US20100281828A1 - Web and method for fluid filled units - Google Patents

Web and method for fluid filled units Download PDF

Info

Publication number
US20100281828A1
US20100281828A1 US12/818,318 US81831810A US2010281828A1 US 20100281828 A1 US20100281828 A1 US 20100281828A1 US 81831810 A US81831810 A US 81831810A US 2010281828 A1 US2010281828 A1 US 2010281828A1
Authority
US
United States
Prior art keywords
perforations
inflation
side line
web
forming area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/818,318
Inventor
Rick Steven Wehrmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Automated Packaging Systems Inc
Original Assignee
Automated Packaging Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35463412&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20100281828(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Automated Packaging Systems Inc filed Critical Automated Packaging Systems Inc
Priority to US12/818,318 priority Critical patent/US20100281828A1/en
Assigned to AUTOMATED PACKAGING SYSTEMS, INC. reassignment AUTOMATED PACKAGING SYSTEMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WEHRMANN, RICK STEVEN
Publication of US20100281828A1 publication Critical patent/US20100281828A1/en
Priority to US14/665,515 priority patent/US10391733B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31DMAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER, NOT PROVIDED FOR IN SUBCLASSES B31B OR B31C
    • B31D5/00Multiple-step processes for making three-dimensional articles ; Making three-dimensional articles
    • B31D5/0039Multiple-step processes for making three-dimensional articles ; Making three-dimensional articles for making dunnage or cushion pads
    • B31D5/0073Multiple-step processes for making three-dimensional articles ; Making three-dimensional articles for making dunnage or cushion pads including pillow forming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B7/00Closing containers or receptacles after filling
    • B65B7/02Closing containers or receptacles deformed by, or taking-up shape, of, contents, e.g. bags, sacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/02Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage
    • B65D81/05Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage maintaining contents at spaced relation from package walls, or from other contents
    • B65D81/051Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage maintaining contents at spaced relation from package walls, or from other contents using pillow-like elements filled with cushioning material, e.g. elastic foam, fabric
    • B65D81/052Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage maintaining contents at spaced relation from package walls, or from other contents using pillow-like elements filled with cushioning material, e.g. elastic foam, fabric filled with fluid, e.g. inflatable elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31DMAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER, NOT PROVIDED FOR IN SUBCLASSES B31B OR B31C
    • B31D2205/00Multiple-step processes for making three-dimensional articles
    • B31D2205/0005Multiple-step processes for making three-dimensional articles for making dunnage or cushion pads
    • B31D2205/0011Multiple-step processes for making three-dimensional articles for making dunnage or cushion pads including particular additional operations
    • B31D2205/0017Providing stock material in a particular form
    • B31D2205/0035Providing stock material in a particular form as fan folded web
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31DMAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER, NOT PROVIDED FOR IN SUBCLASSES B31B OR B31C
    • B31D2205/00Multiple-step processes for making three-dimensional articles
    • B31D2205/0005Multiple-step processes for making three-dimensional articles for making dunnage or cushion pads
    • B31D2205/0011Multiple-step processes for making three-dimensional articles for making dunnage or cushion pads including particular additional operations
    • B31D2205/0047Feeding, guiding or shaping the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31DMAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER, NOT PROVIDED FOR IN SUBCLASSES B31B OR B31C
    • B31D2205/00Multiple-step processes for making three-dimensional articles
    • B31D2205/0005Multiple-step processes for making three-dimensional articles for making dunnage or cushion pads
    • B31D2205/0011Multiple-step processes for making three-dimensional articles for making dunnage or cushion pads including particular additional operations
    • B31D2205/0052Perforating; Forming lines of weakness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31DMAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER, NOT PROVIDED FOR IN SUBCLASSES B31B OR B31C
    • B31D2205/00Multiple-step processes for making three-dimensional articles
    • B31D2205/0005Multiple-step processes for making three-dimensional articles for making dunnage or cushion pads
    • B31D2205/0011Multiple-step processes for making three-dimensional articles for making dunnage or cushion pads including particular additional operations
    • B31D2205/0058Cutting; Individualising the final products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1303Paper containing [e.g., paperboard, cardboard, fiberboard, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1355Elemental metal containing [e.g., substrate, foil, film, coating, etc.]
    • Y10T428/1359Three or more layers [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/15Sheet, web, or layer weakened to permit separation through thickness

Definitions

  • the present application relates to fluid filled units and more particularly to plastic webs of interconnected pouches and to processes of converting interconnected pouches to fluid filled units.
  • Machines for forming and filling dunnage units from sheets of plastic are known.
  • Machines which produce dunnage units by inflating preformed pouches in a preformed web are also known. For many applications, machines which utilize preformed webs are preferred.
  • the entire length of sides of adjacent dunnage units formed from a preformed web are connected by perforations.
  • a worker grasps an edge of one unit with one hand, grasps an edge of an adjacent unit with the other hand, and carefully tears the dunnage units apart to separate the adjacent dunnage units.
  • the present invention relates to plastic webs of interconnected pouches and processes of converting interconnected pouches to at least one row of dunnage units.
  • a gap develops between each pair of adjacent fluid filled pouches. This gap remains after the fluid filled pouches are converted to dunnage units.
  • the gap between each pair of dunnage units makes separating adjacent pouches easier and more efficient than with existing interconnected arrays of dunnage units.
  • dunnage units are formed from a preformed flattened tubular web that includes a plurality of pouches defined by a plurality of transverse seals. As pouches are inflated, a gap forming area between adjacent pouches ruptures or otherwise separates. A gap is formed between newly formed and adjacent dunnage units. In one embodiment, the gap runs between an inflation edge line of perforations and a spaced apart opposite edge line of perforations.
  • Pouches are converted to dunnage units by inflating the pouch with a fluid, substantially maintaining the inflated volume of the pouch, and hermetically sealing an inflated pouch.
  • the gap between the inflation edge line of perforations and the spaced apart opposite edge line of perforations makes separating the dunnage units much simpler and easier than separating dunnage units that are connected by a continuous line of un-ruptured perforations.
  • a worker simply inserts a hand or hands into the gap between adjacent dunnage units and applies forces on one or both of the dunnage units, which are connected only by the spaced apart lines of perforations. As the spaced apart lines of perforations rupture or otherwise separate the adjacent dunnage units are separated.
  • an inflated volume is maintained in each air pouch by blowing air into an inflation opening of each pouch until substantially the entire inflation opening of the pouch is sealed.
  • the inflation opening is closed at a closing location located along the web path of travel. Air is provided into each pouch from a position slightly upstream of the closing location to maintain inflation of the pouch until it is sealed. For example, the inflation is maintained by blowing air into the inflation opening until the a trailing transverse seal of the pouch is within 0.250 inches of the closing position.
  • inflated dunnage unit arrays comprise a single row of interconnected inflated pouches.
  • the pouches are defined by first and second layers connected together at an inflation edge, an opposite edge seal, and by a pair of seals that are generally transverse to the inflation edge and the opposite edge.
  • Each pair of adjacent inflated pouches are connected by an inflation edge line of perforations that extends inward and generally perpendicular to the inflation edge and an opposite edge line of perforations that extends inward and generally perpendicular to the opposite edge.
  • the inflation edge line of perforations and the opposite edge line of perforations are spaced apart by a gap that allows a worker to insert an object, such as a hand, to easily separate the pair of adjacent inflated dunnage units.
  • a web for forming dunnage units comprises a first elongated layer and a second elongated layer superposed over the first elongated layer.
  • the first and second layers are connected by a frangible connection that extends along an inflation edge and a hermetic seal that extends along an opposite edge.
  • the frangible connection at the inflation edge is configured to break when engaged by a blunt surface.
  • a plurality of transverse seals extend from the hermetic seal to within a predetermined distance from the frangible connection. The hermetic seal and said transverse seals form a plurality of inflatable pouches.
  • FIG. 1 illustrates a web for making fluid filled units
  • FIG. 2 illustrates a web for making fluid filled units
  • FIG. 3 illustrates a web with pouches inflated and sealed to form fluid filled units
  • FIG. 4 illustrates a web for making fluid filled units
  • FIG. 5 illustrates a web for making fluid filled units
  • FIG. 6 illustrates a web for making fluid filled units
  • FIG. 7A schematically illustrates a plan view of a process and machine for converting web pouches to fluid filled units
  • FIG. 7B schematically illustrates a plan view of a process and machine for converting web pouches to fluid filled units
  • FIG. 8A schematically illustrates an elevational view of the process and machine for converting web pouches to fluid filled units
  • FIG. 8B schematically illustrates a an elevational view of the process and machine for converting web pouches to fluid filled units
  • FIG. 9 illustrates a process for converting web pouches to fluid filled units.
  • FIGS. 1 and 2 exemplary illustrations of webs 10 of inflatable pouches 12 are shown.
  • the webs 10 includes a top elongated layer of plastic 14 superposed onto a bottom layer of plastic 16 .
  • the layers are connected together along spaced edges, referred to as the inflation edge 18 and the opposite edge 20 .
  • each edge 18 , 20 is either a fold or a seal that connects the superposed layers 14 , 16 along the edges 18 , 20 .
  • the connection at the opposite edge 20 is illustrated as a hermetic seal and the connection at the inflation edge 18 is illustrated as a fold in FIG. 1 .
  • the fold and the seal could be reversed or both of the connections could be seals in the FIG. 1 embodiment.
  • the inflation edge 18 comprises a frangible connection 21 and the opposite edge 20 is a hermetic seal.
  • the illustrated frangible connection 21 is a line of perforations. The size of the perforations is exaggerated to clarify FIG. 2 .
  • the frangible connection 21 may be formed by folding the inflation edge 18 and pulling the inflation edge over a serration forming wheel (not shown).
  • each transverse seal 22 joins the top and bottom layers 14 , 16 .
  • each transverse seal 22 extends from the opposite edge 20 to within a short distance of the inflation edge 18 .
  • Spaced pairs of lines of perforations 24 , 26 extend through the top and bottom layers terminating a short distance from the edges 18 , 20 respectively.
  • a gap forming area 28 extends between each associated pair of lines of perforations 24 , 26 . The gap forming area 28 opens to form a gap 13 when the pouches are inflated (see FIG. 3 ).
  • a gap forming area 28 denotes an area, preferably linear in shape, that will rupture or otherwise separate when exposed to a predetermined inflation force.
  • the magnitude of the inflation force is less than the magnitude of the force needed to rupture or separate the spaced apart lines of perforations 24 , 26 .
  • the gap forming area 28 can take on a number of embodiments, as will be discussed below. Any method that produces an area between the spaced apart lines of perforations 24 , 26 that ruptures or otherwise separates at a force lower than a force needed to rupture or separate spaced lines of perforations 24 , 26 may be employed to make the gap forming area 28 .
  • each adjacent pair of dunnage units 12 ′ is connected together by a pair of spaced apart lines of perforations 24 , 26 .
  • the spaced apart lines of perforations 24 , 26 are spaced apart by a gap 13 .
  • a single row 11 of dunnage units 12 ′ can be graphically described as being in a “ladder” configuration.
  • This configuration makes separating two adjacent dunnage units 12 ′ much easier than separating prior art arrays of dunnage units.
  • a worker simply inserts an object or objects, such as a hand or hands, into the gap 13 and pulls one dunnage unit 12 ′ away from the other dunnage unit 12 ′.
  • a mechanical system can be used to separate dunnage units 12 ′.
  • a machine can be configured to insert an object between adjacent dunnage units 12 ′ and apply a force to separate the units
  • a pouch prior to conversion to a dunnage unit, a pouch is typically hermetically sealed on three sides, leaving one side open to allow for inflation. Once the pouch is inflated, the inflation opening is hermetically sealed and the dunnage unit is formed. During the inflation process, as the volume of the pouch increases the sides of the pouch have a tendency to draw inward. Drawing the sides of the pouches inward will shorten the length of the sides of the pouch unless the sides of the pouch are constrained. In this application, the term foreshortening refers to the tendency of the length of a pouch side to shorten as the pouch is inflated.
  • the sides of the pouch are restrained, because sides of adjacent pouches are connected by lines of perforations that extend along the entire length of the pouches and remain intact during and after inflation.
  • the foreshortening of the unrestrained sides, such as the inflation opening may not be uniform. Restraining the sides of adjacent connected pouches can cause undesirable inflation induced stresses. These undesirable stresses caused because sides of adjacent pouches are connected and restrained, thus, limiting inflation and causing wrinkles to develop in the layers at the unrestrained inflation opening.
  • the wrinkles can extend into a section of the inflation opening to be sealed to complete the dunnage unit, which may comprise the seal.
  • a sealing station of a dunnage machine is typically set to apply the appropriate amount of heat to seal two layers of material.
  • the sealing of multiple layers of material in the area of a wrinkle results in a seal that is weaker than remaining seal areas and may result in a small leak or tendency to rupture at loads lower than loads at which the dunnage units is designed to rupture.
  • the gap forming area 28 produces a gap 13 between adjacent pouches upon inflation.
  • the gap allows foreshortening of the connected pouch sides and thereby reduces the undesirable stresses that are introduced during inflation as compared with prior art webs.
  • the web with a gap 13 facilitates fuller inflation of each pouch.
  • the gap 13 maintains the inflation opening substantially free of wrinkles as the inflation opening is sealed to convert the inflated pouches to a dunnage units.
  • the illustrated web 10 is constructed from a heat sealable plastic film, such as polyethylene.
  • the web 10 is designed to accommodate a process for inflating each pouch 12 in the web to create a row or ladder 11 of dunnage units 12 ′.
  • the gap forming area 28 creates a gap 13 between dunnage units 12 ′, which facilitate a efficient and effective process for separating adjacent dunnage units 12 ′ in the row or ladder 11 .
  • the gap forming area 28 defined by the web 10 ′ includes an easily breakable line of perforations 29 between the spaced lines of perforations 24 , 26 .
  • the force needed to rupture or separate the line of perforations 29 is less than the force needed to separate the perforations 24 , 26 extending inward of the web edges 18 , 20 .
  • Each pair of perforations 24 , 26 and associated more easily breakable line of perforations 29 divide the transverse seal 22 into two transverse sections.
  • the line of perforation 29 begins to rupture or separate leading to the development of a gap 13 between the produced dunnage units 12 ′ (See FIG. 3 ).
  • the line of perforations 29 is fully or nearly fully ruptured; however the perforations 24 , 26 at the edges remain intact. These perforations 24 , 26 are ruptured or separated when a worker or automated process mechanically separates the perforations 24 , 26 .
  • FIG. 5 illustrates another embodiment of the web 10 ′′.
  • the gap forming area 28 comprises an elongated cut 31 through both layers of material 14 , 16 .
  • the cut 31 extends between each associated pair of lines of perforations 24 , 26 .
  • pairs 30 of transverse seals 22 ′ extend from the opposite edge 20 to within a short distance of the inflation edge 18 .
  • Each of the pairs of lines of perforations 24 , 26 and corresponding cuts 31 are between an associated pair of transverse seals 30 .
  • the seal 22 shown in FIG. 4 could be used with the cut 31 shown in FIG. 5 .
  • the line of perforations shown in FIG. 4 could be used with the transverse seals 22 ′ shown in FIG. 5 .
  • any gap forming area 28 can be used with either of the transverse seal configurations 22 , 22 ′ shown in FIGS. 4 and 5 .
  • FIG. 6 illustrates a further embodiment of the web 10 ′′′.
  • the gap forming area 28 comprises at least two elongated cuts 32 , separated by light connections of plastic 36 , also referred to as “ticks.” These connections 36 hold transverse edges 38 , 40 of the pouches 12 together to ease handling of the web 10 , such as handling required during installation of the web 10 into a dunnage machine.
  • the connections 36 rupture or otherwise break resulting in a gap 13 between the spaced pairs of perforations 24 , 26 .
  • This gap 13 allows for full inflation and reduces the stresses in the layers at the seal site normally caused by the foreshortening and restrictions on foreshortening of webs in the prior art. The reduced stress in the layers inhibits wrinkles along the inflation opening to be sealed.
  • FIG. 3 illustrates a length of the web 10 , 10 ′, 10 ′′ or 10 ′′′ after it has been inflated and sealed to form dunnage units 12 ′.
  • An inflation seal 42 , the transverse seals 22 and an opposite edge seal 44 hermetically seal the top and bottom layers.
  • the side edges 38 , 40 of the formed dunnage units are separated to form a gap 13 .
  • Each pair of adjacent dunnage units 12 ′ are connected together by the pair of spaced apart lines of perforations 24 , 26 .
  • the gap 13 extends between the pair of spaced apart lines of perforations 24 , 26 .
  • the array of dunnage units 12 ′ is a single row of dunnage units in a “ladder” configuration.
  • the lines of perforations 24 , 26 are configured to be easily breakable by a worker or automated system.
  • a worker inserts an object, such as the worker's hand or hands into the gap 13 .
  • the worker grasps one or both of the adjacent dunnage units 12 ′ and pulls the adjacent dunnage units 12 ′ relatively apart as indicated by arrows 43 a , 43 b .
  • the lines of perforation 24 , 26 rupture or otherwise separate and the two adjacent dunnage units 12 ′ are separated.
  • the existence of the gap 13 also results in reduced stresses in the area of the inflation seal 42 at the time of sealing and accommodates increased inflation volume of the dunnage units 12 ′ as compared with prior inflated dunnage units.
  • the line of perforations 24 that extends from the opposite edge 20 is omitted.
  • the gap forming area 28 extends from the inflation edge line of perforations 26 to the opposite edge.
  • the gap 13 extends from the inflation edge line of perforations 26 to the opposite edge 20 .
  • connection of the layers 14 , 16 at the inflation edge 18 can be any connection that is maintained between layers 14 , 16 prior to the web 10 being processed to create dunnage units 12 ′.
  • the connection is a fold.
  • the connection is a line of perforations 21 .
  • One method of producing such a web is to fold a continuous layer of plastic onto itself and create a fold at what is to become the inflation edge 18 , A tool can be placed in contact with the fold to create a line of perforation.
  • the opposite edge 20 can be hermetically sealed and the transverse hermetic seals 22 can be added along with the separated lines of perforations 24 , 26 extending inward from the inflation and opposite edges 18 , 20 .
  • the web shown in FIG. 1 can be produced in the same manner, except the perforations are not added.
  • FIGS. 7A , 7 B, 8 A, 8 B and 9 schematically illustrate a machine 50 and process of converting the webs 10 , 10 ′, 10 ′′ and 10 ′′′ to dunnage units 12 ′.
  • a web 10 , 10 ′, 10 ′′ or 10 ′′′ is routed from a supply 52 ( FIGS. 8A and 8B ) to and around a pair of elongated, transversely extending guide rollers 54 .
  • the guide rollers 54 keep the web taught as the web 10 is pulled through the machine 50 .
  • the web pouches are uninflated.
  • pouch edges 38 , 40 defined by the cut 31 are close to one another at location A.
  • the frangible connections 29 , 36 are of sufficient strength to remain intact at location A.
  • a longitudinally extending guide pin 56 is disposed in the web at station B.
  • the guide pin 56 is disposed in a pocket bounded by the top and bottom layers 14 , 16 , the inflation edge 18 , and ends of the transverse seals 22 .
  • the guide pin 56 aligns the web as it is pulled through the machine.
  • a knife cutter 58 extends from the guide pin 56 .
  • the knife cutter 58 is used to cut the inflation edge 18 illustrated by FIG. 1 , but could also be used to cut the perforated inflation edge 18 illustrated by FIG. 2 .
  • the cutter 58 slits the inflation edge 18 as the web moves through the machine 50 to provide inflation openings 59 (See FIG.
  • the guide pin 56 defines a blunt surface 58 ′ and the knife cutter is omitted.
  • the blunt surface 58 ′ is used to break the perforated inflation edge illustrated by FIG. 2 .
  • the blunt surface 58 ′ breaks open the inflation edge 18 as the web moves through the machine to provide the inflation openings into the pouches 12 .
  • a blower 60 is positioned after the cutter 58 or blunt surface 58 ′ in station B.
  • the blower 60 inflates the web pouches as the web moves past the blower.
  • the web pouches are opened and inflated at station B.
  • the seal edges 38 , 40 spread apart as indicated by arrows 61 ( FIGS. 7A , 7 B and 9 ) as the web pouches are inflated.
  • the frangible connections 29 , 36 maintain successive pouches substantially aligned as the web is fed to the filling station B.
  • the frangible connections are sufficiently weak that the connection between a pouch that has been opened for inflation and is being inflated at the fill station B and an adjacent, successive (or preceding) pouch will rupture as the pouch at the fill station is inflated.
  • the spreading of the edges 38 , 40 forms a row of inflated dunnage units in a ladder configuration and increases the volume of the air that can enter the pouches. The spreading also reduces the stresses imparted to the web adjacent the inflation side edge 18 where it is to be sealed.
  • the inflation seal 42 is formed at station C by a sealing assembly 62 to complete each dunnage unit.
  • the inflated volume of the pouches is maintained by continuing to blow air into the pouch until substantially the entire length of the inflation opening 59 is sealed.
  • the blower 60 blows air into a pouch being sealed up to a location that is a short distance D 1 from closing position where the sealing assembly 62 pinches the top and bottom layers 14 , 16 to maintain the inflated volume of the pouches.
  • This distance D 1 is minimized to minimize the volume of air that escapes from the inflated pouch before the trailing transverse seal of the inflated pouch reaches the closing position.
  • the distance D 1 may be 0.250 inches or less, to blow air into the inflation opening unit the trailing transverse seal is within 0.250 inches of the closing position.
  • the sealing assembly includes a pair of heated sealing elements 64 , a pair of cooling elements 66 , a pair of drive rollers 68 , and a pair of drive belts 70 .
  • the pair of cooling elements is omitted.
  • Each belt 70 is disposed around its respective heat sealing element 64 , cooling element 66 (if included), and drive roller 68 .
  • Each belt 70 is driven by its respective drive roller 68 .
  • the belts 70 are in close proximity or engage one another, such that the belts 70 pull the web 10 through the heat sealing elements 64 and the cooling elements 66 .
  • the seal 42 is formed as the web 10 passes through first the heated sealing elements 64 and then a heat sink such as the cooling elements.
  • One suitable heating element 64 includes heating wire 80 carried by an insulating block 82 . Resistance of the heating wire 80 causes the heating wire 80 to heat up when voltage is applied.
  • the cooling elements 66 cool the seal 42 as the web 10 is pulled between the cooling elements.
  • One suitable cooling element is an aluminum (or other heatsink material) block that transfers heat away from the seal 42 . Referring to FIG. 9 , the spreading of the edges 38 , 40 greatly reduces the stress imparted on the web material at or near the seal 42 . As a result, a much more reliable seal 42 is formed.

Abstract

A preformed web and a method of producing dunnage units from the preformed web. The web is an elongate flattened thermoplastic tube having an inflation edge and an opposite edge. The tube includes spaced transverse seals that define sides of pouches. In one embodiment, the web is configured such that a gap forms between each pair of adjacent pouches when the pouches are inflated. In one embodiment, an inflation edge of the web comprises a frangible connection that allows the inflation edge to be broken by an unsharpened object.

Description

    RELATE APPLICATIONS
  • The present application is a continuation application of U.S. Ser. No. 11/141,304, filed May 31, 2005 entitled “Web and Method for Making Fluid Filled Units” and claims priority from U.S. provisional patent application Ser. Nos. 60/576,004, entitled “Web for Fluid Filled Unit Formation,” filed on Jun. 1, 2004, and provisional patent application Ser. No. 60/592,812, entitled “Air Pouch Machine,” filed on Jul. 30, 2004. Provisional patent application Ser. Nos. 60/576,004 and 60/592,812 are incorporated herein by reference in their entirety.
  • FIELD OF THE INVENTION
  • The present application relates to fluid filled units and more particularly to plastic webs of interconnected pouches and to processes of converting interconnected pouches to fluid filled units.
  • BACKGROUND
  • Machines for forming and filling dunnage units from sheets of plastic are known. Machines which produce dunnage units by inflating preformed pouches in a preformed web are also known. For many applications, machines which utilize preformed webs are preferred.
  • Typically, the entire length of sides of adjacent dunnage units formed from a preformed web are connected by perforations. To separate adjacent units, a worker grasps an edge of one unit with one hand, grasps an edge of an adjacent unit with the other hand, and carefully tears the dunnage units apart to separate the adjacent dunnage units.
  • SUMMARY
  • The present invention relates to plastic webs of interconnected pouches and processes of converting interconnected pouches to at least one row of dunnage units. In one embodiment, upon inflation of the pouches, a gap develops between each pair of adjacent fluid filled pouches. This gap remains after the fluid filled pouches are converted to dunnage units. The gap between each pair of dunnage units makes separating adjacent pouches easier and more efficient than with existing interconnected arrays of dunnage units.
  • In one embodiment, dunnage units are formed from a preformed flattened tubular web that includes a plurality of pouches defined by a plurality of transverse seals. As pouches are inflated, a gap forming area between adjacent pouches ruptures or otherwise separates. A gap is formed between newly formed and adjacent dunnage units. In one embodiment, the gap runs between an inflation edge line of perforations and a spaced apart opposite edge line of perforations. Pouches are converted to dunnage units by inflating the pouch with a fluid, substantially maintaining the inflated volume of the pouch, and hermetically sealing an inflated pouch.
  • The gap between the inflation edge line of perforations and the spaced apart opposite edge line of perforations makes separating the dunnage units much simpler and easier than separating dunnage units that are connected by a continuous line of un-ruptured perforations. In the present invention, to separate adjacent dunnage units, a worker simply inserts a hand or hands into the gap between adjacent dunnage units and applies forces on one or both of the dunnage units, which are connected only by the spaced apart lines of perforations. As the spaced apart lines of perforations rupture or otherwise separate the adjacent dunnage units are separated.
  • In one embodiment, an inflated volume is maintained in each air pouch by blowing air into an inflation opening of each pouch until substantially the entire inflation opening of the pouch is sealed. In one embodiment, the inflation opening is closed at a closing location located along the web path of travel. Air is provided into each pouch from a position slightly upstream of the closing location to maintain inflation of the pouch until it is sealed. For example, the inflation is maintained by blowing air into the inflation opening until the a trailing transverse seal of the pouch is within 0.250 inches of the closing position.
  • In one embodiment, inflated dunnage unit arrays comprise a single row of interconnected inflated pouches. The pouches are defined by first and second layers connected together at an inflation edge, an opposite edge seal, and by a pair of seals that are generally transverse to the inflation edge and the opposite edge. Each pair of adjacent inflated pouches are connected by an inflation edge line of perforations that extends inward and generally perpendicular to the inflation edge and an opposite edge line of perforations that extends inward and generally perpendicular to the opposite edge. The inflation edge line of perforations and the opposite edge line of perforations are spaced apart by a gap that allows a worker to insert an object, such as a hand, to easily separate the pair of adjacent inflated dunnage units.
  • In one embodiment, a web for forming dunnage units comprises a first elongated layer and a second elongated layer superposed over the first elongated layer. The first and second layers are connected by a frangible connection that extends along an inflation edge and a hermetic seal that extends along an opposite edge. The frangible connection at the inflation edge is configured to break when engaged by a blunt surface. A plurality of transverse seals extend from the hermetic seal to within a predetermined distance from the frangible connection. The hermetic seal and said transverse seals form a plurality of inflatable pouches.
  • Further advantages and benefits will become apparent to those skilled in the art after considering the following description and appended claims in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a web for making fluid filled units;
  • FIG. 2 illustrates a web for making fluid filled units;
  • FIG. 3 illustrates a web with pouches inflated and sealed to form fluid filled units;
  • FIG. 4 illustrates a web for making fluid filled units;
  • FIG. 5 illustrates a web for making fluid filled units;
  • FIG. 6 illustrates a web for making fluid filled units;
  • FIG. 7A schematically illustrates a plan view of a process and machine for converting web pouches to fluid filled units;
  • FIG. 7B schematically illustrates a plan view of a process and machine for converting web pouches to fluid filled units;
  • FIG. 8A schematically illustrates an elevational view of the process and machine for converting web pouches to fluid filled units;
  • FIG. 8B schematically illustrates a an elevational view of the process and machine for converting web pouches to fluid filled units; and
  • FIG. 9 illustrates a process for converting web pouches to fluid filled units.
  • DETAILED DESCRIPTION
  • Referring to FIGS. 1 and 2, exemplary illustrations of webs 10 of inflatable pouches 12 are shown. The webs 10 includes a top elongated layer of plastic 14 superposed onto a bottom layer of plastic 16. The layers are connected together along spaced edges, referred to as the inflation edge 18 and the opposite edge 20. In the example illustrated by FIG. 1, each edge 18, 20 is either a fold or a seal that connects the superposed layers 14, 16 along the edges 18, 20. The connection at the opposite edge 20 is illustrated as a hermetic seal and the connection at the inflation edge 18 is illustrated as a fold in FIG. 1. However, the fold and the seal could be reversed or both of the connections could be seals in the FIG. 1 embodiment. In the example illustrated by FIG. 2, the inflation edge 18 comprises a frangible connection 21 and the opposite edge 20 is a hermetic seal. The illustrated frangible connection 21 is a line of perforations. The size of the perforations is exaggerated to clarify FIG. 2. The frangible connection 21 may be formed by folding the inflation edge 18 and pulling the inflation edge over a serration forming wheel (not shown).
  • Referring to FIGS. 1 and 2, a plurality of longitudinally spaced, transverse seals 22 join the top and bottom layers 14, 16. Generally, each transverse seal 22 extends from the opposite edge 20 to within a short distance of the inflation edge 18. Spaced pairs of lines of perforations 24, 26 extend through the top and bottom layers terminating a short distance from the edges 18, 20 respectively. A gap forming area 28 extends between each associated pair of lines of perforations 24, 26. The gap forming area 28 opens to form a gap 13 when the pouches are inflated (see FIG. 3).
  • A gap forming area 28 denotes an area, preferably linear in shape, that will rupture or otherwise separate when exposed to a predetermined inflation force. The magnitude of the inflation force is less than the magnitude of the force needed to rupture or separate the spaced apart lines of perforations 24, 26. The gap forming area 28 can take on a number of embodiments, as will be discussed below. Any method that produces an area between the spaced apart lines of perforations 24, 26 that ruptures or otherwise separates at a force lower than a force needed to rupture or separate spaced lines of perforations 24, 26 may be employed to make the gap forming area 28.
  • Referring to FIG. 3, the web 10 of pouches 12 (FIGS. 1 and 2) is inflated and sealed to form a row 11 of dunnage units 12′. The formed dunnage units 12′ are configured to be much easier to separate from one another than prior art arrays of dunnage units. In the exemplary embodiment of FIG. 3, each adjacent pair of dunnage units 12′ is connected together by a pair of spaced apart lines of perforations 24, 26. The spaced apart lines of perforations 24, 26 are spaced apart by a gap 13. A single row 11 of dunnage units 12′ can be graphically described as being in a “ladder” configuration. This configuration makes separating two adjacent dunnage units 12′ much easier than separating prior art arrays of dunnage units. To separate a pair of adjacent dunnage units 12, a worker simply inserts an object or objects, such as a hand or hands, into the gap 13 and pulls one dunnage unit 12′ away from the other dunnage unit 12′. In the alternative, a mechanical system can be used to separate dunnage units 12′. A machine can be configured to insert an object between adjacent dunnage units 12′ and apply a force to separate the units
  • Referring to FIGS. 1-3, prior to conversion to a dunnage unit, a pouch is typically hermetically sealed on three sides, leaving one side open to allow for inflation. Once the pouch is inflated, the inflation opening is hermetically sealed and the dunnage unit is formed. During the inflation process, as the volume of the pouch increases the sides of the pouch have a tendency to draw inward. Drawing the sides of the pouches inward will shorten the length of the sides of the pouch unless the sides of the pouch are constrained. In this application, the term foreshortening refers to the tendency of the length of a pouch side to shorten as the pouch is inflated. In prior art webs, the sides of the pouch are restrained, because sides of adjacent pouches are connected by lines of perforations that extend along the entire length of the pouches and remain intact during and after inflation. The foreshortening of the unrestrained sides, such as the inflation opening, may not be uniform. Restraining the sides of adjacent connected pouches can cause undesirable inflation induced stresses. These undesirable stresses caused because sides of adjacent pouches are connected and restrained, thus, limiting inflation and causing wrinkles to develop in the layers at the unrestrained inflation opening. The wrinkles can extend into a section of the inflation opening to be sealed to complete the dunnage unit, which may comprise the seal. One reason the seal can be compromised is that wrinkling can cause sections of the layers 14, 16 to fold on top of one another. A sealing station of a dunnage machine is typically set to apply the appropriate amount of heat to seal two layers of material. The sealing of multiple layers of material in the area of a wrinkle results in a seal that is weaker than remaining seal areas and may result in a small leak or tendency to rupture at loads lower than loads at which the dunnage units is designed to rupture.
  • In the embodiment illustrated by FIG. 3, the gap forming area 28, produces a gap 13 between adjacent pouches upon inflation. The gap allows foreshortening of the connected pouch sides and thereby reduces the undesirable stresses that are introduced during inflation as compared with prior art webs. In addition, the web with a gap 13 facilitates fuller inflation of each pouch. The gap 13 maintains the inflation opening substantially free of wrinkles as the inflation opening is sealed to convert the inflated pouches to a dunnage units.
  • The illustrated web 10 is constructed from a heat sealable plastic film, such as polyethylene. The web 10 is designed to accommodate a process for inflating each pouch 12 in the web to create a row or ladder 11 of dunnage units 12′. The gap forming area 28 creates a gap 13 between dunnage units 12′, which facilitate a efficient and effective process for separating adjacent dunnage units 12′ in the row or ladder 11.
  • In the example illustrated by FIG. 4, the gap forming area 28 defined by the web 10′ includes an easily breakable line of perforations 29 between the spaced lines of perforations 24, 26. The force needed to rupture or separate the line of perforations 29 is less than the force needed to separate the perforations 24, 26 extending inward of the web edges 18, 20. Each pair of perforations 24, 26 and associated more easily breakable line of perforations 29 divide the transverse seal 22 into two transverse sections. As a pouch 12 is inflated, the line of perforation 29 begins to rupture or separate leading to the development of a gap 13 between the produced dunnage units 12′ (See FIG. 3). Once the pouch 12 is fully inflated, the line of perforations 29 is fully or nearly fully ruptured; however the perforations 24, 26 at the edges remain intact. These perforations 24, 26 are ruptured or separated when a worker or automated process mechanically separates the perforations 24, 26.
  • FIG. 5 illustrates another embodiment of the web 10″. In this embodiment the gap forming area 28 comprises an elongated cut 31 through both layers of material 14, 16. The cut 31 extends between each associated pair of lines of perforations 24, 26. In the embodiment illustrated by FIG. 5, pairs 30 of transverse seals 22′ extend from the opposite edge 20 to within a short distance of the inflation edge 18. Each of the pairs of lines of perforations 24, 26 and corresponding cuts 31 are between an associated pair of transverse seals 30. It should be readily apparent that the seal 22 shown in FIG. 4 could be used with the cut 31 shown in FIG. 5. It should also be readily apparent that the line of perforations shown in FIG. 4 could be used with the transverse seals 22′ shown in FIG. 5. It should be additionally apparent that any gap forming area 28 can be used with either of the transverse seal configurations 22, 22′ shown in FIGS. 4 and 5.
  • FIG. 6 illustrates a further embodiment of the web 10′″. In this embodiment, the gap forming area 28 comprises at least two elongated cuts 32, separated by light connections of plastic 36, also referred to as “ticks.” These connections 36 hold transverse edges 38, 40 of the pouches 12 together to ease handling of the web 10, such as handling required during installation of the web 10 into a dunnage machine. As the pouches 12 are inflated, the connections 36 rupture or otherwise break resulting in a gap 13 between the spaced pairs of perforations 24, 26. This gap 13 allows for full inflation and reduces the stresses in the layers at the seal site normally caused by the foreshortening and restrictions on foreshortening of webs in the prior art. The reduced stress in the layers inhibits wrinkles along the inflation opening to be sealed.
  • Other methods of creating a gap forming area not specifically disclosed are with the scope of the present application. Any area that separates and forms a gap between adjacent pouches as pouches 12 in a web 10 are inflated are contemplated by this disclosure.
  • FIG. 3, illustrates a length of the web 10, 10′, 10″ or 10′″ after it has been inflated and sealed to form dunnage units 12′. An inflation seal 42, the transverse seals 22 and an opposite edge seal 44 hermetically seal the top and bottom layers. The side edges 38, 40 of the formed dunnage units are separated to form a gap 13. Each pair of adjacent dunnage units 12′ are connected together by the pair of spaced apart lines of perforations 24, 26. The gap 13 extends between the pair of spaced apart lines of perforations 24, 26. The array of dunnage units 12′ is a single row of dunnage units in a “ladder” configuration. The lines of perforations 24, 26 are configured to be easily breakable by a worker or automated system. To separate a pair of adjacent units 12′, a worker inserts an object, such as the worker's hand or hands into the gap 13. The worker then grasps one or both of the adjacent dunnage units 12′ and pulls the adjacent dunnage units 12′ relatively apart as indicated by arrows 43 a, 43 b. The lines of perforation 24, 26 rupture or otherwise separate and the two adjacent dunnage units 12′ are separated. The existence of the gap 13 also results in reduced stresses in the area of the inflation seal 42 at the time of sealing and accommodates increased inflation volume of the dunnage units 12′ as compared with prior inflated dunnage units.
  • In one embodiment, the line of perforations 24 that extends from the opposite edge 20 is omitted. In this embodiment, the gap forming area 28 extends from the inflation edge line of perforations 26 to the opposite edge. In this embodiment, the gap 13 extends from the inflation edge line of perforations 26 to the opposite edge 20.
  • The connection of the layers 14, 16 at the inflation edge 18 can be any connection that is maintained between layers 14, 16 prior to the web 10 being processed to create dunnage units 12′. In the embodiment illustrated by FIG. 1, the connection is a fold. In the embodiment illustrated by FIG. 2, the connection is a line of perforations 21. One method of producing such a web is to fold a continuous layer of plastic onto itself and create a fold at what is to become the inflation edge 18, A tool can be placed in contact with the fold to create a line of perforation. The opposite edge 20 can be hermetically sealed and the transverse hermetic seals 22 can be added along with the separated lines of perforations 24, 26 extending inward from the inflation and opposite edges 18, 20. The web shown in FIG. 1 can be produced in the same manner, except the perforations are not added.
  • FIGS. 7A, 7B, 8A, 8B and 9 schematically illustrate a machine 50 and process of converting the webs 10, 10′, 10″ and 10′″ to dunnage units 12′. Referring to FIGS. 7A, 7B, 8A and 8B, a web 10, 10′, 10″ or 10′″ is routed from a supply 52 (FIGS. 8A and 8B) to and around a pair of elongated, transversely extending guide rollers 54. The guide rollers 54 keep the web taught as the web 10 is pulled through the machine 50. At location A, the web pouches are uninflated. In the embodiment illustrated by FIG. 5, pouch edges 38, 40 defined by the cut 31 are close to one another at location A. In the embodiments illustrated by FIGS. 4 and 6, the frangible connections 29, 36 are of sufficient strength to remain intact at location A.
  • A longitudinally extending guide pin 56 is disposed in the web at station B. The guide pin 56 is disposed in a pocket bounded by the top and bottom layers 14, 16, the inflation edge 18, and ends of the transverse seals 22. The guide pin 56 aligns the web as it is pulled through the machine. In the embodiment illustrated by FIGS. 7A and 8A, a knife cutter 58 extends from the guide pin 56. The knife cutter 58 is used to cut the inflation edge 18 illustrated by FIG. 1, but could also be used to cut the perforated inflation edge 18 illustrated by FIG. 2. The cutter 58 slits the inflation edge 18 as the web moves through the machine 50 to provide inflation openings 59 (See FIG. 9) into the pouches, while leaving the pouches otherwise imperforate. A variation of this would have the cutter 58 cutting either layer 14, 16, or both near the inflation edge 18. In the embodiment illustrated by FIGS. 7B and 8B, the guide pin 56 defines a blunt surface 58′ and the knife cutter is omitted. The blunt surface 58′ is used to break the perforated inflation edge illustrated by FIG. 2. The blunt surface 58′ breaks open the inflation edge 18 as the web moves through the machine to provide the inflation openings into the pouches 12.
  • A blower 60 is positioned after the cutter 58 or blunt surface 58′ in station B. The blower 60 inflates the web pouches as the web moves past the blower. Referring to FIG. 9, the web pouches are opened and inflated at station B. The seal edges 38, 40 spread apart as indicated by arrows 61 (FIGS. 7A, 7B and 9) as the web pouches are inflated. In the embodiment illustrated by FIGS. 4 and 6, the frangible connections 29, 36 maintain successive pouches substantially aligned as the web is fed to the filling station B. The frangible connections are sufficiently weak that the connection between a pouch that has been opened for inflation and is being inflated at the fill station B and an adjacent, successive (or preceding) pouch will rupture as the pouch at the fill station is inflated. The spreading of the edges 38, 40 forms a row of inflated dunnage units in a ladder configuration and increases the volume of the air that can enter the pouches. The spreading also reduces the stresses imparted to the web adjacent the inflation side edge 18 where it is to be sealed.
  • The inflation seal 42 is formed at station C by a sealing assembly 62 to complete each dunnage unit. In the exemplary embodiment, the inflated volume of the pouches is maintained by continuing to blow air into the pouch until substantially the entire length of the inflation opening 59 is sealed. In the example of FIGS. 8A, 8B and 9, the blower 60 blows air into a pouch being sealed up to a location that is a short distance D1 from closing position where the sealing assembly 62 pinches the top and bottom layers 14, 16 to maintain the inflated volume of the pouches. This distance D1 is minimized to minimize the volume of air that escapes from the inflated pouch before the trailing transverse seal of the inflated pouch reaches the closing position. For example, the distance D1 may be 0.250 inches or less, to blow air into the inflation opening unit the trailing transverse seal is within 0.250 inches of the closing position.
  • In the examples illustrated by FIGS. 8A and 8B, the sealing assembly includes a pair of heated sealing elements 64, a pair of cooling elements 66, a pair of drive rollers 68, and a pair of drive belts 70. In an alternate embodiment, the pair of cooling elements is omitted. Each belt 70 is disposed around its respective heat sealing element 64, cooling element 66 (if included), and drive roller 68. Each belt 70 is driven by its respective drive roller 68. The belts 70 are in close proximity or engage one another, such that the belts 70 pull the web 10 through the heat sealing elements 64 and the cooling elements 66. The seal 42 is formed as the web 10 passes through first the heated sealing elements 64 and then a heat sink such as the cooling elements. One suitable heating element 64 includes heating wire 80 carried by an insulating block 82. Resistance of the heating wire 80 causes the heating wire 80 to heat up when voltage is applied. The cooling elements 66 cool the seal 42 as the web 10 is pulled between the cooling elements. One suitable cooling element is an aluminum (or other heatsink material) block that transfers heat away from the seal 42. Referring to FIG. 9, the spreading of the edges 38, 40 greatly reduces the stress imparted on the web material at or near the seal 42. As a result, a much more reliable seal 42 is formed.
  • The present invention is not to be considered limited to the precise construction disclosed. Various modifications, adaptations and uses may occur to those skilled in the art to which the invention relates. All such modifications, adaptations, and uses fall within the scope or spirit of the claims.

Claims (13)

1. A method of forming dunnage units from a preformed web, the process comprising:
providing the preformed web, wherein the preformed web includes a plurality of pouch defining seals between top and bottom layers that define a plurality of pouches, wherein the preformed web includes a pocket bounded by the top and bottom layers, an inflation edge of the web, and ends of the pouch defining seals, wherein the preformed web includes an inflation side line of perforations, a spaced apart opposite side line of perforations, and a gap forming area between the inflation side line of perforations and the opposite side line of perforations, wherein the inflation side line of perforations, the opposite side line of perforations, and the gap forming area extend in a direction that is transverse to the inflation edge of the web, the inflation side line of perforations extends between said inflation edge of said preformed web and said gap forming area, the opposite side line of perforations extends between an opposite edge of said preformed web and said gap forming area;
inserting a guide pin into the pocket of the preformed web after the web is formed;
feeding the web of side connected pouches along a path of travel to and through an inflation station;
sequentially inflating the pouches, wherein inflating the pouches causes edges of the gap forming area to spread apart and form a gap between a portion of the pouch being inflated and a portion of an adjacent pouch;
passing each inflated pouch to and through a sealing station that forms an inflation seal across the pouch defining seals to convert each inflated pouch into a dunnage unit; and
cutting the preformed pocket of the web open with a knife after the guide pin is inserted into the pocket.
2. The method of claim 1 wherein the gap forming area comprises an elongated cut.
3. The method of claim 1 wherein the gap forming area comprises weak connections.
4. The method of claim 1 wherein the gap forming area comprises a line of perforations that is weaker than the inflation side line of perforations and the opposite side line of perforations.
5. The method of claim 1 further comprising engaging a dunnage unit between the inflation side line of perforations and the opposite side line of perforations and pulling the dunnage unit relatively away from an adjacent dunnage unit to separate the adjacent dunnage units.
6. The method of claim 1 wherein said gap forming area comprises weak connections and wherein said weak connections break upon inflation to cause said edges of said gap forming area to spread apart.
7. A method of forming dunnage units from a preformed web, the process comprising:
providing the preformed web, wherein the preformed web includes a plurality of pouch defining seals between top and bottom layers that define a plurality of pouches, wherein the preformed web includes an inflation side line of perforations, a spaced apart opposite side line of perforations, and a gap forming area between the inflation side line of perforations and the opposite side line of perforations, wherein the inflation side line of perforations, the opposite side line of perforations, and the gap forming area extend in a direction that is transverse to the inflation edge of the web, the inflation side line of perforations extends between said inflation edge of said preformed web and said gap forming area, the opposite side line of perforations extends between an opposite edge of said preformed web and said gap forming area;
inflating the pouches defined by the preformed web to an inflated volume that causes edges of the gap forming area to spread apart between the preformed inflation side line of perforations and the preformed spaced apart opposite side line of perforations;
forming an inflation seal across the preformed pouch defining seals to convert the inflated pouches to dunnage units.
8. The method of claim 7 wherein said gap forming area comprises weak connections and wherein said weak connections break upon inflation to cause said edges of said gap forming area to spread apart.
9. The method of claim 7 wherein the gap forming area comprises an elongated cut.
10. The method of claim 7 wherein the gap forming area comprises weak connections.
11. The method of claim 7 wherein the gap forming area comprises a line of perforations that is weaker than the inflation side line of perforations and the opposite side line of perforations.
12. The method of claim 7 further comprising engaging a leading dunnage unit between the inflation edge line of perforations and the opposite edge line of perforations and pulling the leading dunnage unit relatively away from an adjacent trailing dunnage unit to separate the leading dunnage unit from the trailing dunnage unit.
13. The process of claim 12 wherein the step of engaging a dunnage unit between the inflation side line of perforations and the opposite side line of perforations and pulling the dunnage unit relatively away from an adjacent dunnage unit to separate the adjacent dunnage units is performed by engaging a leading dunnage unit between the inflation side line of perforations and the opposite side line of perforations and pulling the leading dunnage unit relatively away from the adjacent trailing unit to separate the leading dunnage unit from the trailing dunnage unit.
US12/818,318 2004-06-01 2010-06-18 Web and method for fluid filled units Abandoned US20100281828A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/818,318 US20100281828A1 (en) 2004-06-01 2010-06-18 Web and method for fluid filled units
US14/665,515 US10391733B2 (en) 2004-06-01 2015-03-23 Method for making fluid filled units

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US57600404P 2004-06-01 2004-06-01
US59281204P 2004-07-30 2004-07-30
US11/141,304 US7757459B2 (en) 2004-06-01 2005-05-31 Web and method for making fluid filled units
US12/818,318 US20100281828A1 (en) 2004-06-01 2010-06-18 Web and method for fluid filled units

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/141,304 Continuation US7757459B2 (en) 2004-06-01 2005-05-31 Web and method for making fluid filled units

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/665,515 Continuation US10391733B2 (en) 2004-06-01 2015-03-23 Method for making fluid filled units

Publications (1)

Publication Number Publication Date
US20100281828A1 true US20100281828A1 (en) 2010-11-11

Family

ID=35463412

Family Applications (7)

Application Number Title Priority Date Filing Date
US11/141,304 Active 2027-07-11 US7757459B2 (en) 2004-06-01 2005-05-31 Web and method for making fluid filled units
US11/594,539 Active 2028-03-09 US7897220B2 (en) 2004-06-01 2006-11-08 Web and method for making fluid filled units
US11/594,540 Active 2028-02-04 US8425994B2 (en) 2004-06-01 2006-11-08 Web and method for making fluid filled units
US12/818,318 Abandoned US20100281828A1 (en) 2004-06-01 2010-06-18 Web and method for fluid filled units
US13/036,172 Active US8357439B2 (en) 2004-06-01 2011-02-28 Web and method for making fluid filled units
US13/866,165 Abandoned US20130299377A1 (en) 2004-06-01 2013-04-19 Web and method for making fluid filled units
US14/665,515 Active 2027-03-07 US10391733B2 (en) 2004-06-01 2015-03-23 Method for making fluid filled units

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US11/141,304 Active 2027-07-11 US7757459B2 (en) 2004-06-01 2005-05-31 Web and method for making fluid filled units
US11/594,539 Active 2028-03-09 US7897220B2 (en) 2004-06-01 2006-11-08 Web and method for making fluid filled units
US11/594,540 Active 2028-02-04 US8425994B2 (en) 2004-06-01 2006-11-08 Web and method for making fluid filled units

Family Applications After (3)

Application Number Title Priority Date Filing Date
US13/036,172 Active US8357439B2 (en) 2004-06-01 2011-02-28 Web and method for making fluid filled units
US13/866,165 Abandoned US20130299377A1 (en) 2004-06-01 2013-04-19 Web and method for making fluid filled units
US14/665,515 Active 2027-03-07 US10391733B2 (en) 2004-06-01 2015-03-23 Method for making fluid filled units

Country Status (7)

Country Link
US (7) US7757459B2 (en)
EP (2) EP3150369B1 (en)
CA (2) CA2569049C (en)
ES (1) ES2608877T3 (en)
HU (1) HUE032732T2 (en)
PL (1) PL1751009T3 (en)
WO (1) WO2005118408A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9266300B2 (en) 2011-07-07 2016-02-23 Automated Packaging Systems, Inc. Air cushion inflation machine
US9623622B2 (en) 2010-02-24 2017-04-18 Michael Baines Packaging materials and methods
US10391733B2 (en) 2004-06-01 2019-08-27 Automated Packaging Systems, Inc. Method for making fluid filled units
WO2020072727A1 (en) 2018-10-04 2020-04-09 Automated Packaging Systems, Llc Air cushion inflation machine
US10618243B2 (en) 2007-10-31 2020-04-14 Automated Packaging Systems, Llc Web and method for making fluid filled units
US10647460B2 (en) 2013-03-15 2020-05-12 Automated Packaging Systems, Llc On-demand inflatable packaging
US10730260B2 (en) 2004-06-01 2020-08-04 Automated Packaging Systems, Llc Web and method for making fluid filled units
US20230022932A1 (en) * 2021-07-23 2023-01-26 Chun-Wei Lin Gas cushion bag

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6889739B2 (en) 2003-04-08 2005-05-10 Automated Packaging Systems, Inc. Fluid filled unit formation machine and process
US6955846B2 (en) 2003-04-08 2005-10-18 Automated Packaging Systems Web for fluid filled unit information
US7571584B2 (en) 2004-06-01 2009-08-11 Automated Packaging Systems, Inc. Web and method for making fluid filled units
US20090293427A1 (en) * 2005-08-01 2009-12-03 Automated Packaging Systems, Inc. Web and method for making fluid filled units
EP1978770A1 (en) * 2007-04-05 2008-10-08 Matsushita Electric Industrial Co., Ltd. Management of mobile terminals in a communication system allowing for multiple-tracking area registration
WO2009032763A1 (en) * 2007-08-28 2009-03-12 Fi-Foil Company, Inc. A system and method for insulating items using a reflective or inflatable insulation panel
US9205622B2 (en) 2009-02-27 2015-12-08 Automated Packaging Systems, Inc. Web and method for making fluid filled units
USD603705S1 (en) 2009-02-27 2009-11-10 Automated Packaging Systems, Inc. Inflatable packing material
NL2003907C2 (en) * 2009-12-04 2011-06-07 Ideepak Holding B V Blow unit for an apparatus for making air-filled bags, apparatus comprising such a blow unit, system comprising such an apparatus and a method for making air-filled bags.
US20120138626A1 (en) * 2010-12-02 2012-06-07 Stacey Haggerty Garbage Bag Dispensing System
US20140130461A1 (en) * 2011-06-22 2014-05-15 Pronova Ab Device for producing shock-absorbing inflatable package and method for filling it
TWI447051B (en) * 2012-07-06 2014-08-01 Air Bag Packing Co Ltd A flat buffer gas bag with a plurality of compartmentalized chambers
KR20160053944A (en) * 2013-09-10 2016-05-13 오토메이티드 패키징 시스템즈, 인코포레이티드 Web for making fluid filled units
MX343911B (en) 2013-10-03 2016-11-22 Fernando Grijalva Varillas Sergio Packaging for preserving fruits and vegetables, and manufacturing method.
JP2016537275A (en) 2013-11-21 2016-12-01 オートメイテッド パッケージング システムズ, インコーポレイテッド Air cushion inflating machine
US11858712B2 (en) 2014-04-14 2024-01-02 Pregis Innovative Packaging Llc Flexible structure with perforation-free inflation channel
US10112741B2 (en) 2014-11-10 2018-10-30 Pregis Innovative Packaging Llc Inflatable packaging with adhesive seals
CN106275645A (en) * 2015-05-15 2017-01-04 可口可乐公司 A kind of online molding, fill and encapsulate formed product packaging system and method
CA3008861A1 (en) * 2015-12-21 2017-06-29 Automated Packaging Systems, Inc. On-demand inflatable packaging
EP3752352A1 (en) 2018-02-14 2020-12-23 Automated Packaging Systems, LLC. Methods and machines for making padded envelopes from on-demand inflatable packaging
US11078001B2 (en) 2018-08-14 2021-08-03 Pregis Innovative Packaging Llc Inflatable packaging with tear initiation feature
US11801988B2 (en) 2019-06-03 2023-10-31 Sealed Air Corporation (Us) On-demand inflatable packaging

Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2153214A (en) * 1936-10-03 1939-04-04 Warner Bros Pressure pad
US3618286A (en) * 1970-06-08 1971-11-09 Hercules Membrino Bag filling sealing and separating system
US3791573A (en) * 1971-11-15 1974-02-12 Basic Packaging Sys Inc Bag construction
US4021283A (en) * 1974-01-24 1977-05-03 Weikert Roy J Method of making aseptic packaging
US4245796A (en) * 1979-06-15 1981-01-20 Chromalloy American Corporation System for handling flexible sheet rolls
US4493684A (en) * 1982-10-04 1985-01-15 W. R. Grace & Co., Cryovac Div. Method for making partially separated multibags
US4616472A (en) * 1985-10-10 1986-10-14 W. R. Grace & Co., Cryovac Div. Method and apparatus for loading side-seal bags
US4664577A (en) * 1984-07-18 1987-05-12 Vincenza Bonali Apparatus for stacking generic sheet-like elements such as sheets, hides, boards, and the like
US5041317A (en) * 1988-05-13 1991-08-20 Greyvenstein Lourence C J Perforated material
US5307969A (en) * 1992-11-27 1994-05-03 Menendez Vincent M Bag dispensing apparatus
US5340632A (en) * 1991-05-03 1994-08-23 Michel Chappuis Padding element for the packing of objects and device for the manufacturing of the same
US5722218A (en) * 1996-08-16 1998-03-03 Automated Packaging Systems, Inc. Plastic transport system
US5733045A (en) * 1993-05-05 1998-03-31 Joker System Aktiebolag Web for package blanks and method
US6209286B1 (en) * 1999-03-09 2001-04-03 Novus Packaging Corporation Machine and method for manufacturing a continuous production of pneumatically filled inflatable packaging pillows
US20010000719A1 (en) * 1999-05-20 2001-05-03 Automated Packaging Systems, Inc. Dunnage material and process
US20010013215A1 (en) * 2000-01-20 2001-08-16 Fuss Gunter G. System, method and material for making pneumatically filled packing cushions
US20010014980A1 (en) * 1996-06-11 2001-08-23 Melanie Patterson Disposable paper bib
US6368689B1 (en) * 1999-07-08 2002-04-09 Kimberly-Clark Worldwide, Inc. Perforated centerflow rolled product
US20020108697A1 (en) * 2000-08-14 2002-08-15 Free-Flow Packaging International, Inc. Methods and apparatus for inflating and sealing pillows in packaging
US6447864B2 (en) * 1998-02-02 2002-09-10 Fort James Corporation Sheet material having weakness zones and a system for dispensing the material
US20020150730A1 (en) * 2000-11-21 2002-10-17 Free-Flow Packaging International, Inc. Inflatable, cushioning, bubble wrap product having multiple, interconnected, bubble structures
US20020174629A1 (en) * 2001-05-24 2002-11-28 Automated Packaging Systems, Inc. Packaging web and process
US6488222B1 (en) * 2000-08-18 2002-12-03 Larry G. West Bag dispensing system and C-fold bag used therewith
US20030109369A1 (en) * 2000-12-12 2003-06-12 Automated Packaging Systems, Inc. Dunnage material and process
US6635145B2 (en) * 2001-06-11 2003-10-21 Andrew Cooper Packaging filler product
US6651406B2 (en) * 2001-02-13 2003-11-25 Sealed Air Corporation (Us) Apparatus and method for forming inflated containers
US6696127B1 (en) * 2000-11-13 2004-02-24 Translucent Technologies Llc Differential perforation pattern for dispensing print media
US6751926B1 (en) * 1999-05-11 2004-06-22 Andrew Cooper Packaging filler product and machine for producing same
US20040265523A1 (en) * 2003-06-28 2004-12-30 Yoshihiro Koyanagi Structure of fluid container and method and apparatus for producing the fluid container
US6889739B2 (en) * 2003-04-08 2005-05-10 Automated Packaging Systems, Inc. Fluid filled unit formation machine and process
US6952910B1 (en) * 2000-09-27 2005-10-11 Loersch Johannes Gas filled bodies
US6955846B2 (en) * 2003-04-08 2005-10-18 Automated Packaging Systems Web for fluid filled unit information
US7153090B2 (en) * 2004-12-17 2006-12-26 General Electric Company System and method for passive load attenuation in a wind turbine
USD646972S1 (en) * 2009-02-27 2011-10-18 Automated Packaging Systems, Inc. Inflatable packing material
US20130011510A1 (en) * 2011-07-07 2013-01-10 Automated Packaging Systems, Inc. Air cushion inflation machine
US8354150B2 (en) * 2007-10-31 2013-01-15 Automated Packaging Systems, Inc. Web and method for making fluid filled units
US8357439B2 (en) * 2004-06-01 2013-01-22 Automated Packaging Systems, Inc. Web and method for making fluid filled units

Family Cites Families (251)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US359703A (en) * 1887-03-22 Assig
US892179A (en) 1907-11-15 1908-06-30 Racine Paper Goods Company Cigar-case.
US2379935A (en) 1941-10-08 1945-07-10 Mayer & Co Inc O Packaging method
US3033257A (en) * 1957-08-21 1962-05-08 H G Weber And Company Inc Bag forming tube and method of forming and accumulating the same
NL281183A (en) * 1962-07-19
US3340669A (en) 1963-01-07 1967-09-12 Dow Chemical Co Air cushioned packets
US3254828A (en) * 1963-12-18 1966-06-07 Automated Packaging Corp Flexible container strips
US3405020A (en) 1963-12-26 1968-10-08 Sealed Air Corp Method and apparatus for the manufacture of plastic laminates and cellular materials
US3298156A (en) * 1964-01-07 1967-01-17 Automated Packaging Corp Method and apparatus for packaging
US3254820A (en) * 1964-06-15 1966-06-07 Du Pont Shock absorbing system for yarn delivery apparatus
US3469768A (en) * 1964-08-27 1969-09-30 Dow Chemical Co Dual compartment container
DE1225537B (en) * 1964-10-30 1966-09-22 Dohmeier & Strothotte K G Process and device for the continuous production of bags filled with large pieces of bulk goods
US3389534A (en) * 1965-09-16 1968-06-25 John M. Pendleton Machine for making cushioning packaging material or the like
US3414140A (en) 1966-08-01 1968-12-03 Interlake Steel Corp Dunnage
US3358823A (en) 1967-01-16 1967-12-19 Allen D Paxton Gusset bottom bags in roll form and method of making same
US3477196A (en) 1967-04-27 1969-11-11 Automated Packaging Corp Mechanism for automatically feeding,loading,and sealing bags
US3462027A (en) * 1967-08-14 1969-08-19 Edmund C Puckhaber Dunnage device
US3456867A (en) * 1967-11-03 1969-07-22 Dow Chemical Co Bag assemblage
US3575757A (en) * 1967-12-08 1971-04-20 Reinforced Air Corp Process for making inflated articles
US3559874A (en) 1968-05-08 1971-02-02 Dow Chemical Co Series bag construction
US3616155A (en) 1968-06-26 1971-10-26 Sealed Air Corp Cellular laminate made from two thermoplastic sheets having polyvinylidene chloride coatings on facing sides of the sheets
US3523055A (en) * 1968-08-19 1970-08-04 Jerome H Lemelson Composite material,apparatus and method for producing same
US3577305A (en) * 1968-08-22 1971-05-04 Theodore G Hines Thermal and air shock insulating structure
US3660189A (en) * 1969-04-28 1972-05-02 Constantine T Troy Closed cell structure and methods and apparatus for its manufacture
US3575781A (en) * 1969-05-16 1971-04-20 Stauffer Hoechst Polymer Corp Plastic film wrapping material
BE754395A (en) 1969-08-04 1971-02-04 Basf Ag METHOD AND DEVICE FOR MAKING OR CLOSING BAGS BY WELDING PORTIONS OF THERMOPLASTIC SHEATH
US3597895A (en) * 1969-09-08 1971-08-10 Linvure Co Inc The Packaging method and machine
US3650877A (en) * 1969-10-06 1972-03-21 Arpax Co Cushioning dunnage product
US3585858A (en) * 1969-11-28 1971-06-22 Avco Corp Signal error compensated fluidic oscillator temperature sensors
US3667593A (en) * 1970-03-30 1972-06-06 John M Pendleton Flowable dunnage apparatus and method of packaging with flowable and compliable inflated dunnage material
US3837990A (en) * 1970-06-19 1974-09-24 Connell R Mc Reinforced cushioning material
US3817017A (en) * 1970-10-13 1974-06-18 O Titchenal Bag construction and method for filling the same
US3802974A (en) * 1970-12-01 1974-04-09 L Emmel Method and apparatus for insulating electrically conductive elements
ZA717126B (en) 1971-03-04 1972-08-30 Sealed Air Corp Protective containers and methods of making the same
IE36093B1 (en) 1971-03-05 1976-08-18 British Visqueen Ltd Carrier-bags
US3730240A (en) * 1971-03-16 1973-05-01 Metatronics Manuf Corp Inflatable insulation for packaging
US3744211A (en) * 1971-04-09 1973-07-10 Dow Chemical Co Automatic bag filling method
US3699746A (en) 1971-04-09 1972-10-24 Basic Packaging Systems Inc Apparatus for filling a chain of connected bag elements
US3837991A (en) * 1971-05-03 1974-09-24 Kimberly Clark Co Plastic cushioning reinforced material
US3696580A (en) 1971-05-17 1972-10-10 Joseph M Saltzer Sr Shrink film packaging method
US3795163A (en) * 1971-12-16 1974-03-05 Dow Chemical Co Method of selectively cutting and perforating superposed panels of material
US3817803A (en) * 1972-06-19 1974-06-18 Fmc Corp Method of making a cellular cushioning structure
US3813845A (en) * 1972-06-23 1974-06-04 Gen Films Inc Filling and sealing system
US3941306A (en) * 1972-06-23 1976-03-02 Weikert Roy J System of interconnected, sealed and unsealed bags
US4014154A (en) 1973-02-28 1977-03-29 Automated Packaging Systems, Inc. Packaging method and apparatus
US3808981A (en) * 1973-03-02 1974-05-07 Interlake Inc Disposable inflatable dunnage
NL172307C (en) * 1973-09-29 1983-08-16 Wavin Bv DEVICE FOR APPLYING CROSS-PERFORATION LINES IN A COURSE.
BE822385A (en) 1973-11-29 1975-05-20 REFILL SHIPPING BAG AND MANUFACTURING PROCESS
US4011798A (en) 1973-11-29 1977-03-15 Packaging Industries, Inc. Method of making shipping bag
US3938298A (en) * 1974-05-20 1976-02-17 Minnesota Mining And Manufacturing Company System for inflation and sealing of air cushions
US3939991A (en) * 1974-06-13 1976-02-24 Global Marine, Inc. Parking brake for subsea mining lift system
US3939995A (en) * 1974-11-01 1976-02-24 International Paper Company Valve placement in a multi-ply, inflatable bag
US4017351A (en) * 1975-12-24 1977-04-12 Minnesota Mining And Manufacturing Company System and device for inflating and sealing air inflated cushioning material
US4169002A (en) * 1975-12-24 1979-09-25 Minnesota Mining And Manufacturing Company Method for forming air inflated cushioning material
US4096306A (en) * 1975-12-24 1978-06-20 Minnesota Mining And Manufacturing Company Strip material used in forming air inflated cushioning material
US4044693A (en) * 1976-03-12 1977-08-30 Guardpack, Incorporated Inflatable dunnage with tie-downs
US4040526A (en) * 1976-03-26 1977-08-09 International Paper Company Dunnage bag
US4076872A (en) * 1977-03-16 1978-02-28 Stephen Lewicki Inflatable cellular assemblies of plastic material
US4146069A (en) * 1977-07-29 1979-03-27 Signode Corporation Apparatus for rapidly inflating and pressurizing a dunnage bag
US4102364A (en) * 1977-07-29 1978-07-25 Signode Corporation Method of dunnage bag inflation
US4103471A (en) * 1977-09-01 1978-08-01 International Paper Company Atmosphere exchanging and bag sealing machine and method
US4214024A (en) * 1977-09-09 1980-07-22 Monarch Marking Systems, Inc. Composite label web and method of making same
AT377427B (en) 1978-06-26 1985-03-25 Hamann Klaus Jochen DEVICE FOR SOLVABLE HOLDING OF SMALL PARTS, IN PARTICULAR TOOLS
US4201029A (en) * 1978-08-14 1980-05-06 Automated Packaging Systems, Inc. Method and apparatus for packaging
DE2851894A1 (en) 1978-11-30 1980-06-12 Agfa Gevaert Ag DEVICE FOR SEPARATING PRE-PERFORATED TAPES, PREFERABLY CONTINUOUS BAGS
US4314865A (en) * 1979-09-14 1982-02-09 Ranpak Corp. Method of making cushioning dunnage
US4306656A (en) 1980-02-19 1981-12-22 Dahlem A Richard Medical pouches and a method of manufacturing such pouches
GB2074128B (en) 1980-04-18 1984-02-15 Pillopak Bv Mailing-containers and a method of manufacture thereof
SE434042B (en) * 1980-06-30 1984-07-02 Joker System Ab COUNCIL OF CUSTOM PACKAGING TOPICS
JPS5822413B2 (en) 1980-09-17 1983-05-09 日本カ−リツト株式会社 Method for preventing overheating of the heat sealing section of a hydrous explosive packaging machine
US4380484A (en) 1981-02-20 1983-04-19 William C. Heller, Jr. Inductively heated tooling and method for working plastic members
US4354004A (en) 1981-09-28 1982-10-12 Shell Oil Company Film compositions from olefin polymer blends
DE3220892A1 (en) 1982-06-03 1983-12-08 Icoma Packtechnik GmbH, 7590 Achern DISCONNECTOR FOR SEPARATING PERFORATED PAPER HOSE SECTIONS
US4847126A (en) 1982-07-01 1989-07-11 Hiroshi Yamashiro Elongated plastic material
US4654878A (en) * 1982-09-30 1987-03-31 Signode Corporation Plastic bag chain
US4545180A (en) 1982-12-16 1985-10-08 Mpr Corporation Method and apparatus for making and filling packets with a product
US4631901A (en) 1982-12-16 1986-12-30 Mpr Corporation Apparatus and method for packaging a product in individual packets
US4514962A (en) * 1982-12-16 1985-05-07 Minigrip, Inc. Method and apparatus for filling reclosable bags
US4551379A (en) 1983-08-31 1985-11-05 Kerr Stanley R Inflatable packaging material
US4679688A (en) 1983-09-13 1987-07-14 Soederholm Jan Package for risk samples
JPS60134874A (en) * 1983-11-11 1985-07-18 オリヒロ株式会社 Method and device for manufacturing cushioning material
US4518654A (en) * 1983-12-23 1985-05-21 Mobil Oil Corporation One-sided cling stretch wrap
US4597244A (en) * 1984-07-27 1986-07-01 M & D Balloons, Inc. Method for forming an inflated wrapping
US4576669A (en) * 1984-11-09 1986-03-18 Caputo Garry L "On demand" apparatus and method for producing air-cushioning product
FR2574375B1 (en) 1984-12-07 1987-02-27 Herve Fils Sa CONTINUOUS ASSEMBLIES OF POSTAL OR OTHER PLIES
JPS6215930A (en) 1985-07-15 1987-01-24 Hitachi Ltd Test system of digital-analog converter
US4676376A (en) * 1985-10-04 1987-06-30 Petoskey Plastics, Inc. Temporary protective seat cover
US4619635A (en) 1985-11-04 1986-10-28 Ranpak Corp. Automatic feed circuit for dunnage converter
AU6597486A (en) 1985-11-08 1987-06-02 Kcl Corporation Reclosable flexible container
US4901506A (en) 1987-03-30 1990-02-20 Automated Packaging Systems, Inc. Heat seal temperature control
US4859083A (en) 1987-04-24 1989-08-22 Minigrip, Inc. Bag chain attached to computer paper
US5188691A (en) * 1987-07-27 1993-02-23 Caputo Gary L Apparatus and method for producing air cushion product
US4918904A (en) * 1987-08-25 1990-04-24 Pharo Daniel A Method for forming clam-like packaging system
US4874093A (en) 1987-08-25 1989-10-17 Pharo Daniel A Clam-like packaging system
US4793123A (en) 1987-11-16 1988-12-27 Pharo Daniel A Rolled-up packaging system and method
FR2626252B1 (en) 1988-01-26 1990-05-18 Bull Sa PACKAGING SHIM, CONTAINER FOR SUCH A SHIM AND PACKAGING METHOD USING SUCH A SHIM
DE3806271A1 (en) 1988-02-27 1989-09-07 Basf Ag THERMOPLASTIC MOLDING MATERIALS BASED ON POLYAMIDES AND ETHYLENE COPOLYMERS
US4981374A (en) 1988-09-30 1991-01-01 Rapak, Inc. Plastic bags carried in a continuous web
US4904092A (en) * 1988-10-19 1990-02-27 Mobil Oil Corporation Roll of thermoplastic bags
US4931033A (en) * 1989-02-01 1990-06-05 Equitable Bag Co., Inc. Plastic bag construction
US4922687A (en) * 1989-04-24 1990-05-08 Hewlett-Packard Company Automated packaging loose fill system
US5079901A (en) 1989-05-08 1992-01-14 Carol J. Witt Coupon inserting apparatus and method
US4969310A (en) * 1989-05-12 1990-11-13 Automated Packaging Systems, Inc. Packaging machine and method
DE3922802A1 (en) 1989-07-11 1991-01-24 Becker Rolf INFLATABLE FILM BAG, ESPECIALLY FOR PACKAGING PURPOSES AND METHOD FOR THE PRODUCTION THEREOF
US4945714A (en) 1989-11-14 1990-08-07 Package Machinery Company, Bodolay/Pratt Division Form, fill, seal and separate packaging machine for reclosable containers
US5045041A (en) 1989-12-01 1991-09-03 Sepro Healthcare Inc. Method of manufacturing a reusable fabric-covered heat-exchange bag
US5070675A (en) 1990-01-29 1991-12-10 Jen-Wei Lin Inflating and heat sealing apparatus for plastic packing bags
US5141494A (en) 1990-02-15 1992-08-25 Danforth Biomedical, Inc. Variable wire diameter angioplasty dilatation balloon catheter
US5064408A (en) * 1990-08-22 1991-11-12 Bridgeman Daniel N P Method and apparatus for producing a plurality of continuous bags
US5187917A (en) 1990-10-29 1993-02-23 Cvp Systems, Inc. Automatic packaging apparatus and method and flexible pouch therefor
ES2084651T3 (en) * 1990-11-28 1996-05-16 Crescent Holding PROCEDURE AND DEVICE FOR THE USE OF CONTAINERS DOUBLE OPPOSED CONTAINERS, FEED AS A CONTINUING TAPE TO FILLING STATIONS, AND WHICH ARE SUSCEPTIBLE TO BE SEALED BY WELDING, AS WELL AS THE PACKAGES OF THIS WAY OBTAINED.
US5094657A (en) 1990-11-29 1992-03-10 Cloud Corporation Method and apparatus for continuously forming and sealing low density polyethylene bags at high speed
US5151494A (en) * 1991-01-04 1992-09-29 Hoechst Celanese Corporation Flame resistant, low pilling polyester fiber
US5752666A (en) 1991-02-07 1998-05-19 Simhaee; Ebrahim Plastic bag roll
US5181614A (en) 1991-04-05 1993-01-26 Ridley Watts Coil dunnage and package using same
US5383837A (en) 1991-04-05 1995-01-24 Patriot Packaging Corporation Method and apparatus for making improved dunnage
US5257492A (en) 1991-04-05 1993-11-02 Patriot Packaging Corporation Dunnage, method and apparatus for making, and package using same
US5117608A (en) * 1991-04-10 1992-06-02 R. A. Jones & Co. Inc. Pouch profile detector
US5203761A (en) * 1991-06-17 1993-04-20 Sealed Air Corporation Apparatus for fabricating dunnage material from continuous web material
US5216868A (en) * 1992-01-28 1993-06-08 Andrew K. Cooper Packaging product and machine for making same
US5209761A (en) * 1992-06-03 1993-05-11 Spacelabs Medical, Inc. Liquid trap with purge port
US5272856A (en) 1992-07-30 1993-12-28 Air Packaging Technologies, Inc. Packaging device that is flexible, inflatable and reusable and shipping method using the device
US5394676A (en) * 1992-09-30 1995-03-07 Automated Packaging Systems, Inc. Packaging machine and method
US5289671A (en) * 1992-09-30 1994-03-01 Automated Packaging Systems, Inc. Packaging machine and method
US5470300A (en) 1992-09-09 1995-11-28 Ro-An Industries Corporation Web registration system and method
US5427830A (en) 1992-10-14 1995-06-27 Air Packaging Technologies, Inc. Continuous, inflatable plastic wrapping material
DE4237795A1 (en) * 1992-11-09 1994-05-11 Johnson & Johnson Gmbh Packaging material with at least one line of weakness and method and device for producing the same
US5549233A (en) 1993-01-29 1996-08-27 C. Joyce Witt Coupon inserter
JP3162231B2 (en) 1993-08-06 2001-04-25 株式会社日立製作所 Digital image display system
SE501543C2 (en) * 1993-05-05 1995-03-13 Jan Jostler Path for bag straps
SE501544C2 (en) * 1993-05-05 1995-03-13 Jan Jostler Methods and apparatus for forming and filling packages
US5454642A (en) 1993-07-16 1995-10-03 Novus Packaging Corporation Inflatable flat bag packaging cushion and methods of operating and making the same
US6726077B2 (en) 1998-04-14 2004-04-27 Gtech Corporation Ticket dispensing modules and method
JPH07165265A (en) 1993-10-28 1995-06-27 K Jasai Z Buffer protective device
US5427294A (en) 1993-11-12 1995-06-27 Reynolds Consumer Products Inc. Method and apparatus for breaking film perforations
DE69519068T2 (en) 1994-03-24 2001-03-22 Idemitsu Petrochemical Co METHOD AND DEVICE FOR PRODUCING AIR PILLOWS
JP2626879B2 (en) 1994-04-08 1997-07-02 株式会社柏原製袋 Buffer packaging bag
WO1996003603A1 (en) * 1994-07-21 1996-02-08 Nicholas Paolo De Luca Flutter valve assembly for inflatable packaging
US5552003A (en) * 1994-10-04 1996-09-03 Hoover; Gregory A. Method for producing inflated dunnage
USRE36759E (en) * 1994-10-04 2000-07-04 Automated Packaging Systems, Inc. Inflated dunnage and method for its production
US5693163A (en) 1994-10-04 1997-12-02 Hoover; Gregory A. Inflated dunnage and method for its production
DE4440660C2 (en) 1994-11-14 1998-12-03 Windmoeller & Hoelscher Separating device for separating perforated hose sections
US5651237A (en) * 1995-06-06 1997-07-29 Novus Packaging Corporation Apparatus and methodology for packaging items incorporating an inflatable packaging system
US5699653A (en) 1995-11-06 1997-12-23 Cloud Corporation Pouch machine for making maximum volume pouch
US5961020A (en) 1996-03-11 1999-10-05 Cmd Corporation Separating a web at a line of weakness
US6151716A (en) * 1996-06-11 2000-11-28 Patterson; Melanie S. Disposable paper bib
US5810200A (en) * 1996-08-09 1998-09-22 The Procter & Gamble Company Pop-up tissue package
US5743070A (en) 1996-08-16 1998-04-28 Automated Packaging Systems, Inc. Packaging machine, material and method
US5996319A (en) 1996-08-16 1999-12-07 Automated Packaging Systems, Inc. Packaging machine, material and method
US5709255A (en) * 1996-10-18 1998-01-20 Key Knife, Inc. Chipper with detachable facing knives
US5904657A (en) * 1997-02-26 1999-05-18 Unsworth; John D. System for guiding devices in body lumens
AU7116898A (en) * 1997-04-11 1998-11-11 Ebrahim Simhaee Continuous strip of plastic bags
US6609644B1 (en) 1997-09-26 2003-08-26 Instant Technologies, Inc. Method of dispensing perforated tickets
DE19808881A1 (en) 1998-03-03 1999-09-09 Focke & Co Method and device for producing packages with glued folding flaps
US6015047A (en) * 1998-04-08 2000-01-18 Greenland; Steven J. Inflatable package cushioning and method of using same
US7665394B2 (en) 1998-04-14 2010-02-23 Gtech Corporation Ticket dispensing modules and method
JP2978161B1 (en) 1998-08-24 1999-11-15 株式会社ユニオンキャップ Envelope
US6015357A (en) * 1998-12-02 2000-01-18 Rizza; Joseph D. Broadhead for use as both an expandable blade head and a fixed blade head
US6116000A (en) 1998-12-08 2000-09-12 Novus Packaging Corporation Method of and apparatus for manufacturing air-filled sheet plastic and the like
US6010090A (en) * 1998-12-11 2000-01-04 Paper Converting Machine Co. Method of perforating a web
US6519916B1 (en) * 1998-12-21 2003-02-18 Free-Flow Packaging International, Inc. System and method for conveying air-filled packing cushions
US6423166B1 (en) 1999-04-22 2002-07-23 Ebrahim Simhaee Method of making collapsed air cell dunnage suitable for inflation
US6139188A (en) 1999-04-29 2000-10-31 Marzano; Domenico Insulated transit bag
US6460313B1 (en) 1999-05-24 2002-10-08 Andrew Cooper Packaging filler product and machine for producing same
US6527147B2 (en) * 2000-12-12 2003-03-04 Automated Packaging Systems, Inc. Apparatus and process for dispensing dunnage
US6948296B1 (en) * 1999-05-20 2005-09-27 Automated Packaging Systems, Inc. Dunnage material and process
US6199349B1 (en) * 1999-05-20 2001-03-13 Automated Packaging Systems, Inc. Dunnage material and process
WO2000078522A1 (en) * 1999-06-22 2000-12-28 N.V. Soudan Patrimonium & Consulting Device and method for continuously manufacturing foam cushions for packaging purposes
SE516106C2 (en) * 2000-01-31 2001-11-19 Allgon Ab An antenna device and a method of manufacturing an antenna device
JP2001236635A (en) * 2000-02-23 2001-08-31 Fuji Photo Film Co Ltd Magnetic recording medium
US6569283B1 (en) 2000-03-15 2003-05-27 Sealed Air Corporation (Us) Inflator/sealer device for inflatable packaging cushion
DE60118724T3 (en) 2000-05-08 2010-07-01 Free-Flow Packaging International, Inc., Redwood City DEVICE FOR PRODUCING AIR CUSHIONS
US6431361B1 (en) 2000-08-25 2002-08-13 Aeropak, Llc Container paneling for forming pneumatically padded boxes and padded box construction
AU772208B2 (en) 2000-10-06 2004-04-22 Northfield Corporation Web Burster/inserter
WO2002072354A2 (en) 2000-11-08 2002-09-19 Sharp Packaging Systems, Inc. Continuous strip bag feeder and loader with integrated printer assembly
USD490711S1 (en) * 2000-11-21 2004-06-01 Free-Flow Packaging International, Inc. Inflatable packing material
USD513182S1 (en) 2000-11-21 2005-12-27 Free-Flow Packaging International, Inc. Inflatable packing material
US6755568B2 (en) 2000-12-21 2004-06-29 Cargo Technology, Inc. Inflatable insulating liners for shipping containers and method of manufacture
US6550229B2 (en) 2001-01-12 2003-04-22 Sealed Air Corporation (Us) Device for sealing two plies of film together, particularly for enclosing a foamable composition in a flexible container
US6682622B2 (en) 2001-01-12 2004-01-27 Roni-Pal Ltd. Cellular cushioning material and a method for its production
US7621810B2 (en) 2001-02-27 2009-11-24 Scientific Games International, Inc. System and method for selling lottery game tickets through a point of sale system
US6899621B2 (en) 2001-02-27 2005-05-31 William F. Behm System and method for selling lottery game tickets
JP2003002368A (en) 2001-06-20 2003-01-08 Kawakami Sangyo Co Ltd Cushion envelope and package body using the same
JP2003022961A (en) 2001-07-10 2003-01-24 Nikon Corp Alignment mark, reticle for charged particle beam aligner and charged particle beam exposing method
US6800162B2 (en) 2001-08-22 2004-10-05 Sealed Air Corporation (Us) Integrated process for making inflatable article
US6543201B2 (en) 2001-09-07 2003-04-08 Automated Packaging Systems, Inc. Individual package bagger and process
US20030051440A1 (en) * 2001-09-13 2003-03-20 Preco Laser Systems, Llc Method of creating easy-open load carrying bags
AU2002365970A1 (en) 2001-11-16 2003-06-10 3M Innovative Properties Company Inflatable packaging system
DE10160408C2 (en) 2001-12-10 2003-11-06 Johannes Loersch Gas filled packing
GB2384459A (en) 2002-01-25 2003-07-30 John Stuart Greenwood Manufacture of air cushions from tubing with a gas injector continuously within the tubing
US7641960B2 (en) 2002-06-05 2010-01-05 Green Magic Wrap Packaging Solutions, Ltd. Cellular cushioned material
US20040000581A1 (en) 2002-06-20 2004-01-01 Sealed Air Corporation (Us) Polypropylene/cushioned envelope
US20040022457A1 (en) 2002-08-01 2004-02-05 Blake Allen Brown Plurality of bags and method of making the same
US6871755B2 (en) 2002-08-29 2005-03-29 Schafer Systems Inc. Ticket counting dispenser
CN100425513C (en) 2002-09-04 2008-10-15 株式会社Suna.化研 Cushioning packaging body containing packaged article, and method and device for manufacturing the packaging body
USD480646S1 (en) 2002-09-17 2003-10-14 Free-Flow Packaging International, Inc. Inflatable packing material
USD480971S1 (en) 2002-09-17 2003-10-21 Free-Flow Packaging International, Inc. Inflatable packing material
US6932134B2 (en) 2003-02-07 2005-08-23 Pactiv Corporation Devices and methods for manufacturing packaging materials
US20040173073A1 (en) 2003-03-04 2004-09-09 Wilkes Kenneth R. Pouch machine with a rotary die cutter
US7331542B2 (en) 2003-05-09 2008-02-19 Intellipack Film unwind system with hinged spindle and electronic control of web tension
JP3639834B2 (en) 2003-05-19 2005-04-20 キヤノン株式会社 Packing member, packing method using packing member, and manufacturing method of packing member
JP4272941B2 (en) 2003-07-16 2009-06-03 株式会社柏原製袋 Air-filled cushioning material and method for manufacturing the same
FR2860903B1 (en) 2003-10-14 2006-05-05 Adequa Systems Sarl DEVICE FOR DELIVERING A NUMBER OF PRE-PRINTED TICKETS, LOTTERY TICKETS, IN PARTICULAR
US7467738B2 (en) 2003-11-13 2008-12-23 Gtech Corporation Lottery ticket dispenser and ticket bin
US20050132672A1 (en) 2003-12-17 2005-06-23 Hershey Lerner Packaging machine and process
US7897219B2 (en) 2004-06-01 2011-03-01 Automated Packaging Systems, Inc. Web and method for making fluid filled units
US7571584B2 (en) * 2004-06-01 2009-08-11 Automated Packaging Systems, Inc. Web and method for making fluid filled units
US7059794B2 (en) 2004-06-28 2006-06-13 Transact Technologies Incorporated Methods and apparatus for bursting perforated paper stock
US7578333B2 (en) 2004-07-20 2009-08-25 Pregis Corporation Machine and methods for the manufacture of air-filled cushions
JP2006069641A (en) 2004-09-03 2006-03-16 Fujimori Kogyo Co Ltd Heat seal device, filling and closing device, heat seal method, filling and closing method and bag making filling device
US8020358B2 (en) * 2004-11-02 2011-09-20 Sealed Air Corporation (Us) Apparatus and method for forming inflated containers
US7621104B2 (en) 2005-01-31 2009-11-24 Sealed Air Corporation (Us) Inflatable mailer, apparatus and method for preparing the same
US7553772B1 (en) * 2005-01-31 2009-06-30 Lsi Corporation Process and apparatus for simultaneous light and radical surface treatment of integrated circuit structure
US7165375B2 (en) * 2005-02-05 2007-01-23 Sealed Air Corporation (Us) Inflation device for forming inflated containers
US20060218879A1 (en) 2005-03-31 2006-10-05 Sealed Air Corporation (Us) Apparatus for forming inflated packaging cushions
US7225599B2 (en) * 2005-04-05 2007-06-05 Sealed Air Corporation Apparatus and method for forming inflated articles
US20090293427A1 (en) 2005-08-01 2009-12-03 Automated Packaging Systems, Inc. Web and method for making fluid filled units
US20070084322A1 (en) * 2005-10-19 2007-04-19 Interwrap Inc. Apparatus for cutting a line of perforation in a fabric
US7533772B2 (en) * 2005-10-20 2009-05-19 Air- Paq, Inc. Structure of air-packing device
US20070100076A1 (en) * 2005-10-28 2007-05-03 Hayes Richard A High modulus ionomers for packaging
US7607911B2 (en) 2006-04-26 2009-10-27 Sealed Air Corporation (Us) Method and apparatus for making foam-in-place cushions with selective distribution of foam
US7513090B2 (en) 2006-07-11 2009-04-07 Automated Packaging Systems, Inc. Apparatus and method for making fluid filled units
EP2084066B1 (en) 2006-09-20 2013-05-29 Pregis Innovative Packaging Inc. Inflation and sealing device for inflatable air cushions
US20080175522A1 (en) 2007-01-18 2008-07-24 Chin-Hsin Chuang Packing bag having a drawing structure
US7540125B2 (en) 2007-03-26 2009-06-02 Northfield Corporation Bursting apparatus and method
US7712287B2 (en) 2007-05-22 2010-05-11 Gallimore Industries, Inc. Coupon insertion apparatus and method
WO2009036237A1 (en) 2007-09-12 2009-03-19 Automated Packaging Systems, Inc. Packaging machine
USD599118S1 (en) 2007-10-10 2009-09-01 Free-Flow Packaging International, Inc. Inflatable packing material
US8061110B2 (en) 2007-10-12 2011-11-22 Pregis Innovative Packaging, Inc. Inflation and sealing device with disengagement mechanism
US7603830B2 (en) 2008-01-28 2009-10-20 Carol Joyce Witt Apparatus for automatic belt pressure adjustment for coupon separation
IT1390687B1 (en) 2008-07-11 2011-09-13 Fill Teck S R L MACHINE FOR THE PRODUCTION OF MATERIAL FOR PACKAGING IN THE FORM OF AIR CUSHIONS, OR OTHER GAS, AND ITS METHOD
USD596031S1 (en) 2008-10-03 2009-07-14 Automated Packaging Systems, Inc. Inflatable packing material
US7950433B2 (en) 2009-02-12 2011-05-31 Sealed Air Corporation (Us) Machine for inflating and sealing an inflatable web
US9205622B2 (en) 2009-02-27 2015-12-08 Automated Packaging Systems, Inc. Web and method for making fluid filled units
JP2010247900A (en) 2009-03-25 2010-11-04 Yasuzumi Tanaka Cushioning medium manufacturing device, material comprising multiple sheets to be worked, and manufacturing device of the material
US8745960B2 (en) 2009-05-05 2014-06-10 Sealed Air Corporation (Us) Apparatus and method for inflating and sealing an inflatable mailer
US8568029B2 (en) 2009-05-05 2013-10-29 Sealed Air Corporation (Us) Inflatable mailer, apparatus, and method for making the same
JP2011025981A (en) 2009-07-28 2011-02-10 Izumi:Kk Cushioning-packaging material
US8276797B2 (en) 2009-09-04 2012-10-02 Insight Promotions, Llc Premium separator with contoured spaced-apart belt
US20110167772A1 (en) 2010-01-08 2011-07-14 Sealed Air Corporation (Us) Heat-seal device
JP5469484B2 (en) 2010-03-03 2014-04-16 セイコーインスツル株式会社 Near-field light utilizing head gimbal assembly and information recording / reproducing apparatus including the same
JP4504462B1 (en) 2010-03-18 2010-07-14 アジアハイテックス株式会社 Air shock absorber manufacturing equipment
US8572786B2 (en) 2010-10-12 2013-11-05 Reebok International Limited Method for manufacturing inflatable bladders for use in footwear and other articles of manufacture
US8887978B2 (en) 2011-02-21 2014-11-18 Automated Packaging Systems, Inc. Packaging machine and process
US20140130461A1 (en) 2011-06-22 2014-05-15 Pronova Ab Device for producing shock-absorbing inflatable package and method for filling it
US8568283B2 (en) 2011-09-06 2013-10-29 The Glad Products Company Method for inserting a first folded film within a second folded film
US9315319B2 (en) 2012-01-25 2016-04-19 The Glad Products Company Continuous process for trash bag with inner bag
US20130216788A1 (en) 2012-02-16 2013-08-22 Sealed Air Corporation (Us) Fan-Folded Cellular Cushioning Article
US10695822B2 (en) 2012-07-13 2020-06-30 Atlas Copco Ias Uk Limited Blind riveting apparatus and methods
AU2014232790B2 (en) 2013-03-15 2018-08-02 Automated Packaging Systems, Inc. On-demand inflatable packaging
US9969136B2 (en) 2013-04-19 2018-05-15 Sealed Air Corporation (Us) Inflatable pouches

Patent Citations (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2153214A (en) * 1936-10-03 1939-04-04 Warner Bros Pressure pad
US3618286A (en) * 1970-06-08 1971-11-09 Hercules Membrino Bag filling sealing and separating system
US3791573A (en) * 1971-11-15 1974-02-12 Basic Packaging Sys Inc Bag construction
US4021283A (en) * 1974-01-24 1977-05-03 Weikert Roy J Method of making aseptic packaging
US4245796A (en) * 1979-06-15 1981-01-20 Chromalloy American Corporation System for handling flexible sheet rolls
US4493684A (en) * 1982-10-04 1985-01-15 W. R. Grace & Co., Cryovac Div. Method for making partially separated multibags
US4664577A (en) * 1984-07-18 1987-05-12 Vincenza Bonali Apparatus for stacking generic sheet-like elements such as sheets, hides, boards, and the like
US4616472A (en) * 1985-10-10 1986-10-14 W. R. Grace & Co., Cryovac Div. Method and apparatus for loading side-seal bags
US5041317A (en) * 1988-05-13 1991-08-20 Greyvenstein Lourence C J Perforated material
US5340632A (en) * 1991-05-03 1994-08-23 Michel Chappuis Padding element for the packing of objects and device for the manufacturing of the same
US5307969A (en) * 1992-11-27 1994-05-03 Menendez Vincent M Bag dispensing apparatus
US5733045A (en) * 1993-05-05 1998-03-31 Joker System Aktiebolag Web for package blanks and method
US20010014980A1 (en) * 1996-06-11 2001-08-23 Melanie Patterson Disposable paper bib
US5722218A (en) * 1996-08-16 1998-03-03 Automated Packaging Systems, Inc. Plastic transport system
US20020155246A1 (en) * 1998-02-02 2002-10-24 Fort James Corporation Sheet material having weakness zones and a system for dispensing the material
US6447864B2 (en) * 1998-02-02 2002-09-10 Fort James Corporation Sheet material having weakness zones and a system for dispensing the material
US6209286B1 (en) * 1999-03-09 2001-04-03 Novus Packaging Corporation Machine and method for manufacturing a continuous production of pneumatically filled inflatable packaging pillows
US6751926B1 (en) * 1999-05-11 2004-06-22 Andrew Cooper Packaging filler product and machine for producing same
US20010000719A1 (en) * 1999-05-20 2001-05-03 Automated Packaging Systems, Inc. Dunnage material and process
US6368689B1 (en) * 1999-07-08 2002-04-09 Kimberly-Clark Worldwide, Inc. Perforated centerflow rolled product
US6582800B2 (en) * 2000-01-20 2003-06-24 Free-Flow Packaging International, Inc. Method for making pneumatically filled packing cushions
US6786022B2 (en) * 2000-01-20 2004-09-07 Free-Flow Packaging International, Inc. System, method and material for making pneumatically filled packing cushions
US20010013215A1 (en) * 2000-01-20 2001-08-16 Fuss Gunter G. System, method and material for making pneumatically filled packing cushions
US20030089082A1 (en) * 2000-01-20 2003-05-15 Free-Flow Packaging International, Inc. System, method and material for making pneumatically filled packing cushions
US20020108697A1 (en) * 2000-08-14 2002-08-15 Free-Flow Packaging International, Inc. Methods and apparatus for inflating and sealing pillows in packaging
US6488222B1 (en) * 2000-08-18 2002-12-03 Larry G. West Bag dispensing system and C-fold bag used therewith
US6952910B1 (en) * 2000-09-27 2005-10-11 Loersch Johannes Gas filled bodies
US6696127B1 (en) * 2000-11-13 2004-02-24 Translucent Technologies Llc Differential perforation pattern for dispensing print media
US20020150730A1 (en) * 2000-11-21 2002-10-17 Free-Flow Packaging International, Inc. Inflatable, cushioning, bubble wrap product having multiple, interconnected, bubble structures
US20030109369A1 (en) * 2000-12-12 2003-06-12 Automated Packaging Systems, Inc. Dunnage material and process
US6651406B2 (en) * 2001-02-13 2003-11-25 Sealed Air Corporation (Us) Apparatus and method for forming inflated containers
US20020174629A1 (en) * 2001-05-24 2002-11-28 Automated Packaging Systems, Inc. Packaging web and process
US6635145B2 (en) * 2001-06-11 2003-10-21 Andrew Cooper Packaging filler product
US7550191B2 (en) * 2003-04-08 2009-06-23 Automated Packaging Systems, Inc. Web for fluid filled unit formation
US6955846B2 (en) * 2003-04-08 2005-10-18 Automated Packaging Systems Web for fluid filled unit information
US7125463B2 (en) * 2003-04-08 2006-10-24 Automated Packaging Systems, Inc. Fluid filled unit formation machine and process
US6889739B2 (en) * 2003-04-08 2005-05-10 Automated Packaging Systems, Inc. Fluid filled unit formation machine and process
US7718028B2 (en) * 2003-04-08 2010-05-18 Automated Packaging Systems, Inc. Fluid filled unit formation process
US7767288B2 (en) * 2003-04-08 2010-08-03 Automated Packaging Systems, Inc. Web for fluid filled unit formation
US8038348B2 (en) * 2003-04-08 2011-10-18 Automated Packaging, Systems, Inc. Fluid filled units
US20040265523A1 (en) * 2003-06-28 2004-12-30 Yoshihiro Koyanagi Structure of fluid container and method and apparatus for producing the fluid container
US8357439B2 (en) * 2004-06-01 2013-01-22 Automated Packaging Systems, Inc. Web and method for making fluid filled units
US8425994B2 (en) * 2004-06-01 2013-04-23 Automated Packaging Systems, Inc. Web and method for making fluid filled units
US7153090B2 (en) * 2004-12-17 2006-12-26 General Electric Company System and method for passive load attenuation in a wind turbine
US8354150B2 (en) * 2007-10-31 2013-01-15 Automated Packaging Systems, Inc. Web and method for making fluid filled units
USD646972S1 (en) * 2009-02-27 2011-10-18 Automated Packaging Systems, Inc. Inflatable packing material
US20130011510A1 (en) * 2011-07-07 2013-01-10 Automated Packaging Systems, Inc. Air cushion inflation machine

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10391733B2 (en) 2004-06-01 2019-08-27 Automated Packaging Systems, Inc. Method for making fluid filled units
US10730260B2 (en) 2004-06-01 2020-08-04 Automated Packaging Systems, Llc Web and method for making fluid filled units
US10618243B2 (en) 2007-10-31 2020-04-14 Automated Packaging Systems, Llc Web and method for making fluid filled units
US10220590B2 (en) 2010-02-24 2019-03-05 Michael Baines Packaging materials and methods
US9623622B2 (en) 2010-02-24 2017-04-18 Michael Baines Packaging materials and methods
US10377098B2 (en) 2011-07-07 2019-08-13 Automated Packaging Systems, Inc. Air cushion inflation machine
US9266300B2 (en) 2011-07-07 2016-02-23 Automated Packaging Systems, Inc. Air cushion inflation machine
EP3138687A1 (en) 2011-07-07 2017-03-08 Automated Packaging Systems, Inc. Air cushion inflation machine and method
US10647460B2 (en) 2013-03-15 2020-05-12 Automated Packaging Systems, Llc On-demand inflatable packaging
US11572225B2 (en) 2013-03-15 2023-02-07 Automated Packaging Systems, Llc On-demand inflatable packaging
WO2020072727A1 (en) 2018-10-04 2020-04-09 Automated Packaging Systems, Llc Air cushion inflation machine
US11207847B2 (en) 2018-10-04 2021-12-28 Automated Packaging Systems, Llc Air cushion inflation machine
US11731372B2 (en) 2018-10-04 2023-08-22 Sealed Air Corporation (Us) Air cushion inflation machine
US20230022932A1 (en) * 2021-07-23 2023-01-26 Chun-Wei Lin Gas cushion bag

Also Published As

Publication number Publication date
US20050266189A1 (en) 2005-12-01
PL1751009T3 (en) 2017-07-31
CA2569049A1 (en) 2005-12-15
EP1751009B1 (en) 2016-10-12
US20070054075A1 (en) 2007-03-08
EP3150369A2 (en) 2017-04-05
EP1751009A4 (en) 2011-08-31
US20070054074A1 (en) 2007-03-08
US20110165352A1 (en) 2011-07-07
EP3150369A3 (en) 2017-06-07
US8425994B2 (en) 2013-04-23
CA2836113A1 (en) 2005-12-15
US20130299377A1 (en) 2013-11-14
WO2005118408A3 (en) 2007-06-07
CA2836113C (en) 2015-05-26
US8357439B2 (en) 2013-01-22
EP1751009A2 (en) 2007-02-14
EP3150369B1 (en) 2020-03-18
CA2569049C (en) 2014-02-18
US7757459B2 (en) 2010-07-20
US7897220B2 (en) 2011-03-01
ES2608877T3 (en) 2017-04-17
US20150210031A1 (en) 2015-07-30
WO2005118408A2 (en) 2005-12-15
HUE032732T2 (en) 2017-10-30
US10391733B2 (en) 2019-08-27

Similar Documents

Publication Publication Date Title
US10391733B2 (en) Method for making fluid filled units
US10618243B2 (en) Web and method for making fluid filled units
US7897219B2 (en) Web and method for making fluid filled units
US9598216B2 (en) Web and method for making fluid filled units

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION