Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20110092260 A1
Publication typeApplication
Application numberUS 12/799,519
Publication dateApr 21, 2011
Priority dateMay 12, 1999
Also published asUS7789742, US20110081978, US20110082571, US20110087344, US20110130223, US20110151977, US20110212757, US20110281621
Publication number12799519, 799519, US 2011/0092260 A1, US 2011/092260 A1, US 20110092260 A1, US 20110092260A1, US 2011092260 A1, US 2011092260A1, US-A1-20110092260, US-A1-2011092260, US2011/0092260A1, US2011/092260A1, US20110092260 A1, US20110092260A1, US2011092260 A1, US2011092260A1
InventorsWilbert Quinc Murdock, Philip Alister Williams
Original AssigneeWilbert Quinc Murdock, Philip Alister Williams
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method of conducting an interactive computer sport
US 20110092260 A1
Abstract
A multifunctional self-contained golf club that wirelessly integrates actual golf equipment with a computer providing critical feedback to improve all aspects of a player's golf game and also allows players to play an actual competitive real or visually simulated golf game with one or more players. Therefore, an individual player may opt to play solo or practice to improve basic golfing skills and techniques. The system includes smart golf clubs, a golf ball receptacle and a golf club motion sensing device, all containing circuits with contact sensors and or motion sensors coupled with signal processing and radio frequency transmitter circuitry to wirelessly communicate game status and performance parameters to a remote receiver and computer. The computer then optionally displays important parameters of the impact of a golf ball with a golf club such as contact force, contact time, impact location, face angle, spatial orientation of a golf club in motion, and the subsequent energy, velocity, and trajectory of a golf ball. The golf club is further equipped with motion sensing devices and its motion and swing trajectory is visually simulated on the computer display. Standard golf clubs may be retrofitted with the device sensors and associated electronic circuitry to convert such clubs into “smart clubs” for use with the system. The system employs specially developed computer software to process player performance data, control game play, communicate game information to players, generate and control visual simulations, and display player performance information.
Images(15)
Previous page
Next page
Claims(56)
1. A computer golfing software, comprising:
(a) Internet sequential information exchange software, operating in conjunction with;
(b) Internal sequence and control operating software, controlling:
(i) software monitoring transmitted data from golf devices; and
(ii) golf image simulation and display software
2. The computer golfing software of claim 2, wherein the internet sequential information exchange software includes programming responsive to a local event to effect a change of turn, effective to cause a programmed local computer to await a remote event to be communicated to it.
3. The computer golfing software of claim 1, wherein the internal sequence and control operating software includes programming effective to respond to indicated local and remote events to cause the golf image simulation and display software to simulate and display the local and remote events.
4. The computer golfing software of claim 1, including programming routines for causing a computer to signal readiness to play and then to await communication signaling the availability of a remote player; and
programming for connecting the software to single local player responsive software.
5. (canceled)
6. (canceled)
7. (canceled)
8. (canceled)
9. (canceled)
10. (canceled)
11. (canceled)
12. The method of claim 7, wherein the predefined event is detected when a player gains access to the gaming environment, said information identifying the player and being transmitted to at least one person who is on a list of the player.
13. (canceled)
14. (canceled)
15. (canceled)
16. (canceled)
17. (canceled)
18. (canceled)
19. (canceled)
20. (canceled)
21. (canceled)
22. A system that responds to a predefined event occurring within a gaming environment, by automatically transmitting an alert or message to a person outside the gaming environment, comprising: a game server that includes a processor and a memory storing a plurality of machine instructions, said game server being included within a gaming service that establishes the gaming environment and further including a communication interface that couples the game server to a network; and wherein said processor executes the machine instructions stored in the memory, causing the processor to carry out a plurality of functions, including: detecting when a predefined event occurs within the gaming environment, wherein: the gaming environment provides a secure and limited access such that players only gain access to the gaming environment through a secure gateway wherein: the secure gateway is inaccessible by any person communicating over a network that is outside of the gaming environment; and the network is inaccessible from within the gaming environment by players participating in the gaming environment; and in response to detecting the predefined event, initiating transmission of an alert or message to a person outside the gaming environment over the network.
23. (canceled)
24. (canceled)
25. (canceled)
26. (canceled)
27. The system of claim 22, wherein the machine instructions stored in the memory of the game server further cause the processor of the game server to map an identifier of the person within the gaming environment to a corresponding identifier of the person that is used to identify the person on the network, so that the alert of message will be sent to the person by the an alert server, outside the gaming environment.
28. The system of claim 22, wherein execution of the machine instructions causes the game server to detect that the predefined event has occurred when a player gains access to the gaming environment, and wherein execution of the machine instructions causes the processor to initiate transmittal of information identifying the player to at least one person who is on a list of the player, wherein said list is stored in the memory.
29. The system of claim 28, wherein the alert or message comprises an invitation to at least one person to access the gaming environment and participate in playing a game thereon with the player.
30. (canceled)
31. The system of claim 22, wherein the information included in the alert or message refers to a change in a gaming content within the gaming environment.
32. (canceled)
33. The system of claim 22, wherein execution of the machine instructions further causes the processor to enable a person to select at least one form in which alerts or messages will be transmitted in response to the predefined event, said at least one form being selectable from among a plurality of different forms.
34. The system of claim 33, wherein the plurality of forms include, a pop up that is displayable, and a message perceivable on a portable communication device that is coupled to a communication system.
35. A messaging system comprising: a web server computer; and a self-contained sports system for executing a sports program for competitive sports play, the sports game system program being embodied on a storage device replaceably connectable by a user to the sports game system and comprising program instructions for both the sports competition and for a messaging service client, whereby the messaging service client is activated by connecting the storage device to the remote game system and executing the game program embodied thereon, the activated messaging service client establishing a connection between the game system and said web server computer via the Internet and sending status data from the game system to said web server computer that is indicative of the sports competition game program being executed by the sports game system, wherein said web server computer generates a session file when the local sports game system connects thereto, the session file comprising the status data sent from the local game system and status data indicative of the particular sports game programs being executed by the game systems of each of one or more buddies identified on a buddy list previously defined by the user, wherein the status data of the one or more buddies on the buddy list is accessible to the user even if the game system of the user and the game systems of the one or more buddies are executing sports programs for playing different games.
36. The system according to claim 35, wherein the status data for each buddy further indicates whether that buddy is online and or able to send/receive messages.
37. (canceled)
38. (canceled)
39. The system according to claim 35, wherein the web server computer stores a user profile for the user.
40. The system according to claim 39, wherein the user can configure accessibility of the user's profile to others.
41. The system according to claim 39, wherein a system administrator can configure accessibility of the user's profile to others.
42. The system according to claim 35, wherein said web server computer is responsive to a user-supplied request for communicating to the user an identification of all buddy lists on which the user appears.
43. The system according to claim 35, wherein said web server computer is further responsive to a user-supplied request for deleting the user's name from one or more other user's buddy lists.
44. (canceled)
45. The messaging service client according to claim 44, comprising further instructions for:
receiving a message from another player while the player is playing the sports game; and
providing a prompt to the player that the message has been received.
46. (canceled)
47. (canceled)
48. (canceled)
49. The messaging service client according to claim 44, comprising further instructions for:
receiving and storing player preference data that is referenced when the messaging service client is executed.
50. (canceled)
51. (canceled)
52. (canceled)
53. (canceled)
54. (canceled)
55. (canceled)
56. (canceled)
Description
CROSS REFERENCE TO RELATED APPLICATION

Priority is claimed from U.S. Provisional Ser. Number 60/13,722, filed May 12, 1999 for all subject matter common hereto. That provisional application is incorporated by reference herein. This is a divisional application and the parent application for this divisional application is, 09/570,233.

REFERENCE TO MICROFICHE APPENDIX

A microfiche appendix including 1 microfiche with 27 frames accompanies and forms a part of this application.

FIELD OF INVENTION

This invention relates to a smart golf system coupling real sports equipment and a computer. More particularly, this invention relates to a system wherein a golf club communicates dynamic contact and movement parameters wirelessly to a personal computer and thereby, if desired, to the internet.

BACKGROUND OF THE INVENTION

A number of patented golf club devices embody various ball contact or club swing sensing components. Typically, these devices display information related to a golf player's swing and accuracy in hitting a golf ball. In certain of these, the information is displayed or signaled by some of the golf club itself in the form of a small visual readout or an audible sound. One such device contains an array of mechanically depressible pins on the face of the golf club. When the ball is struck by the club, the pins are physically depressed in a pattern to inform the player of the location on the club face where contact with the ball occurred. Another device uses a light emission and reflection detection technique to provide a player's information, displayed on the club, regarding the alignment of the golf ball with the preferred location on the golf club face.

Also, numerous conventional computer golf game software packages and video games use a variety of unrealistic techniques to emulate the striking of a golf ball with a club. None of these cooperates with actual golf clubs, actual golf ball target or cup receptacles, or a swing detector that senses the actual golf stroke.

It is desirable to communicate actual player performance information, whereby more sophisticated analysis and prediction possibilities are realizable via computer technology and state-of-the-art display techniques. Further, it is also desirable to use such performance information in an expanded capacity to improve golfing techniques via corrective training and to provide interactive competitive play among numerous players locally in the same geographic area or if desired in locations remote from each other.

SUMMARY OF INVENTION

This invention relates to a system that interconnects real golf or other sports equipment to a computer and provides operational methods specifically designed and incorporated for golf course-type games which emphasize the use of a variety of golf shots and techniques. In a preferred embodiment the computer is coupled wirelessly to a golf club, a receptacle or a swing sensing component. Further, the invention, with components summarized below, allows one or more golfers to enter into a competition against each other. The computer and display show each participant's score via animation or graphics that preferably relate to a player's individual performance statistics. A single player may play without an opponent to practice and improve basic golfing skills using the computer and display to track performance.

The system application is unlimited. Much of this system can be used not only for local golfing competition and remote competition on the Internet, but for other sports as well. Sports implements other than golf clubs, swing detectors and receptacles can be outfitted with sensors according to this invention and used for training purposes, rehab, or for interactive internet sports competition.

The technology can be used for training, competition, and the improvement of player reflexes and coordination. With little or no modification, the technology also has applications in medicine, particularly physical therapy.

1. Smart Golf Club

A wireless golf club is constructed to contain or alternatively, a standard golf club is modified to contain, a multiple sensor or transducer array located on the club head at the face or hitting surface. Upon impact of the head of the club with a golf ball, the impacted sensors produce detectable variances representing the magnitude and duration of the club-ball impact force and the proximate location of such contact relative to the preferred location, the “sweet spot”, on the face of the club head. The variances are electronically processed into digitally coded information and remotely transmitted by an electrical communication circuit either contained within or attached to the golf club.

The smart golf club system uses biofeedback to create an intelligent golf training and entertainment system. The smart golf club system is a diagnostic and analysis tool used to improve a player's skills by relatively instantaneous visual cues and acoustic feedback with little or no human intervention. The smart golf club system takes the generated data and displays actual images of the participants or reconstructs it into a useful visual format that can be presented in a variety of ways including 3-dimensional animation.

The smart golf club system integrated circuit or circuits can be located anywhere within the club including the head and or shaft.

The smart golf club has a means via its built in microcontroller to process, analyze, store, hitting pattern data and transmit it to the computer and or the Internet for further analysis. In playback mode the smart golf club system memorizes how many times each sensor was hit. This provides the golfer information about his or her hitting pattern. Using a computer algorithm, we can analyze and calculate a hitting pattern and having a personalized sports hitting detection system for each athlete.

2. Golf Ball Receptacle

A ball receptacle has an open end to receive a golf ball and contains a transducer located so as to sense the ball entering receptacle. Upon impact with the golf ball, the sensor produces a detectable variance representing impact with the ball. The variance is electronically processed into display coded information and remotely transmitted by an electrical communication circuit. In one preferred embodiment the communication circuit is contained within the receptacle. Preferably the communicate circuit for the receptacle is a radio frequency transmitter. The receptacle can either be designed for indoor use or can be a cup in an actual green with the communication circuit housed in the cup or elsewhere.

In each of the golf club device and golf ball receptacle device according to this invention, in a preferred embodiment the transducers are or include piezoactive elements. As used herein, “piezoactive” includes piezoelectric and piezoresistive components. Piezoactive components are defined as components the electrical properties of which, when the component is subjected to physical force, vary.

3. Golf Club Motion Sensor Plate

A golf club swing motion sensing device contains an array of uniformly distributed sensing transducers upon or proximate to the device surface. This motion sensing device may be formed as a mat, a plate, or other substantially flat surface from which a golf ball is hit. The transducers produce detectable varying characteristics such as capacitance representing the velocity, angle, and proximity of a golf club relative to the surface of the device. The variances are electronically processed into digitally coded information and remotely transmitted by an electrical communication circuit contained within or electronically connected to the device.

4. Wireless Signal Receiver and Computer

At each remote player site, wireless radio frequency equipment receives the digitally coded transmitted signals from the golf club, the golf ball receptacle, and the club swing motion sensing device. The signals are demodulated and processed into serial binary data suitable for communications to the computer via either serial or parallel ports. As the game progresses, the computer under the control of the golfing software, monitors and directs the flow of communications between the players via the internet and displays the game simulations and performance information.

5. Computer Golfing Software System

At each remote player site, a computer under the control of the golfing software, monitors and controls the sequential play of the game and interacts with the player at the site and also competing players at the other remote sites via the internet. The software system generates the game simulations for display and tracks each player's performance as the game progresses.

The above and further features and advantages of the invention will be better understood with reference to the accompanying drawings and the following detailed description of preferred embodiment.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagrammatic illustration of components of a computer implemented golf system according to this invention.

FIG. 2 is a top plan view of a golf club with sensors and circuitry and used in the computer implemented system of FIG. 1.

FIG. 3 is front elevation view of the golf club head of FIG. 2, and shows three sensors located at the face of the club head.

FIG. 3A is a front plan view of a further embodiment of a club head for use with the computer implemented golf system of FIG. 1.

FIG. 4 is a diagrammatic front plan view of a putter with a club head and circuitry forming a further, alternative embodiment of a club for use with the computer implemented system of FIG. 1.

FIG. 5 is a schematic block diagram of a club head electronics installation for use with the club heads of FIGS. 2-4.

FIG. 6A is a front elevation view of a golf ball receptacle for use with the system of FIG. 1.

FIG. 6B is a cross-sectional view along the lines B-B of FIG. 6A.

FIG. 6C is a fragmentary top plan view of the receptacle of FIGS. 6A and 6B illustrating internal components of the receptacle.

FIG. 7 is a top plan view of a golf ball sensing element with three distinct activation areas for use in the receptacle of FIGS. 6A-6C.

FIG. 8 is a schematic block diagram of a receptacle electronics installation for communicating with the computer in a computer implemented system according to FIG. 1.

FIGS. 9A-9D are diagrammatic illustrations of a golf club motion or swing sensor plate for use with the system according to FIG. 1.

FIG. 9E is a block diagram of electronics used in association with the swing sensors plate of FIGS. 9A-9D.

FIG. 10 is a block diagram of a computer installation for use as the computer and information receiving interconnect of the system of FIG. 1.

FIG. 11 is a functional block diagram of the software operation of the computer of FIG. 10.

FIG. 12 is a flowchart illustrative of a portion of the operation of the computer of FIG. 10 operating as indicated in the block diagram of FIG. 11.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENT

As shown in FIG. 1, a preferred embodiment of the invention includes a wireless smart golf club 20, a wireless golf ball receptacle 22, a wireless golf club motion sensing plate 24, a wireless receiver 26 connected to a computer 28, and a display or monitor 30 with speakers 31 operated under the control of golf system software 32, and connected via the internet to an internet golf game server 34 (called herein the GGC server)

1. Smart Golf Club

The smart golf club 20 has a head 40 and a shaft 42. As shown in FIGS. 2 and 3, the head 40 has a shaft opening 42, a plurality of embedded contact sensors 46 (three are illustrated in the preferred embodiment), and the internal electronics circuitry 48 including a wireless radio frequency transmitter (58 in FIG. 5). As shown, at least one of the sensors 46 is located at or proximate to the optimal location on a club face 47 for contact with the golf ball, the “sweet spot” 49. The remaining two sensors are adjacent and on either side of the sweet spot 49. The contact sensors may be, but are not limited to sensors employing piezoactive type transducers, specifically, either piezo-electric or piezo-resistive transducers (similar, but is not limited to the Cooper Instruments LPM 562).

In an alternative embodiment, FIG. 3A, three sensors 46 are applied to the face of an adapted club by a Mylar tape or other means 49. Again, the electronic circuitry is internal to the club head 40 and connects to the sensors 46 by leads 27.

In a second alternative embodiment, to retrofit a standard golf club, contact sensors 46 are part of an adapter 40 attached to an ordinary club head as seen in FIG. 4 and wire connected to an electronic circuitry 48 attached to the club shaft 42 or elsewhere on the club.

A golf ball contacting any sensor 46 produces a detectable variance indication the magnitude and duration of sensor-ball impact. The variance may be a change in resistance of a piezo-resistive transducer or a voltage change in the case of a piezo-electric transducer. As shown in FIG. 5, the variance is detected and amplified by an associated amplifier 52 and is the input to an associated integration circuit 54, the output of which represents the energy of the ball-club contact event. Connected to the integration circuit 54, a microprocessor 56 is a multi-input signal processing circuit (similar, but not limited to a Motorola #68HCO5) having analog to digital signal converting circuits (ADCs), one for each input channel, and a sequential digital signal encoding circuit connected so as to convert the ADC outputs into a time multiplexed serial digital data stream containing a binary-coded word for each channel indicating the energy of the associated sensor-ball impact event.

A radio frequency transmitting circuit 58 receives the serial digital data from the microprocessor 56 and wirelessly transmits the information via an internal antenna 60 to a receiver 26 (FIG. 1) for subsequent processing by the computer 28.

2. Golf Ball Receptacle

The golf ball receptacle 22 has a top 62 shaped to allow entry of a golf ball, as shown in FIGS. 6A, 6B, and 6C. The receptacle has a contact sensor pad 64, shown in FIG. 7, containing at least one contact sensor (three different activation areas 65, 66, and 67 are illustrated in the preferred embodiment), a ball return mechanism 69 (FIG. 6B) and internal electronic circuitry 68 (FIG. 6B). The internal circuitry includes a wireless radio frequency transmitter (not separately shown in FIGS. 6A, B and C). As shown, the preferred embodiment has contact sensor pad 64 positioned within the receptacle 60 such that the center activation area 66 aligns with the center of a ball entry 70. Additional sensor activation area 65 and 67 are adjacent, one on either side of the center area 66. In the preferred embodiment, of FIGS. 6A, 6B, and 6C, and like the sensor used at the face of the club, the sensors may be, but are not limited to, sensors employing piezo-active type transducers, specifically, either piezo-electric or piezo-transducers.

A golf ball entering the receptacle 60 and containing the sensor pad 65, 66 or 67 produces a detectable variance indicating the ball entry event. The variance may be a change in resistance in the case of a piezo-resistive transducer (similar, but not limited to Cooper Instruments LPM 562) or a voltage change in the case of a piezo-electric transducer. As illustrated in FIG. 8, the variance is detected and amplified by an associated amplifier 71. The amplified signal then is input to a microprocessor 72 having an analog to digital signal converting circuit (ADC) and a digital signal encoding circuit connected so as to convert the ADC output representing the sensors signals into a serial digital data stream containing a binary coded word indicating the sensor-ball contact event. The microprocessor 72 may be the same or similar to the microprocessor 56 of the golf club electronics. A radio frequency transmitter circuit 74 receives the serial digital data from the microprocessor 72 and wirelessly transmit' the information via an internal antenna 76 to the receiver 26 (FIG. 1) for subsequent processing by the computer 28.

The ball return mechanism 68 can be simple as a back plate 80 located to be engaged by a golf ball entering the receptacle 22 and supported and biased by a spring or springs 82 to eject the ball. Other known ejection devices, similar to those used in pin ball machines and either mechanically or even electrically activated, can be used to improve the effect if desired.

The receptacle configuration is susceptible to much variation. The receptacle illustrated and described above is well suited to indoor use, on carpet for example. It is clear, however, that an actual cup, installed in an actual green, with real or synthetic grass, can be similarly equipped.

3. Golf Club Motion Sensor Plate

The golf club motion sensor plate 80 having a top motion plate 82 and a bottom motion plate 84 is diagrammatically shown in FIGS. 9A-D, wherein the top motion plate 82 contains a plurality of capacitor-forming electrically isolated platelets 83 (twelve platelets are illustrated in this exemplary preferred embodiment). They are evenly distributed at or just below the top plate's exterior upper surface 82. The bottom plate 84 has a homogenous electrically conductive interior surface 85 underlying the platelets 83. Each capacitive platelet 83 contained in the top motion plate 82 forms a capacitive component when the top and bottom motion plates are vertically closely spaced to form the golf club motion sensor plate. A suitable insulator may be sandwiched between the two plates. The structure is adhesively or otherwise mechanically joined and it may be covered or coated as desired. The result is a golf club motion sensor plate 80 containing a capacitor matrix (a 34 capacitor matrix is illustrated in the preferred embodiment 0. The capacitive components 83 are connected to form a capacitive network 88 as is indicated in FIGS. 9E.

Applying an energizing high frequency alternating electrical signal having a frequency in the range from 100 MHz to 200 MHz from an oscillator 87 to the golf club motion plate capacitive network 88 produces an electromagnetic field above the surface of each platelet 83 of the capacitive components of the motion sensor plate 80. Any object, including a golf club, passing near the surface of the energized motion plate will cause a perturbation of the electromagnetic field as illustrated by the sample possible pathways 90 across the plate in FIG. 9C. A network 92 of electrical comparator amplifiers (FIG. 9B) is connected to the capacitor network. The comparators of the network 92 are connected one to one with the capacitive elements of the capacitive network 88. The comparators of the network 88 detect voltage variations occasioned by electromagnetic field disturbance due to a golf cub moving over certain of the capacitive elements of the motion plate. Each different golf club motion over the energized motion plate will produce a uniquely identifiable signal from the comparator amplifier network. There are a variety of known proximity sensors that could be gathered together in an array like that of the platelets 83 to serve as the transducer portion of the golf club motion detector.

The electrical signal from the comparative amplifier network 92 is applied to an analog to digital signal converter 94 (ADC) and the ADC digitized output signal is converted into a serial digital data stream by a multiplexer 96. This data identifies each platelet having had its field disturbed. The serial digital data can be input directly by wire from a multiplexer 96 to the computer 28 located at the site of the golf player and golf club motion sensor plate 80, or as in the preferred embodiment, illustrated in FIG. 1, the serial data can be transmitted 100 and an antenna 102, included in the golf club motion electronic transmitter communication circuitry from FIG. 1.

The computer 28, under the control of the golf system software, will analyze the serial digital club motion signal, recognize from the transmitted signals the platelets 83 over which the club head passed and display the golf club swing motion.

4. Wireless Signal Receiver and Computer

At each player site, a wireless radio frequency signal receiver 26 is connected to the computer 28 by either the serial (USB) or parallel computer ports, as shown in the functional block diagram, FIG. 10. The wireless signal receiver 26 detects digitally coded radio frequency transmissions from the communication circuit associated with any of a smart golf club 20, a golf ball receptacle 22, or a golf club motion sensing plate 24, as shown in FIG. 1. The received transmission are demodulated by the RF receiver circuitry 122 (FIG. 10) connected to a microprocessor 124, which converts the demodulated data signal to serial binary coded data suitable for communications to a computer 28. The computer 28, under the control of the internally installed golf system software program, monitors and directs the flow of communications between remotely located players via the internet and displays the game simulations and performance information. In appropriate installations the wireless electromagnetic signals that communicate with the receiver may be infrared communications.

5. Computer Golfing Software

At each remote player site, the computer 28 (FIG. 1) under the control of the golfing software program (shown in the golfing software system functional block diagram, FIG. 11) monitors and control initialization and the sequential play of the golf game, or alternatively, the individual player practice session. Upon start up by a player at a particular site, the system input parameters are set and the system internet and player port interfaces are initialized 130 as indicated by the arrows 130 a and 130 b. For internet communications, the serial port listener of the computer 28 is enabled in the preferred embodiment. A remote player event listener is initialized. It will communicate events from one or more of the smart golf club, the golf ball receptacle and the motion sensor plate. The main operational software (program) thread is run 130, and the system awaits data input from the appropriate computer communications ports at 132 (port), 133 (Remote player Socket Event Listener)

If the competitive play mode has been selected, the program generates a player participation request and sends 134 the request to the GGC game internet server (GGC server) 34 (FIG. 1). Upon identification of a player opponent at 150 (FIG. 12) by the GGC server, the program initiates the player identification sequence 152 and sequential play begins 154 (This software sequence and control routine occurs at each remote site where play has been initiated. During the game play sequences 154, the program generates the appropriate animation, display, and audio data and commands 136 and 138 (FIG. 11), and communicates with the associated display and speaker devices 30 and 31 (FIG. 1). Upon the occurrence of a local player event, detected at 133, the main operating program at 130, displays the event at 136, and communicates the event at 132 by causing a device transmission at 137 to be send at 134 via the internet GGC server 135 which displays the event for the opposing player and alerts the opposing player it is his/her turn to play. The local player event may be, but is not limited to the smart golf club impacting a ball, the swing of a club across the sensing plate or the balls entry into the receptacle. The program contains time delay limits for the player action, and delays of play beyond these limits generate play quit and disconnect signals.

The event at 133 also has the effect of indicating at 139 that it is no longer the local players turn and enables (as indicated by line 139) the serial port listener at 132 to detect an event from the remote player, again via the internet.

If the single player practice mode is selected, the internet communications sequences are disabled, other software sequential operating routines continue as above described and the players golf club stroke, ball-receptacle contact, and/or club swing motion sensor information are communicated only to the computer located at the players site and the performance information analyzed and displayer only at the local players site.

When a game is won, lose, or terminated, the golf software system generates the appropriate output signals 156 (FIG. 12), displays the player performance information, and resets to initial pre-game conditions. If one player opponent quits the game or is “timed out” (due to excessive delay in play) and the remaining player wishes to continue play, the software resumes an internet search for another opponent 152 and 153.

Using programming as contained in the accompanying microfiche appendix, one skilled in the art can readily accomplish the game programming described. Alternative programming too will be apparent from the foregoing functional description and the illustrations contained in the appended drawings

While a preferred embodiment has been described, it will be appreciated that many variations and modifications in the system, its operation, and its various components may be made without departure from the spirit and scope of invention as set forth in the appended claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3945646 *Dec 23, 1974Mar 23, 1976Athletic Swing Measurement, Inc.Athletic swing measurement system and method
US4991850 *Dec 22, 1988Feb 12, 1991Helm Instrument Co., Inc.Golf swing evaluation system
US5245537 *Nov 25, 1991Sep 14, 1993Barber Andrew TGolf distance tracking, club selection, and player performance statistics apparatus and method
US5507485 *Apr 28, 1994Apr 16, 1996Roblor Marketing Group, Inc.Golf computer and golf replay device
US5592401 *Feb 28, 1995Jan 7, 1997Virtual Technologies, Inc.Accurate, rapid, reliable position sensing using multiple sensing technologies
US5792000 *Jul 25, 1996Aug 11, 1998Sci Golf Inc.Golf swing analysis method and apparatus
US5930741 *Jan 7, 1997Jul 27, 1999Virtual Technologies, Inc.Accurate, rapid, reliable position sensing using multiple sensing technologies
US6032530 *Jan 21, 1998Mar 7, 2000Advantedge Systems Inc.Biofeedback system for sensing body motion and flexure
US6117020 *Jan 28, 1999Sep 12, 2000Kurr Golf Technology, Inc.Laser aim determination system for use in creating a custom made putter
US6123626 *Apr 1, 1999Sep 26, 2000Osborn; Brian S.Laser putter system
US6224493 *May 12, 1999May 1, 2001Callaway Golf CompanyInstrumented golf club system and method of use
US6402634 *Dec 29, 2000Jun 11, 2002Callaway Golf CompanyInstrumented golf club system and method of use
US6441745 *Mar 21, 2000Aug 27, 2002Cassen L. GatesGolf club swing path, speed and grip pressure monitor
US6537076 *Feb 16, 2001Mar 25, 2003Golftec Enterprises LlcMethod and system for presenting information for physical motion analysis
US6542824 *Jan 29, 1999Apr 1, 2003International Business Machines CorporationMethod and system for determining position information utilizing a portable electronic device lacking global positioning system (GPS) reception capability
US6590536 *Aug 18, 2000Jul 8, 2003Charles A. WaltonBody motion detecting system with correction for tilt of accelerometers and remote measurement of body position
US7094164 *Sep 11, 2002Aug 22, 2006Pillar Vision CorporationTrajectory detection and feedback system
US7143639 *Jul 26, 2004Dec 5, 2006Acushnet CompanyLaunch monitor
US7166035 *Nov 26, 2003Jan 23, 2007Max Out Golf LlcSystems and methods for fitting golf equipment
US7789742 *May 12, 2000Sep 7, 2010Wilbert Q. MurdockSmart golf club multiplayer system for the internet
US8500570 *Sep 4, 2012Aug 6, 2013Nike, Inc.Golf clubs and golf club heads having digital lie and/or other angle measuring equipment
US8506425 *Feb 14, 2011Aug 13, 2013Taylor Made Golf Company, Inc.Method for matching a golfer with a particular golf club style
US8523696 *Apr 14, 2010Sep 3, 2013Sri Sports LimitedGolf swing analysis method using attachable acceleration sensors
US20010005695 *Dec 29, 2000Jun 28, 2001Lee Nathan J.Instrumented golf club system & method of use
US20010017347 *Feb 16, 2001Aug 30, 2001Blankenship Charles H.Golf club swing analyzers
US20010031666 *Dec 15, 2000Oct 18, 2001Fred KnechtApparatus and method for analyzing golf swing
US20010053720 *Apr 30, 2001Dec 20, 2001Lee Nathan J.Instrumented golf club system & method of use
US20020052246 *Nov 9, 1999May 2, 2002Thomas J BurkeGolf overswing alerting mechanism and golf club with overswing alerting mechanism
US20020077189 *Dec 14, 2001Jun 20, 2002Mechworks Software Inc.Proprioceptive golf club with analysis, correction and control capabilities
US20020103035 *Mar 4, 2002Aug 1, 2002Lindsay Norman MathesonApparatus for measuring parameters relating to the trajectory and/or motion of a moving article
US20020107085 *Jun 25, 2001Aug 8, 2002Lee Nathan J.Diagnostic golf club system
US20020114493 *Feb 16, 2001Aug 22, 2002Golftec, Inc.Method and system for physical motion analysis
US20020123386 *Apr 30, 2002Sep 5, 2002Perlmutter Michael S.Methods and systems for analyzing the motion of sporting equipment
US20020189356 *Apr 10, 2002Dec 19, 2002Bissonnette Laurent C.Golf club head with a high coefficient of restitution
US20040106460 *Oct 27, 2003Jun 3, 2004Callaway Golf Company[diagnostic golf club system]
US20080051208 *Aug 30, 2007Feb 28, 2008Callaway Golf CompanyDiagnostic golf club system
US20110212757 *Sep 1, 2011Wilbert Quinc MurdockSmart capacitive detection sensor system
US20110281621 *Apr 26, 2010Nov 17, 2011Wilbert Quinc MurdockSmart system for display of dynamic movement parameters in sports and training
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US8142300 *Apr 1, 2008Mar 27, 2012A School Corporation Kansai UniversityAnalysis method of golf club
US9053256Oct 31, 2012Jun 9, 2015Nike, Inc.Adjustable golf club and system and associated golf club heads and shafts
US9089747Nov 30, 2011Jul 28, 2015Nike, Inc.Golf club heads or other ball striking devices having distributed impact response
US20110081978 *Apr 26, 2010Apr 7, 2011Wilbert Quinc MurdockSmart golf receptacle system
US20110082571 *Apr 26, 2010Apr 7, 2011Wilbert Quinc MurdockComputerized smart gaming tournament system for the internet
US20110087344 *Apr 26, 2010Apr 14, 2011Wilbert Quinc MurdockSmart golf software