.0688 g CNT in a glass jug. The mixture was then subjected to sonication for 15 minutes continuously using a Branson Sonifier Model 450 having power set at #3. The glass jug was immersed in ice water contained in a tray to remove heat produced from intense cavitation. The CNT formed a smooth, stable dispersion without any sign of sedimentation for many weeks.
  • The dispersion was spin-coated to form transparent film on a substrate for measurement of work function (Wf) by Ultraviolet Photoelectron Spectroscopy. Wf energy level is usually determined from second electron cut-off with respect to the position of vacuum level using He I (21.22 eV) radiation. Wf of the film was measured to be 6.2 eV. The Wf is much higher than that (4.5 eV to 4.6 eV) of CNT as illustrated in Example 1.
  • Example 3
  • This example illustrates preparation of an aqueous dispersion of CNT with Nafion® and conductivity of CNT/Nafion® film
  • CNT used in this example is HIPco CE608, also purchased from CNI (Carbon Nanotechnologies, Inc.) at Houston, Tex., USA. CE608 contains 3-4% residual catalyst. Nafion® used for dispersing CNT is DE1021. A stock dispersion of the Nafion® was prepared first by mixing 6.0263 g DE1021 with 151.097 g deionized water and 16.797 g n-propanol. The resulting dispersion contained 0.39% Nafion® polymer. 34.9968 g of the dispersion were mixed with 0.0707 g CNT in a glass jug. The mixture was then subjected to sonication for 15 minutes continuously using a Branson Sonifier Model 450 having power set at #3. The glass jug was immersed in ice water contained in a tray to remove heat produced from intense cavitation. The CNT formed a smooth, stable dispersion without any sign of sedimentation for many weeks.
  • A couple of drops of the dispersion were placed on a microscope slide to form a thin, transparent film. The thin film was painted with a room temperature silver paste to form two parallel lines as electrodes for measurement of resistance. The resistance was converted to conductivity by taking a thickness of the film, separating the two electrodes along the length of the electrodes. Conductivity was determined to be 140 S/cm at room temperature. The conductivity is very close to that of indium/tin oxide film.
  • Example 4
  • This example illustrates preparation of electrically conducting poly(3,4, ethylenedioxythiophene) complexed with Nafion® for forming a top layer on a CNT film. A 12.0% (w/w) Nafion® with an EW of 1050 is made using a procedure similar to the procedure in U.S. Pat. No. 6,150,426, Example 1, Part 2, except that the temperature is approximately 270° C.
  • In a 2000 mL reaction kettle are put 1088.2 g of 12% solid content aqueous Nafion® (124.36 mmol SO3H groups) dispersion, 1157 g water, 0.161 g (0.311 mmol) iron(III)sulfate (Fe2(SO4)3), and 1787 mL of 37% (w/w) HCl (21.76 mmol). The reaction mixture is stirred for 15 min at 276 RPM using an overhead stirrer fitted with a double-stage-propeller-type blade. Addition of 8.87 g (38.86 mmol) ammonium persulfate (Na2S2O8) in 40 mL of water, and 3.31 mL ethylenedioxythiophene (EDT) is started from separate syringes using addition rate of 3.1 mL/h for (NH4)2S2O8/water and 237 mL/h for EDT while continuous stirring at 245 RPM. The addition of EDT is accomplished by placing the monomer in a syringe connected to a Teflon® tube that leads directly into the reaction mixture. The end of the Teflon® tube connecting the (NH4)2S2O8/water solution was placed above the reaction mixture such that the injection involved individual drops falling from the end of the tube. The reaction is stopped 7 hours after the addition of monomer has finished by adding 200 g of each Lewatit MP62WS and Lewatit Monoplus S100 ion-exchange resins, and 250 g of de-ionized water to the reaction mixture and stirring it further for 7 hours at 130 RPM. The ion-exchange resin is finally filtered from the dispersion using Whatman No. 54 filter paper. The pH of the PEDOT-Nafion® dispersion is 3.2 and dried films derived from the dispersion have conductivity of 3.2×10−4 S/cm at room temperature. UPS has shown that PEDOT- Nafion® has Wf of about 5.4 at that pH, which is much higher than Wf of the CNT film shown in Example 1.
  • Note that not all of the activities described above in the general description or the examples are required, that a portion of a specific activity may not be required, and that one or more further activities may be performed in addition to those described. Still further, the order in which activities are listed are not necessarily the order in which they are or must be performed.
  • In the foregoing specification, the concepts have been described with reference to specific embodiments. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of invention.
  • Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any feature(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential feature of any or all the claims.
  • It is to be appreciated that certain features of the invention which are, for clarity, described above and below in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention that are, for brevity, described in the context of a single embodiment, may also be provided separately or in any subcombination. Further, references to values stated in ranges include each and every value within that range.

Claims (22)

1. A transparent conductor having a work function greater than 4.7 eV comprising conductive nanoparticles, a fluorinated acid polymer, and a semiconductive polymer doped with a fluorinated acid polymer.
2. A transparent conductor of claim 1 wherein the nanoparticles are selected from carbon and metal nanoparticles and combinations thereof.
3. A transparent conductor of claim 2 wherein the nanoparticles are selected from nanotubes, fullerenes, and nanofibers, and combinations thereof.
4. A transparent conductor of claim 1 wherein each semiconductive polymer comprises one or more independently substituted or unsubstituted thiophene monomers.
5. A transparent conductor of claim 4 wherein the thiophene monomers have structure represented by formulas selected from Formula I and Formula Ia:
Figure US20100270514A1-20101028-C00020
wherein:
R1 is independently selected so as to be the same or different at each occurrence and is selected from hydrogen, alkyl, alkenyl, alkoxy, alkanoyl, alkythio, aryloxy, alkylthioalkyl, alkylaryl, arylalkyl, amino, alkylamino, dialkylamino, aryl, alkylsulfinyl, alkoxyalkyl, alkylsulfonyl, arylthio, arylsulfinyl, alkoxycarbonyl, arylsulfonyl, acrylic acid, phosphoric acid, phosphonic acid, halogen, nitro, cyano, hydroxyl, epoxy, silane, siloxane, alcohol, benzyl, carboxylate, ether, ether carboxylate, amidosulfonate, ether sulfonate, ester sulfonate, and urethane; or both R1 groups together may form an alkylene or alkenylene chain completing a 3, 4, 5, 6, or 7-membered aromatic or alicyclic ring, which ring may optionally include one or more divalent nitrogen, sulfur or oxygen atoms; and
Figure US20100270514A1-20101028-C00021
wherein:
R7 is the same or different at each occurrence and is selected from hydrogen, alkyl, heteroalkyl, alkenyl, heteroalkenyl, alcohol, amidosulfonate, benzyl, carboxylate, ether, ether carboxylate, ether sulfonate, ester sulfonate, and urethane, with the proviso that at least one R7 is not hydrogen, and
m is 2 or 3.
6. A transparent conductor of claim 1 wherein the fluorinated acid polymer has a backbone selected from polyolefins, polyacrylates, polymethacrylates, polyimides, polyamides, polyaramids, polyacrylamides, polystyrenes, and copolymers thereof.
7. A transparent conductor of claim 6 wherein the fluorinated acid polymer backbone is fluorinated.
8. A transparent conductor of claim 7 wherein the fluorinated acid polymer has fluorinated pendant groups selected from ether sulfonates, ester sulfonates, and ether sulfonimides.
9. A transparent conductor of claim 6 wherein the fluorinated acid polymer comprises one or more independently substituted or unsubstituted monomers selected from styrene sulfonic acids or sulfonated ether sulfones, trifluorostyrene sulfonates, sulfonimides, perfluoroalkyl sulfonate ethers, fused polycyclic fluoronated acids, and perfluoroalkyl sulfonic acid ethers.
10. A transparent conductor of claim 9 wherein the perfluoroalkyl sulfonate ethers have a structure represented by Formula XI:
Figure US20100270514A1-20101028-C00022
where:
R16 is a fluorinated alkyl or a fluorinated aryl group;
a, b, c, d, and e are each independently 0 or an integer from 1 to 4; and
n is at least 4.
11. A transparent conductor of claim 1 wherein the fluorinated acid polymer comprises polymeric acids comprising functional groups selected from carboxylic, sulfonic, phosphoric, and phosphonic acid groups and sulfonimides, including combinations thereof.
12. A transparent conductor of claim 11 wherein the functional groups are present on the polymeric backbone, side chains, pendant groups, or combinations thereof.
13. A transparent conductor of claim 12 wherein the pendant groups comprise siloxane sulfonic acid.
14. A transparent conductor of claim 12 wherein the pendant groups comprise groups selected from structures represented by Formula XIV and Formula XV.
15. A transparent conductor of claim 11 wherein the fluorinated acid polymer is a colloid-forming polymeric acid.
16. A transparent conductor of claim 15 wherein the fluorinated acid polymer comprises an FSA polymer.
17. A transparent conductor of claim 1 further comprising a second polymer comprising one or more independently substituted or unsubstituted monomers selected from alkenyls, alkynyls, arylenes, and heteroarylenes.
18. A transparent conductor having a work function greater than 4.7 eV comprising a fluorinated acid polymer, a semiconductive polymer doped with a fluorinated acid polymer, and a second polymer, the second polymer comprising one or more independently substituted or unsubstituted monomers selected from alkenyls, alkynyls, arylenes, and heteroarylenes.
19. An electronic device comprising a transparent conductor of claim 1.
20. An electronic device of claim 30 comprising an anode layer, wherein the anode layer comprises the transparent conductor.
21. An electronic device comprising a transparent conductor of claim 18.
22. An electronic device of claim 21 comprising an anode layer, wherein the anode layer comprises the transparent conductor.
US12/829,515 2005-06-28 2010-07-02 High work function transparent conductors Abandoned US20100270514A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/829,515 US20100270514A1 (en) 2005-06-28 2010-07-02 High work function transparent conductors
US13/075,404 US8409476B2 (en) 2005-06-28 2011-03-30 High work function transparent conductors

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US69479305P 2005-06-28 2005-06-28
US11/476,979 US7749407B2 (en) 2005-06-28 2006-06-28 High work function transparent conductors
US12/829,515 US20100270514A1 (en) 2005-06-28 2010-07-02 High work function transparent conductors

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/476,979 Division US7749407B2 (en) 2005-06-28 2006-06-28 High work function transparent conductors

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/075,404 Division US8409476B2 (en) 2005-06-28 2011-03-30 High work function transparent conductors

Publications (1)

Publication Number Publication Date
US20100270514A1 true US20100270514A1 (en) 2010-10-28

Family

ID=37596008

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/476,979 Active 2027-11-22 US7749407B2 (en) 2005-06-28 2006-06-28 High work function transparent conductors
US12/829,515 Abandoned US20100270514A1 (en) 2005-06-28 2010-07-02 High work function transparent conductors
US13/075,404 Active 2026-07-23 US8409476B2 (en) 2005-06-28 2011-03-30 High work function transparent conductors

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/476,979 Active 2027-11-22 US7749407B2 (en) 2005-06-28 2006-06-28 High work function transparent conductors

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/075,404 Active 2026-07-23 US8409476B2 (en) 2005-06-28 2011-03-30 High work function transparent conductors

Country Status (6)

Country Link
US (3) US7749407B2 (en)
EP (1) EP1897096A4 (en)
JP (1) JP5489458B2 (en)
KR (1) KR101356296B1 (en)
CN (1) CN101208369B (en)
WO (1) WO2007002737A2 (en)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4464277B2 (en) * 2002-09-24 2010-05-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Conductive organic polymer / nanoparticle composite material and method of using the same
KR101148285B1 (en) 2002-09-24 2012-05-21 이 아이 듀폰 디 네모아 앤드 캄파니 Water Dispersible Polyanilines Made with Polymeric Acid Colloids for Electronics Applications
US7317047B2 (en) * 2002-09-24 2008-01-08 E.I. Du Pont De Nemours And Company Electrically conducting organic polymer/nanoparticle composites and methods for use thereof
DE60322923D1 (en) * 2002-09-24 2008-09-25 Du Pont WATER DISPERSIBLE POLYTHIOPHENE MANUFACTURES
US7390438B2 (en) * 2003-04-22 2008-06-24 E.I. Du Pont De Nemours And Company Water dispersible substituted polydioxythiophenes made with fluorinated polymeric sulfonic acid colloids
US7351358B2 (en) 2004-03-17 2008-04-01 E.I. Du Pont De Nemours And Company Water dispersible polypyrroles made with polymeric acid colloids for electronics applications
US8147962B2 (en) 2004-04-13 2012-04-03 E. I. Du Pont De Nemours And Company Conductive polymer composites
KR101290099B1 (en) * 2005-03-23 2013-07-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Composite material, material for light-emitting element, light-emitting element, light-emitting device and electronic device
CN101208369B (en) * 2005-06-28 2013-03-27 E.I.内穆尔杜邦公司 High work function transparent conductors
WO2007002740A2 (en) 2005-06-28 2007-01-04 E. I. Du Pont De Nemours And Company Buffer compositions
US8216680B2 (en) 2006-02-03 2012-07-10 E I Du Pont De Nemours And Company Transparent composite conductors having high work function
US20080191172A1 (en) 2006-12-29 2008-08-14 Che-Hsiung Hsu High work-function and high conductivity compositions of electrically conducting polymers
KR100787239B1 (en) * 2007-01-30 2007-12-21 한국기계연구원 Carbon nanotube transparent conductive structure
JP4976177B2 (en) * 2007-03-29 2012-07-18 株式会社クラレ Carbon nanotube conductivity lowering inhibitor, transparent conductive film using carbon nanotube, and method for producing the same
US8241526B2 (en) * 2007-05-18 2012-08-14 E I Du Pont De Nemours And Company Aqueous dispersions of electrically conducting polymers containing high boiling solvent and additives
US8456005B2 (en) * 2007-10-26 2013-06-04 Konica Minolta Holdings, Inc. Transparent conductive film and method for producing the same
JP5473148B2 (en) * 2007-11-14 2014-04-16 チェイル インダストリーズ インコーポレイテッド Transparent conductive film with improved conductivity and method for producing the same
US7727578B2 (en) 2007-12-27 2010-06-01 Honeywell International Inc. Transparent conductors and methods for fabricating transparent conductors
US7960027B2 (en) 2008-01-28 2011-06-14 Honeywell International Inc. Transparent conductors and methods for fabricating transparent conductors
EP2268736A1 (en) * 2008-03-19 2011-01-05 E. I. du Pont de Nemours and Company Electrically conductive polymer compositions and films made therefrom
CN101552052B (en) * 2008-04-01 2013-03-27 索尼株式会社 Conducting film and manufacturing method thereof, electronic device and manufacturing method thereof
CN102850728B (en) 2008-04-11 2015-07-22 索尔维美国有限公司 Doped conjugated polymers, devices, and methods of making devices
KR20110044240A (en) * 2008-07-22 2011-04-28 이 아이 듀폰 디 네모아 앤드 캄파니 Aqueous dispersions of electrically conducting polymers containing inorganic nanoparticles
TW201100480A (en) 2009-03-12 2011-01-01 Du Pont Electrically conductive polymer compositions for coating applications
EP2414439B1 (en) * 2009-03-31 2014-03-26 Hutchinson Transparent conductive films or coatings
WO2010117075A1 (en) * 2009-04-10 2010-10-14 住友化学株式会社 Metal complex and composition containing same
US9536633B2 (en) 2009-04-10 2017-01-03 Sumitomo Chemical Company, Limited Metallic composite and composition thereof
US8845933B2 (en) 2009-04-21 2014-09-30 E I Du Pont De Nemours And Company Electrically conductive polymer compositions and films made therefrom
JP2012524834A (en) 2009-04-24 2012-10-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Conductive polymer composition and film made therefrom
JP2011034711A (en) * 2009-07-30 2011-02-17 Sumitomo Chemical Co Ltd Organic electroluminescence element
WO2011115603A1 (en) * 2010-03-19 2011-09-22 Carestream Health, Inc. Anti-corrosion agents for transparent conductive film
TW201245408A (en) 2011-04-08 2012-11-16 Du Pont Electronic device
KR101302786B1 (en) * 2011-05-27 2013-09-03 포항공과대학교 산학협력단 Simplified organic electronic devices employing polymeric anode with high work function
JP5716625B2 (en) * 2011-09-30 2015-05-13 三菱マテリアル株式会社 Carbon nanofiber and carbon nanofiber dispersion
KR20140075012A (en) 2011-10-19 2014-06-18 이 아이 듀폰 디 네모아 앤드 캄파니 Organic electronic device for lighting
KR102080471B1 (en) * 2012-09-25 2020-02-24 메르크 파텐트 게엠베하 Formulations containing conductive polymers and use thereof in organic electronic devices
TW201543720A (en) * 2014-05-06 2015-11-16 Genesis Photonics Inc Package structure and manufacturing method thereof
TWI489495B (en) * 2014-06-04 2015-06-21 Taiwan Carbon Nanotube Technology Corp A method of making transparent conductive film by using carbon nanotubes
CN104022228A (en) * 2014-06-17 2014-09-03 华北电力大学 Non-conjugate ionic polymer solar batteries and preparation method thereof
US9397302B2 (en) * 2014-10-08 2016-07-19 Universal Display Corporation Organic electroluminescent materials and devices
JP6225135B2 (en) * 2015-03-06 2017-11-01 信越化学工業株式会社 Conductive material and substrate
JP6312090B2 (en) * 2015-03-11 2018-04-18 信越化学工業株式会社 Conductive material and substrate
JP6294254B2 (en) * 2015-03-23 2018-03-14 信越化学工業株式会社 Conductive material and substrate
JP6499535B2 (en) * 2015-07-09 2019-04-10 信越化学工業株式会社 Coated product and pattern forming method
US11289700B2 (en) 2016-06-28 2022-03-29 The Research Foundation For The State University Of New York KVOPO4 cathode for sodium ion batteries
RU172363U1 (en) * 2016-10-12 2017-07-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВО "ВГУ") NANOSTRUCTURAL COMPOSITION FOR DEEP REMOVAL OF OXYGEN FROM WATER
CN111748769B (en) * 2020-06-03 2022-08-12 西安空间无线电技术研究所 Method for reducing secondary electron emission coefficient of silver surface high-energy area

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040102577A1 (en) * 2002-09-24 2004-05-27 Che-Hsiung Hsu Water dispersible polythiophenes made with polymeric acid colloids
US7749407B2 (en) * 2005-06-28 2010-07-06 E.I. Du Pont De Nemours And Company High work function transparent conductors

Family Cites Families (256)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US537294A (en) * 1895-04-09 Joseph kraker
BE649223A (en) * 1963-07-10
US3282875A (en) 1964-07-22 1966-11-01 Du Pont Fluorocarbon vinyl ether polymers
DE2029556A1 (en) 1970-06-16 1971-12-23 Farbwerke Hoechst AG, vormals Meister Lucius & Brumng, 6000 Frankfurt Process for the preparation of aryl 1,1,2,2 tetrafluoroethyl ethers
US4442187A (en) 1980-03-11 1984-04-10 University Patents, Inc. Batteries having conjugated polymer electrodes
US4321114A (en) 1980-03-11 1982-03-23 University Patents, Inc. Electrochemical doping of conjugated polymers
US4358545A (en) * 1980-06-11 1982-11-09 The Dow Chemical Company Sulfonic acid electrolytic cell having flourinated polymer membrane with hydration product less than 22,000
US4356429A (en) 1980-07-17 1982-10-26 Eastman Kodak Company Organic electroluminescent cell
US4433082A (en) * 1981-05-01 1984-02-21 E. I. Du Pont De Nemours And Company Process for making liquid composition of perfluorinated ion exchange polymer, and product thereof
US5378402A (en) 1982-08-02 1995-01-03 Raychem Limited Polymer compositions
US4539507A (en) 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
US4552927A (en) 1983-09-09 1985-11-12 Rockwell International Corporation Conducting organic polymer based on polypyrrole
FR2588007B1 (en) 1985-09-30 1988-04-08 Commissariat Energie Atomique NITROGEN ELECTRONIC CONDUCTIVE POLYMERS, PROCESSES FOR THEIR PREPARATION, ELECTROCHROMIC DISPLAY CELL AND ELECTROCHEMICAL GENERATOR USING THE SAME
JPS62119237A (en) 1985-11-20 1987-05-30 Agency Of Ind Science & Technol Dopant for electrically-conductive high polymer compound
JPS62138582A (en) 1985-12-11 1987-06-22 Omron Tateisi Electronics Co Pattern formation of conductive polymer layer
US4731408A (en) 1985-12-20 1988-03-15 Polaroid Corporation Processable conductive polymers
US5233000A (en) 1986-05-05 1993-08-03 The Lubrizol Corporation High surface area polymers of pyrrole or copolymers of pyrrole
JPH0678492B2 (en) 1986-11-27 1994-10-05 昭和電工株式会社 Highly conductive polymer composition and method for producing the same
JPH0678493B2 (en) 1987-03-04 1994-10-05 昭和電工株式会社 Method for producing conductive polymer composition
US4940525A (en) * 1987-05-08 1990-07-10 The Dow Chemical Company Low equivalent weight sulfonic fluoropolymers
US4795543A (en) 1987-05-26 1989-01-03 Transducer Research, Inc. Spin coating of electrolytes
US5378403A (en) 1987-08-07 1995-01-03 Alliedsignal Inc. High electrically conductive polyanaline complexes having polar substitutents
US5160457A (en) 1987-08-07 1992-11-03 Allied-Signal Inc. Thermally stable forms of electrically conductive polyaniline
US5069820A (en) 1987-08-07 1991-12-03 Allied-Signal Inc. Thermally stable forms of electrically conductive polyaniline
JPH01132052A (en) 1987-08-10 1989-05-24 Nitto Denko Corp Conductive organic polymer battery
US5066731A (en) 1987-10-26 1991-11-19 Hoechst Aktiengesellschaft Process for modifying electroconductive polymers using ion exchange
DE3843412A1 (en) 1988-04-22 1990-06-28 Bayer Ag NEW POLYTHIOPHENES, METHOD FOR THEIR PRODUCTION AND THEIR USE
FR2632979B1 (en) 1988-06-16 1990-09-21 Commissariat Energie Atomique PROCESS FOR THE PREPARATION OF AN IONIC AND ELECTRONIC MIXED CONDUCTIVE POLYMER AND POLYMERS OBTAINED BY THIS PROCESS
US5294504A (en) 1988-08-30 1994-03-15 Osaka Gas Company, Ltd. Three-dimensional microstructure as a substrate for a battery electrode
US4973391A (en) 1988-08-30 1990-11-27 Osaka Gas Company, Ltd. Composite polymers of polyaniline with metal phthalocyanine and polyaniline with organic sulfonic acid and nafion
GB8909011D0 (en) 1989-04-20 1989-06-07 Friend Richard H Electroluminescent devices
DE3913857A1 (en) 1989-04-27 1990-10-31 Agfa Gevaert Ag PHOTOGRAPHIC MATERIAL WITH AN ANTISTATIC LAYER
US6967236B1 (en) 1998-03-06 2005-11-22 International Business Machines Corporation Methods of processing and synthesizing electrically conductive polymers and precursors thereof to form electrically conductive polymers having high electrical conductivity
DE69013078T2 (en) 1989-07-04 1995-01-26 Fuji Photo Film Co Ltd Electrically conductive polymer and containing electroconductive material.
DE3938094A1 (en) 1989-11-16 1991-05-23 Basf Ag Prodn. of high conductivity, high strength polymers - by (co)polymerising 5-membered N-,O-or S-heterocyclic(s) or aniline(s) in presence of polymeric sulphonic acids or salts
EP0440957B1 (en) 1990-02-08 1996-03-27 Bayer Ag New polythiophene dispersions, their preparation and their use
DE69110922T2 (en) 1990-02-23 1995-12-07 Sumitomo Chemical Co Organic electroluminescent device.
US5185100A (en) 1990-03-29 1993-02-09 Allied-Signal Inc Conductive polymers formed from conjugated backbone polymers doped with non-oxidizing protonic acids
BE1008036A3 (en) 1990-08-30 1996-01-03 Solvay POLYMER BLENDS POLAR AND CONDUCTING POLYMERS dedoped, MIXED THESE PROCESSES OBTAINING AND USE MIXES FOR MAKING ELECTRONIC DEVICES optoelectronic, ELECTROTECHNICAL AND ELECTROMECHANICAL.
JPH0830109B2 (en) 1990-08-31 1996-03-27 東邦レーヨン株式会社 Method for manufacturing conductive polymer film
US5258461A (en) 1990-11-26 1993-11-02 Xerox Corporation Electrocodeposition of polymer blends for photoreceptor substrates
US5408109A (en) 1991-02-27 1995-04-18 The Regents Of The University Of California Visible light emitting diodes fabricated from soluble semiconducting polymers
US5281363A (en) 1991-04-22 1994-01-25 Allied-Signal Inc. Polyaniline compositions having a surface/core dopant arrangement
JPH06510555A (en) 1991-08-29 1994-11-24 ジッパーリング・ケスラー・アンド・カンパニー(ゲーエムベーハー・ウント・コンパニー) Improving the solubility of conductive conjugated main chain polymers using dopant components
US5463005A (en) * 1992-01-03 1995-10-31 Gas Research Institute Copolymers of tetrafluoroethylene and perfluorinated sulfonyl monomers and membranes made therefrom
DE4211461A1 (en) 1992-04-06 1993-10-07 Agfa Gevaert Ag Antistatic plastic parts
DE4211459A1 (en) 1992-04-06 1993-10-07 Agfa Gevaert Ag Antistatic permanent coating prodn. on photographic material with poly:thiophene - by oxidative polymerisation with at least stoichiometric amt. of peroxy acid salt and desalination for high yield avoiding haze by dendrite formation
DE4216762A1 (en) 1992-05-21 1993-11-25 Agfa Gevaert Ag Antistatic plastic parts
EP0579027A1 (en) 1992-06-30 1994-01-19 Nitto Denko Corporation Organic polymer solution composition and process for producting electrically conductive organic polymer therefrom
US5324453A (en) 1992-08-07 1994-06-28 Neste Oy Electrically conducting polyaniline: method for emulsion polymerization
RU2035803C1 (en) 1992-08-17 1995-05-20 Институт химической физики в Черноголовке РАН Process of manufacture of conductive polymer coat on substrate
DE69319200T2 (en) 1992-10-14 1999-01-28 Agfa Gevaert Nv Antistatic coating composition
DE69321567T2 (en) 1992-12-17 1999-06-02 Agfa Gevaert Nv Antistatic, permanent primer
US5489400A (en) 1993-04-22 1996-02-06 Industrial Technology Research Institute Molecular complex of conductive polymer and polyelectrolyte; and a process of producing same
US5585038A (en) 1993-06-04 1996-12-17 Neste Oy Conductive plastics material and a method for its preparation
DE4322130A1 (en) 1993-07-02 1995-01-12 Siemens Ag Implantable defibrillator
DE4334390C2 (en) 1993-10-08 1999-01-21 Nat Science Council Process for making a processable, conductive, colloidal polymer
US5589108A (en) 1993-12-29 1996-12-31 Nitto Chemical Industry Co., Ltd. Soluble alkoxy-group substituted aminobenzenesulfonic acid aniline conducting polymers
US5723873A (en) 1994-03-03 1998-03-03 Yang; Yang Bilayer composite electrodes for diodes
US5537000A (en) 1994-04-29 1996-07-16 The Regents, University Of California Electroluminescent devices formed using semiconductor nanocrystals as an electron transport media and method of making such electroluminescent devices
DE19507413A1 (en) 1994-05-06 1995-11-09 Bayer Ag Conductive coatings
JP2001506393A (en) 1994-09-06 2001-05-15 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Electroluminescent device having an electrode layer provided with a transparent structure made of a conductive polymer
CN1069992C (en) 1994-11-04 2001-08-22 松下电器产业株式会社 Line filter
US5567356A (en) 1994-11-07 1996-10-22 Monsanto Company Emulsion-polymerization process and electrically-conductive polyaniline salts
DE19524132A1 (en) 1995-07-03 1997-01-09 Bayer Ag Scratch-resistant conductive coatings
US5716550A (en) 1995-08-10 1998-02-10 Eastman Kodak Company Electrically conductive composition and elements containing solubilized polyaniline complex and solvent mixture
US6030550A (en) 1995-11-15 2000-02-29 International Business Machines Corporation Methods of fabrication of cross-linked electrically conductive polymers and precursors thereof
US5773150A (en) 1995-11-17 1998-06-30 Chunghwa Picture Tubes, Ltd. Polymeric antistatic coating for cathode ray tubes
DE19543205A1 (en) 1995-11-20 1997-05-22 Bayer Ag Interlayer in electroluminescent arrangements containing finely divided inorganic particles
US5798170A (en) 1996-02-29 1998-08-25 Uniax Corporation Long operating life for polymer light-emitting diodes
DE19627071A1 (en) 1996-07-05 1998-01-08 Bayer Ag Electroluminescent devices
US5728801A (en) 1996-08-13 1998-03-17 The Dow Chemical Company Poly (arylamines) and films thereof
DE69705854T2 (en) * 1996-10-15 2002-04-11 Du Pont COMPOSITIONS CONTAINING HIGH-FLUORINE ION EXCHANGER POLYMER PARTICLES
JP2000505249A (en) 1996-11-12 2000-04-25 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Patterns of conductive polymers and their application as electrodes or electrical contacts
US5792830A (en) 1996-12-09 1998-08-11 The Dow Chemical Company Process for preparing polyaniline
US6171522B1 (en) * 1996-12-30 2001-01-09 Hydro-Qu{acute over (e)}bec Heterocyclic aromatic anion salts, and their uses as ionic conducting materials
AU5826498A (en) 1997-01-22 1998-08-07 E.I. Du Pont De Nemours And Company Grafting of polymers with fluorocarbon compounds
US5965281A (en) 1997-02-04 1999-10-12 Uniax Corporation Electrically active polymer compositions and their use in efficient, low operating voltage, polymer light-emitting diodes with air-stable cathodes
JPH10261418A (en) 1997-03-18 1998-09-29 Kyushu Electric Power Co Inc Positive electrode material for lithium secondary battery
EP1026152B1 (en) 1997-03-31 2006-07-26 Daikin Industries, Limited Process for producing perfluorovinyl ethersulfonic acid derivatives
US6205016B1 (en) 1997-06-04 2001-03-20 Hyperion Catalysis International, Inc. Fibril composite electrode for electrochemical capacitors
US6599631B2 (en) 2001-01-26 2003-07-29 Nanogram Corporation Polymer-inorganic particle composites
US6018018A (en) 1997-08-21 2000-01-25 University Of Massachusetts Lowell Enzymatic template polymerization
US6670345B1 (en) * 1997-09-30 2003-12-30 Dabur Research Foundation Betulinic acid derivatives for inhabiting cancer growth and process for the manufacture of betulinic acid
US6303238B1 (en) * 1997-12-01 2001-10-16 The Trustees Of Princeton University OLEDs doped with phosphorescent compounds
WO1999023672A1 (en) 1997-11-05 1999-05-14 Koninklijke Philips Electronics N.V. Conjugated polymer in an oxidized state
JP4236719B2 (en) 1997-12-17 2009-03-11 昭和電工株式会社 Solid electrolytic capacitor and manufacturing method thereof
DE19757542A1 (en) 1997-12-23 1999-06-24 Bayer Ag Screen printing paste for e.g. liquid crystal display
US6866946B2 (en) 1998-02-02 2005-03-15 Dupont Displays, Inc. High resistance polyaniline useful in high efficiency pixellated polymer electronic displays
EP1055260A1 (en) 1998-02-02 2000-11-29 Uniax Corporation Organic diodes with switchable photosensitivity
US6100324A (en) 1998-04-16 2000-08-08 E. I. Du Pont De Nemours And Company Ionomers and ionically conductive compositions
DE19824215A1 (en) 1998-05-29 1999-12-02 Bayer Ag Electrochromic arrangement based on poly (3,4-ethylenedioxy-thiophene) derivatives in the electrochromic and ion-storing functional layers
JP3937113B2 (en) 1998-06-05 2007-06-27 日産化学工業株式会社 Organic-inorganic composite conductive sol and method for producing the same
US6210790B1 (en) 1998-07-15 2001-04-03 Rensselaer Polytechnic Institute Glass-like composites comprising a surface-modified colloidal silica and method of making thereof
DE19841803A1 (en) 1998-09-12 2000-03-16 Bayer Ag Organic electroluminescent device, i.e. light-emitting diode, has hole-injecting layer of polymeric organic conductor formed by coating from solution or from sub-micron dispersion
US6830828B2 (en) 1998-09-14 2004-12-14 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
US6097147A (en) 1998-09-14 2000-08-01 The Trustees Of Princeton University Structure for high efficiency electroluminescent device
DE19845881A1 (en) 1998-10-06 2000-04-13 Bayer Ag Arrangement based on poly (3,4, -dioxythiophene) derivatives that are electrochromically switched with protons
US6197418B1 (en) 1998-12-21 2001-03-06 Agfa-Gevaert, N.V. Electroconductive glass laminate
JP2000336154A (en) 1999-03-23 2000-12-05 Mitsubishi Chemicals Corp Production of electroconductive polymer
US6187522B1 (en) 1999-03-25 2001-02-13 Eastman Kodak Company Scratch resistant antistatic layer for imaging elements
DE10018750C2 (en) 1999-04-23 2003-03-27 Kurt Schwabe Inst Fuer Mess Un Fixed contact ion-selective glass electrode and process for its production
US20040217877A1 (en) 1999-05-04 2004-11-04 William Kokonaski Flexible electronic display and wireless communication system
CN100407448C (en) 1999-05-13 2008-07-30 普林斯顿大学理事会 Very high efficiency organic light emitting devices based on electrophosphorescence
DE69905860T2 (en) 1999-05-20 2003-11-06 Agfa Gevaert Nv Process for structuring a layer of conductive polymer
US6340496B1 (en) 1999-05-20 2002-01-22 Agfa-Gevaert Method for patterning a layer of conductive polymers
TW505927B (en) 1999-05-20 2002-10-11 Ind Tech Res Inst Method for producing conductive polymeric nanocomposite
US20020099119A1 (en) 1999-05-27 2002-07-25 Bradley D. Craig Water-borne ceramer compositions and antistatic abrasion resistant ceramers made therefrom
US6593399B1 (en) 1999-06-04 2003-07-15 Rohm And Haas Company Preparing conductive polymers in the presence of emulsion latexes
KR100302326B1 (en) 1999-06-09 2001-09-22 윤덕용 Inorganic-organic Copolymer Using Polyvinylalcohol-Silane Copuling Reagent and Preparation Method Thereof
JP2001006878A (en) 1999-06-22 2001-01-12 Matsushita Electric Ind Co Ltd Thin film el element and its driving method
US6324091B1 (en) 2000-01-14 2001-11-27 The Regents Of The University Of California Tightly coupled porphyrin macrocycles for molecular memory storage
US6620494B2 (en) 1999-07-03 2003-09-16 Ten Cate Enbi B.V. Conductive roller
JP3348405B2 (en) 1999-07-22 2002-11-20 エヌイーシートーキン株式会社 Secondary battery and capacitor using indole polymer
EP1079397A1 (en) 1999-08-23 2001-02-28 Agfa-Gevaert N.V. Method of making an electroconductive pattern on a support
US6611096B1 (en) 1999-09-03 2003-08-26 3M Innovative Properties Company Organic electronic devices having conducting self-doped polymer buffer layers
US6593690B1 (en) 1999-09-03 2003-07-15 3M Innovative Properties Company Large area organic electronic devices having conducting polymer buffer layers and methods of making same
JP2001106782A (en) 1999-10-04 2001-04-17 Chemiprokasei Kaisha Ltd New polymer complex and electroluminescent element using the same
AU1662601A (en) 1999-11-24 2001-06-04 Tda Research, Inc. Combustion synthesis of single walled nanotubes
JP3656244B2 (en) 1999-11-29 2005-06-08 株式会社豊田中央研究所 High durability solid polymer electrolyte, electrode-electrolyte assembly using the high durability solid polymer electrolyte, and electrochemical device using the electrode-electrolyte assembly
KR100794975B1 (en) 1999-12-01 2008-01-16 더 트러스티즈 오브 프린스턴 유니버시티 Complexes of form l2mx as phosphorescent dopants for organic leds
KR20020069199A (en) 1999-12-02 2002-08-29 듀폰 디스플레이즈, 인크. High Resistance Polyaniline Useful in High Efficiency Pixellated Polymer Electronic Displays
US6821645B2 (en) 1999-12-27 2004-11-23 Fuji Photo Film Co., Ltd. Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
JP2001270999A (en) 2000-01-19 2001-10-02 Mitsubishi Rayon Co Ltd Crosslinkable electric conductive composition, water resistant electric conductor and process for manufacturing the same
KR20010095437A (en) 2000-03-30 2001-11-07 윤덕용 Organic Electro luminescent Devices Using Emitting material/Clay Nano Complex Composite
US6706963B2 (en) * 2002-01-25 2004-03-16 Konarka Technologies, Inc. Photovoltaic cell interconnection
US6913713B2 (en) * 2002-01-25 2005-07-05 Konarka Technologies, Inc. Photovoltaic fibers
JP2001325831A (en) 2000-05-12 2001-11-22 Bando Chem Ind Ltd Metal colloid solution, conductive ink, conductive coating and conductive coating forming base film
US20020038999A1 (en) 2000-06-20 2002-04-04 Yong Cao High resistance conductive polymers for use in high efficiency pixellated organic electronic devices
CA2410535A1 (en) 2000-06-20 2001-12-27 Dupont Displays, Inc. High resistance conductive polymers for use in high efficiency pixellated organic electronic devices
US20020036291A1 (en) 2000-06-20 2002-03-28 Parker Ian D. Multilayer structures as stable hole-injecting electrodes for use in high efficiency organic electronic devices
US6632472B2 (en) 2000-06-26 2003-10-14 Agfa-Gevaert Redispersable latex comprising a polythiophene
EP1780233B1 (en) 2000-06-26 2009-06-17 Agfa-Gevaert Redispersible latex comprising a polythiophene
WO2002079316A2 (en) 2001-03-29 2002-10-10 Agfa-Gevaert Aqueous composition containing a polymer or copolymer of a 3,4-dialkoxythiophene and a non-newtonian binder
US6670645B2 (en) * 2000-06-30 2003-12-30 E. I. Du Pont De Nemours And Company Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US20020121638A1 (en) 2000-06-30 2002-09-05 Vladimir Grushin Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
WO2002005354A1 (en) 2000-07-06 2002-01-17 Mitsubishi Chemical Corporation Solid photo-electric converting element, process for producing the same, solar cell employing solid photo-electric converting element, and power supply
KR100884039B1 (en) 2000-08-11 2009-02-19 더 트러스티즈 오브 프린스턴 유니버시티 Organometallic compounds and emission-shifting organic electrophosphorescence
JP2002082082A (en) 2000-09-07 2002-03-22 Matsushita Refrig Co Ltd Odor sensor and its manufacturing method
JP4154139B2 (en) 2000-09-26 2008-09-24 キヤノン株式会社 Light emitting element
JP4154140B2 (en) 2000-09-26 2008-09-24 キヤノン株式会社 Metal coordination compounds
SE515892C2 (en) 2000-10-13 2001-10-22 Ssab Hardtech Ab Bumper arrangement
US7579112B2 (en) 2001-07-27 2009-08-25 A123 Systems, Inc. Battery structures, self-organizing structures and related methods
US7662265B2 (en) 2000-10-20 2010-02-16 Massachusetts Institute Of Technology Electrophoretic assembly of electrochemical devices
US6515314B1 (en) 2000-11-16 2003-02-04 General Electric Company Light-emitting device with organic layer doped with photoluminescent material
AU2002221869A1 (en) 2000-11-22 2002-06-03 Bayer Aktiengesellschaft Dispersible polymer powders
DE10103416A1 (en) 2001-01-26 2002-08-01 Bayer Ag Electroluminescent devices
EP1231251A1 (en) 2001-02-07 2002-08-14 Agfa-Gevaert Thin film inorganic light emitting diode
JP4300028B2 (en) 2001-02-08 2009-07-22 旭化成株式会社 Organic domain / inorganic domain composite materials and uses thereof
US6756474B2 (en) 2001-02-09 2004-06-29 E. I. Du Pont De Nemours And Company Aqueous conductive dispersions of polyaniline having enhanced viscosity
DE10126860C2 (en) 2001-06-01 2003-05-28 Siemens Ag Organic field effect transistor, process for its manufacture and use for the construction of integrated circuits
US6784016B2 (en) 2001-06-21 2004-08-31 The Trustees Of Princeton University Organic light-emitting devices with blocking and transport layers
US6875523B2 (en) 2001-07-05 2005-04-05 E. I. Du Pont De Nemours And Company Photoactive lanthanide complexes with phosphine oxides, phosphine oxide-sulfides, pyridine N-oxides, and phosphine oxide-pyridine N-oxides, and devices made with such complexes
US6777515B2 (en) 2001-07-13 2004-08-17 I. Du Pont De Nemours And Company Functional fluorine-containing polymers and ionomers derived therefrom
EP1451245B1 (en) 2001-07-13 2006-08-30 E.I. Du Pont De Nemours And Company Process for dissolution of highly fluorinated ion-exchange polymers
CN1533395A (en) 2001-07-18 2004-09-29 E.I.���¶��Ű˾ Luminescent lanthanide complexes with imine ligands and devices made with such complexes
JP2003040856A (en) 2001-07-23 2003-02-13 Mitsui Chemicals Inc Meta-fluorobenzenesulfonic acid derivative and dopant
US6627333B2 (en) 2001-08-15 2003-09-30 Eastman Kodak Company White organic light-emitting devices with improved efficiency
US7112368B2 (en) * 2001-11-06 2006-09-26 E. I. Du Pont De Nemours And Company Poly(dioxythiophene)/poly(acrylamidoalkyslufonic acid) complexes
US7166368B2 (en) 2001-11-07 2007-01-23 E. I. Du Pont De Nemours And Company Electroluminescent platinum compounds and devices made with such compounds
AU2002356479A1 (en) 2001-11-30 2003-06-10 Acreo Ab Electrochemical sensor
WO2003048227A1 (en) 2001-12-04 2003-06-12 Agfa-Gevaert Process for preparing an aqueous or non-aqueous solution or dispersion of a polythiophene or thiophene copolymer
EP1326260A1 (en) 2001-12-11 2003-07-09 Agfa-Gevaert Material for making a conductive pattern
JP2003187983A (en) 2001-12-17 2003-07-04 Ricoh Co Ltd Organic el transistor
EP1321483A1 (en) 2001-12-20 2003-06-25 Agfa-Gevaert 3,4-alkylenedioxythiophene compounds and polymers thereof
US20030141487A1 (en) 2001-12-26 2003-07-31 Eastman Kodak Company Composition containing electronically conductive polymer particles
JP4299144B2 (en) 2001-12-26 2009-07-22 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Electroluminescent iridium compounds comprising fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines, and devices made using such compounds
JP2003217862A (en) 2002-01-18 2003-07-31 Honda Motor Co Ltd Organic electroluminescent element
JP4363050B2 (en) 2002-01-31 2009-11-11 住友化学株式会社 Organic electroluminescence device
CN1639246A (en) 2002-03-01 2005-07-13 纳幕尔杜邦公司 Printing of organic conductive polymers containing additives
JP2003264083A (en) 2002-03-08 2003-09-19 Sharp Corp Organic led element and production process thereof
JP2003301116A (en) 2002-04-11 2003-10-21 Konica Minolta Holdings Inc Organic semiconductor material, field-effects transistor using the same, and switching element
US6923881B2 (en) 2002-05-27 2005-08-02 Fuji Photo Film Co., Ltd. Method for producing organic electroluminescent device and transfer material used therein
JP4288895B2 (en) 2002-06-04 2009-07-01 コニカミノルタホールディングス株式会社 Method for producing organic electroluminescence
US20040004433A1 (en) 2002-06-26 2004-01-08 3M Innovative Properties Company Buffer layers for organic electroluminescent devices and methods of manufacture and use
JP3606855B2 (en) * 2002-06-28 2005-01-05 ドン ウン インターナショナル カンパニー リミテッド Method for producing carbon nanoparticles
US7071289B2 (en) 2002-07-11 2006-07-04 The University Of Connecticut Polymers comprising thieno [3,4-b]thiophene and methods of making and using the same
JP4077675B2 (en) 2002-07-26 2008-04-16 ナガセケムテックス株式会社 Aqueous dispersion of complex of poly (3,4-dialkoxythiophene) and polyanion and method for producing the same
US6963005B2 (en) 2002-08-15 2005-11-08 E. I. Du Pont De Nemours And Company Compounds comprising phosphorus-containing metal complexes
JP4295727B2 (en) 2002-08-22 2009-07-15 アグフア−ゲヴエルト Method for producing a substantially transparent conductive layer
US7118836B2 (en) * 2002-08-22 2006-10-10 Agfa Gevaert Process for preparing a substantially transparent conductive layer configuration
US6977390B2 (en) 2002-08-23 2005-12-20 Agfa Gevaert Layer configuration comprising an electron-blocking element
JP2004082395A (en) 2002-08-23 2004-03-18 Eamex Co Method for forming laminate and laminate
US7307276B2 (en) 2002-08-23 2007-12-11 Agfa-Gevaert Layer configuration comprising an electron-blocking element
US20040092700A1 (en) 2002-08-23 2004-05-13 Che-Hsiung Hsu Methods for directly producing stable aqueous dispersions of electrically conducting polyanilines
JP4975237B2 (en) 2002-08-27 2012-07-11 パナソニック株式会社 Method for producing conductive composition and solid electrolytic capacitor using the same
US7033646B2 (en) 2002-08-29 2006-04-25 E. I. Du Pont De Nemours And Company High resistance polyaniline blend for use in high efficiency pixellated polymer electroluminescent devices
WO2004020444A1 (en) 2002-09-02 2004-03-11 Agfa-Gevaert New 3,4-alkylenedioxythiophenedioxide compounds and polymers comprising monomeric units thereof
JP4135449B2 (en) 2002-09-20 2008-08-20 日本ケミコン株式会社 Oxidizing agent for conductive polymer polymerization
JP4464277B2 (en) * 2002-09-24 2010-05-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Conductive organic polymer / nanoparticle composite material and method of using the same
US7317047B2 (en) * 2002-09-24 2008-01-08 E.I. Du Pont De Nemours And Company Electrically conducting organic polymer/nanoparticle composites and methods for use thereof
KR101148285B1 (en) 2002-09-24 2012-05-21 이 아이 듀폰 디 네모아 앤드 캄파니 Water Dispersible Polyanilines Made with Polymeric Acid Colloids for Electronics Applications
US7371336B2 (en) 2002-09-24 2008-05-13 E.I. Du Pont Nemours And Company Water dispersible polyanilines made with polymeric acid colloids for electronics applications
WO2004031192A1 (en) 2002-10-07 2004-04-15 Agfa-Gevaert 3,4-alkylenedioxythiophene compounds and polymers thereof
US6717358B1 (en) 2002-10-09 2004-04-06 Eastman Kodak Company Cascaded organic electroluminescent devices with improved voltage stability
KR100525977B1 (en) 2002-11-19 2005-11-03 나노캠텍주식회사 Method for producing 3,4-alkylenedioxythiophenes and 3,4-dialkoxythiophenes
US7211202B2 (en) 2002-12-13 2007-05-01 Atofina Process to make a conductive composition of a fluorinated polymer which contains polyaniline
US6793197B2 (en) * 2003-01-30 2004-09-21 Fisher Controls International, Inc. Butterfly valve
US6867281B2 (en) 2003-03-26 2005-03-15 The United States Of America As Represented By The Secretary Of The Navy Highly conducting and transparent thin films formed from new fluorinated derivatives of 3,4-ethylenedioxythiophene
JP4851323B2 (en) 2003-04-22 2012-01-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Water dispersible polythiophene produced by polymeric acid colloid
US7390438B2 (en) * 2003-04-22 2008-06-24 E.I. Du Pont De Nemours And Company Water dispersible substituted polydioxythiophenes made with fluorinated polymeric sulfonic acid colloids
WO2004105150A1 (en) 2003-05-19 2004-12-02 E.I. Dupont De Nemours And Company Hole transport composition
JPWO2004106404A1 (en) 2003-05-27 2006-07-20 富士通株式会社 Organic conductive polymer composition, transparent conductive film and transparent conductor using the same, input device using the transparent conductor, and manufacturing method thereof
US7318982B2 (en) 2003-06-23 2008-01-15 A123 Systems, Inc. Polymer composition for encapsulation of electrode particles
US20060135715A1 (en) 2003-06-27 2006-06-22 Zhen-Yu Yang Trifluorostyrene containing compounds, and their use in polymer electrolyte membranes
DE10331673A1 (en) 2003-07-14 2005-02-10 H.C. Starck Gmbh Polythiophene with alkyleneoxythiathiophene units in electrolytic capacitors
EP1507298A1 (en) 2003-08-14 2005-02-16 Sony International (Europe) GmbH Carbon nanotubes based solar cells
US8040042B2 (en) 2003-09-08 2011-10-18 Sumitomo Metal Mining Co., Ltd. Transparent electroconductive layered structure, organic electroluminescent device using the same layered structure, method for producing the same layered structure, and method for producing the same device
DE10343873A1 (en) 2003-09-23 2005-04-21 Starck H C Gmbh Process for the purification of thiophenes
JP4535435B2 (en) 2003-09-25 2010-09-01 昭和電工株式会社 PI CONJUGATED COPOLYMER, PROCESS FOR PRODUCING THE SAME, AND CAPACITOR USING THE COPOLYMER
JP4381080B2 (en) 2003-09-29 2009-12-09 大日本印刷株式会社 Organic electroluminescence device and method for producing the same
US7618704B2 (en) 2003-09-29 2009-11-17 E.I. Du Pont De Nemours And Company Spin-printing of electronic and display components
US20050069726A1 (en) 2003-09-30 2005-03-31 Douglas Elliot Paul Light emitting composite material and devices thereof
US7105237B2 (en) 2003-10-01 2006-09-12 The University Of Connecticut Substituted thieno[3,4-B]thiophene polymers, method of making, and use thereof
TWI327152B (en) 2003-10-03 2010-07-11 Du Pont Water dispersible polythiophenes made with polymeric acid colloids
JP4600284B2 (en) 2003-10-28 2010-12-15 住友金属鉱山株式会社 Transparent conductive laminate, manufacturing method thereof, and device using transparent conductive laminate
TW201219350A (en) 2003-11-17 2012-05-16 Sumitomo Chemical Co Crosslinkable arylamine compounds
US20050209392A1 (en) 2003-12-17 2005-09-22 Jiazhong Luo Polymer binders for flexible and transparent conductive coatings containing carbon nanotubes
DE102004010811B4 (en) 2004-03-05 2006-06-29 H.C. Starck Gmbh Composition useful in article of manufacture e.g. electroluminescent arrangement comprises polythiophenes; polymer that is different from polythiophene; and polymer selected from partially fluorinated polymer and/or perfluorinated polymer
US20050175861A1 (en) 2004-02-10 2005-08-11 H.C. Starck Gmbh Polythiophene compositions for improving organic light-emitting diodes
DE102004006583A1 (en) 2004-02-10 2005-09-01 H.C. Starck Gmbh Polythiophene formulations for improving organic light-emitting diodes
US7960587B2 (en) 2004-02-19 2011-06-14 E.I. Du Pont De Nemours And Company Compositions comprising novel compounds and electronic devices made with such compositions
US7365230B2 (en) 2004-02-20 2008-04-29 E.I. Du Pont De Nemours And Company Cross-linkable polymers and electronic devices made with such polymers
US7112369B2 (en) 2004-03-02 2006-09-26 Bridgestone Corporation Nano-sized polymer-metal composites
US7338620B2 (en) * 2004-03-17 2008-03-04 E.I. Du Pont De Nemours And Company Water dispersible polydioxythiophenes with polymeric acid colloids and a water-miscible organic liquid
US7351358B2 (en) 2004-03-17 2008-04-01 E.I. Du Pont De Nemours And Company Water dispersible polypyrroles made with polymeric acid colloids for electronics applications
US7250461B2 (en) 2004-03-17 2007-07-31 E. I. Du Pont De Nemours And Company Organic formulations of conductive polymers made with polymeric acid colloids for electronics applications, and methods for making such formulations
WO2005090446A1 (en) 2004-03-18 2005-09-29 Ormecon Gmbh A composition comprising a conductive polymer in colloidal form and carbon
US7455793B2 (en) * 2004-03-31 2008-11-25 E.I. Du Pont De Nemours And Company Non-aqueous dispersions comprising electrically doped conductive polymers and colloid-forming polymeric acids
US20050222333A1 (en) * 2004-03-31 2005-10-06 Che-Hsiung Hsu Aqueous electrically doped conductive polymers and polymeric acid colloids
US7354532B2 (en) * 2004-04-13 2008-04-08 E.I. Du Pont De Nemours And Company Compositions of electrically conductive polymers and non-polymeric fluorinated organic acids
US7378040B2 (en) * 2004-08-11 2008-05-27 Eikos, Inc. Method of forming fluoropolymer binders for carbon nanotube-based transparent conductive coatings
US20060051401A1 (en) 2004-09-07 2006-03-09 Board Of Regents, The University Of Texas System Controlled nanofiber seeding
KR20070102661A (en) 2004-09-24 2007-10-19 플렉스트로닉스, 인크 Heteroatomic regioregular poly(3-substituted thiophenes) in photovoltaic cells
US7211824B2 (en) 2004-09-27 2007-05-01 Nitto Denko Corporation Organic semiconductor diode
US7388235B2 (en) 2004-09-30 2008-06-17 The United States Of America As Represented By The Secretary Of The Navy High electron mobility transistors with Sb-based channels
KR100882503B1 (en) 2004-10-06 2009-02-06 한국과학기술연구원 Highly Efficient Counter Electrodes for Dye-sensitized Solar Cells and Method for Manufacturing Thereof
US7569158B2 (en) * 2004-10-13 2009-08-04 Air Products And Chemicals, Inc. Aqueous dispersions of polythienothiophenes with fluorinated ion exchange polymers as dopants
EP1841773B1 (en) * 2004-12-30 2012-06-27 E.I. Du Pont De Nemours And Company Derivatized 3,4-alkylenedioxythiophene monomers, methods of making them, and use thereof
US7985490B2 (en) 2005-02-14 2011-07-26 Samsung Mobile Display Co., Ltd. Composition of conducting polymer and organic opto-electronic device employing the same
CN101921478B (en) 2005-03-11 2012-05-30 信越聚合物株式会社 Preparation process of conductive polymer solution
US7645497B2 (en) 2005-06-02 2010-01-12 Eastman Kodak Company Multi-layer conductor with carbon nanotubes
US7593004B2 (en) 2005-06-02 2009-09-22 Eastman Kodak Company Touchscreen with conductive layer comprising carbon nanotubes
US7727421B2 (en) 2005-06-27 2010-06-01 E. I. Du Pont De Nemours And Company Dupont Displays Inc Electrically conductive polymer compositions
WO2007002681A2 (en) 2005-06-27 2007-01-04 E. I. Du Pont De Nemours And Company Electrically conductive polymer compositions
WO2007002683A2 (en) 2005-06-27 2007-01-04 E. I. Du Pont De Nemours And Company Electrically conductive polymer compositions
WO2007002682A2 (en) 2005-06-27 2007-01-04 E. I. Du Pont De Nemours And Company Electrically conductive polymer compositions
WO2007002740A2 (en) * 2005-06-28 2007-01-04 E. I. Du Pont De Nemours And Company Buffer compositions
CN101616799A (en) * 2005-06-28 2009-12-30 E.I.内穆尔杜邦公司 Bilayer anode
US8088499B1 (en) 2005-10-28 2012-01-03 Agiltron, Inc. Optoelectronic device with nanoparticle embedded hole injection/transport layer
US8216680B2 (en) 2006-02-03 2012-07-10 E I Du Pont De Nemours And Company Transparent composite conductors having high work function
JP2009534831A (en) 2006-04-18 2009-09-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー High energy potential double layer composition
US8153029B2 (en) * 2006-12-28 2012-04-10 E.I. Du Pont De Nemours And Company Laser (230NM) ablatable compositions of electrically conducting polymers made with a perfluoropolymeric acid applications thereof
US20080251768A1 (en) * 2007-04-13 2008-10-16 Che-Hsiung Hsu Electrically conductive polymer compositions
US20080283800A1 (en) * 2007-05-18 2008-11-20 Che Hsiung Hsu Electrically conductive polymer compositions and films made therefrom
US8241526B2 (en) 2007-05-18 2012-08-14 E I Du Pont De Nemours And Company Aqueous dispersions of electrically conducting polymers containing high boiling solvent and additives

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040102577A1 (en) * 2002-09-24 2004-05-27 Che-Hsiung Hsu Water dispersible polythiophenes made with polymeric acid colloids
US7749407B2 (en) * 2005-06-28 2010-07-06 E.I. Du Pont De Nemours And Company High work function transparent conductors

Also Published As

Publication number Publication date
EP1897096A4 (en) 2009-08-12
US20100127222A1 (en) 2010-05-27
WO2007002737A2 (en) 2007-01-04
CN101208369B (en) 2013-03-27
EP1897096A2 (en) 2008-03-12
US20110175039A1 (en) 2011-07-21
US7749407B2 (en) 2010-07-06
KR101356296B1 (en) 2014-02-06
WO2007002737A3 (en) 2007-04-05
KR20080031327A (en) 2008-04-08
JP2008547185A (en) 2008-12-25
US8409476B2 (en) 2013-04-02
CN101208369A (en) 2008-06-25
JP5489458B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
US7749407B2 (en) High work function transparent conductors
US20060292362A1 (en) Bilayer anode
US7722785B2 (en) Electrically conductive polymer compositions
US8173047B2 (en) Electrically conductive polymer compositions
USRE44853E1 (en) Buffer compositions
US7727421B2 (en) Electrically conductive polymer compositions
US7638072B2 (en) Electrically conductive polymer compositions
US8383009B2 (en) Stabilized compositions of conductive polymers and partially fluorinated acid polymers
US20100247923A1 (en) Electrically conductive polymer compositions and films made therefrom
US20080283800A1 (en) Electrically conductive polymer compositions and films made therefrom
US20070278458A1 (en) Electrically conductive polymer compositions
US8142686B2 (en) Electrically conductive polymer compositions

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION