US20100270910A1 - Light emitting device and fabrication method thereof - Google Patents

Light emitting device and fabrication method thereof Download PDF

Info

Publication number
US20100270910A1
US20100270910A1 US12/829,273 US82927310A US2010270910A1 US 20100270910 A1 US20100270910 A1 US 20100270910A1 US 82927310 A US82927310 A US 82927310A US 2010270910 A1 US2010270910 A1 US 2010270910A1
Authority
US
United States
Prior art keywords
light emitting
luminescent
liquid
substrate
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/829,273
Inventor
Wei-Yuan Cheng
Yu-Chao Wu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hong Yuan Tech Co Ltd
Original Assignee
Hong Yuan Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34570489&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20100270910(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hong Yuan Tech Co Ltd filed Critical Hong Yuan Tech Co Ltd
Priority to US12/829,273 priority Critical patent/US20100270910A1/en
Publication of US20100270910A1 publication Critical patent/US20100270910A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/32257Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic the layer connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item

Definitions

  • the invention relates to a light emitting device and fabrication method thereof, and more particularly to a luminescent powder layer for the light emitting device and fabrication method thereof.
  • LEDs Light emitting diodes
  • the luminescent principle of LED is as follows. A voltage is applied to a diode to drive an electron and hole combination. The combination releases light from the diode. Furthermore, phosphors can be added into the LED to tune the luminescent wavelength (color) and luminescent intensity of the light.
  • White LEDs can be used in the lighting field.
  • One is single chip LED.
  • This LED uses a single LED chip and phosphors to obtain white light.
  • a white LED can use a blue LED chip and yellow phosphors or use a UV LED chip, blue, green and red phosphors to obtain a white LED.
  • Another white LED uses a multiple chip LED.
  • This LED uses a plurality of LED chips and phosphors to obtain white light.
  • a white LED can use blue, green and red LED chips to obtain white LED.
  • the multiple chips LED has a plurality of LED chips, wherein have different driving voltages, luminescent intensity, temperature characteristics and lifetime. Thus, the LED design is more complicated and has higher cost. Accordingly, the single chip LED is more practical.
  • the simpler structure of the single chip LED uses single LED chip and phosphors to obtain white light.
  • the LED comprises a pair of electrodes 10 , electrically contacting a lead frame 11 .
  • LED 12 as GaN, is disposed in the lead frame 11
  • adhesive 13 comprising epoxy or gel, is provided in the lead frame 11 covering the LED 12 .
  • Phosphors 14 comprising YAG, are dispersed in the adhesive 13 .
  • the LED is packaged by package materials 15 .
  • the YAG is mixed into the resin then coated on the blue GaN LED chip. This method, contrary, is time and material inefficiently, and the LED luminescent efficiency and uniformity decrease due to the resin absorption and the bad YAG dispersion.
  • U.S. Pat. No. 6,642,618 disclosed that the phosphors are mixed into the glass layer to prevent the humidity insertion.
  • the YAG may not be well mixed, so that the LED luminescent efficiency and uniformity may decrease.
  • U.S. Pat. No. 6,576,488 and U.S. Pat. No. 6,686,581 disclosed that the phosphors structure is formed on the LED chip surface by electrophoresis.
  • the phosphor powders must be conversed to gel via charges and then formed by electrical field by applying voltage.
  • a conductive plate must be added on the LED chip surface to attract phosphors to adhere thereto.
  • U.S. Pat. No. 6,650,044 disclosed that the phosphor structure is formed on the LED chip surface by a screen printing method.
  • the stencil is fabricated first, and solidifying agent most be added to the phosphor powders to solidify the phosphor powders on the LED chip surface.
  • U.S. Pat. No. 6,650,044 disclosed a LED structure by the above-mentioned technology.
  • Taiwanese Application No. 90,104,862 disclosed that the luminescent material is adhered to the semiconductor device by adhesive.
  • the phosphors structure is formed on the LED chip surface by adhesive or electrophoresis only.
  • embodiments of the invention provide a light emitting diode device and fabrication method thereof.
  • the invention provides another method for placing the phosphor layer on the LED chip surface and addresses the phosphor powders and the adhesive mixture issue.
  • Embodiments of the invention provide a light emitting device, comprising, a light emitting semiconductor device, and a luminescent powder layer on an optical path of the light emitting semiconductor device. At least part of the luminescent powder layer is coagulated and free of adhesive material.
  • Embodiments of the invention additionally provide a method of fabricating the light emitting device.
  • the method comprises providing a light emitting semiconductor device, positioning a plurality of luminescent particles at the optical path of the light emitting semiconductor device, and reducing the distance between the luminescent particles to enhance the molecular attraction between the luminescent particles.
  • the luminescent particles are then coagulated to form a luminescent powder layer by molecular attraction.
  • FIG. 1 is a cross-section showing the convention LED structure.
  • FIG. 2A is a cross-section showing an embodiment of a LED structure.
  • FIG. 2B is a cross-section showing another embodiment of a LED structure.
  • FIG. 3A is a cross-section showing a further embodiment of a LED structure.
  • FIG. 3B is a cross-section showing yet another embodiment of a LED structure.
  • FIG. 4A is a cross-section showing an embodiment of a LED package structure.
  • FIG. 4B is a cross-section showing another embodiment of a LED package structure.
  • FIG. 5 is a cross-section showing a further embodiment of a LED package structure.
  • FIG. 6A is a cross-section showing an embodiment of a LED package structure with a first passivation.
  • FIG. 6B is a cross-section showing an embodiment of a LED package structure with a second passivation.
  • FIG. 7 is a cross-section showing an embodiment of a light source structure.
  • FIG. 8A is a cross-section showing an embodiment of a display device.
  • FIG. 8B is a cross-section showing another embodiment of a display device.
  • FIG. 9 is a scheme showing an embodiment of a fabrication system for the light source device.
  • the embodiments disclose a LED device fabrication method for positioning a plurality of luminescent particles at the optical path of a substrate and reducing the distance between the luminescent particles to enhance the molecular attraction between the luminescent particles.
  • the luminescent particles are coagulated to a luminescent powder layer by molecular attraction.
  • one embodiment comprises the steps following: dispersing a plurality of luminescent particles in a liquid to form a mixture; positioning a substrate in the mixture for a period, until the luminescent particles deposit on the substrate; and removing the liquid to coagulate the luminescent particles on the substrate and adhere the luminescent particles to the substrate.
  • the luminescent particle density is higher than the liquid density for the luminescent particle deposition.
  • the luminescent particle density is about 0.001 ⁇ 1 g/ml, preferably 0.01 ⁇ 0.15 g/ml.
  • the luminescent particle size is about 0.1100 ⁇ m.
  • the phosphor average particle size is about 3 ⁇ 13 ⁇ m.
  • the nano-scale luminescent particles may be used in the present embodiment. The luminescent particles are barely soluble or insoluble in the liquid.
  • the substrate may be a light emitting semiconductor device, such as a LED chip, or layers consisting of the LED chip.
  • FIG. 2 is a LED cross-section of the invention.
  • the LED comprises substrate 20 and luminescent powder layer 21 .
  • the luminescent powder layer 21 is directly adhered on the substrate 20 .
  • the luminescent powder layer 21 is free of epoxy, glue, or similar.
  • the passivation layer 22 can also be formed on the luminescent powder layer 21 to protect the luminescent powder layer 21 .
  • the passivation layer 22 can be a polymer layer.
  • FIG. 3A is another LED cross section of the invention.
  • the LED comprises the LED chip 30 and the luminescent powder layer 35 .
  • the LED chip 30 comprises substrate 31 , a plurality of semiconductor layers 32 and the conductive layer 33 .
  • the conductive layer 33 may be conductive glass layer, such as an ITO layer.
  • the plurality of semiconductor layers 32 may be two layers or more than two layers. In this case, the plurality of semiconductor layers 32 are two layers, the first semiconductor layer 32 a and the second semiconductor layer 32 b , in the FIG. 3A .
  • the luminescent powder layer 35 may be adhered on the substrate 31 surface directly.
  • the emitting powder layer 35 also may be adhered on either the plurality of semiconductor layer 32 surfaces or the conductive layer surface, such as on the first semiconductor layer 32 a surface, the second semiconductor layer 32 b surface or the conductive layer 33 surface.
  • the luminescent powder layer 35 only consists of luminescent powders, free from any adhesive, such as epoxy or glue, etc.
  • FIG. 3B is another LED cross-section of the invention.
  • the LED structure is similar to the LED in FIG. 3A .
  • the difference is that the emitting powder layer 35 is provided on bottom surface of the substrate 31 .
  • This LED structure may be used in the flip chip fabrication.
  • the luminescent powder layer 21 and 35 may be phosphors, such as sulfide phosphors or non-sulfide phosphors.
  • the sulfide phosphors may be covered by a coating film, such as organic polymer coating film, to prevent environmental factors, such as humidity and oxygen.
  • the non-sulfide phosphors may be YAG, TAG or any other phosphor.
  • a passivation may be formed on the luminescent powder layer to avoid external influence and contamination.
  • the passivation may be organic polymer materials.
  • the following embodiments describe the light emitting semiconductor chips with optical path zone and non-optical path zone structures.
  • a light emitting device comprises the light emitting semiconductor device 100 and the luminescent powder layer 130 .
  • the light emitting semiconductor device 100 may be chip or wafer.
  • the light emitting semiconductor device 100 is the wafer 110 with a plurality of chips 120 .
  • the wafer 110 may be separated into an optical path zone OP and a non-optical path zone NOP.
  • the luminescent powder layer 130 is adhered on the surface of the chip 120 or the optical path zone OP. At least a portion, the main portion or the entire the luminescent powder layer 130 is coagulated and free of adhesive.
  • the luminescent powder layer 130 consists of phosphors, and is coagulated by intermolecular attraction. Thus, the luminescent powders do not comprise adhesive, such as resin, organic polymer, solidify materials, or glass gel.
  • the first passivation layer 140 is formed on the luminescent powder layer 130 to avoid scraping, and the passivation 140 at least covers the top surface of luminescent powder layer 130 .
  • the second passivation 150 at least covers the first passivation 140 and the luminescent powder layer 130 , and may cover the chip 120 .
  • the thickness of the second passivation 150 may be higher than the first passivation 140 .
  • first passivation layer 140 may be a stress buffer layer to avoid damage to the powder layer in subsequent thermal treatments.
  • the stress buffer layer comprises softer materials, such as silicon gel.
  • the second passivation 150 is a layer comprising harder material, such as epoxy, to avoid scraping or crushing.
  • the luminescent powders comprise sulfide phosphors and non-sulfide phosphors, the non-sulfide phosphors are used in the present embodiment.
  • the embodiments of the light emitting semiconductor device are shown in FIG. 3A and FIG. 3B .
  • FIG. 4A is the cross section of the light emitting package structure of the invention.
  • the light emitting semiconductor device is LED 40 .
  • the LED as shown in FIG. 2 is put in the lead frame 41 , the lead frame 41 contacts a pair of electrodes 42 electrically.
  • the lead frame 41 , substrate 20 and the luminescent powder layer 21 are packaged by the package materials 43 .
  • the passivation 22 may be formed on the luminescent powder layer 21 to protect the luminescent powder layer 21 .
  • the passivation 22 may comprise a polymer layer or epoxy.
  • FIG. 5 is the cross section of another light emitting package structure of the invention.
  • the LED as shown in FIG. 3A is disposed in the lead frame 51 , the lead frame 51 contacts a pair of electrodes 52 electrically.
  • the lead frame 51 , the light emitting chip 30 and the luminescent powder layer 35 are packaged by package materials 53 .
  • the light emitting device of the invention may be used in the other package structures, such as flip chip structure.
  • the light emitting device 40 ( 50 ) electrically contacts the circuit board L to form the light source 200 .
  • the light source 200 is disposed under the module body 210 or on the module body 210 sidewall to output light.
  • FIGS. 8A and 8B show a display element 300 .
  • the light source or the back light module provides the light source to the display element 300 to form a display device.
  • the present embodiment discloses a fabrication system for an emitting device.
  • the fabrication system comprises a container 950 ; a disposal device 940 for disposing a substrate 960 into the container 950 ; a liquid supply device 910 for infusing liquid 980 to the container 950 and the liquid 980 is higher than the substrate 960 ; a stirring device 920 for mixing a plurality of light emitting powder and the liquid 980 to form a mixture, and the liquid 980 is optionally free of adhesive; a liquid discharge device 930 for removing the liquid 980 after the luminescent powders are deposited on the substrate 960 . The luminescent powders are coagulated and adhered on the substrate 960 to form the luminescent powder layer 970 .
  • the present embodiment provides a light emitting semiconductor device, as shown in the FIG. 6B .
  • the plurality of the luminescent powders are disposed on the optical path of the light emitting semiconductor device, such as on the surface of chip 120 .
  • the distance of the luminescent powders are decreased to enhance the intermolecular attraction of the luminescent powders to coagulate the luminescent powders to form the luminescent powder layer 130 .
  • the luminescent powder layer 130 forming steps are as follows: a plurality of the luminescent powders is mixed with a liquid. The plurality of the luminescent powders is then positioned on the optical path of the semiconductor chip or wafer 120 . The liquid is removed to coagulate the luminescent powders to a luminescent powder layer.
  • the liquid comprises water or volatile solvents and does not comprise epoxy or glue.
  • the volatile solvents comprise the group consisting of ethers, alcohols and ketones, such as ether, methanol, ethanol or acetone.
  • the light emitting semiconductor chip or wafer is put into a container 950 containing the liquid 980 , and the luminescent powders are dispersed in the liquid to form a mixture.
  • the luminescent powder depositing time may optionally increase.
  • the height of the liquid 980 is higher than the semiconductor chip or wafer 960 , so that the luminescent powders can be deposited on the semiconductor chip or wafer 960 .
  • the height of the liquid 980 is about 3.5-6 times the height of the semiconductor chip or wafer 960 .
  • the liquid removing step may be a baking step.
  • the baking step comprises a baking temperature to remove the liquid. Agitation caused by the baking temperature is controlled to not affect the arrangement of the luminescent particles on the light emitting semiconductor chip or wafer.
  • the baking temperature is typically higher than the room temperature.
  • the baking temperature is about 40 ⁇ 300° C.
  • the ethanol baking temperature is about 80° C.
  • the baking step may comprise multiple steps.
  • the liquid is removed at a first temperature and a second temperature.
  • the liquid removal step further is executed before the baking step.
  • the liquid removal step may comprise a drainage step or a pumping step.
  • a plurality of luminescent powders are mixed with a liquid.
  • the luminescent powders are then deposited on the optical path zone OP and the non-optical path zone NOP of the semiconductor wafer.
  • the luminescent powders are coagulated to a luminescent powder layer.
  • a first passivation layer 140 is formed to protect the luminescent powder layer 130 on the optical path zone OP of the semiconductor wafer, as shown in FIG. 6A .
  • the luminescent powder layer on the non-optical path zone NOP of the semiconductor wafer is washed or removed, the luminescent powder layer on the optical path zone OP of the semiconductor wafer is protected by the passivation layer 140 .
  • a second passivation 150 may be formed to cover the first passivation layer 140 and the luminescent powder layer.
  • the following illustrates the LED fabrication by the fabrication system for emitting device.
  • the luminescent powders are put into the liquid, and the density of luminescent powders are higher than the density of the liquid, and the luminescent powders are insoluble or have low solubility in the liquid, and the luminescent powders are stable in the liquid and have no chemical reaction with the liquid.
  • the luminescent powders are well mixed with the liquid by a stirring bar or ultrasonic agitation to form a mixture.
  • the luminescent powders may be phosphors, and the phosphors may be sulfide phosphors or non-sulfide phosphors.
  • the sulfide phosphors further may be coated by a coating film, such as organic polymer coating film, to prevent the environmental factors, such as humidity and oxygen.
  • the non-sulfide phosphors may be YAG, TAG or any other phosphors.
  • a substrate is put in the mixture for a period of time, and the height of the mixture must be higher than the substrate top surface of at least 10 ⁇ m. Then the luminescent powders deposit on the substrate by gravity naturally. Thus, the density of the luminescent powders must be higher than the liquid, or the deposition will not occur.
  • the particle size of the luminescent powders are typically 0.1 ⁇ 100 ⁇ m. If the particles are too small, the deposition time will be too long and the output would decrease. If the particles are too big, the uniformity of the luminescent powder layer will decrease.
  • the concentration of the luminescent powders and the liquid is about 0.001 ⁇ 1 g/ml, preferably 0.01 ⁇ 15 g/ml. If the concentration is too high, the luminescent powders are wasted or the luminescent powder layer will be too thick. If the concentration is too low, the deposition time will be too long and the luminescent powder layer will be too thin.
  • the liquid is removed by baking, drainage and/or pumping to form a luminescent powder layer on the substrate.
  • the liquid removing step must not agitate the luminescent powder layer, or the ideal luminescent powder layer can not be obtained.
  • the baking temperature may be 40 ⁇ 300° C. If the baking temperature is too low, the baking time would be too long or the liquid is difficult to dry. If the baking temperature is too high, the substrate and/or the luminescent powders can be spoiled, and the luminescent powder layer can be agitated.
  • the liquid is removed, the distance between the luminescent powders decrease, and the luminescent powder layer is formed by the intermolecular force, such as Van der Waal force.
  • the baking step may comprise multiple baking steps, such as a first baking step and a second baking step.
  • the baking temperature may be lower than the liquid boiling point to prevent voids from forming on the luminescent powder layer surface.
  • the baking temperature may be higher to dry all the liquid and lower than the substrate or the luminescent powder spoiling temperature, 300° C. for example.
  • a passivation layer may be formed on the luminescent powder layer by a coating method.
  • the passivation layer may be organic polymer.
  • the luminescent powder layer will not be formed.
  • the luminescent powders are soluble in the liquid, if the mixture is over-saturated, the invention will still work.
  • the overdose luminescent powder method increases the cost. Otherwise, if the luminescent powders are unstable in the liquid or have a chemical reaction with the liquid, the luminescent powders will deteriorate or decompose.
  • the liquid preferably is insoluble, barely soluble, stable and has no chemical reaction with the luminescent powders.
  • the liquid may be water, alcohols, ketones and/or ethers.
  • the alcohols may be ethanol, the ketons may be acetone, the ethers may be ether.
  • the substrate may be an LED chip or any layer of the LED chip, in other words, the luminescent powder layer is formed on any surface of the LED chip.
  • the following examples provide the water and ethanol as the liquid.
  • YAG phosphors produced by Nichia Co. were put in water to form a mixture by ultrasonic agitation.
  • GaN chip was put in the mixture for about 20 min for the YAG phosphors deposition.
  • the mixture surface was higher than the GaN chip top surface, so that the YAG phosphors deposited on the GaN chip.
  • the water was evaporated at about 50° C. for a period, and then dried at about 200° C. to dry all the water and coagulate the YAG phosphors.
  • a vacuum process may be processing to increase the water removing rate.
  • YAG phosphors produced by Nichia Co. were put in ethanol to form a mixture via ultrasonic agitation. GaN chip was put in the mixture and stayed about 20 min for the YAG phosphors deposition. The mixture surface was higher than the GaN chip top surface, so that the YAG phosphors deposited on the GaN chip.
  • the ethanol was evaporated at about 80° C. for a period, then dried at about 150° C. to dry all the ethanol and coagulate the YAG phosphors.
  • a vacuum process may be processing to increase the ethanol removing rate.
  • the LEDs are fabricated by the conventional method where the phosphor is mixed with resin and the inventive method, and use GaN LED chip and YAG phosphors.
  • the driving conditions are as follows:
  • Driving Condition 1 Driving Condition 2
  • Fabrication Conventional Present Conventional Present Method method Invention 1 8800 mcd 9500 mcd 3500 mcd 8500 mcd 2 9400 mcd 10500 mcd 3200 mcd 8000 mcd 3 9200 mcd 10200 mcd 2700 mcd 7500 mcd 4
  • 9800 mcd 12100 mcd 4000 mcd 9500 mcd 5 9500 mcd 11200 mcd 3700 mcd 9000 mcd
  • LEDs of the examples emit white and brighter light. Accordingly, the light intensity of the LEDs that are fabricated by the invention and excited by the longer wavelength (lower energy) is close to the light intensity of the LEDs that are fabricated by the known and excited by the shorter wavelength (larger energy). It shows the LEDs of the invention have a better optical-electrical transfer rate.
  • the luminescent powder layer of the invention is adhered in or on the light emitting semiconductor device directly free of any medium, such as epoxy or glue, so the applied energy is not wasted by the medium and the light emitting device has higher emission efficiency.
  • the luminescent powder layer of the invention is fabricated by the direct adhesion method, and not mixed with the resin and than coated no the light emitting device. Thus the fabrication method of the invention is simpler and can enhance the output.
  • the luminescent powder layer of the invention is fabricated by the direct adhesion method, not by mixing with the resin then coating the light emitting device, thus non-uniformity of the luminescent powder in the medium dose not occur.
  • the luminescent powder layer of the invention is fabricated by the direct adhesion method, when this fabrication fails, the luminescent powder layer can be reworked by a brushing method, for example. So the rework is very easy and the cost is low.

Abstract

A light emitting device fabrication method. The fabrication method of the light emitting device comprises providing a light emitting semiconductor device; positioning a plurality of luminescent particles at the optical path of the light emitting semiconductor device; and reducing the distance between the luminescent particles to enhance the molecular attraction between the luminescent particles, than the luminescent particles is coagulated to a luminescent powder layer by the molecular attraction.

Description

    BACKGROUND
  • The invention relates to a light emitting device and fabrication method thereof, and more particularly to a luminescent powder layer for the light emitting device and fabrication method thereof.
  • Light emitting diodes (LEDs) have high brightness, low volume, low power consumption and long life and such as, are used in variety of display products. The luminescent principle of LED is as follows. A voltage is applied to a diode to drive an electron and hole combination. The combination releases light from the diode. Furthermore, phosphors can be added into the LED to tune the luminescent wavelength (color) and luminescent intensity of the light.
  • White LEDs can be used in the lighting field. There are two white LED structures. One is single chip LED. This LED uses a single LED chip and phosphors to obtain white light. For example, a white LED can use a blue LED chip and yellow phosphors or use a UV LED chip, blue, green and red phosphors to obtain a white LED. Another white LED uses a multiple chip LED. This LED uses a plurality of LED chips and phosphors to obtain white light. For example, a white LED can use blue, green and red LED chips to obtain white LED. But the multiple chips LED has a plurality of LED chips, wherein have different driving voltages, luminescent intensity, temperature characteristics and lifetime. Thus, the LED design is more complicated and has higher cost. Accordingly, the single chip LED is more practical.
  • The simpler structure of the single chip LED uses single LED chip and phosphors to obtain white light. In the FIG. 1, the LED comprises a pair of electrodes 10, electrically contacting a lead frame 11. LED 12, as GaN, is disposed in the lead frame 11, adhesive 13, comprising epoxy or gel, is provided in the lead frame 11 covering the LED 12. Phosphors 14, comprising YAG, are dispersed in the adhesive 13. Finally, the LED is packaged by package materials 15.
  • In the above LED, the YAG is mixed into the resin then coated on the blue GaN LED chip. This method, contrary, is time and material inefficiently, and the LED luminescent efficiency and uniformity decrease due to the resin absorption and the bad YAG dispersion.
  • Furthermore, U.S. Pat. No. 6,642,618 disclosed that the phosphors are mixed into the glass layer to prevent the humidity insertion. The YAG, however, may not be well mixed, so that the LED luminescent efficiency and uniformity may decrease.
  • U.S. Pat. No. 6,576,488 and U.S. Pat. No. 6,686,581 disclosed that the phosphors structure is formed on the LED chip surface by electrophoresis. The phosphor powders must be conversed to gel via charges and then formed by electrical field by applying voltage. A conductive plate must be added on the LED chip surface to attract phosphors to adhere thereto.
  • U.S. Pat. No. 6,650,044 disclosed that the phosphor structure is formed on the LED chip surface by a screen printing method. In the screen printing method, the stencil is fabricated first, and solidifying agent most be added to the phosphor powders to solidify the phosphor powders on the LED chip surface.
  • U.S. Pat. No. 6,650,044 disclosed a LED structure by the above-mentioned technology.
  • Taiwanese Application No. 90,104,862 disclosed that the luminescent material is adhered to the semiconductor device by adhesive.
  • In these known technologies, the phosphors structure is formed on the LED chip surface by adhesive or electrophoresis only.
  • SUMMARY
  • Accordingly, embodiments of the invention provide a light emitting diode device and fabrication method thereof. The invention provides another method for placing the phosphor layer on the LED chip surface and addresses the phosphor powders and the adhesive mixture issue.
  • Embodiments of the invention provide a light emitting device, comprising, a light emitting semiconductor device, and a luminescent powder layer on an optical path of the light emitting semiconductor device. At least part of the luminescent powder layer is coagulated and free of adhesive material.
  • Embodiments of the invention additionally provide a method of fabricating the light emitting device. The method comprises providing a light emitting semiconductor device, positioning a plurality of luminescent particles at the optical path of the light emitting semiconductor device, and reducing the distance between the luminescent particles to enhance the molecular attraction between the luminescent particles. The luminescent particles are then coagulated to form a luminescent powder layer by molecular attraction.
  • DESCRIPTION OF THE DRAWINGS
  • For a better understanding of the invention, reference is made to a detailed description to be read in conjunction with the accompanying drawings, in which:
  • FIG. 1 is a cross-section showing the convention LED structure.
  • FIG. 2A is a cross-section showing an embodiment of a LED structure.
  • FIG. 2B is a cross-section showing another embodiment of a LED structure.
  • FIG. 3A is a cross-section showing a further embodiment of a LED structure.
  • FIG. 3B is a cross-section showing yet another embodiment of a LED structure.
  • FIG. 4A is a cross-section showing an embodiment of a LED package structure.
  • FIG. 4B is a cross-section showing another embodiment of a LED package structure.
  • FIG. 5 is a cross-section showing a further embodiment of a LED package structure.
  • FIG. 6A is a cross-section showing an embodiment of a LED package structure with a first passivation.
  • FIG. 6B is a cross-section showing an embodiment of a LED package structure with a second passivation.
  • FIG. 7 is a cross-section showing an embodiment of a light source structure.
  • FIG. 8A is a cross-section showing an embodiment of a display device.
  • FIG. 8B is a cross-section showing another embodiment of a display device.
  • FIG. 9 is a scheme showing an embodiment of a fabrication system for the light source device.
  • DETAILED DESCRIPTION
  • In order to understand the above and other objects, characteristics and advantages, preferred embodiments of the invention are now described detail in with reference to the attached figures.
  • The embodiments disclose a LED device fabrication method for positioning a plurality of luminescent particles at the optical path of a substrate and reducing the distance between the luminescent particles to enhance the molecular attraction between the luminescent particles. The luminescent particles are coagulated to a luminescent powder layer by molecular attraction.
  • To obtain the above method, one embodiment comprises the steps following: dispersing a plurality of luminescent particles in a liquid to form a mixture; positioning a substrate in the mixture for a period, until the luminescent particles deposit on the substrate; and removing the liquid to coagulate the luminescent particles on the substrate and adhere the luminescent particles to the substrate.
  • The luminescent particle density is higher than the liquid density for the luminescent particle deposition. The luminescent particle density is about 0.001˜1 g/ml, preferably 0.01˜0.15 g/ml. The luminescent particle size is about 0.1100 μm. For example, the phosphor average particle size is about 3˜13 μm. Furthermore, the nano-scale luminescent particles may be used in the present embodiment. The luminescent particles are barely soluble or insoluble in the liquid.
  • The substrate may be a light emitting semiconductor device, such as a LED chip, or layers consisting of the LED chip.
  • The follow embodiments give the LED as an example to illustrate the structure.
  • LED
  • FIG. 2 is a LED cross-section of the invention. The LED comprises substrate 20 and luminescent powder layer 21. The luminescent powder layer 21 is directly adhered on the substrate 20. The luminescent powder layer 21 is free of epoxy, glue, or similar. In FIG. 2B, the passivation layer 22 can also be formed on the luminescent powder layer 21 to protect the luminescent powder layer 21. The passivation layer 22 can be a polymer layer.
  • FIG. 3A is another LED cross section of the invention. The LED comprises the LED chip 30 and the luminescent powder layer 35. The LED chip 30 comprises substrate 31, a plurality of semiconductor layers 32 and the conductive layer 33. The conductive layer 33 may be conductive glass layer, such as an ITO layer. The plurality of semiconductor layers 32 may be two layers or more than two layers. In this case, the plurality of semiconductor layers 32 are two layers, the first semiconductor layer 32 a and the second semiconductor layer 32 b, in the FIG. 3A. The luminescent powder layer 35 may be adhered on the substrate 31 surface directly. The emitting powder layer 35 also may be adhered on either the plurality of semiconductor layer 32 surfaces or the conductive layer surface, such as on the first semiconductor layer 32 a surface, the second semiconductor layer 32 b surface or the conductive layer 33 surface. The luminescent powder layer 35 only consists of luminescent powders, free from any adhesive, such as epoxy or glue, etc.
  • FIG. 3B is another LED cross-section of the invention. The LED structure is similar to the LED in FIG. 3A. The difference is that the emitting powder layer 35 is provided on bottom surface of the substrate 31. This LED structure may be used in the flip chip fabrication.
  • The luminescent powder layer 21 and 35 may be phosphors, such as sulfide phosphors or non-sulfide phosphors. The sulfide phosphors may be covered by a coating film, such as organic polymer coating film, to prevent environmental factors, such as humidity and oxygen. The non-sulfide phosphors may be YAG, TAG or any other phosphor.
  • Furthermore, a passivation may be formed on the luminescent powder layer to avoid external influence and contamination. The passivation may be organic polymer materials.
  • The following embodiments describe the light emitting semiconductor chips with optical path zone and non-optical path zone structures.
  • Light Emitting Device
  • Referring to FIG. 6B, a light emitting device comprises the light emitting semiconductor device 100 and the luminescent powder layer 130. The light emitting semiconductor device 100 may be chip or wafer. In the present embodiment, the light emitting semiconductor device 100 is the wafer 110 with a plurality of chips 120. The wafer 110 may be separated into an optical path zone OP and a non-optical path zone NOP.
  • The luminescent powder layer 130 is adhered on the surface of the chip 120 or the optical path zone OP. At least a portion, the main portion or the entire the luminescent powder layer 130 is coagulated and free of adhesive. In the present embodiment, the luminescent powder layer 130 consists of phosphors, and is coagulated by intermolecular attraction. Thus, the luminescent powders do not comprise adhesive, such as resin, organic polymer, solidify materials, or glass gel.
  • In the invention, the first passivation layer 140 is formed on the luminescent powder layer 130 to avoid scraping, and the passivation 140 at least covers the top surface of luminescent powder layer 130. Secondly, the second passivation 150 at least covers the first passivation 140 and the luminescent powder layer 130, and may cover the chip 120. The thickness of the second passivation 150 may be higher than the first passivation 140. In an embodiment, first passivation layer 140 may be a stress buffer layer to avoid damage to the powder layer in subsequent thermal treatments. The stress buffer layer comprises softer materials, such as silicon gel. The second passivation 150 is a layer comprising harder material, such as epoxy, to avoid scraping or crushing.
  • The luminescent powders comprise sulfide phosphors and non-sulfide phosphors, the non-sulfide phosphors are used in the present embodiment. The embodiments of the light emitting semiconductor device are shown in FIG. 3A and FIG. 3B.
  • Light Emitting Package Structure
  • FIG. 4A is the cross section of the light emitting package structure of the invention. In the present embodiment, the light emitting semiconductor device is LED 40. First, the LED as shown in FIG. 2 is put in the lead frame 41, the lead frame 41 contacts a pair of electrodes 42 electrically. The lead frame 41, substrate 20 and the luminescent powder layer 21 are packaged by the package materials 43. Furthermore, the passivation 22 may be formed on the luminescent powder layer 21 to protect the luminescent powder layer 21. The passivation 22 may comprise a polymer layer or epoxy.
  • FIG. 5 is the cross section of another light emitting package structure of the invention. The LED as shown in FIG. 3A is disposed in the lead frame 51, the lead frame 51 contacts a pair of electrodes 52 electrically. The lead frame 51, the light emitting chip 30 and the luminescent powder layer 35 are packaged by package materials 53.
  • The light emitting device of the invention may be used in the other package structures, such as flip chip structure.
  • Light Source
  • Referring to FIG. 7, the light emitting device 40 (50) electrically contacts the circuit board L to form the light source 200.
  • Back Light Module
  • Referring to FIGS. 8A and 8B, the light source 200 is disposed under the module body 210 or on the module body 210 sidewall to output light.
  • Display Device
  • FIGS. 8A and 8B show a display element 300. The light source or the back light module provides the light source to the display element 300 to form a display device.
  • The following illustrates the fabrication method and system for the above device.
  • Fabrication System for Light Emitting Device
  • Referring to FIG. 9, the present embodiment discloses a fabrication system for an emitting device. The fabrication system comprises a container 950; a disposal device 940 for disposing a substrate 960 into the container 950; a liquid supply device 910 for infusing liquid 980 to the container 950 and the liquid 980 is higher than the substrate 960; a stirring device 920 for mixing a plurality of light emitting powder and the liquid 980 to form a mixture, and the liquid 980 is optionally free of adhesive; a liquid discharge device 930 for removing the liquid 980 after the luminescent powders are deposited on the substrate 960. The luminescent powders are coagulated and adhered on the substrate 960 to form the luminescent powder layer 970.
  • Fabrication Method for Light Emitting Device
  • By the above-mentioned fabrication system, the present embodiment provides a light emitting semiconductor device, as shown in the FIG. 6B. The plurality of the luminescent powders are disposed on the optical path of the light emitting semiconductor device, such as on the surface of chip 120. The distance of the luminescent powders are decreased to enhance the intermolecular attraction of the luminescent powders to coagulate the luminescent powders to form the luminescent powder layer 130.
  • The luminescent powder layer 130 forming steps are as follows: a plurality of the luminescent powders is mixed with a liquid. The plurality of the luminescent powders is then positioned on the optical path of the semiconductor chip or wafer 120. The liquid is removed to coagulate the luminescent powders to a luminescent powder layer.
  • In the present embodiment, the liquid comprises water or volatile solvents and does not comprise epoxy or glue. The volatile solvents comprise the group consisting of ethers, alcohols and ketones, such as ether, methanol, ethanol or acetone.
  • The light emitting semiconductor chip or wafer is put into a container 950 containing the liquid 980, and the luminescent powders are dispersed in the liquid to form a mixture.
  • To increase the uniformity of the luminescent powders on the semiconductor chip or wafer 960, the luminescent powder depositing time may optionally increase. The height of the liquid 980 is higher than the semiconductor chip or wafer 960, so that the luminescent powders can be deposited on the semiconductor chip or wafer 960. Preferably, the height of the liquid 980 is about 3.5-6 times the height of the semiconductor chip or wafer 960.
  • Baking Step
  • In same embodiments, the liquid removing step may be a baking step. The baking step comprises a baking temperature to remove the liquid. Agitation caused by the baking temperature is controlled to not affect the arrangement of the luminescent particles on the light emitting semiconductor chip or wafer.
  • The baking temperature is typically higher than the room temperature. Preferably, the baking temperature is about 40˜300° C. For example, the ethanol baking temperature is about 80° C. Furthermore, the baking step may comprise multiple steps. For example, the liquid is removed at a first temperature and a second temperature.
  • The liquid removal step further is executed before the baking step. The liquid removal step may comprise a drainage step or a pumping step.
  • Referring again to FIG. 6A, a plurality of luminescent powders are mixed with a liquid. The luminescent powders are then deposited on the optical path zone OP and the non-optical path zone NOP of the semiconductor wafer. After the liquid is removed, the luminescent powders are coagulated to a luminescent powder layer. Furthermore, a first passivation layer 140 is formed to protect the luminescent powder layer 130 on the optical path zone OP of the semiconductor wafer, as shown in FIG. 6A. When the luminescent powder layer on the non-optical path zone NOP of the semiconductor wafer is washed or removed, the luminescent powder layer on the optical path zone OP of the semiconductor wafer is protected by the passivation layer 140. After the luminescent powder layer on the non-optical path zone NOP of the semiconductor wafer is removed, a second passivation 150 may be formed to cover the first passivation layer 140 and the luminescent powder layer.
  • The following illustrates the LED fabrication by the fabrication system for emitting device.
  • LED Fabrication Method
  • First, the luminescent powders are put into the liquid, and the density of luminescent powders are higher than the density of the liquid, and the luminescent powders are insoluble or have low solubility in the liquid, and the luminescent powders are stable in the liquid and have no chemical reaction with the liquid. The luminescent powders are well mixed with the liquid by a stirring bar or ultrasonic agitation to form a mixture. The luminescent powders may be phosphors, and the phosphors may be sulfide phosphors or non-sulfide phosphors. The sulfide phosphors further may be coated by a coating film, such as organic polymer coating film, to prevent the environmental factors, such as humidity and oxygen. The non-sulfide phosphors may be YAG, TAG or any other phosphors.
  • A substrate is put in the mixture for a period of time, and the height of the mixture must be higher than the substrate top surface of at least 10 μm. Then the luminescent powders deposit on the substrate by gravity naturally. Thus, the density of the luminescent powders must be higher than the liquid, or the deposition will not occur. The particle size of the luminescent powders are typically 0.1˜100 μm. If the particles are too small, the deposition time will be too long and the output would decrease. If the particles are too big, the uniformity of the luminescent powder layer will decrease. To achieve in luminescent powder layer thickness uniformity, the concentration of the luminescent powders and the liquid is about 0.001˜1 g/ml, preferably 0.01˜15 g/ml. If the concentration is too high, the luminescent powders are wasted or the luminescent powder layer will be too thick. If the concentration is too low, the deposition time will be too long and the luminescent powder layer will be too thin.
  • Finally, the liquid is removed by baking, drainage and/or pumping to form a luminescent powder layer on the substrate. The liquid removing step must not agitate the luminescent powder layer, or the ideal luminescent powder layer can not be obtained. The baking temperature may be 40˜300° C. If the baking temperature is too low, the baking time would be too long or the liquid is difficult to dry. If the baking temperature is too high, the substrate and/or the luminescent powders can be spoiled, and the luminescent powder layer can be agitated. When the liquid is removed, the distance between the luminescent powders decrease, and the luminescent powder layer is formed by the intermolecular force, such as Van der Waal force. Furthermore, the baking step may comprise multiple baking steps, such as a first baking step and a second baking step. In the first baking step, the baking temperature may be lower than the liquid boiling point to prevent voids from forming on the luminescent powder layer surface. In the second baking step, the baking temperature may be higher to dry all the liquid and lower than the substrate or the luminescent powder spoiling temperature, 300° C. for example.
  • Furthermore, a passivation layer may be formed on the luminescent powder layer by a coating method. The passivation layer may be organic polymer.
  • In the above fabrication method, if the luminescent powders are soluble in the liquid, the luminescent powder layer will not be formed. When the luminescent powders are soluble in the liquid, if the mixture is over-saturated, the invention will still work. The overdose luminescent powder method increases the cost. Otherwise, if the luminescent powders are unstable in the liquid or have a chemical reaction with the liquid, the luminescent powders will deteriorate or decompose. Accordingly, the liquid preferably is insoluble, barely soluble, stable and has no chemical reaction with the luminescent powders. The liquid may be water, alcohols, ketones and/or ethers. The alcohols may be ethanol, the ketons may be acetone, the ethers may be ether.
  • Furthermore, the substrate may be an LED chip or any layer of the LED chip, in other words, the luminescent powder layer is formed on any surface of the LED chip.
  • The following examples provide the water and ethanol as the liquid.
  • Example 1
  • YAG phosphors produced by Nichia Co. were put in water to form a mixture by ultrasonic agitation. GaN chip was put in the mixture for about 20 min for the YAG phosphors deposition. The mixture surface was higher than the GaN chip top surface, so that the YAG phosphors deposited on the GaN chip. The water was evaporated at about 50° C. for a period, and then dried at about 200° C. to dry all the water and coagulate the YAG phosphors. In the water removing step, a vacuum process may be processing to increase the water removing rate.
  • Example 2
  • YAG phosphors produced by Nichia Co. were put in ethanol to form a mixture via ultrasonic agitation. GaN chip was put in the mixture and stayed about 20 min for the YAG phosphors deposition. The mixture surface was higher than the GaN chip top surface, so that the YAG phosphors deposited on the GaN chip. The ethanol was evaporated at about 80° C. for a period, then dried at about 150° C. to dry all the ethanol and coagulate the YAG phosphors. In the ethanol removing step, a vacuum process may be processing to increase the ethanol removing rate.
  • LED measurement data, CIE Coordinates and Brightness are given in the following. The LEDs are fabricated by the conventional method where the phosphor is mixed with resin and the inventive method, and use GaN LED chip and YAG phosphors. The driving conditions are as follows:
  • (Driving Condition 1)
  • Excited wavelength: 460˜465 nm
  • Power: 40˜50 mcd
  • Voltage: 3.2˜3.3 V
  • (Driving Condition 2)
  • Excited wavelength: 470˜475 nm
  • Power: 40˜50 mcd
  • Voltage: 3.2˜3.3 V
  • TABLE 1
    CIE Coordinates
    LED No. Driving Condition 1 Driving Condition 2
    Fabrication Conventional Present Conventional Present
    Method method Invention method Invention
    1 X = 0.28 X = 0.28 X = 0.36 X = 0.28
    Y = 0.28 Y = 0.28 Y = 0.32 Y = 0.28
    2 X = 0.30 X = 0.28 X = 0.38 X = 0.28
    Y = 0.26 Y = 0.28 Y = 0.34 Y = 0.28
    3 X = 0.29 X = 0.28 X = 0.42 X = 0.28
    Y = 0.27 Y = 0.28 Y = 0.36 Y = 0.28
    4 X = 0.24 X = 0.28 X = 0.36 X = 0.28
    Y = 0.24 Y = 0.28 Y = 0.38 Y = 0.28
    5 X = 0.27 X = 0.28 X = 0.38 X = 0.28
    Y = 0.25 Y = 0.28 Y = 0.33 Y = 0.28
  • TABLE 2
    Brightness
    LED No. Driving Condition 1 Driving Condition 2
    Fabrication Conventional Present Conventional Present
    Method method Invention method Invention
    1 8800 mcd  9500 mcd 3500 mcd 8500 mcd
    2 9400 mcd 10500 mcd 3200 mcd 8000 mcd
    3 9200 mcd 10200 mcd 2700 mcd 7500 mcd
    4 9800 mcd 12100 mcd 4000 mcd 9500 mcd
    5 9500 mcd 11200 mcd 3700 mcd 9000 mcd
  • From the Table 1 and 2, LEDs of the examples emit white and brighter light. Accordingly, the light intensity of the LEDs that are fabricated by the invention and excited by the longer wavelength (lower energy) is close to the light intensity of the LEDs that are fabricated by the known and excited by the shorter wavelength (larger energy). It shows the LEDs of the invention have a better optical-electrical transfer rate.
  • The advantages of light emitting device and fabrication method according to the invention are as follows:
  • 1. The luminescent powder layer of the invention is adhered in or on the light emitting semiconductor device directly free of any medium, such as epoxy or glue, so the applied energy is not wasted by the medium and the light emitting device has higher emission efficiency.
  • 2. The luminescent powder layer of the invention is fabricated by the direct adhesion method, and not mixed with the resin and than coated no the light emitting device. Thus the fabrication method of the invention is simpler and can enhance the output.
  • 3. The luminescent powder layer of the invention is fabricated by the direct adhesion method, not by mixing with the resin then coating the light emitting device, thus non-uniformity of the luminescent powder in the medium dose not occur.
  • 4. The luminescent powder layer of the invention is fabricated by the direct adhesion method, when this fabrication fails, the luminescent powder layer can be reworked by a brushing method, for example. So the rework is very easy and the cost is low.
  • While the invention has been described by way of example and in terms of preferred embodiment, it is to be understood that the invention is not limited thereto.

Claims (11)

1. A light emitting device, comprising:
a light emitting semiconductor device; and
a luminescent powder layer which is adhesive material free, disposed on an optical path of the light emitting semiconductor device, wherein at least a part of the luminescent powder layer is coagulated.
2. The light emitting device as claimed in claim 1, wherein the luminescent powder layer comprises a plurality of luminescent particles, and the luminescent particles are coagulated by attraction of molecular interaction.
3. The light emitting device as claimed in claim 1, wherein the luminescent particles comprise powder phosphors.
4. The light emitting device as claimed in claim 2, wherein the luminescent powder layer is adhered to the light emitting semiconductor device.
5. A light emitting device fabrication method, comprising:
dispersing a plurality of luminescent particles in a liquid to form a mixture, wherein the liquid is adhesive material free;
positioning a substrate into the mixture for a period of time such that the luminescent particles precipitate on the substrate; and
removing the liquid to coagulate the luminescent particles as a luminescent powder layer adhering to the substrate.
6. The light emitting device fabrication method as claimed in claim 5, wherein the liquid comprise water or volatile solvent, which are free of epoxy resin and glue.
7. The light emitting device fabrication method as claimed in claim 6, wherein the volatile solvent comprises ethers, alcohols, ketones or combinations thereof.
8. The light emitting device fabrication method as claimed in claim 5, wherein the liquid is removed by a baking step, the baking step controlled at a temperature such that a perturbation of the liquid caused by the baking does not affect the arrangement of the luminescent particles on the substrate.
9. The light emitting device fabrication method as claimed in claim 5, wherein the method further comprises:
forming a first passivation layer at least cover a top surface of the luminescent powder layer; and
forming a second passivation layer at least cover the first passivation layer and the substrate.
10. The light emitting device fabrication method as claimed in claim 5, wherein the substrate comprises a light emitting diode.
11. A fabrication system of the light emitting device, comprising:
a container;
a disposal device for disposing a substrate to the container;
a liquid supply device for injecting a liquid into the container to a level higher than the substrate, wherein the liquid is free of adhesive;
a stirring device for uniformly dispersing a plurality of the luminescent particles in the liquid to form a mixture; and
a liquid removing device for removing the liquid after the luminescent particles precipitate on the substrate, thereby coagulating the luminescent particles adhering to the substrate.
US12/829,273 2004-02-19 2010-07-01 Light emitting device and fabrication method thereof Abandoned US20100270910A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/829,273 US20100270910A1 (en) 2004-02-19 2010-07-01 Light emitting device and fabrication method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
TW93104058 2004-02-19
TW093104058 2004-02-19
US11/059,554 US7749038B2 (en) 2004-02-19 2005-02-17 Light emitting device fabrication method
US12/829,273 US20100270910A1 (en) 2004-02-19 2010-07-01 Light emitting device and fabrication method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/059,554 Continuation US7749038B2 (en) 2004-02-19 2005-02-17 Light emitting device fabrication method

Publications (1)

Publication Number Publication Date
US20100270910A1 true US20100270910A1 (en) 2010-10-28

Family

ID=34570489

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/059,554 Expired - Fee Related US7749038B2 (en) 2004-02-19 2005-02-17 Light emitting device fabrication method
US12/829,273 Abandoned US20100270910A1 (en) 2004-02-19 2010-07-01 Light emitting device and fabrication method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/059,554 Expired - Fee Related US7749038B2 (en) 2004-02-19 2005-02-17 Light emitting device fabrication method

Country Status (4)

Country Link
US (2) US7749038B2 (en)
JP (2) JP4329938B2 (en)
KR (2) KR100869694B1 (en)
DE (1) DE202005002110U1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100658970B1 (en) * 2006-01-09 2006-12-19 주식회사 메디아나전자 LED device generating light with multi-wavelengths
DE102006022351A1 (en) * 2006-05-12 2007-11-15 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Device for room temperature regulation and room lighting
US7846391B2 (en) 2006-05-22 2010-12-07 Lumencor, Inc. Bioanalytical instrumentation using a light source subsystem
DE102006026481A1 (en) * 2006-06-07 2007-12-13 Siemens Ag Method for arranging a powder layer on a substrate and layer structure with at least one powder layer on a substrate
JP2008218691A (en) * 2007-03-05 2008-09-18 Oki Data Corp Led backlight device and liquid crystal display device
KR100818518B1 (en) * 2007-03-14 2008-03-31 삼성전기주식회사 Led package
US7709811B2 (en) * 2007-07-03 2010-05-04 Conner Arlie R Light emitting diode illumination system
US8098375B2 (en) 2007-08-06 2012-01-17 Lumencor, Inc. Light emitting diode illumination system
US8242462B2 (en) 2009-01-23 2012-08-14 Lumencor, Inc. Lighting design of high quality biomedical devices
EP2541631A4 (en) 2010-02-25 2015-03-18 Lightizer Korea Co Ltd Light emitting diode and method for manufacturing same
JP5414627B2 (en) * 2010-06-07 2014-02-12 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
DE102010037813B4 (en) * 2010-09-28 2013-08-14 Power Data Communications Co., Ltd. A method of making a cover of a light emitting diode and cover assembly made by this method
US8466436B2 (en) 2011-01-14 2013-06-18 Lumencor, Inc. System and method for metered dosage illumination in a bioanalysis or other system
US8389957B2 (en) 2011-01-14 2013-03-05 Lumencor, Inc. System and method for metered dosage illumination in a bioanalysis or other system
US9103528B2 (en) 2012-01-20 2015-08-11 Lumencor, Inc Solid state continuous white light source
US9217561B2 (en) 2012-06-15 2015-12-22 Lumencor, Inc. Solid state light source for photocuring
CN103151434B (en) * 2013-02-25 2016-04-27 上舜电子科技(中国)有限公司 A kind of method improving LED fluorescent material distributing homogeneity
EP3188260B1 (en) * 2015-12-31 2020-02-12 Dow Global Technologies Llc Nanostructure material structures and methods
DE102016202905A1 (en) * 2016-02-25 2017-08-31 Tridonic Jennersdorf Gmbh LED module with luminescent compound layer
CN113287207A (en) * 2018-09-28 2021-08-20 江苏新云汉光电科技有限公司 LED lamp and lumen increasing method thereof

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032472A (en) * 1981-12-30 1991-07-16 Stauffer Chemical Company Films of catenated phosphorus materials, their preparation and use, and semiconductor and other devices employing them
JPS61131860A (en) 1984-11-30 1986-06-19 Hitachi Ltd Polishing method
JPS645079U (en) 1987-06-26 1989-01-12
US5096735A (en) * 1990-02-07 1992-03-17 Sharp Kabushiki Kaisha Process for producing a thin film electroluminescent device
JP3240926B2 (en) * 1996-06-25 2001-12-25 日立電線株式会社 Light emitting element
US5885495A (en) * 1996-12-19 1999-03-23 Ibar; Jean-Pierre Viscosity control for molten plastics prior to molding
CN2300189Y (en) 1997-03-10 1998-12-09 陈兴 High brightness luminescent diode
KR100237309B1 (en) 1997-04-18 2000-02-01 하제준 The method of preparation of sphere phosphor
JP3617587B2 (en) 1997-07-17 2005-02-09 日亜化学工業株式会社 Light emitting diode and method for forming the same
JP2947343B2 (en) * 1997-08-19 1999-09-13 サンケン電気株式会社 Light emitting diode device
JP3139618B2 (en) * 1997-08-19 2001-03-05 サンケン電気株式会社 Light emitting diode device
JP2000113982A (en) * 1998-10-08 2000-04-21 Sony Corp Manufacture of organic el display
JP2000150966A (en) 1998-11-16 2000-05-30 Matsushita Electronics Industry Corp Semiconductor light emitting device and manufacture thereof
JP3798588B2 (en) * 1999-09-02 2006-07-19 シチズン電子株式会社 Light emitting diode
JP2001111109A (en) 1999-10-07 2001-04-20 Sharp Corp Gallium nitride compound semiconductor light emitting device
JP3640153B2 (en) * 1999-11-18 2005-04-20 松下電工株式会社 Illumination light source
JP2001177145A (en) * 1999-12-21 2001-06-29 Toshiba Electronic Engineering Corp Semiconductor light emitting device and method of manufacturing the same
DE10010638A1 (en) 2000-03-03 2001-09-13 Osram Opto Semiconductors Gmbh Making light emitting semiconducting body with luminescence conversion element involves applying suspension with solvent, adhesive, luminescent material
US6692845B2 (en) * 2000-05-12 2004-02-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
EP1228540B1 (en) * 2000-06-29 2010-09-29 Koninklijke Philips Electronics N.V. Optoelectric element
JP2002033521A (en) * 2000-07-14 2002-01-31 Showa Denko Kk White light-emitting element and manufacturing method thereof
JP2003273408A (en) * 2000-07-31 2003-09-26 Nichia Chem Ind Ltd Light emitting device
KR100406856B1 (en) * 2000-08-30 2003-11-21 가부시키가이샤 시티즌 덴시 Led mounted on surface and method for manufacturing the same
US6650044B1 (en) * 2000-10-13 2003-11-18 Lumileds Lighting U.S., Llc Stenciling phosphor layers on light emitting diodes
JP4021177B2 (en) * 2000-11-28 2007-12-12 セイコーエプソン株式会社 Organic electroluminescence device manufacturing method, organic electroluminescence device, and electronic apparatus
JP5110744B2 (en) * 2000-12-21 2012-12-26 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー Light emitting device and manufacturing method thereof
US6664137B2 (en) * 2001-03-29 2003-12-16 Universal Display Corporation Methods and structures for reducing lateral diffusion through cooperative barrier layers
JP2002299698A (en) * 2001-03-30 2002-10-11 Sumitomo Electric Ind Ltd Light-emitting device
US7077935B2 (en) * 2001-05-04 2006-07-18 General Atomics O2 and H2O barrier material
US6642652B2 (en) 2001-06-11 2003-11-04 Lumileds Lighting U.S., Llc Phosphor-converted light emitting device
US6576488B2 (en) * 2001-06-11 2003-06-10 Lumileds Lighting U.S., Llc Using electrophoresis to produce a conformally coated phosphor-converted light emitting semiconductor
TW595012B (en) * 2001-09-03 2004-06-21 Matsushita Electric Ind Co Ltd Semiconductor light-emitting device, light-emitting apparatus and manufacturing method of semiconductor light-emitting device
JP4447806B2 (en) 2001-09-26 2010-04-07 スタンレー電気株式会社 Light emitting device
JP2003197977A (en) * 2001-12-27 2003-07-11 Okaya Electric Ind Co Ltd Method of manufacturing light emitting diode
JP2003197979A (en) * 2001-12-28 2003-07-11 Okaya Electric Ind Co Ltd Light emitting element
US6756186B2 (en) * 2002-03-22 2004-06-29 Lumileds Lighting U.S., Llc Producing self-aligned and self-exposed photoresist patterns on light emitting devices
CA2427559A1 (en) 2002-05-15 2003-11-15 Sumitomo Electric Industries, Ltd. White color light emitting device
TWI220240B (en) * 2003-09-30 2004-08-11 Au Optronics Corp Full-color organic electroluminescent device (OLED) display and method of fabricating the same
KR20050034936A (en) * 2003-10-10 2005-04-15 삼성전기주식회사 Wavelength - converted light emitting diode package using phosphor and manufacturing method
US20050129977A1 (en) * 2003-12-12 2005-06-16 General Electric Company Method and apparatus for forming patterned coated films
US7342356B2 (en) * 2004-09-23 2008-03-11 3M Innovative Properties Company Organic electroluminescent device having protective structure with boron oxide layer and inorganic barrier layer

Also Published As

Publication number Publication date
US20050184651A1 (en) 2005-08-25
KR20070009947A (en) 2007-01-19
DE202005002110U1 (en) 2005-05-04
JP2005236302A (en) 2005-09-02
KR100869694B1 (en) 2008-11-21
JP2008258659A (en) 2008-10-23
JP4329938B2 (en) 2009-09-09
US7749038B2 (en) 2010-07-06
KR100990337B1 (en) 2010-10-29
KR20060097680A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
US7749038B2 (en) Light emitting device fabrication method
US7710045B2 (en) Illumination assembly with enhanced thermal conductivity
US20070194303A1 (en) Method for manufacturing organic light-emitting element, organic light-emitting device and organic EL panel
US6864110B2 (en) Electrophoretic processes for the selective deposition of materials on a semiconducting device
JP2013033833A (en) Wavelength conversion film and light emitting device and lighting device which use the same
TWI509839B (en) Light emitting diode package and method for making it
CN107623021B (en) OLED display manufacturing method and OLED display
CN100392879C (en) Light-emitting device and making method thereof, making system, packaging device and light emitting source, backlight module and display device
JPWO2019093345A1 (en) Display device
US20190157518A1 (en) Method of manufacturing light emitting device
EP1721340A1 (en) Light emitting device and fabrication method thereof
KR200399179Y1 (en) A fabrication equipment of a light emitting device
KR200392877Y1 (en) Light emitting device
US9799795B2 (en) Method for producing an assembly emitting electromagnetic radiation, and assembly emitting electromagnetic radiation
KR101870445B1 (en) Light converting complex, light emitting device and display device having the same and method of fabricating the same
CN107591469A (en) A kind of method for packing emitting led based on five faces of CSP encapsulating structures
CN115881751A (en) Display panel assembly, display panel and display panel packaging method
US8378364B2 (en) Multi-chip light emitting diode and method for fabricating the same
JP2003163376A (en) Wavelength conversion material and light emitting element
TWI537133B (en) Method of forming light converting layer, method of manufacturing light converting member and method of manufacturing light emitting device
TWI242894B (en) Light emitting device and fabrication method thereof
CN212907785U (en) Chip-level packaging light-emitting device
Wei et al. P‐9.12: Hybrid Full Color Micro‐LED Displays with Quantum Dots
KR20110024034A (en) Method for manufacturing a light emitting diode that emits a white light and the light emitting diode manufactured by the same
CN210224035U (en) White light Micro LED structure

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION