Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20110060298 A1
Publication typeApplication
Application numberUS 12/947,246
Publication dateMar 10, 2011
Filing dateNov 16, 2010
Priority dateFeb 2, 2005
Also published asUS7860556, US20070167828
Publication number12947246, 947246, US 2011/0060298 A1, US 2011/060298 A1, US 20110060298 A1, US 20110060298A1, US 2011060298 A1, US 2011060298A1, US-A1-20110060298, US-A1-2011060298, US2011/0060298A1, US2011/060298A1, US20110060298 A1, US20110060298A1, US2011060298 A1, US2011060298A1
InventorsVahid Saadat
Original AssigneeVoyage Medical, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Tissue imaging and extraction systems
US 20110060298 A1
Abstract
Tissue imaging and extraction systems are described herein. Such a system may include a deployment catheter and an attached imaging hood deployable into an expanded configuration. In use, the imaging hood is placed against or adjacent to a region of tissue to be imaged in a body lumen that is normally filled with an opaque bodily fluid such as blood. A translucent or transparent fluid, such as saline, can be pumped into the imaging hood until the fluid displaces any blood, thereby leaving a clear region of tissue to be imaged via an imaging element in the deployment catheter. Additionally, the system can include features or instruments for extracting tissue such as clearing blood clots, emboli, and other debris which may be present in a body lumen. Other variations may also be used for facilitating trans-septal access across tissue regions as well as for balancing body fluids during a procedure.
Images(22)
Previous page
Next page
Claims(1)
1. A tissue removal system, comprising:
a deployment catheter defining at least one lumen therethrough;
a hood projecting distally from the deployment catheter and defining an open area therein, wherein the open area is in fluid communication with the at least one lumen;
a visualization element disposed within or along the hood for visualizing tissue adjacent to the open area; and
a tissue extraction instrument which defines an opening for receiving tissue therein and which is deployable from the deployment catheter such that the tissue may be extracted via the instrument while imaged via the visualization element.
Description
    CROSS-REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This application is a continuation of U.S. patent application Ser. No. 11/560,742, filed Nov. 16, 2006, which claims the benefit of priority of U.S. Provisional patent application No. 60/737,521 filed Nov. 16, 2005. U.S. patent application Ser. No. 11/560,742 is a continuation-in-part of U.S. patent application Ser. No. 11/259,498 filed Oct. 25, 2005, which claims priority of U.S. Provisional patent application No. 60/649,246 filed Feb. 2, 2005, each of which is incorporated herein by reference in its entirety.
  • FIELD OF THE INVENTION
  • [0002]
    The present invention relates generally to medical devices used for visualizing and/or closing openings or defects within a body. More particularly, the present invention relates to apparatus and methods for visualizing and/or performing procedures within a patient's body such as within the heart, which are generally difficult to image because of surrounding opaque bodily fluids such as blood.
  • BACKGROUND OF THE INVENTION
  • [0003]
    Conventional devices for visualizing interior regions of a body lumen are known. For example, ultrasound devices have been used to produce images from within a body in vivo. Ultrasound has been used both with and without contrast agents, which typically enhance ultrasound-derived images.
  • [0004]
    Other conventional methods have utilized catheters or probes having position sensors deployed within the body lumen, such as the interior of a cardiac chamber. These types of positional sensors are typically used to determine the movement of a cardiac tissue surface or the electrical activity within the cardiac tissue. When a sufficient number of points have been sampled by the sensors, a “map” of the cardiac tissue may be generated.
  • [0005]
    Another conventional device utilizes an inflatable balloon which is typically introduced intravascularly in a deflated state and then inflated against the tissue region to be examined. Imaging is typically accomplished by an optical fiber or other apparatus such as electronic chips for viewing the tissue through the membrane(s) of the inflated balloon. Moreover, the balloon must generally be inflated for imaging. Other conventional balloons utilize a cavity or depression formed at a distal end of the inflated balloon. This cavity or depression is pressed against the tissue to be examined and is flushed with a clear fluid to provide a clear pathway through the blood.
  • [0006]
    However, such imaging balloons have many inherent disadvantages. For instance, such balloons generally require that the balloon be inflated to a relatively large size which may undesirably displace surrounding tissue and interfere with fine positioning of the imaging system against the tissue. Moreover, the working area created by such inflatable balloons are generally cramped and limited in size. Furthermore, inflated balloons may be susceptible to pressure changes in the surrounding fluid. For example, if the environment surrounding the inflated balloon undergoes pressure changes, e.g., during systolic and diastolic pressure cycles in a beating heart, the constant pressure change may affect the inflated balloon volume and its positioning to produce unsteady or undesirable conditions for optimal tissue imaging.
  • [0007]
    Accordingly, these types of imaging modalities are generally unable to provide desirable images useful for sufficient diagnosis and therapy of the endoluminal structure, due in part to factors such as dynamic forces generated by the natural movement of the heart. Moreover, anatomic structures within the body can occlude or obstruct the image acquisition process. Also, the presence and movement of opaque bodily fluids such as blood generally make in vivo imaging of tissue regions within the heart difficult.
  • [0008]
    Other external imaging modalities are also conventionally utilized. For example, computed tomography (CT) and magnetic resonance imaging (MRI) are typical modalities which are widely used to obtain images of body lumens such as the interior chambers of the heart. However, such imaging modalities fail to provide real-time imaging for intra-operative therapeutic procedures. Fluoroscopic imaging, for instance, is widely used to identify anatomic landmarks within the heart and other regions of the body. However, fluoroscopy fails to provide an accurate image of the tissue quality or surface and also fails to provide for instrumentation for performing tissue manipulation or other therapeutic procedures upon the visualized tissue regions. In addition, fluoroscopy provides a shadow of the intervening tissue onto a plate or sensor when it may be desirable to view the intraluminal surface of the tissue to diagnose pathologies or to perform some form of therapy on it.
  • [0009]
    Thus, a tissue imaging system which is able to provide real-time in vivo images of tissue regions within body lumens such as the heart through opaque media such as blood and which also provide instruments for therapeutic procedures upon the visualized tissue are desirable.
  • BRIEF SUMMARY OF THE INVENTION
  • [0010]
    A tissue imaging and manipulation apparatus that may be utilized for procedures within a body lumen, such as the heart, in which visualization of the surrounding tissue is made difficult, if not impossible, by medium contained within the lumen such as blood, is described below. Generally, such a tissue imaging and manipulation apparatus comprises an optional delivery catheter or sheath through which a deployment catheter and imaging hood may be advanced for placement against or adjacent to the tissue to be imaged.
  • [0011]
    The deployment catheter may define a fluid delivery lumen therethrough as well as an imaging lumen within which an optical imaging fiber or assembly may be disposed for imaging tissue. When deployed, the imaging hood may be expanded into any number of shapes, e.g., cylindrical, conical as shown, semi-spherical, etc., provided that an open area or field is defined by the imaging hood. The open area is the area within which the tissue region of interest may be imaged. The imaging hood may also define an atraumatic contact lip or edge for placement or abutment against the tissue region of interest. Moreover, the distal end of the deployment catheter or separate manipulatable catheters may be articulated through various controlling mechanisms such as push-pull wires manually or via computer control
  • [0012]
    The deployment catheter may also be stabilized relative to the tissue surface through various methods. For instance, inflatable stabilizing balloons positioned along a length of the catheter may be utilized, or tissue engagement anchors may be passed through or along the deployment catheter for temporary engagement of the underlying tissue.
  • [0013]
    In operation, after the imaging hood has been deployed, fluid may be pumped at a positive pressure through the fluid delivery lumen until the fluid fills the open area completely and displaces any blood from within the open area. The fluid may comprise any biocompatible fluid, e.g., saline, water, plasma, Fluorinert™, etc., which is sufficiently transparent to allow for relatively undistorted visualization through the fluid. The fluid may be pumped continuously or intermittently to allow for image capture by an optional processor which may be in communication with the assembly. Moreover, the fluid flow rate may be controlled or metered via any number of actuators which may control the flow rate in a linear or non-linear manner.
  • [0014]
    The imaging hood may be formed into any number of configurations and the imaging assembly may also be utilized with any number of therapeutic tools which may be deployed through the deployment catheter.
  • [0015]
    Moreover, the imaging assembly maybe utilized for additional procedures, such as clearing blood clots, emboli, and other debris which may be present in a body lumen. Additionally, other variations of the assembly may also be used for facilitating trans-septal access across tissue regions as well as for facilitate the maintenance of a patient body fluids during a procedure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0016]
    FIG. 1A shows a side view of one variation of a tissue imaging apparatus during deployment from a sheath or delivery catheter.
  • [0017]
    FIG. 1B shows the deployed tissue imaging apparatus of FIG. 1A having an optionally expandable hood or sheath attached to an imaging and/or diagnostic catheter.
  • [0018]
    FIG. 1C shows an end view of a deployed imaging apparatus.
  • [0019]
    FIGS. 1D to 1F show the apparatus of FIGS. 1A to 1C with an additional lumen, e.g., for passage of a guidewire therethrough.
  • [0020]
    FIGS. 2A and 2B show one example of a deployed tissue imager positioned against or adjacent to the tissue to be imaged and a flow of fluid, such as saline, displacing blood from within the expandable hood.
  • [0021]
    FIG. 3A shows an articulatable imaging assembly which may be manipulated via push-pull wires or by computer control.
  • [0022]
    FIGS. 3B and 3C show steerable instruments, respectively, where an articulatable delivery catheter may be steered within the imaging hood or a distal portion of the deployment catheter itself may be steered.
  • [0023]
    FIGS. 4A to 4C show side and cross-sectional end views, respectively, of another variation having an off-axis imaging capability.
  • [0024]
    FIG. 5 shows an illustrative view of an example of a tissue imager advanced intravascularly within a heart for imaging tissue regions within an atrial chamber.
  • [0025]
    FIGS. 6A to 6C illustrate deployment catheters having one or more optional inflatable balloons or anchors for stabilizing the device during a procedure.
  • [0026]
    FIGS. 7A and 7B illustrate a variation of an anchoring mechanism such as a helical tissue piercing device for temporarily stabilizing the imaging hood relative to a tissue surface.
  • [0027]
    FIG. 7C shows another variation for anchoring the imaging hood having one or more tubular support members integrated with the imaging hood; each support members may define a lumen therethrough for advancing a helical tissue anchor within.
  • [0028]
    FIG. 8A shows an illustrative example of one variation of how a tissue imager may be utilized with an imaging device.
  • [0029]
    FIG. 8B shows a further illustration of a hand-held variation of the fluid delivery and tissue manipulation system.
  • [0030]
    FIGS. 9A to 9C illustrate an example of capturing several images of the tissue at multiple regions.
  • [0031]
    FIGS. 10A and 10B show charts illustrating how fluid pressure within the imaging hood may be coordinated with the surrounding blood pressure; the fluid pressure in the imaging hood may be coordinated with the blood pressure or it may be regulated based upon pressure feedback from the blood.
  • [0032]
    FIG. 11A shows an actuator which may be configured as a foot pedal or foot switch to control fluid infusion rates into the imaging hood.
  • [0033]
    FIG. 11B illustrates an exemplary graph of various flow rate profiles which may be utilized when infusing the fluid into the imaging hood.
  • [0034]
    FIGS. 12A to 12C illustrates a variation of the assembly which may be utilized to capture debris which may be errant in surrounding blood.
  • [0035]
    FIG. 13 shows another variation of the assembly positioned within a heart chamber and which may be utilized for biopsy sampling or for debris extraction or removal from a body lumen.
  • [0036]
    FIG. 14 shows a perspective view of another variation of the assembly configured for rapid-exchange of a guidewire.
  • [0037]
    FIGS. 15A to 15D illustrates a partial cross-sectional view of an assembly utilizing an outer sheath for crossing a region of tissue.
  • [0038]
    FIG. 16 shows another variation of the assembly configured to withdraw diluted blood and to filter the blood for re-infusion back into the patient body.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0039]
    A tissue-imaging and manipulation apparatus described below is able to provide real-time images in vivo of tissue regions within a body lumen such as a heart, which is filled with blood flowing dynamically therethrough and is also able to provide intravascular tools and instruments for performing various procedures upon the imaged tissue regions. Such an apparatus may be utilized for many procedures, e.g., facilitating trans-septal access to the left atrium, cannulating the coronary sinus, diagnosis of valve regurgitation/stenosis, valvuloplasty, atrial appendage closure, arrhythmogenic focus ablation, among other procedures.
  • [0040]
    One variation of a tissue access and imaging apparatus is shown in the detail perspective views of FIGS. 1A to 1C. As shown in FIG. 1A, tissue imaging and manipulation assembly 10 may be delivered intravascularly through the patient's body in a low-profile configuration via a delivery catheter or sheath 14. In the case of treating tissue, such as the mitral valve located at the outflow tract of the left atrium of the heart, it is generally desirable to enter or access the left atrium while minimizing trauma to the patient. To non-operatively effect such access, one conventional approach involves puncturing the intra-atrial septum from the right atrial chamber to the left atrial chamber in a procedure commonly called a trans-septal procedure or septostomy. For procedures such as percutaneous valve repair and replacement, trans-septal access to the left atrial chamber of the heart may allow for larger devices to be introduced into the venous system than can generally be introduced percutaneously into the arterial system.
  • [0041]
    When the imaging and manipulation assembly 10 is ready to be utilized for imaging tissue, imaging hood 12 may be advanced relative to catheter 14 and deployed from a distal opening of catheter 14, as shown by the arrow. Upon deployment, imaging hood 12 may be unconstrained to expand or open into a deployed imaging configuration, as shown in FIG. 1B. Imaging hood 12 may be fabricated from a variety of pliable or conformable biocompatible material including but not limited to, e.g., polymeric, plastic, or woven materials. One example of a woven material is Kevlar« (E. I. du Pont de Nemours, Wilmington, Del.), which is an aramid and which can be made into thin, e.g., less than 0.001 in., materials which maintain enough integrity for such applications described herein. Moreover, the imaging hood 12 may be fabricated from a translucent or opaque material and in a variety of different colors to optimize or attenuate any reflected lighting from surrounding fluids or structures, i.e., anatomical or mechanical structures or instruments. In either case, imaging hood 12 may be fabricated into a uniform structure or a scaffold-supported structure, in which case a scaffold made of a shape memory alloy, such as Nitinol, or a spring steel, or plastic, etc., may be fabricated and covered with the polymeric, plastic, or woven material.
  • [0042]
    Imaging hood 12 may be attached at interface 24 to a deployment catheter 16 which may be translated independently of deployment catheter or sheath 14. Attachment of interface 24 may be accomplished through any number of conventional methods. Deployment catheter 16 may define a fluid delivery lumen 18 as well as an imaging lumen 20 within which an optical imaging fiber or assembly may be disposed for imaging tissue. When deployed, imaging hood 12 may expand into any number of shapes, e.g., cylindrical, conical as shown, semi-spherical, etc., provided that an open area or field 26 is defined by imaging hood 12. The open area 26 is the area within which the tissue region of interest may be imaged. Imaging hood 12 may also define an atraumatic contact lip or edge 22 for placement or abutment against the tissue region of interest. Moreover, the diameter of imaging hood 12 at its maximum fully deployed diameter, e.g., at contact lip or edge 22, is typically greater relative to a diameter of the deployment catheter 16 (although a diameter of contact lip or edge 22 may be made to have a smaller or equal diameter of deployment catheter 16). For instance, the contact edge diameter may range anywhere from 1 to 5 times (or even greater, as practicable) a diameter of deployment catheter 16. FIG. 1C shows an end view of the imaging hood 12 in its deployed configuration. Also shown are the contact lip or edge 22 and fluid delivery lumen 18 and imaging lumen 20.
  • [0043]
    The imaging and manipulation assembly 10 may additionally define a guidewire lumen therethrough, e.g., a concentric or eccentric lumen, as shown in the side and end views, respectively, of FIGS. 1D to 1F. The deployment catheter 16 may define guidewire lumen 19 for facilitating the passage of the system over or along a guidewire 17, which may be advanced intravascularly within a body lumen. The deployment catheter 16 may then be advanced over the guidewire 17, as generally known in the art.
  • [0044]
    In operation, after imaging hood 12 has been deployed, as in FIG. 1B, and desirably positioned against the tissue region to be imaged along contact edge 22, the displacing fluid may be pumped at positive pressure through fluid delivery lumen 18 until the fluid fills open area 26 completely and displaces any fluid 28 from within open area 26. The displacing fluid flow may be laminarized to improve its clearing effect and to help prevent blood from re-entering the imaging hood 12. Alternatively, fluid flow may be started before the deployment takes place. The displacing fluid, also described herein as imaging fluid, may comprise any biocompatible fluid, e.g., saline, water, plasma, etc., which is sufficiently transparent to allow for relatively undistorted visualization through the fluid. Alternatively or additionally, any number of therapeutic drugs may be suspended within the fluid or may comprise the fluid itself which is pumped into open area 26 and which is subsequently passed into and through the heart and the patient body.
  • [0045]
    As seen in the example of FIGS. 2A and 2B, deployment catheter 16 may be manipulated to position deployed imaging hood 12 against or near the underlying tissue region of interest to be imaged, in this example a portion of annulus A of mitral valve MV within the left atrial chamber. As the surrounding blood 30 flows around imaging hood 12 and within open area 26 defined within imaging hood 12, as seen in FIG. 2A, the underlying annulus A is obstructed by the opaque blood 30 and is difficult to view through the imaging lumen 20. The translucent fluid 28, such as saline, may then be pumped through fluid delivery lumen 18, intermittently or continuously, until the blood 30 is at least partially, and preferably completely, displaced from within open area 26 by fluid 28, as shown in FIG. 2B.
  • [0046]
    Although contact edge 22 need not directly contact the underlying tissue, it is at least preferably brought into close proximity to the tissue such that the flow of clear fluid 28 from open area 26 may be maintained to inhibit significant backflow of blood 30 back into open area 26. Contact edge 22 may also be made of a soft elastomeric material such as certain soft grades of silicone or polyurethane, as typically known, to help contact edge 22 conform to an uneven or rough underlying anatomical tissue surface. Once the blood 30 has been displaced from imaging hood 12, an image may then be viewed of the underlying tissue through the clear fluid 30. This image may then be recorded or available for real-time viewing for performing a therapeutic procedure. The positive flow of fluid 28 may be maintained continuously to provide for clear viewing of the underlying tissue. Alternatively, the fluid 28 may be pumped temporarily or sporadically only until a clear view of the tissue is available to be imaged and recorded, at which point the fluid flow 28 may cease and blood 30 may be allowed to seep or flow back into imaging hood 12. This process may be repeated a number of times at the same tissue region or at multiple tissue regions.
  • [0047]
    In desirably positioning the assembly at various regions within the patient body, a number of articulation and manipulation controls may be utilized. For example, as shown in the articulatable imaging assembly 40 in FIG. 3A, one or more push-pull wires 42 may be routed through deployment catheter 16 for steering the distal end portion of the device in various directions 46 to desirably position the imaging hood 12 adjacent to a region of tissue to be visualized. Depending upon the positioning and the number of push-pull wires 42 utilized, deployment catheter 16 and imaging hood 12 may be articulated into any number of configurations 44. The push-pull wire or wires 42 may be articulated via their proximal ends from outside the patient body manually utilizing one or more controls. Alternatively, deployment catheter 16 may be articulated by computer control, as further described below.
  • [0048]
    Additionally or alternatively, an articulatable delivery catheter 48, which may be articulated via one or more push-pull wires and having an imaging lumen and one or more working lumens, may be delivered through the deployment catheter 16 and into imaging hood 12. With a distal portion of articulatable delivery catheter 48 within imaging hood 12, the clear displacing fluid may be pumped through delivery catheter 48 or deployment catheter 16 to clear the field within imaging hood 12. As shown in FIG. 3B, the articulatable delivery catheter 48 may be articulated within the imaging hood to obtain a better image of tissue adjacent to the imaging hood 12. Moreover, articulatable delivery catheter 48 may be articulated to direct an instrument or tool passed through the catheter 48, as described in detail below, to specific areas of tissue imaged through imaging hood 12 without having to reposition deployment catheter 16 and re-clear the imaging field within hood 12.
  • [0049]
    Alternatively, rather than passing an articulatable delivery catheter 48 through the deployment catheter 16, a distal portion of the deployment catheter 16 itself may comprise a distal end 49 which is articulatable within imaging hood 12, as shown in FIG. 3C. Directed imaging, instrument delivery, etc., may be accomplished directly through one or more lumens within deployment catheter 16 to specific regions of the underlying tissue imaged within imaging hood 12.
  • [0050]
    Visualization within the imaging hood 12 may be accomplished through an imaging lumen 20 defined through deployment catheter 16, as described above. In such a configuration, visualization is available in a straight-line manner, i.e., images are generated from the field distally along a longitudinal axis defined by the deployment catheter 16. Alternatively or additionally, an articulatable imaging assembly having a pivotable support member 50 may be connected to, mounted to, or otherwise passed through deployment catheter 16 to provide for visualization off-axis relative to the longitudinal axis defined by deployment catheter 16, as shown in FIG. 4A. Support member 50 may have an imaging element 52, e.g., a CCD or CMOS imager or optical fiber, attached at its distal end with its proximal end connected to deployment catheter 16 via a pivoting connection 54.
  • [0051]
    If one or more optical fibers are utilized for imaging, the optical fibers 58 may be passed through deployment catheter 16, as shown in the cross-section of FIG. 4B, and routed through the support member 50. The use of optical fibers 58 may provide for increased diameter sizes of the one or several lumens 56 through deployment catheter 16 for the passage of diagnostic and/or therapeutic tools therethrough. Alternatively, electronic chips, such as a charge coupled device (CCD) or a CMOS imager, which are typically known, may be utilized in place of the optical fibers 58, in which case the electronic imager may be positioned in the distal portion of the deployment catheter 16 with electric wires being routed proximally through the deployment catheter 16. Alternatively, the electronic imagers may be wirelessly coupled to a receiver for the wireless transmission of images. Additional optical fibers or light emitting diodes (LEDs) can be used to provide lighting for the image or operative theater, as described below in further detail. Support member 50 may be pivoted via connection 54 such that the member 50 can be positioned in a low-profile configuration within channel or groove 60 defined in a distal portion of catheter 16, as shown in the cross-section of FIG. 4C. During intravascular delivery of deployment catheter 16 through the patient body, support member 50 can be positioned within channel or groove 60 with imaging hood 12 also in its low-profile configuration. During visualization, imaging hood 12 may be expanded into its deployed configuration and support member 50 may be deployed into its off-axis configuration for imaging the tissue adjacent to hood 12, as in FIG. 4A. Other configurations for support member 50 for off-axis visualization may be utilized, as desired.
  • [0052]
    FIG. 5 shows an illustrative cross-sectional view of a heart H having tissue regions of interest being viewed via an imaging assembly 10. In this example, delivery catheter assembly 70 may be introduced percutaneously into the patient's vasculature and advanced through the superior vena cava SVC and into the right atrium RA. The delivery catheter or sheath 72 may be articulated through the atrial septum AS and into the left atrium LA for viewing or treating the tissue, e.g., the annulus A, surrounding the mitral valve MV. As shown, deployment catheter 16 and imaging hood 12 may be advanced out of delivery catheter 72 and brought into contact or in proximity to the tissue region of interest. In other examples, delivery catheter assembly 70 may be advanced through the inferior vena cava IVC, if so desired. Moreover, other regions of the heart H, e.g., the right ventricle RV or left ventricle LV, may also be accessed and imaged or treated by imaging assembly 10.
  • [0053]
    In accessing regions of the heart H or other parts of the body, the delivery catheter or sheath 14 may comprise a conventional intra-vascular catheter or an endoluminal delivery device. Alternatively, robotically-controlled delivery catheters may also be optionally utilized with the imaging assembly described herein, in which case a computer-controller 74 may be used to control the articulation and positioning of the delivery catheter 14. An example of a robotically-controlled delivery catheter which may be utilized is described in further detail in US Pat. Pub. 2002/0087169 A1 to Brock et al. entitled “Flexible Instrument”, which is incorporated herein by reference in its entirety. Other robotically-controlled delivery catheters manufactured by Hansen Medical, Inc. (Mountain View, Calif.) may also be utilized with the delivery catheter .14.
  • [0054]
    To facilitate stabilization of the deployment catheter 16 during a procedure, one or more inflatable balloons or anchors 76 may be positioned along the length of catheter 16, as shown in FIG. 6A. For example, when utilizing a trans-septal approach across the atrial septum AS into the left atrium LA, the inflatable balloons 76 may be inflated from a low-profile into their expanded configuration to temporarily anchor or stabilize the catheter 16 position relative to the heart H. FIG. 6B shows a first balloon 78 inflated while FIG. 6C also shows a second balloon 80 inflated proximal to the first balloon 78. In such a configuration, the septal wall AS may be wedged or sandwiched between the balloons 78, 80 to temporarily stabilize the catheter 16 and imaging hood 12. A single balloon 78 or both balloons 78, 80 may be used. Other alternatives may utilize expandable mesh members, malecots, or any other temporary expandable structure. After a procedure has been accomplished, the balloon assembly 76 may be deflated or re-configured into a low-profile for removal of the deployment catheter 16.
  • [0055]
    To further stabilize a position of the imaging hood 12 relative to a tissue surface to be imaged, various anchoring mechanisms may be optionally employed for temporarily holding the imaging hood 12 against the tissue. Such anchoring mechanisms may be particularly useful for imaging tissue which is subject to movement, e.g., when imaging tissue within the chambers of a beating heart. A tool delivery catheter 82 having at least one instrument lumen and an optional visualization lumen may be delivered through deployment catheter 16 and into an expanded imaging hood 12. As the imaging hood 12 is brought into contact against a tissue surface T to be examined, an anchoring mechanisms such as a helical tissue piercing device 84 may be passed through the tool delivery catheter 82, as shown in FIG. 7A, and into imaging hood 12.
  • [0056]
    The helical tissue engaging device 84 may be torqued from its proximal end outside the patient body to temporarily anchor itself into the underlying tissue surface T. Once embedded within the tissue T, the helical tissue engaging device 84 may be pulled proximally relative to deployment catheter 16 while the deployment catheter 16 and imaging hood 12 are pushed distally, as indicated by the arrows in FIG. 7B, to gently force the contact edge or lip 22 of imaging hood against the tissue T. The positioning of the tissue engaging device 84 may be locked temporarily relative to the deployment catheter 16 to ensure secure positioning of the imaging hood 12 during a diagnostic or therapeutic procedure within the imaging hood 12. After a procedure, tissue engaging device 84 may be disengaged from the tissue by torquing its proximal end in the opposite direction to remove the anchor form the tissue T and the deployment catheter 16 may be repositioned to another region of tissue where the anchoring process may be repeated or removed from the patient body. The tissue engaging device 84 may also be constructed from other known tissue engaging devices such as vacuum-assisted engagement or grasper-assisted engagement tools, among others.
  • [0057]
    Although a helical anchor 84 is shown, this is intended to be illustrative and other types of temporary anchors may be utilized, e.g., hooked or barbed anchors, graspers, etc. Moreover, the tool delivery catheter 82 may be omitted entirely and the anchoring device may be delivered directly through a lumen defined through the deployment catheter 16.
  • [0058]
    In another variation where the tool delivery catheter 82 may be omitted entirely to temporarily anchor imaging hood 12, FIG. 7C shows an imaging hood 12 having one or more tubular support members 86, e.g., four support members 86 as shown, integrated with the imaging hood 12. The tubular support members 86 may define lumens therethrough each having helical tissue engaging devices 88 positioned within. When an expanded imaging hood 12 is to be temporarily anchored to the tissue, the helical tissue engaging devices 88 may be urged distally to extend from imaging hood 12 and each may be torqued from its proximal end to engage the underlying tissue T. Each of the helical tissue engaging devices 88 may be advanced through the length of deployment catheter 16 or they may be positioned within tubular support members 86 during the delivery and deployment of imaging hood 12. Once the procedure within imaging hood 12 is finished, each of the tissue engaging devices 88 may be disengaged from the tissue and the imaging hood 12 may be repositioned to another region of tissue or removed from the patient body.
  • [0059]
    An illustrative example is shown in FIG. 8A of a tissue imaging assembly connected to a fluid delivery system 90 and to an optional processor 98 and image recorder and/or viewer 100. The fluid delivery system 90 may generally comprise a pump 92 and an optional valve 94 for controlling the flow rate of the fluid into the system. A fluid reservoir 96, fluidly connected to pump 92, may hold the fluid to be pumped through imaging hood 12. An optional central processing unit or processor 98 may be in electrical communication with fluid delivery system 90 for controlling flow parameters such as the flow rate and/or velocity of the pumped fluid. The processor 98 may also be in electrical communication with an image recorder and/or viewer 100 for directly viewing the images of tissue received from within imaging hood 12. Imager recorder and/or viewer 100 may also be used not only to record the image but also the location of the viewed tissue region, if so desired.
  • [0060]
    Optionally, processor 98 may also be utilized to coordinate the fluid flow and the image capture. For instance, processor 98 may be programmed to provide for fluid flow from reservoir 96 until the tissue area has been displaced of blood to obtain a clear image. Once the image has been determined to be sufficiently clear, either visually by a practitioner or by computer, an image of the tissue may be captured automatically by recorder 100 and pump 92 may be automatically stopped or slowed by processor 98 to cease the fluid flow into the patient. Other variations for fluid delivery and image capture are, of course, possible and the aforementioned configuration is intended only to be illustrative and not limiting.
  • [0061]
    FIG. 8B shows a further illustration of a hand-held variation of the fluid delivery and tissue manipulation system 110. In this variation, system 110 may have a housing or handle assembly 112 which can be held or manipulated by the physician from outside the patient body. The fluid reservoir 114, shown in this variation as a syringe, can be fluidly coupled to the handle assembly 112 and actuated via a pumping mechanism 116, e.g., lead screw. Fluid reservoir 114 may be a simple reservoir separated from the handle assembly 112 and fluidly coupled to handle assembly 112 via one or more tubes. The fluid flow rate and other mechanisms may be metered by the electronic controller 118.
  • [0062]
    Deployment of imaging hood 12 may be actuated by a hood deployment switch 120 located on the handle assembly 112 while dispensation of the fluid from reservoir 114 may be actuated by a fluid deployment switch 122, which can be electrically coupled to the controller 118. Controller 118 may also be electrically coupled to a wired or wireless antenna 124 optionally integrated with the handle assembly 112, as shown in the figure. The wireless antenna 124 can be used to wirelessly transmit images captured from the imaging hood 12 to a receiver, e.g., via Bluetooth« wireless technology (Bluetooth SIG, Inc., Bellevue, Wash.), RF, etc., for viewing on a monitor 128 or for recording for later viewing.
  • [0063]
    Articulation control of the deployment catheter 16, or a delivery catheter or sheath 14 through which the deployment catheter 16 may be delivered, may be accomplished by computer control, as described above, in which case an additional controller may be utilized with handle assembly 112. In the case of manual articulation, handle assembly 112 may incorporate one or more articulation controls 126 for manual manipulation of the position of deployment catheter 16. Handle assembly 112 may also define one or more instrument ports 130 through which a number of intravascular tools may be passed for tissue manipulation and treatment within imaging hood 12, as described further below. Furthermore, in certain procedures, fluid or debris may be sucked into imaging hood 12 for evacuation from the patient body by optionally fluidly coupling a suction pump 132 to handle assembly 112 or directly to deployment catheter 16.
  • [0064]
    As described above, fluid may be pumped continuously into imaging hood 12 to provide for clear viewing of the underlying tissue. Alternatively, fluid may be pumped temporarily or sporadically only until a clear view of the tissue is available to be imaged and recorded, at which point the fluid flow may cease and the blood may be allowed to seep or flow back into imaging hood 12. FIGS. 9A to 9C illustrate an example of capturing several images of the tissue at multiple regions. Deployment catheter 16 may be desirably positioned and imaging hood 12 deployed and brought into position against a region of tissue to be imaged, in this example the tissue surrounding a mitral valve MV within the left atrium of a patient's heart. The imaging hood 12 may be optionally anchored to the tissue, as described above, and then cleared by pumping the imaging fluid into the hood 12. Once sufficiently clear, the tissue may be visualized and the image captured by control electronics 118. The first captured image 140 may be stored and/or transmitted wirelessly 124 to a monitor 128 for viewing by the physician, as shown in FIG. 9A.
  • [0065]
    The deployment catheter 16 may be then repositioned to an adjacent portion of mitral valve MV, as shown in FIG. 9B, where the process may be repeated to capture a second image 142 for viewing and/or recording. The deployment catheter 16 may again be repositioned to another region of tissue, as shown in FIG. 9C, where a third image 144 may be captured for viewing and/or recording. This procedure may be repeated as many times as necessary for capturing a comprehensive image of the tissue surrounding mitral valve MV, or any other tissue region. When the deployment catheter 16 and imaging hood 12 is repositioned from tissue region to tissue region, the pump may be stopped during positioning and blood or surrounding fluid may be allowed to enter within imaging hood 12 until the tissue is to be imaged, where the imaging hood 12 may be cleared, as above.
  • [0066]
    As mentioned above, when the imaging hood 12 is cleared by pumping the imaging fluid within for clearing the blood or other bodily fluid, the fluid may be pumped continuously to maintain the imaging fluid within the hood 12 at a positive pressure or it may be pumped under computer control for slowing or stopping the fluid flow into the hood 12 upon detection of various parameters or until a clear image of the underlying tissue is obtained. The control electronics 118 may also be programmed to coordinate the fluid flow into the imaging hood 12 with various physical parameters to maintain a clear image within imaging hood 12.
  • [0067]
    One example is shown in FIG. 10A which shows a chart 150 illustrating how fluid pressure within the imaging hood 12 may be coordinated with the surrounding blood pressure. Chart 150 shows the cyclical blood pressure 156 alternating between diastolic pressure 152 and systolic pressure 154 over time T due to the beating motion of the patient heart. The fluid pressure of the imaging fluid, indicated by plot 160, within imaging hood 12 may be automatically timed to correspond to the blood pressure changes 160 such that an increased pressure is maintained within imaging hood 12 which is consistently above the blood pressure 156 by a slight increase ΔP, as illustrated by the pressure difference at the peak systolic pressure 158. This pressure difference, ΔP, may be maintained within imaging hood 12 over the pressure variance of the surrounding blood pressure to maintain a positive imaging fluid pressure within imaging hood 12 to maintain a clear view of the underlying tissue. One benefit of maintaining a constant ΔP is a constant flow and maintenance of a clear field.
  • [0068]
    FIG. 10B shows a chart 162 illustrating another variation for maintaining a clear view of the underlying tissue where one or more sensors within the imaging hood 12, as described in further detail below, may be configured to sense pressure changes within the imaging hood 12 and to correspondingly increase the imaging fluid pressure within imaging hood 12. This may result in a time delay, ΔT, as illustrated by the shifted fluid pressure 160 relative to the cycling blood pressure 156, although the time delay ΔT may be negligible in maintaining the clear image of the underlying tissue. Predictive software algorithms can also be used to substantially eliminate this time delay by predicting when the next pressure wave peak will arrive and by increasing the pressure ahead of the pressure wave's arrival by an amount of time equal to the aforementioned time delay to essentially cancel the time delay out.
  • [0069]
    The variations in fluid pressure within imaging hood 12 may be accomplished in part due to the nature of imaging hood 12. An inflatable balloon, which is conventionally utilized for imaging tissue, may be affected by the surrounding blood pressure changes. On the other hand, an imaging hood 12 retains a constant volume therewithin and is structurally unaffected by the surrounding blood pressure changes, thus allowing for pressure increases therewithin. The material that hood 12 is made from may also contribute to the manner in which the pressure is modulated within this hood 12. A stiffer hood material, such as high durometer polyurethane or Nylon, may facilitate the maintaining of an open hood when deployed. On the other hand, a relatively lower durometer or softer material, such as a low durometer PVC or polyurethane, may collapse from the surrounding fluid pressure and may not adequately maintain a deployed or expanded hood.
  • [0070]
    With respect to variations in fluid pressure within imaging hood 12, pressure and/or flow rate of the purging fluid injected into hood 12 may be controlled by the user manually or automatically. For instance, the user may simply actuate a control such that the fluid injects into hood 12 at a pre-set flow rate, which may be linear or non-linear. In other variations, the user may control the flow rate by controlling the degree of actuation. As illustrated in FIG. 11 A, user 170 may depress actuator 172, in this variation configured as a foot pedal or foot switch which may be depressed anywhere from an initial position A to a fully depressed position B. Depending upon the controller connected to actuator 172, the user 170 may depress the switch some distance d to increase flow rate. As mentioned, the flow rate may be pre-set to inject the fluid along a linear rate 180 or any variation of non-linear rates 182 184, e.g., exponential, logarithmic, etc., as shown in the exemplary plot in FIG. 11B.
  • [0071]
    Aside from controlling the fluid purging rate, hood 12 may be configured in other variations to effect alternative procedures. For instance, FIGS. 12A to 12C illustrates one variation where hood 12 may be configured to have a pullwire 192 passed around the circumference or lip 194 of the hood 12 to aid in capturing debris, such as emboli, tissue, etc., which may be errant in the surrounding blood. Pullwire 192 may be passed through catheter 16 and through an incompressible lumened structure such as coiled body 190 and around the hood 12, as shown in FIG. 12A. With hood 12 deployed, errant debris 198 may be visualized, as above, and captured within opening 196 of hood 12, as shown in FIG. 12B. With debris 198 disposed within hood 12, pullwire 192 may be actuated and pulled proximally to collapse the circumference or lip 194 of the hood 12 to securely trap debris 198 within, as shown in FIG. 12C. Deployment catheter 16 and hood 12 may then be withdrawn from the body to safely remove debris 198.
  • [0072]
    In another variation, deployment catheter 16 and hood 12 may also be utilized to visualize debris 204, such as blood clots, etc., utilizing the fluid displacement described herein, in various regions of the body, such as the chambers of the heart like the left ventricle LV, as shown in FIG. 13. The apex AP of the heart is also illustrated for reference. In this variation, hood 12 may be used to purge the opaque blood from the region to visualize debris 204 which may be lodged within the chamber. Once directly visualized, an instrument such as a biopsy instrument or thrombectomy-type catheter 200 having an opening 202 may be advanced into proximity to or directly against the debris 204 where it may be actuated to begin extraction and removal of the debris.
  • [0073]
    To facilitate use of the devices for any of the procedures described herein, hood 12 may be integrated with one or more angled projections 214 extending distally from hood 12, as shown in FIG. 14. Once hood 12 is contacted against a tissue region, projections 214 may be engaged into the tissue by rotating catheter shaft 16 to temporarily secure the hood 12 against the tissue surface. Disengagement may be accomplished by simply rotating catheter shaft 16 in the opposite direction.
  • [0074]
    Catheter shaft 16 may also additionally incorporate a guidewire exchange lumen 212 defined along catheter 16 proximally of hood 12. Lumen 212 may allow for the rapid exchange of devices, including the catheter 16 and hood 12, during an interventional procedure when utilized with guidewire 210.
  • [0075]
    In yet another variation for utilizing the deployment catheter 16 and imaging hood 12, the catheter 16 may be used to facilitate the crossing of tissue regions, e.g., through an atrial-septal defect (ASD) or patent foramen ovale (PFO) or through an artificially-created opening or fistula, for accessing other body lumens. As illustrated in FIGS. 15A to 15D, deployment catheter 16 and hood 12 may be articulated to identify a region of tissue, such as the atrial-septal wall AS having a septal defect such as PFO 220. Once identified, an optional outer catheter sheath 222 may be advanced distally over deployment catheter 16 and hood 12 to retract the hood 12 into its low-profile configuration, as shown in FIG. 15B. Then, utilizing an optional guidewire or by simply urging the sheath 222 and deployment catheter 16 distally through the opening 220, as shown in FIG. 15C, the deployment catheter 16 and imaging hood 12 may be penetrated to access the opposite body lumen. Once the distal opening of sheath 222 is cleared of opening 220, deployment catheter 16 and imaging hood 12 may be projected from sheath 222 to allow the imaging hood 12 to redeploy into its expanded configuration, as shown in FIG. 15D.
  • [0076]
    When imaging through hood 12, saline may be infused into the hood 12 to purge the blood and allow for direct visualization of the underlying tissue, as described above. In certain procedures requiring extended periods of time, another variation of the visualization device may be utilized to prevent excessive amounts of saline from being infused into a patient body. One variation is illustrated in FIG. 16, which shows imaging hood 12 disposed upon the end of a deployment catheter 230 configured to draw blood which may be infused with excessive amounts of saline into entry ports 232 defined along catheter shaft 230. The drawn blood may be passed proximally through catheter 230 through lumen 236, which may be fluidly coupled to a pump 242, such as a peristaltic pump, located in filtering assembly 240. The withdrawn diluted blood may be passed through filter 244, where excess water or saline may be extracted via aquaphoresis. The filtered blood may then be pumped back through catheter 230 via lumen 238 and out through one or more exit ports 234, where the blood may be re-infused back into the patient body to maintain the fluid balance of the patient.
  • [0077]
    The applications of the disclosed invention discussed above are not limited to certain treatments or regions of the body, but may include any number of other treatments and areas of the body. Modification of the above-described methods and devices for carrying out the invention, and variations of aspects of the invention that are obvious to those of skill in the arts are intended to be within the scope of this disclosure. Moreover, various combinations of aspects between examples are also contemplated and are considered to be within the scope of this disclosure as well.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4569335 *Mar 22, 1984Feb 11, 1986Sumitomo Electric Industries, Ltd.Fiberscope
US4576146 *Mar 22, 1984Mar 18, 1986Sumitomo Electric Industries, Ltd.Fiberscope
US4727418 *Jun 20, 1986Feb 23, 1988Olympus Optical Co., Ltd.Image processing apparatus
US4911148 *Mar 14, 1989Mar 27, 1990Intramed Laboratories, Inc.Deflectable-end endoscope with detachable flexible shaft assembly
US4991578 *Apr 4, 1989Feb 12, 1991Siemens-Pacesetter, Inc.Method and system for implanting self-anchoring epicardial defibrillation electrodes
US4994069 *Nov 2, 1988Feb 19, 1991Target TherapeuticsVaso-occlusion coil and method
US4998916 *Jan 4, 1990Mar 12, 1991Hammerslag Julius GSteerable medical device
US4998972 *Mar 23, 1989Mar 12, 1991Thomas J. FogartyReal time angioscopy imaging system
US5090959 *Sep 13, 1990Feb 25, 1992Advanced Cardiovascular Systems, Inc.Imaging balloon dilatation catheter
US5281238 *Mar 3, 1993Jan 25, 1994Chin Albert KEndoscopic ligation instrument
US5282827 *Mar 5, 1992Feb 1, 1994Kensey Nash CorporationHemostatic puncture closure system and method of use
US5385148 *Jul 30, 1993Jan 31, 1995The Regents Of The University Of CaliforniaCardiac imaging and ablation catheter
US5498230 *Oct 3, 1994Mar 12, 1996Adair; Edwin L.Sterile connector and video camera cover for sterile endoscope
US5591119 *Dec 7, 1994Jan 7, 1997Adair; Edwin L.Sterile surgical coupler and drape
US5593405 *Jan 9, 1995Jan 14, 1997Osypka; PeterFiber optic endoscope
US5593422 *Jan 6, 1995Jan 14, 1997Muijs Van De Moer; Wouter M.Occlusion assembly for sealing openings in blood vessels and a method for sealing openings in blood vessels
US5593424 *Aug 10, 1994Jan 14, 1997Segmed, Inc.Apparatus and method for reducing and stabilizing the circumference of a vascular structure
US5709224 *Jun 7, 1995Jan 20, 1998Radiotherapeutics CorporationMethod and device for permanent vessel occlusion
US5713907 *Jul 20, 1995Feb 3, 1998Endotex Interventional Systems, Inc.Apparatus and method for dilating a lumen and for inserting an intraluminal graft
US5713946 *Oct 28, 1996Feb 3, 1998Biosense, Inc.Apparatus and method for intrabody mapping
US5716321 *Oct 10, 1995Feb 10, 1998Conceptus, Inc.Method for maintaining separation between a falloposcope and a tubal wall
US5722403 *Oct 28, 1996Mar 3, 1998Ep Technologies, Inc.Systems and methods using a porous electrode for ablating and visualizing interior tissue regions
US5725523 *Mar 29, 1996Mar 10, 1998Mueller; Richard L.Lateral-and posterior-aspect method and apparatus for laser-assisted transmyocardial revascularization and other surgical applications
US5860974 *Feb 11, 1997Jan 19, 1999Boston Scientific CorporationHeart ablation catheter with expandable electrode and method of coupling energy to an electrode on a catheter shaft
US5860991 *Aug 22, 1997Jan 19, 1999Perclose, Inc.Method for the percutaneous suturing of a vascular puncture site
US5865791 *Jun 23, 1997Feb 2, 1999E.P. Technologies Inc.Atrial appendage stasis reduction procedure and devices
US5873815 *Jun 23, 1997Feb 23, 1999Conceptus, Inc.Access catheter and method for maintaining separation between a falloposcope and a tubal wall
US5879366 *Dec 20, 1996Mar 9, 1999W.L. Gore & Associates, Inc.Self-expanding defect closure device and method of making and using
US6012457 *Jul 8, 1997Jan 11, 2000The Regents Of The University Of CaliforniaDevice and method for forming a circumferential conduction block in a pulmonary vein
US6024740 *Jul 8, 1997Feb 15, 2000The Regents Of The University Of CaliforniaCircumferential ablation device assembly
US6027501 *Jun 20, 1998Feb 22, 2000Gyrus Medical LimitedElectrosurgical instrument
US6036685 *Feb 18, 1998Mar 14, 2000Eclipse Surgical Technologies. Inc.Lateral- and posterior-aspect method for laser-assisted transmyocardial revascularization and other surgical applications
US6043839 *Oct 20, 1998Mar 28, 2000Adair; Edwin L.Reduced area imaging devices
US6168591 *Dec 16, 1997Jan 2, 2001Cardiofocus, Inc.Guide for penetrating phototherapy
US6168594 *Feb 9, 1999Jan 2, 2001Scimed Life Systems, Inc.Electrophysiology RF energy treatment device
US6174307 *Jan 8, 1999Jan 16, 2001Eclipse Surgical Technologies, Inc.Viewing surgical scope for minimally invasive procedures
US6178346 *Oct 23, 1998Jan 23, 2001David C. AmundsonInfrared endoscopic imaging in a liquid with suspended particles: method and apparatus
US6190381 *Jan 21, 1998Feb 20, 2001Arthrocare CorporationMethods for tissue resection, ablation and aspiration
US6358247 *Mar 2, 1999Mar 19, 2002Peter A. AltmanCardiac drug delivery system
US6358248 *May 26, 2000Mar 19, 2002Medtronic, Inc.Ball point fluid-assisted electrocautery device
US6502576 *Aug 17, 2000Jan 7, 2003The Regents Of The University Of CaliforniaDevice and method for forming a circumferential conduction block in a pulmonary vein
US6514249 *Mar 2, 2000Feb 4, 2003Atrionix, Inc.Positioning system and method for orienting an ablation element within a pulmonary vein ostium
US6517533 *May 4, 1999Feb 11, 2003M. J. SwaminathanBalloon catheter for controlling tissue remodeling and/or tissue proliferation
US6673090 *Jan 22, 2001Jan 6, 2004Scimed Life Systems, Inc.Percutaneous catheter and guidewire for filtering during ablation of myocardial or vascular tissue
US6676656 *Aug 7, 2001Jan 13, 2004Cardiofocus, Inc.Surgical ablation with radiant energy
US6679836 *Jun 21, 2002Jan 20, 2004Scimed Life Systems, Inc.Universal programmable guide catheter
US6682526 *Nov 17, 2000Jan 27, 2004Vnus Medical Technologies, Inc.Expandable catheter having two sets of electrodes, and method of use
US6689128 *Dec 5, 2001Feb 10, 2004Epicor Medical, Inc.Methods and devices for ablation
US6692430 *Oct 10, 2001Feb 17, 2004C2Cure Inc.Intra vascular imaging apparatus
US6840923 *Jun 26, 2000Jan 11, 2005Colocare Holdings Pty LimitedColostomy pump device
US6849073 *Apr 24, 2002Feb 1, 2005Medtronic, Inc.Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US6858005 *Aug 27, 2002Feb 22, 2005Neo Guide Systems, Inc.Tendon-driven endoscope and methods of insertion
US6858026 *Dec 5, 2001Feb 22, 2005Epicor Medical, Inc.Methods and devices for ablation
US6982740 *Oct 4, 2001Jan 3, 2006Micro-Medical Devices, Inc.Reduced area imaging devices utilizing selected charge integration periods
US6984232 *Jan 17, 2003Jan 10, 2006St. Jude Medical, Daig Division, Inc.Ablation catheter assembly having a virtual electrode comprising portholes
US6994094 *Apr 29, 2003Feb 7, 2006Biosense, Inc.Method and device for transseptal facilitation based on injury patterns
US7156845 *Sep 16, 2005Jan 2, 2007Medtronic, Inc.Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US7163534 *Feb 25, 2005Jan 16, 2007Medical Cv, Inc.Laser-based maze procedure for atrial fibrillation
US7166537 *Feb 17, 2005Jan 23, 2007Sarcos Investments LcMiniaturized imaging device with integrated circuit connector system
US7169144 *Oct 31, 2003Jan 30, 2007Medtronic, Inc.Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US20020004644 *Aug 15, 2001Jan 10, 2002Scimed Life Systems, Inc.Methods of deploying helical diagnostic and therapeutic element supporting structures within the body
US20020026145 *Nov 30, 2000Feb 28, 2002Bagaoisan Celso J.Method and apparatus for emboli containment
US20030009085 *Jun 3, 2002Jan 9, 2003Olympus Optical Co., Ltd.Treatment apparatus for endoscope
US20030035156 *Aug 13, 2002Feb 20, 2003Sony CorporationSystem and method for efficiently performing a white balance operation
US20030036698 *Aug 16, 2001Feb 20, 2003Robert KohlerInterventional diagnostic catheter and a method for using a catheter to access artificial cardiac shunts
US20040006333 *Feb 3, 2003Jan 8, 2004Cardiofocus, Inc.Coaxial catheter instruments for ablation with radiant energy
US20050014995 *Nov 12, 2002Jan 20, 2005David AmundsonDirect, real-time imaging guidance of cardiac catheterization
US20050015048 *Mar 11, 2004Jan 20, 2005Chiu Jessica G.Infusion treatment agents, catheters, filter devices, and occlusion devices, and use thereof
US20050020914 *Nov 12, 2002Jan 27, 2005David AmundsonCoronary sinus access catheter with forward-imaging
US20050027163 *Jul 29, 2003Feb 3, 2005Scimed Life Systems, Inc.Vision catheter
US20050038419 *Feb 3, 2003Feb 17, 2005Cardiofocus, Inc.Coaxial catheter instruments for ablation with radiant energy
US20060009715 *Sep 16, 2005Jan 12, 2006Khairkhahan Alexander KMethod and apparatus for accessing the left atrial appendage
US20060009737 *Jul 12, 2004Jan 12, 2006Whiting James SMethods and devices for transseptal access
US20060015096 *May 27, 2005Jan 19, 2006Hauck John ARadio frequency ablation servo catheter and method
US20060022234 *Oct 6, 2005Feb 2, 2006Adair Edwin LReduced area imaging device incorporated within wireless endoscopic devices
US20060025651 *Jul 29, 2004Feb 2, 2006Doron AdlerEndoscope electronics assembly
US20060025787 *Sep 27, 2005Feb 2, 2006Guided Delivery Systems, Inc.Devices and methods for heart valve repair
US20060030844 *Aug 4, 2004Feb 9, 2006Knight Bradley PTransparent electrode for the radiofrequency ablation of tissue
US20070005019 *Jun 23, 2006Jan 4, 2007Terumo Kabushiki KaishaCatheter assembly
US20070015964 *Apr 20, 2006Jan 18, 2007Eversull Christian SApparatus and Methods for Coronary Sinus Access
US20070016130 *May 6, 2006Jan 18, 2007Leeflang Stephen AComplex Shaped Steerable Catheters and Methods for Making and Using Them
US20070043338 *Jul 3, 2006Feb 22, 2007Hansen Medical, IncRobotic catheter system and methods
US20070043413 *Aug 16, 2006Feb 22, 2007Eversull Christian SApparatus and methods for delivering transvenous leads
US20080009747 *Jul 10, 2007Jan 10, 2008Voyage Medical, Inc.Transmural subsurface interrogation and ablation
US20080009859 *Apr 2, 2007Jan 10, 2008Coaptus Medical CorporationTransseptal left atrial access and septal closure
US20080015445 *Jul 10, 2007Jan 17, 2008Voyage Medical, Inc.Tissue visualization device and method variations
US20080015563 *Jul 24, 2007Jan 17, 2008Hoey Michael FApparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US20080015569 *Jul 10, 2007Jan 17, 2008Voyage Medical, Inc.Methods and apparatus for treatment of atrial fibrillation
US20080027464 *Jul 26, 2007Jan 31, 2008Moll Frederic HSystems and methods for performing minimally invasive surgical operations
US20080033241 *Jul 25, 2007Feb 7, 2008Ruey-Feng PehLeft atrial appendage closure
US20080033290 *Jul 25, 2007Feb 7, 2008Voyage Medical, Inc.Delivery of biological compounds to ischemic and/or infarcted tissue
US20090030276 *Jul 25, 2008Jan 29, 2009Voyage Medical, Inc.Tissue visualization catheter with imaging systems integration
US20090030412 *May 9, 2008Jan 29, 2009Willis N ParkerVisual electrode ablation systems
US20090054803 *Aug 31, 2007Feb 26, 2009Vahid SaadatElectrophysiology mapping and visualization system
US20100004506 *Sep 11, 2009Jan 7, 2010Voyage Medical, Inc.Tissue visualization and manipulation systems
US20100004633 *Jul 7, 2009Jan 7, 2010Voyage Medical, Inc.Catheter control systems
US20100004661 *Jul 6, 2007Jan 7, 2010Les Hopitaux Universitaires De GeneveMedical device for tissue ablation
US20100010311 *Jul 8, 2009Jan 14, 2010Voyage Medical, Inc.Methods and apparatus for efficient purging
US20120016221 *Feb 11, 2011Jan 19, 2012Voyage Medical, Inc.Image stabilization techniques and methods
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US8050746Jul 10, 2007Nov 1, 2011Voyage Medical, Inc.Tissue visualization device and method variations
US8078266Feb 5, 2008Dec 13, 2011Voyage Medical, Inc.Flow reduction hood systems
US8131350Dec 20, 2007Mar 6, 2012Voyage Medical, Inc.Stabilization of visualization catheters
US8137333Jul 25, 2007Mar 20, 2012Voyage Medical, Inc.Delivery of biological compounds to ischemic and/or infarcted tissue
US8221310Aug 30, 2007Jul 17, 2012Voyage Medical, Inc.Tissue visualization device and method variations
US8235985Sep 11, 2008Aug 7, 2012Voyage Medical, Inc.Visualization and ablation system variations
US8333012Oct 8, 2009Dec 18, 2012Voyage Medical, Inc.Method of forming electrode placement and connection systems
US8417321Aug 24, 2011Apr 9, 2013Voyage Medical, IncFlow reduction hood systems
US8419613Sep 13, 2011Apr 16, 2013Voyage Medical, Inc.Tissue visualization device
US8657805May 8, 2008Feb 25, 2014Intuitive Surgical Operations, Inc.Complex shape steerable tissue visualization and manipulation catheter
US8694071Feb 11, 2011Apr 8, 2014Intuitive Surgical Operations, Inc.Image stabilization techniques and methods
US8709008May 9, 2008Apr 29, 2014Intuitive Surgical Operations, Inc.Visual electrode ablation systems
US8758229Dec 20, 2007Jun 24, 2014Intuitive Surgical Operations, Inc.Axial visualization systems
US8814845Feb 3, 2012Aug 26, 2014Intuitive Surgical Operations, Inc.Delivery of biological compounds to ischemic and/or infarcted tissue
US8858609Feb 6, 2009Oct 14, 2014Intuitive Surgical Operations, Inc.Stent delivery under direct visualization
US8894643May 12, 2010Nov 25, 2014Intuitive Surgical Operations, Inc.Integral electrode placement and connection systems
US8934962Aug 31, 2007Jan 13, 2015Intuitive Surgical Operations, Inc.Electrophysiology mapping and visualization system
US9055906May 12, 2010Jun 16, 2015Intuitive Surgical Operations, Inc.In-vivo visualization systems
US9101735Jul 7, 2009Aug 11, 2015Intuitive Surgical Operations, Inc.Catheter control systems
US9155452Apr 24, 2008Oct 13, 2015Intuitive Surgical Operations, Inc.Complex shape steerable tissue visualization and manipulation catheter
US9155587May 14, 2009Oct 13, 2015Intuitive Surgical Operations, Inc.Visual electrode ablation systems
US9192287Jun 18, 2012Nov 24, 2015Intuitive Surgical Operations, Inc.Tissue visualization device and method variations
US9211140 *Nov 24, 2010Dec 15, 2015Kyphon SarlDynamically expandable cannulae and systems and methods for performing percutaneous surgical procedures employing same
US9226648Dec 20, 2007Jan 5, 2016Intuitive Surgical Operations, Inc.Off-axis visualization systems
US9332893Aug 5, 2014May 10, 2016Intuitive Surgical Operations, Inc.Delivery of biological compounds to ischemic and/or infarcted tissue
US9468364Nov 13, 2009Oct 18, 2016Intuitive Surgical Operations, Inc.Intravascular catheter with hood and image processing systems
US9510732Jul 8, 2009Dec 6, 2016Intuitive Surgical Operations, Inc.Methods and apparatus for efficient purging
US9526401Jan 16, 2013Dec 27, 2016Intuitive Surgical Operations, Inc.Flow reduction hood systems
US9532885 *Nov 9, 2015Jan 3, 2017Kyphon S└RLDynamically expandable cannulae and systems and methods for performing percutaneous surgical procedures employing same
US20080009747 *Jul 10, 2007Jan 10, 2008Voyage Medical, Inc.Transmural subsurface interrogation and ablation
US20080033290 *Jul 25, 2007Feb 7, 2008Voyage Medical, Inc.Delivery of biological compounds to ischemic and/or infarcted tissue
US20080188759 *Feb 5, 2008Aug 7, 2008Voyage Medical, Inc.Flow reduction hood systems
US20080214889 *Oct 23, 2007Sep 4, 2008Voyage Medical, Inc.Methods and apparatus for preventing tissue migration
US20090062790 *Aug 29, 2008Mar 5, 2009Voyage Medical, Inc.Direct visualization bipolar ablation systems
US20090227999 *May 14, 2009Sep 10, 2009Voyage Medical, Inc.Visual electrode ablation systems
US20090275799 *Dec 20, 2007Nov 5, 2009Voyage Medical, Inc.Axial visualization systems
US20100094081 *Oct 8, 2009Apr 15, 2010Voyage Medical, Inc.Electrode placement and connection systems
US20100204561 *Feb 11, 2010Aug 12, 2010Voyage Medical, Inc.Imaging catheters having irrigation
US20100262140 *May 12, 2010Oct 14, 2010Voyage Medical, Inc.Integral electrode placement and connection systems
US20110144576 *Dec 14, 2010Jun 16, 2011Voyage Medical, Inc.Catheter orientation control system mechanisms
US20120130161 *Nov 24, 2010May 24, 2012Kyphon SarlDynamically Expandable Cannulae and Systems and Methods for Performing Percutaneous Surgical Procedures Employing Same
US20160058578 *Nov 9, 2015Mar 3, 2016Kyphon SarlDynamically Expandable Cannulae and Systems and Methods for Performing Percutaneous Surgical Procedures Employing Same
Classifications
U.S. Classification604/317
International ClassificationA61M1/00
Cooperative ClassificationA61B5/02007, A61B5/0031, A61B1/015, A61B2018/0212, A61B1/018, A61B1/005, A61B1/00085, A61B1/00082, A61B5/6882, A61B1/0008, A61B8/12, A61B1/04, A61B1/00089
European ClassificationA61B1/04, A61B1/015, A61B1/005, A61B1/018, A61B1/00E4H1, A61B1/00E4H, A61B1/00E4H4, A61B1/00E4H2, A61B5/02D, A61B5/68D3D
Legal Events
DateCodeEventDescription
Nov 16, 2010ASAssignment
Owner name: VOYAGE MEDICAL, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SAADAT, VAHID;REEL/FRAME:025376/0381
Effective date: 20071125
Sep 24, 2012ASAssignment
Owner name: TRIPLEPOINT CAPITAL LLC, CALIFORNIA
Free format text: SECURITY AGREEMENT;ASSIGNOR:VOYAGE MEDICAL, INC.;REEL/FRAME:029011/0077
Effective date: 20120921
Aug 16, 2013ASAssignment
Owner name: VOYAGE MEDICAL, INC., CALIFORNIA
Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:TRIPLEPOINT CAPITAL LLC;REEL/FRAME:031029/0949
Effective date: 20130816
Owner name: INTUITIVE SURGICAL OPERATIONS, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VOYAGE MEDICAL, INC.;REEL/FRAME:031030/0061
Effective date: 20130816