US20100287915A1 - Integrated PM Filter and SCR Catalyst for Lean Burn Engine - Google Patents

Integrated PM Filter and SCR Catalyst for Lean Burn Engine Download PDF

Info

Publication number
US20100287915A1
US20100287915A1 US12/464,996 US46499609A US2010287915A1 US 20100287915 A1 US20100287915 A1 US 20100287915A1 US 46499609 A US46499609 A US 46499609A US 2010287915 A1 US2010287915 A1 US 2010287915A1
Authority
US
United States
Prior art keywords
catalyst
channels
inlet channels
scr
outlet channels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/464,996
Inventor
Rijing Zhan
Phillip A. Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Research Institute SwRI
Original Assignee
Southwest Research Institute SwRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Research Institute SwRI filed Critical Southwest Research Institute SwRI
Priority to US12/464,996 priority Critical patent/US20100287915A1/en
Assigned to SOUTHWEST RESEARCH INSTITUTE reassignment SOUTHWEST RESEARCH INSTITUTE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WEBER, PHILLIP A., ZHAN, RIJING
Publication of US20100287915A1 publication Critical patent/US20100287915A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This invention relates to reducing exhaust emissions from lean burn internal combustion engines, and more particularly to an emissions control device that integrates the functions of particulate matter and NOx reduction.
  • the main pollutants of concern are oxides of nitrogen (NOx) and particulate matter (PM).
  • NOx oxides of nitrogen
  • PM particulate matter
  • the latter is composed of black smoke (soot), sulfates generated by sulfur in fuel, and components of unburned fuel and oil.
  • LNTs lean NOx traps
  • LNCs lean NOx catalysts
  • SCR catalysts selective catalytic reduction
  • PM filters have been developed with catalyst material coated on the filter. These filters are known as “catalyzed particulate filters”.
  • NOx reduction devices and DPFs may be used alone or together, with either or both being used downstream of the engine, in the exhaust line.
  • FIG. 1 illustrates a lean burn engine system having a PM-SCR catalyst in accordance with the invention.
  • FIG. 2 is a side view of the PM-SCR catalyst.
  • FIG. 3 is a perspective view of the exit face of the PM-SCR catalyst.
  • FIG. 4 is a partial sectional view of the PM-SCR catalyst, illustrating the coated inlet and outlet channels.
  • the following description is directed to an emissions aftertreatment device, for use in the exhaust system of a lean burn engine, which integrates the functions of a PM filter and SCR catalyst. It is referred to herein as a “PM-SCR catalyst”.
  • An advantage of the PM-SCR catalyst is that it reduces PM and NOx emissions simultaneously with a single device. It is available in a compact package, and minimizes the space requirements for effective emissions aftertreatment.
  • FIG. 1 illustrates a lean burn engine system, generally identified as 10 , having a PM-SCR catalyst 11 in accordance with the invention.
  • system 10 has a diesel engine 12 , an exhaust gas recirculation (EGR) loop 13 , and is an air-boosted system having a turbocharger 26 .
  • EGR exhaust gas recirculation
  • Examples of lean burn engines other than diesel engines are gasoline direct injection (GDI) engines and some alternative-fueled engines.
  • GDI gasoline direct injection
  • the direction of flow of exhaust gas through the EGR loop is indicated by directional arrows in FIG. 1 .
  • Exhaust gas discharged from the engine's exhaust manifold 14 is directed through the EGR loop, which may include a filter and/or heat exchanger (not shown).
  • the recirculated exhaust gas flows to an EGR valve 18 , and then to the engine's intake manifold 22 where it is mixed with fresh air supplied via intake duct 24 .
  • the engine's intake air is compressed by the turbocharger's compressor 26 a, which is mechanically driven by its turbine 26 b.
  • the compressed air discharged from the compressor 26 a is cooled through an intercooler 30 positioned between the compressor 26 a and the intake manifold 22 .
  • PM-SCR catalyst 11 is located downstream of the turbocharger compressor. As explained below in connection with FIGS. 2-4 , the engine's exhaust is treated by catalyst 11 , which reduces both PM and NOx in the exhaust. The treated exhaust exits the catalyst 11 into the atmosphere (or into other downstream aftertreatment devices not shown).
  • Control unit 20 may be processor-based, programmed to control various aspects of engine operation. In general, control unit 20 may be implemented with various controller devices known or to be developed. Further, control unit 20 may be part of a more comprehensive engine control unit that controls various other engine and/or emissions devices.
  • FIGS. 2-4 illustrate PM-SCR catalyst 11 in further detail.
  • catalyst 11 is a dual-coated wall-flow device, which simultaneously reduces both PM and NOx emissions from a lean burn engine.
  • catalyst 11 comprises a number of longitudinal walls between an entry face 31 and exit face 32 . These walls define channels 201 and 202 , such that the end faces of catalyst 11 form a honeycomb pattern.
  • Inlet channels 201 are open at the entry face and closed (plugged) at the exit face; outlet channels 202 are closed (plugged) at the entry face and open at the exit face. Exhaust enters the open ends of the inlet channels at entry face 31 , and exits the open ends of the outlet channels at exit face 32 .
  • the number of inlet channels and the number of outlet channel are substantially equal. Their respective ends are plugged in an alternating pattern, such that the entry and exit faces form a checkerboard pattern.
  • wall flow is meant that the exhaust gas flows through the inlet channels 201 to their dead ends. PM particles are filtered by the porous walls of the inlet channels 201 , and deposit themselves in these channels 201 . After the exhaust passes through the walls of the inlet channels 201 , it exits the catalyst via the outlet channels 202 .
  • the porous material comprising the longitudinal channels 201 and 202 is referred to herein as the “substrate” material.
  • the material that plugs the ends of the channels is typically made from, and coated with, the same substrate material.
  • the substrate material may be any material suitable for internal combustion engine filtering applications, such as cordierite, silicon carbine, aluminum titanate, and metal fiber. This material is referred to herein as “particulate matter filter material”.
  • the catalytic function of catalyst 11 is achieved by coating the substrate.
  • the inlet channels 201 are coated with a PM catalyst; the outlet channels 202 are coated with an SCR catalyst.
  • the inlet channels 201 are coated with a catalytic material capable of enhancing PM oxidation reactions.
  • a catalytic material capable of enhancing PM oxidation reactions.
  • coatings are coatings containing one or more active elements such as platinum, palladium, rhodium, cerium, zirconium, cobalt, and iron. These coatings are referred to herein as “PM catalyst” coatings.
  • PM catalyst When NO 2 is available, NOx induced passive PM reduction or filter regeneration can occur.
  • the outlet channels 202 are coated with an SCR catalyst capable of NOx reduction.
  • Catalyst formulations of this type typically contain a zeolite-based catalyst, such as Cu-zeolite SCR, Fe-zeolite SCR, vanadium-based SCR (contains V 2 O 5 , WO 3 , and TiO 2 ), or any other catalyst with the function of selective reduction of NOx. These coatings are referred to herein as “SCR catalyst” coatings.
  • SCR catalyst coatings.
  • PM filter regeneration can be performed at relatively higher temperatures, such as 750 degrees C. and higher.
  • exhaust subjected to the coated surface of the inlet channels 201 undergoes reduction and filtering of PM.
  • Exhaust subjected to the coated surface of the outlet channels 202 undergoes selective catalytic reduction (SCR), which converts NOx into nitrogen and water.
  • SCR selective catalytic reduction
  • catalyst 11 can be used as a standalone unit, or as a catalyst component in a multiple unit exhaust aftertreatment system.
  • a diesel oxidation catalyst (DOC) 29 may optionally be placed upstream of catalyst 11 (relative to the exhaust flow).
  • the DOC 29 converts exhaust nitric oxide (NO) to NO 2 using excess exhaust oxygen. Because catalyst 29 helps to oxidize NO to NO 2 , accumulated PM can be oxidized at a lower temperature. Catalyst 29 also increases NOx conversion efficiency of the outlet channels 202 .

Abstract

A wall-flow exhaust gas emissions aftertreatment device for simultaneously reducing the particulate matter and NOx content of the exhaust. The device comprises a number of longitudinal inlet channels and outlet channels, the inlet channels being plugged at the exit face, and the outlet channels being plugged at the entry face. The interiors of the inlet channels are coated with a particulate matter catalyst coating, and the interiors of the outlet channels are coated with a selective catalyst reduction catalyst coating.

Description

    TECHNICAL FIELD OF THE INVENTION
  • This invention relates to reducing exhaust emissions from lean burn internal combustion engines, and more particularly to an emissions control device that integrates the functions of particulate matter and NOx reduction.
  • BACKGROUND OF THE INVENTION
  • Internal combustion engines used for both mobile and stationary applications are subject to strict emission limits. Approaches to reducing emissions include improved in-cylinder combustion designs or fuel modifications, but these improvements have fallen short of meeting emissions limits. Other approaches involve the use of exhaust aftertreatment devices, which have achieved significant emissions reductions.
  • For lean burn internal combustion engines, such as diesel engines, the main pollutants of concern are oxides of nitrogen (NOx) and particulate matter (PM). The latter is composed of black smoke (soot), sulfates generated by sulfur in fuel, and components of unburned fuel and oil.
  • To reduce NOx, one approach is the use of NOx reduction devices, such as lean NOx traps (LNTs), lean NOx catalysts (LNCs), and selective catalytic reduction (SCR) catalysts. For most heavy-duty engines, and for some medium-duty and light-duty engines, SCR catalysts are preferred over other NOx reduction devices due to their high efficiency and reduced sensitivity to lubricant oil poisoning.
  • To reduce PM, one approach is the use of various types of diesel particulate filters (DPFs). PM filters have been developed with catalyst material coated on the filter. These filters are known as “catalyzed particulate filters”.
  • NOx reduction devices and DPFs may be used alone or together, with either or both being used downstream of the engine, in the exhaust line.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:
  • FIG. 1 illustrates a lean burn engine system having a PM-SCR catalyst in accordance with the invention.
  • FIG. 2 is a side view of the PM-SCR catalyst.
  • FIG. 3 is a perspective view of the exit face of the PM-SCR catalyst.
  • FIG. 4 is a partial sectional view of the PM-SCR catalyst, illustrating the coated inlet and outlet channels.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The following description is directed to an emissions aftertreatment device, for use in the exhaust system of a lean burn engine, which integrates the functions of a PM filter and SCR catalyst. It is referred to herein as a “PM-SCR catalyst”.
  • An advantage of the PM-SCR catalyst is that it reduces PM and NOx emissions simultaneously with a single device. It is available in a compact package, and minimizes the space requirements for effective emissions aftertreatment.
  • FIG. 1 illustrates a lean burn engine system, generally identified as 10, having a PM-SCR catalyst 11 in accordance with the invention. In the illustrative embodiment, system 10 has a diesel engine 12, an exhaust gas recirculation (EGR) loop 13, and is an air-boosted system having a turbocharger 26. Examples of lean burn engines other than diesel engines are gasoline direct injection (GDI) engines and some alternative-fueled engines.
  • The direction of flow of exhaust gas through the EGR loop is indicated by directional arrows in FIG. 1. Exhaust gas discharged from the engine's exhaust manifold 14 is directed through the EGR loop, which may include a filter and/or heat exchanger (not shown). The recirculated exhaust gas flows to an EGR valve 18, and then to the engine's intake manifold 22 where it is mixed with fresh air supplied via intake duct 24.
  • The engine's intake air is compressed by the turbocharger's compressor 26 a, which is mechanically driven by its turbine 26 b. Desirably, the compressed air discharged from the compressor 26 a is cooled through an intercooler 30 positioned between the compressor 26 a and the intake manifold 22.
  • PM-SCR catalyst 11 is located downstream of the turbocharger compressor. As explained below in connection with FIGS. 2-4, the engine's exhaust is treated by catalyst 11, which reduces both PM and NOx in the exhaust. The treated exhaust exits the catalyst 11 into the atmosphere (or into other downstream aftertreatment devices not shown).
  • Control unit 20 may be processor-based, programmed to control various aspects of engine operation. In general, control unit 20 may be implemented with various controller devices known or to be developed. Further, control unit 20 may be part of a more comprehensive engine control unit that controls various other engine and/or emissions devices.
  • FIGS. 2-4 illustrate PM-SCR catalyst 11 in further detail. As explained below, catalyst 11 is a dual-coated wall-flow device, which simultaneously reduces both PM and NOx emissions from a lean burn engine.
  • Referring particularly to FIGS. 3 and 4, catalyst 11 comprises a number of longitudinal walls between an entry face 31 and exit face 32. These walls define channels 201 and 202, such that the end faces of catalyst 11 form a honeycomb pattern.
  • Inlet channels 201 are open at the entry face and closed (plugged) at the exit face; outlet channels 202 are closed (plugged) at the entry face and open at the exit face. Exhaust enters the open ends of the inlet channels at entry face 31, and exits the open ends of the outlet channels at exit face 32.
  • Typically, the number of inlet channels and the number of outlet channel are substantially equal. Their respective ends are plugged in an alternating pattern, such that the entry and exit faces form a checkerboard pattern.
  • By “wall flow” is meant that the exhaust gas flows through the inlet channels 201 to their dead ends. PM particles are filtered by the porous walls of the inlet channels 201, and deposit themselves in these channels 201. After the exhaust passes through the walls of the inlet channels 201, it exits the catalyst via the outlet channels 202.
  • The porous material comprising the longitudinal channels 201 and 202 is referred to herein as the “substrate” material. The material that plugs the ends of the channels is typically made from, and coated with, the same substrate material. The substrate material may be any material suitable for internal combustion engine filtering applications, such as cordierite, silicon carbine, aluminum titanate, and metal fiber. This material is referred to herein as “particulate matter filter material”.
  • The catalytic function of catalyst 11 is achieved by coating the substrate. The inlet channels 201 are coated with a PM catalyst; the outlet channels 202 are coated with an SCR catalyst.
  • More specifically, the inlet channels 201 are coated with a catalytic material capable of enhancing PM oxidation reactions. Examples of such coatings are coatings containing one or more active elements such as platinum, palladium, rhodium, cerium, zirconium, cobalt, and iron. These coatings are referred to herein as “PM catalyst” coatings. When NO2 is available, NOx induced passive PM reduction or filter regeneration can occur.
  • The outlet channels 202 are coated with an SCR catalyst capable of NOx reduction. Catalyst formulations of this type typically contain a zeolite-based catalyst, such as Cu-zeolite SCR, Fe-zeolite SCR, vanadium-based SCR (contains V2O5, WO3, and TiO2), or any other catalyst with the function of selective reduction of NOx. These coatings are referred to herein as “SCR catalyst” coatings. When a zeolite SCR catalyst is used, PM filter regeneration can be performed at relatively higher temperatures, such as 750 degrees C. and higher.
  • In operation, exhaust subjected to the coated surface of the inlet channels 201 undergoes reduction and filtering of PM. Exhaust subjected to the coated surface of the outlet channels 202 undergoes selective catalytic reduction (SCR), which converts NOx into nitrogen and water.
  • With these two types of channels, catalyst 11 can be used as a standalone unit, or as a catalyst component in a multiple unit exhaust aftertreatment system.
  • Referring again to FIG. 2, a diesel oxidation catalyst (DOC) 29 may optionally be placed upstream of catalyst 11 (relative to the exhaust flow). The DOC 29 converts exhaust nitric oxide (NO) to NO2 using excess exhaust oxygen. Because catalyst 29 helps to oxidize NO to NO2, accumulated PM can be oxidized at a lower temperature. Catalyst 29 also increases NOx conversion efficiency of the outlet channels 202.

Claims (16)

1. A wall-flow exhaust gas emissions aftertreatment device for simultaneously reducing the particulate matter and NOx content of the exhaust, comprising:
a wall-flow substrate having an entry face and an exit face and a plurality of longitudinal and parallel walls between the entry face and the exit face, the walls defining inlet channels and outlet channels;
the substrate being made from a particulate matter filter material;
the inlet channels being plugged at the exit face, and the outlet channels being plugged at the entry face;
wherein the interiors of the inlet channels are coated with a particulate matter catalyst coating; and
wherein the interiors of the outlet channels are coated with a selective catalyst reduction catalyst coating.
2. The device of claim 1, wherein the substrate is made from one of the following materials: cordierite, silicon carbine, aluminum titanate, or metal fiber.
3. The device of claim 1, wherein the PM catalyst is made from one or more of the following materials: platinum, palladium, rhodium, cerium, zirconium, cobalt, or iron.
4. The device of claim 1, wherein the SCR catalyst is a zeolite-based catalyst.
5. The device of claim 1, wherein the SCR catalyst is made from one of the following materials: Cu-zeolite SCR, Fe-zeolite SCR, or vanadium-based SCR.
6. The device of claim 1, wherein the number of inlet channels and the number of outlet channels are substantially equal.
7. The device of claim 1, wherein the respective ends of the inlet channels and outlet channels are plugged in an alternating pattern, such that the entry and exit faces form a checkerboard pattern.
8. An exhaust gas aftertreatment method for simultaneously reducing the particulate matter and NOx content of the exhaust gas, comprising:
directing the exhaust gas to a PM-SCR catalyst having a wall-flow substrate, the substrate having an entry face and an exit face and a plurality of longitudinal and parallel walls between the entry face and the exit face, the walls defining inlet channels and outlet channels;
the substrate being made from a particulate matter filter material;
the inlet channels being plugged at the exit face, and the outlet channels being plugged at the entry face;
wherein the interiors of the inlet channels are coated with a particulate matter catalyst coating;
wherein the interiors of the outlet channels are coated with a selective catalyst reduction catalyst coating; and
8. An exhaust gas aftertreatment method for simultaneously reducing the particulate matter and NOx content of the exhaust gas, comprising:
directing the exhaust gas to a PM-SCR catalyst having a wall-flow substrate, the substrate having an entry face and an exit face and a plurality of longitudinal and parallel walls between the entry face and the exit face, the walls defining inlet channels and outlet channels;
the substrate being made from a particulate matter filter material;
the inlet channels being plugged at the exit face, and the outlet channels being plugged at the entry face;
wherein the interiors of the inlet channels are coated with a particulate matter catalyst coating;
wherein the interiors of the outlet channels are coated with a selective catalyst reduction catalyst coating; and
passing the gas into the entry face such that it travels into the inlet channels, through the coated walls of the inlet channels into the outlet channels, and out of the device via the exit face.
9. The method of claim 8, further comprising the step of directing the exhaust gas through an oxidation catalyst before directing the exhaust gas to the PM-SCR catalyst.
10. The method of claim 8, wherein the substrate is made from one of the following materials: cordierite, silicon carbine, aluminum titanate, or metal fiber.
11. The method of claim 8, wherein the PM catalyst is made from one or more of the following materials: platinum, palladium, rhodium, cerium, zirconium, cobalt, or iron.
12. The method of claim 8, wherein the SCR catalyst is a zeolite-based catalyst.
13. The method of claim 8, wherein the SCR catalyst is made from one of the following materials: Cu-zeolite SCR, Fe-zeolite SCR, or vanadium-based SCR.
14. The method of claim 8, wherein the number of inlet channels and the number of outlet channels are substantially equal.
15. The method of claim 8, wherein the respective ends of the inlet channels and outlet channels are plugged in an alternating pattern, such that the entry and exit faces form a checkerboard pattern.
US12/464,996 2009-05-13 2009-05-13 Integrated PM Filter and SCR Catalyst for Lean Burn Engine Abandoned US20100287915A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/464,996 US20100287915A1 (en) 2009-05-13 2009-05-13 Integrated PM Filter and SCR Catalyst for Lean Burn Engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/464,996 US20100287915A1 (en) 2009-05-13 2009-05-13 Integrated PM Filter and SCR Catalyst for Lean Burn Engine

Publications (1)

Publication Number Publication Date
US20100287915A1 true US20100287915A1 (en) 2010-11-18

Family

ID=43067367

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/464,996 Abandoned US20100287915A1 (en) 2009-05-13 2009-05-13 Integrated PM Filter and SCR Catalyst for Lean Burn Engine

Country Status (1)

Country Link
US (1) US20100287915A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103702745A (en) * 2011-05-31 2014-04-02 庄信万丰股份有限公司 Dual function catalytic filter
US9051858B2 (en) 2011-03-30 2015-06-09 Caterpillar Inc. Compression ignition engine system with diesel particulate filter coated with NOx reduction catalyst and stable method of operation
WO2015135983A1 (en) 2014-03-13 2015-09-17 Umicore Ag & Co. Kg Catalyst system for gasoline combustion engines, having three-way catalysts and scr catalyst
US10799833B2 (en) 2015-08-03 2020-10-13 Cummins Emission Solutions Inc. Sensor configuration for aftertreatment system including SCR on filter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040175315A1 (en) * 1999-08-13 2004-09-09 Brisley Robert James Catalytic wall-flow filter
US7119044B2 (en) * 2003-06-11 2006-10-10 Delphi Technologies, Inc. Multiple washcoats on filter substrate
US7229597B2 (en) * 2003-08-05 2007-06-12 Basfd Catalysts Llc Catalyzed SCR filter and emission treatment system
US7491373B2 (en) * 2006-11-15 2009-02-17 Corning Incorporated Flow-through honeycomb substrate and exhaust after treatment system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040175315A1 (en) * 1999-08-13 2004-09-09 Brisley Robert James Catalytic wall-flow filter
US7119044B2 (en) * 2003-06-11 2006-10-10 Delphi Technologies, Inc. Multiple washcoats on filter substrate
US7229597B2 (en) * 2003-08-05 2007-06-12 Basfd Catalysts Llc Catalyzed SCR filter and emission treatment system
US7491373B2 (en) * 2006-11-15 2009-02-17 Corning Incorporated Flow-through honeycomb substrate and exhaust after treatment system and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9051858B2 (en) 2011-03-30 2015-06-09 Caterpillar Inc. Compression ignition engine system with diesel particulate filter coated with NOx reduction catalyst and stable method of operation
CN103702745A (en) * 2011-05-31 2014-04-02 庄信万丰股份有限公司 Dual function catalytic filter
US20140093442A1 (en) * 2011-05-31 2014-04-03 Johnson Matthey Public Limited Company Dual Function Catalytic Filter
WO2015135983A1 (en) 2014-03-13 2015-09-17 Umicore Ag & Co. Kg Catalyst system for gasoline combustion engines, having three-way catalysts and scr catalyst
DE102014204682A1 (en) 2014-03-13 2015-10-01 Umicore Ag & Co. Kg Catalyst system for reducing noxious gases from gasoline internal combustion engines
US10022672B2 (en) 2014-03-13 2018-07-17 Umicore Ag & Co. Kg Catalyst system for gasoline combustion engines, having three-way catalysts and SCR catalyst
US10799833B2 (en) 2015-08-03 2020-10-13 Cummins Emission Solutions Inc. Sensor configuration for aftertreatment system including SCR on filter

Similar Documents

Publication Publication Date Title
US8522536B2 (en) Exhaust aftertreatment systems for gasoline and alternative-fueled engines, with reduction of HC, CO, NOx, and PM
US8151558B2 (en) Exhaust system implementing SCR and EGR
JP5630024B2 (en) Diesel engine exhaust purification device and exhaust purification method
RU2474701C2 (en) Processing waste gases upstream of turbosupercharger
CA2647064C (en) Low temperature diesel particulate matter reduction system
US20060251548A1 (en) Exhaust aftertreatment device
JP5630025B2 (en) Diesel engine exhaust purification device and exhaust purification method
US8950176B2 (en) System for reducing engine emissions and backpressure using parallel emission reduction equipment
US20120247088A1 (en) Exhaust gas after-treatment system
US20100115930A1 (en) Exhaust after treatment system
WO2010123787A2 (en) A method for improving the light-off or regeneration behavior of an aftertreatment device in a vehicle system
RU2007131191A (en) EXHAUST GAS TREATMENT SYSTEM
US20110225969A1 (en) Compressor bypass to exhaust for particulate trap regeneration
US20100287915A1 (en) Integrated PM Filter and SCR Catalyst for Lean Burn Engine
US20130000297A1 (en) Emissions reduction system
US8276371B2 (en) Exhaust system having exhaust system segment with improved catalyst distribution and method
US20110126525A1 (en) Novel scr catalysts and after-treatment devices for diesel engine exhaust gas
US20100300073A1 (en) PASSIVE NOx AND PM AFTERTREATMENT FOR DIESEL ENGINE
EP3772573A1 (en) Exhaust gas after treatment system for a diesel cycle internal combustion engine
JP7006138B2 (en) Post-processing equipment
CN112424459B (en) Exhaust structure of vehicle-mounted engine
JP2012159054A (en) Exhaust gas purification system for internal combustion engine
RU145543U1 (en) BLOCK OF THE CATALYTIC NEUTRALIZER OF DECREASE OF EXHAUST GAS TOXICITY AND DEVICE FOR DECREASE OF EXHAUST GAS TOXICITY
CN211819603U (en) Air inlet and exhaust system of engine
Patel et al. Emission Control Technology for Stationary Internal Combustion Engines

Legal Events

Date Code Title Description
AS Assignment

Owner name: SOUTHWEST RESEARCH INSTITUTE, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHAN, RIJING;WEBER, PHILLIP A.;REEL/FRAME:022962/0230

Effective date: 20090528

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION