US20110210321A1 - Transparent polymeric electrodes for electro-optical structures, process for producing the same, and dispersions used in such processes - Google Patents

Transparent polymeric electrodes for electro-optical structures, process for producing the same, and dispersions used in such processes Download PDF

Info

Publication number
US20110210321A1
US20110210321A1 US13/103,503 US201113103503A US2011210321A1 US 20110210321 A1 US20110210321 A1 US 20110210321A1 US 201113103503 A US201113103503 A US 201113103503A US 2011210321 A1 US2011210321 A1 US 2011210321A1
Authority
US
United States
Prior art keywords
layer
substituted
unsubstituted
process according
radical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/103,503
Inventor
Andreas Elschner
Peter Wilfried Loevenich
Friedrich Jonas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/103,503 priority Critical patent/US20110210321A1/en
Publication of US20110210321A1 publication Critical patent/US20110210321A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/179Interconnections, e.g. wiring lines or terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31533Of polythioether

Definitions

  • OLEDs organic light-emitting diodes
  • LCD liquid crystals
  • OLEDs optical light emitting diode
  • LCDs liquid crystal displays
  • OLEDs can also be used for lighting purposes, for example in large-area radiation emitters. Due to their extremely flat design, they can be used to build very thin lighting elements, which hitherto was not possible. The luminous efficiencies of OLEDs now exceed those of thermal radiation emitters, such as incandescent bulbs for example, and the emission spectrum can in principle be varied as desired through a suitable choice of emitter materials.
  • OLED displays nor OLED lighting elements are limited to a flat, rigid design. Arrangements that are flexible or curved in any way are just as feasible owing to the flexibility of the organic functional layers.
  • An advantage of organic light-emitting diodes lies in their simple structure. This structure is conventionally as follows: a transparent electrode is applied to a transparent support, e.g. glass or plastic film. On top of this is at least one organic layer (emitter layer) or a stack of organic layers applied in succession. Finally a metal electrode is applied.
  • OSCs Organic solar cells
  • TCO transparent conducting oxide
  • ITO indium-tin oxide
  • ATO antimony-tin oxide
  • thin metal layers have hitherto conventionally been used as transparent electrodes in OLEDs or OSCs.
  • the deposition of these inorganic layers takes place by sputtering, reactive surface atomisation (reactive sputtering) or thermal evaporation of the organic material in vacuo and is therefore complex and cost-intensive.
  • ITO layers are a substantial cost factor in the production of OLEDs or OSCs. ITO layers are used because they combine high electrical conductivity with high transparency. However, ITO has the following considerable disadvantages:
  • ITO can only be deposited in a complex, cost-intensive vacuum process (by reactive sputtering).
  • ITO is brittle and forms cracks when shaped.
  • the metal indium is a raw material with only limited production, and supply shortages are predicted if consumption increases further.
  • ITO layers are still used because of their favourable ratio of electrical conductivity to optical absorption and above all due to the lack of suitable alternatives.
  • a high electrical conductivity is necessary to keep down the voltage drop across the transparent electrode in current-driven structures.
  • the conductivity of PEDT:PSA layers produced from formulations having a PEDT:PSA ratio such as 1:2.5 (percent by weight) is not particularly high, e.g. approx. 0.1 S/cm for an aqueous PEDT/PSA dispersion (available commercially as Baytron® P from H.C. Starck), and far removed from the desired value for ITO of 5000 to 10,000 S/cm.
  • the conductivity can be raised to approx. 50 S/cm by adding additives such as e.g.
  • the object of the present invention was therefore to produce electrodes which can replace the conventional ITO electrodes without however exhibiting the aforementioned disadvantages.
  • the invention concerns a process for producing transparent multi-layer electrodes from conductive polymers, electrodes produced by this process and their use in electro-optical structures.
  • electrodes consisting of at least two electrode layers, wherein the first electrode layer was produced from a polythiophene dispersion in which 50 wt. % of the particles are smaller than 50 nm and was applied to a second layer containing a hole-injecting material, satisfy these requirements.
  • the present invention thus provides a process for producing an electrode containing at least two layers, characterised in that:
  • a first layer is produced by applying a dispersion containing at least one polymeric anion and at least one optionally substituted polythiophene containing repeating units having the general formula (I),
  • A stands for an optionally substituted C 1 to C 5 alkylene radical, preferably for an optionally substituted C 2 to C 3 alkylene radical
  • R stands for a linear or branched, optionally substituted C 1 to C 18 alkyl radical, an optionally substituted C 5 to C 12 cycloalkyl radical, an optionally substituted C 6 to C 14 aryl radical, an optionally substituted C 7 to C 18 aralkyl radical, an optionally substituted C 1 to C 4 hydroxyalkyl radical or a hydroxyl radical
  • x stands for a whole number from 0 to 8, preferably for 0 or 1, and if several radicals R are bound to A, they can be the same or different, and 50 wt. % of the particles in the dispersion are smaller than 50 nm, to a suitable substrate and then allowing it to solidify, and then
  • a second layer is produced by applying at least one organic hole-injecting material and optionally at least one anion (from solution or dispersion or by physical vapour deposition) to the first layer and optionally then allowing it to solidify.
  • FIG. 1 is a schematic representation of a portion of an OLED display in accordance with one embodiment of the present invention.
  • FIG. 2 is a schematic representation of a portion of an OLED display in accordance with another embodiment of the present invention.
  • Polythiophenes containing repeating units having the general formula (I) are preferably examples containing repeating units having the general formula (Ia),
  • the polythiophenes are particularly preferably examples containing repeating units having the general formula (Iaa)
  • polythiophenes are examples consisting of repeating units having the general formulae (I), preferably the general formulae (Ia) and particularly preferably the general formulae (Iaa).
  • the prefix poly should be understood to mean that more than one identical or different repeating unit is contained in the polymer or polythiophene.
  • the polythiophenes contain a total of n repeating units having the general formula (I), wherein in particular n can be a whole number from 2 to 2000, preferably 2 to 100. Within a polythiophene the repeating units having the general formula (I) can be the same or different.
  • Polythiophenes are preferred which have identical repeating units having the general formula (I), preferably having the general formulae (Ia) and particularly preferably having the general formulae (Iaa).
  • the polythiophenes preferably each carry H at the terminal groups.
  • the polythiophene with repeating units having the general formula (I) is poly(3,4-ethylenedioxythiophene), i.e. a homopolythiophene consisting of repeating units having the formula (Iaa).
  • the dispersion for producing the first layer is preferably one in which 50 wt. % of the particles are smaller than 40 nm, preferably smaller than 30 nm.
  • the particle size distribution is determined with an analytical ultracentrifuge, as described in H. G. Müllner; Progr. Colloid Polym. Sci. 127 (2004) 9-13.
  • One or more additives which increase conductivity are particularly preferably added to the dispersion for producing the first layer, such as e.g. ether group-containing compounds, such as e.g. tetrahydrofuran, lactone group-containing compounds such as ⁇ -butyrolactone, ⁇ -valerolactone, amide or lactam group-containing compounds such as caprolactam, N-methyl caprolactam, N,N-dimethyl acetamide, N-methyl acetamide, N,N-dimethyl formamide (DMF), N-methyl formamide, N-methyl formanilide, N-methyl pyrrolidone (NMP), N-octyl pyrrolidone, pyrrolidone, sulfones and sulfoxides, such as e.g.
  • ether group-containing compounds such as e.g. tetrahydrofuran
  • lactone group-containing compounds such as ⁇ -butyrolactone, ⁇ -vale
  • sulfolane tetramethylene sulfone
  • dimethyl sulfoxide DMSO
  • sugars or sugar derivatives such as e.g. sucrose, glucose, fructose, lactose, sugar alcohols such as e.g. sorbitol, mannitol, furan derivatives such as e.g. 2-furan carboxylic acid, 3-furan carboxylic acid, and/or dialcohols or polyalcohols, such as e.g. ethylene glycol, glycerol, diethylene or triethylene glycol.
  • Tetrahydrofuran, N-methyl formamide, N-methyl pyrrolidone, dimethyl sulfoxide or sorbitol are preferably used as conductivity-increasing additives.
  • Dimethyl sulfoxide is particularly preferred.
  • the additives are preferably added to the dispersions for producing the first layer in an amount of at least 0.1 wt. %, preferably at least 0.5 wt. %, particularly preferably at least 1 wt. %, based on the total weight of the dispersion.
  • the organic hole-injecting material can be a polymeric or low-molecular-weight material, the latter also being referred to in professional circles as a small-molecule material.
  • Suitable examples of polymeric hole-injecting materials include polythiophenes, polyanilines, such as polyaniline/camphor sulfonic acid (PANI-CSA) (G. Gustafsson et al., Nature 357 (1992) 477), polyphenylamines, such as poly(arylene ether sulfones) containing tetraphenyl diamine and doped with tris(4-bromophenyl)aminium hexachloroantimonate (PTPDES:TBPAH) (A.
  • Preferred polymeric, hole-injecting materials are optionally substituted polythiophenes containing repeating units having the general formula (II-a) and/or (II-b),
  • A stands for an optionally substituted C 1 to C 5 alkylene radical, preferably for an optionally substituted C 2 to C 3 alkylene radical
  • Y stands for O or S
  • R stands for a linear or branched, optionally substituted C 1 to C 18 alkyl radical, an optionally substituted C 5 to C 12 cycloalkyl radical, an optionally substituted C 6 to C 14 aryl radical, an optionally substituted C 7 to C 18 aralkyl radical, an optionally substituted C 1 to C 4 hydroxyalkyl radical or a hydroxyl radical
  • x stands for a whole number from 0 to 8, preferably for 0 or 1, and if several radicals R are bound to A, they can be the same or different, optionally also containing at least one polymeric anion.
  • Polythiophenes containing repeating units having the general formula (II-a) are preferably examples containing repeating units having the general formula (II-a-1) and/or (II-a-2),
  • polythiophenes containing repeating units having the general formula (II-aa-1) and/or (II-aa-2)
  • the polythiophene with repeating units having the general formula (II-a) and/or (II-b) is poly(3,4-ethylenedioxythiophene), poly(3,4-ethyleneoxythiathiophene) or poly(thieno[3,4-b]thiophene, in other words a homopolythiophene consisting of repeating units having the formula (II-aa-1), (II-aa-2) or (II-b).
  • the polythiophene with repeating units having the general formula (II-a) and/or (II-b) is a copolymer consisting of repeating units having the formula (II-aa-1) and (II-aa-2), (II-aa-1) and (II-b), (II-aa-2) and (II-b) or (II-aa-1), (II-aa-2) and (II-b), copolymers consisting of repeating units having the formula (II-aa-1) and (II-aa-2) as well as (II-aa-1) and (II-b) being preferred.
  • C 1 to C 5 alkylene radicals A are: methylene, ethylene, n-propylene, n-butylene or n-pentylene.
  • C 1 to C 18 alkyl within the meaning of the invention stands for linear or branched C 1 to C 18 alkyl radicals such as, for example, methyl, ethyl, n-propyl or isopropyl, n-, iso-, sec- or tert-butyl, n-pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1-ethylpropyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, n-hexyl, n-heptyl, n-octyl, 2-ethylhexyl, n-nonyl, n-decyl, n-undecyl, n-do
  • C 1 to C 5 alkylene radicals A for example alkyl, cycloalkyl, aryl, halogen, ether, thioether, disulfide, sulfoxide, sulfone, sulfonate, amino, aldehyde, keto, carboxylic acid ester, carboxylic acid, carbonate, carboxylate, cyano, alkyl silane and alkoxy silane groups and carboxylamide groups.
  • Preferred polymeric anions are, for example, anions of polymeric carboxylic acids, such as polyacrylic acids, polymethacrylic acid or polymaleic acids, or polymeric sulfonic acids, such as polystyrene sulfonic acids and polyvinyl sulfonic acids.
  • polymeric carboxylic acids such as polyacrylic acids, polymethacrylic acid or polymaleic acids
  • polymeric sulfonic acids such as polystyrene sulfonic acids and polyvinyl sulfonic acids.
  • These polycarboxylic and polysulfonic acids can also be copolymers of vinyl carboxylic and vinyl sulfonic acids with other polymerisable monomers, such as acrylic acid esters and styrene.
  • polystyrene sulfonic acid as a counterion is particularly preferred as the polymeric anion.
  • partially fluorinated or perfluorinated polymers containing SO 3 ⁇ M + or COO ⁇ M + groups are also suitable as polymeric anions for the second electrode layer, particularly in combination with the polythiophenes containing repeating units having the general formulae (II-a) and/or (II-b).
  • Such a partially fluorinated or perfluorinated polymer containing SO 3 ⁇ M + or COO ⁇ M + groups can be Nafion®, for example, which is commercially available.
  • a mixture of anions of polystyrene sulfonic acid (PSA) and Nafion® is also suitable as polymeric anions for the second electrode layer.
  • the molecular weight of the polyacids delivering the polyanions is preferably 1000 to 2,000,000, particularly preferably 2000 to 500,000.
  • the polyacids or their alkali salts are commercially available, e.g. polystyrene sulfonic acids and polyacrylic acids, or are obtainable by known methods (see e.g. Houben Weyl, Methoden der organischen Chemie, Vol. E 20 Makromolekulare Stoffe, Part 2 (1987), p. 1141 ff.).
  • the polythiophenes can be neutral or cationic. In preferred embodiments they are cationic, “cationic” referring only to the charges located on the polythiophene main chain.
  • the polythiophenes can carry positive and negative charges in the structural unit, the positive charges being located on the polythiophene main chain and the negative charges optionally on the radicals R substituted by sulfonate or carboxylate groups.
  • the positive charges of the polythiophene main chain can be partially or wholly saturated with the optionally present anionic groups on the radicals R.
  • the polythiophenes can in these cases be cationic, neutral or even anionic.
  • the positive charges on the polythiophene main chain are definitive.
  • the positive charges are not shown in the formulae as their exact number and position cannot be definitively established. However, the number of positive charges is at least 1 and at most n, n being the total number of all repeating units (identical or different) within the polythiophene.
  • the cationic polythiophenes require anions as counterions.
  • Counterions can be monomeric or polymeric anions, the latter also being referred to hereafter as polyanions.
  • Polymeric anions can be those already listed above.
  • Suitable monomeric anions are, for example, those of C 1 to C 20 alkane sulfonic acids, such as methane, ethane, propane, butane or higher sulfonic acids, such as dodecane sulfonic acid, of aliphatic perfluorosulfonic acids, such as trifluoromethane sulfonic acid, perfluorobutane sulfonic acid or perfluorooctane sulfonic acid, of aliphatic C 1 to C 20 carboxylic acids such as 2-ethylhexyl carboxylic acid, of aliphatic perfluorocarboxylic acids, such as trifluoroacetic acid or perfluorooctanoic acid, and of aromatic sulfonic acids optionally substituted by C 1 to C 20 alkyl groups, such as benzene sulfonic acid, o-toluene sulf
  • the anions of p-toluene sulfonic acid, methane sulfonic acid or camphor sulfonic acid are particularly preferred.
  • Cationic polythiophenes which contain anions as counterions for charge compensation are often also referred to by specialists as polythiophene/(poly)anion complexes.
  • the polymeric anion can function as a counterion.
  • additional counterions can also be contained in the layer.
  • the polymeric anion preferably serves as the counterion in this layer, however.
  • Polymeric anion(s) and polythiophene(s) can be contained in the first layer in a ratio by weight of 0.5:1 to 20:1, preferably 1:1 to 5:1.
  • Polymeric anion(s) and polythiophene(s) can be contained in the second layer in a ratio by weight of 0.5:1 to 50:1, preferably 1:1 to 30:1, particularly preferably 2:1 to 20:1.
  • the weight of the polythiophenes corresponds here to the weighed-in amount of the monomers used, assuming that a complete conversion takes place during polymerisation.
  • the first layer is produced from a dispersion containing a polyanion and a polythiophene with repeating units having the general formula (I), in which R, A and x have the above meaning, to which is applied a second layer from a dispersion containing a polymeric anion and a polythiophene with repeating units having the general formula (II-a) and/or (II-b).
  • the first layer is produced from a dispersion containing polystyrene sulfonic acid and poly(3,4-ethylenedioxythiophene), to which is applied a second layer from a dispersion containing polystyrene sulfonic acid and poly(3,4-ethylenedioxythiophene), also referred to in professional circles as PEDT/PSA or PEDT:PSA.
  • suitable solvents are aliphatic alcohols such as methanol, ethanol, i-propanol and butanol, aliphatic ketones such as acetone and methyl ethyl ketone, aliphatic carboxylic acid esters such as acetic acid ethyl ester and acetic acid butyl ester, aromatic hydrocarbons such as toluene and xylene; aliphatic hydrocarbons such as hexane, heptane and cyclohexane, chlorinated hydrocarbons such as dichloromethane and dichloroethane, aliphatic nitriles such as acetonitrile, aliphatic sulfoxides and sulfones such as dimethyl sulfoxide and sulfolane, aliphatic carboxylic acids amides such as methyl acetamide
  • Water or a mixture of water and the aforementioned organic solvents can also be used as the solvent.
  • Preferred solvents are water or other protic solvents such as alcohols, e.g. methanol, ethanol, i-propanol and butanol, and mixtures of water with these alcohols; the particularly preferred solvent is water.
  • the solids content in these dispersions is preferably 0.01% to 20%, particularly preferably 0.1% to 10%, based on the total weight of the dispersion.
  • the dispersions for producing the first electrode layer preferably have a viscosity of 5 to 300 mPas, preferably 10 to 100 mPas.
  • the dispersions for producing the second electrode layer preferably have a viscosity of 2 to 300 mPas, preferably 5 to 100 mPas.
  • the viscosity of the solutions examined here is measured with a Haake RV 1 rheometer with thermostat.
  • 13.5 g ⁇ 0.3 g of the solutions to be measured are weighed into the measuring slit and measured at a shear rate of 100 s ⁇ 1 at 20.0° C.
  • Further components can also be added to the dispersions for producing the second electrode layer, such as one or more organic binders that are soluble in organic solvents, such as polyvinyl acetate, polycarbonate, polyvinyl butyral, polyacrylic acid esters, polymethacrylic acid esters, polystyrene, polyacrylonitrile, polyvinyl chloride, polybutadiene, polyisoprene, polyethers, polyesters, silicones, styrene/acrylic acid ester, vinyl acetate/acrylic acid ester and ethylene/vinyl acetate copolymers, water-soluble binders such as polyvinyl alcohols and/or crosslinkers such as polyurethanes or polyurethane dispersions, polyacrylates, polyolefin dispersions, epoxy silanes, such as 3-glycidoxypropyl trialkoxysilane.
  • organic solvents such as polyvinyl acetate, polycarbonate, polyvinyl butyral, poly
  • the dispersions are applied to the suitable substrate or to the first layer by known methods, e.g. by spin coating, impregnation, pouring, dropwise application, atomising, spraying, knife application, brushing or printing, for example inkjet, gravure, screen, flexographic or pad printing.
  • first and second layer containing at least one polymeric anion and at least one polythiophene with repeating units having the general formula (I) or (II-a) and/or (II-b) can be followed after solidification—by drying for example—by cleaning the layer—for example by washing.
  • dispersion from thiophenes having the general formula (II) takes place for example in an analogous manner to the conditions cited in EP-A 440 957.
  • the dispersion is preferably homogenised once or more, optionally at elevated pressure, in the manner likewise known to the person skilled in the art to produce the first layer.
  • the solids content can be adjusted in advance in the desired manner through the choice of the amounts of solvent that is optionally present or reduced by dilution or increased by concentration in the known manner afterwards.
  • the first layer is solidified before the second layer is applied, in the case of solvent-containing dispersions in particular by removing the solvent or by oxidative crosslinking, preferably by exposing the dispersion layer to (ambient) oxygen.
  • the solvent that is optionally present can be removed after application of the solutions by simple evaporation at room temperature. To obtain faster processing speeds, however, it is more advantageous to remove the solvents at elevated temperatures, e.g. at temperatures of 20 to 300° C., preferably 40 to 200° C. Depending on the additive in the dispersion for producing the first electrode layer, its drying temperature can particularly preferably be chosen as 100 to 150° C.
  • a thermal post-treatment can be carried out immediately, allied to the removal of the solvent, or some time after the production of the coating. Depending on the nature of the polymer used for the coating, the heat treatment can last from 5 seconds to several hours. Temperature profiles with differing temperatures and residence times can also be used for the thermal treatment.
  • the heat treatment can be performed by, for example, moving the coated substrates through a heated chamber at the desired temperature at a rate such that the desired residence time at the chosen temperature is achieved, or by bringing it into contact with a hot plate at the desired temperature for the desired residence time.
  • the heat treatment can also take place in a heating oven or in several heating ovens, for example, each at different temperatures.
  • the substrate can be glass, extremely thin glass (flexible glass) or plastics, for example.
  • the substrate Before application of the layer containing at least one conductive polymer, the substrate can be treated with an adhesion promoter. Such a treatment can take place by, for example, spin coating, impregnation, pouring, dropwise application, atomising, spraying, knife application, brushing or printing, for example inkjet, gravure, screen, flexographic or pad printing.
  • plastics for the substrate are: polycarbonates, polyesters, such as e.g. PET and PEN (polyethylene terephthalate and polyethylene naphthalene dicarboxylate respectively), copolycarbonates, polysulfone, polyether sulfone (PES), polyimide, polyethylene, polypropylene or cyclic polyolefins or cyclic olefin copolymers (COC), hydrogenated styrene polymers or hydrogenated styrene copolymers.
  • PET and PEN polyethylene terephthalate and polyethylene naphthalene dicarboxylate respectively
  • copolycarbonates polysulfone, polyether sulfone (PES), polyimide, polyethylene, polypropylene or cyclic polyolefins or cyclic olefin copolymers (COC), hydrogenated styrene polymers or hydrogenated styrene copolymers.
  • PES poly
  • Suitable polymer substrates can be films, for example, such as polyester films, PES films from Sumitomo or polycarbonate films from Bayer AG (Makrofol®).
  • Preferred low-molecular-weight hole-injecting materials are optionally substituted phthalocyanines, such as Cu phthalocyanine (S. A. Van Slyke et al., Appl. Phys. Lett. 69 (1996) 2160) or optionally substituted phenylamines such as 4,4′-bis(3-methylphenylphenylamino)biphenyl (TPD) or 4,4′,4′′-tris(3-methylphenyl-phenylamino)triphenylamine (m-MTDATA) (Y. Shirota et al., Appl. Phys. Lett.
  • phthalocyanines such as Cu phthalocyanine (S. A. Van Slyke et al., Appl. Phys. Lett. 69 (1996) 2160)
  • optionally substituted phenylamines such as 4,4′-bis(3-methylphenylphenylamino)biphenyl (TPD) or 4,4
  • the second layer of the electrode according to the invention can be applied from solution, dispersion or from the gas phase.
  • the second layer is preferably produced from solution or dispersion.
  • the second layer is produced from a dispersion containing at least one polymeric anion and at least one optionally substituted polythiophene containing repeating units having the general formula (II-a) and/or (II-b).
  • the process according to the invention can thus preferably be performed without the need for complex and expensive physical vapour deposition or sputtering processes. This also allows inter alia application on large surfaces. Furthermore, the polythiophene/polyanion layers can be applied at low temperatures, preferably room temperature. The process according to the invention is thus also suitable for application on polymeric, flexible substrates, which generally tolerate only low-temperature processes and cannot withstand the temperatures for ITO deposition.
  • the present invention also provides electrodes which can be produced and preferably were produced by means of the process according to the invention.
  • the electrodes according to the invention are preferably transparent electrodes.
  • Transparent within the meaning of the invention means transparent for visible light.
  • the luminous transmittance is measured according to the wavelength in accordance with ASTM D 1003 and used to calculate the standard colour value Y—often also referred to as brightness—in accordance with ASTM E308.
  • Y standard colour value
  • Y(D65/10°) is understood to be the standard colour value calculated using the standard light type D65 observed at an angle of 10° (cf. ASTM E308).
  • the stated standard colour values refer to the pure layer, i.e. an uncoated substrate is also measured as a control.
  • the first layer of the electrode according to the invention preferably has an electrical conductivity of at least 300 Scm ⁇ 1 , particularly preferably at least 400 Scm ⁇ 1 .
  • Electrical conductivity is understood to be the reciprocal of the specific resistance. This is calculated from the product of the surface resistance and film thickness of the conductive polymer layer.
  • the surface resistance for conductive polymers is measured in accordance with DIN EN ISO 3915, the thickness of the polymer layer using a stylus profilometer.
  • the first layer of the electrode according to the invention preferably exhibits a surface roughness Ra of less than 2.5 nm, preferably less than 1.5 nm.
  • the surface roughness Ra is measured using a scanning force microscope (Digital Instruments) by scanning a 1 ⁇ m by 1 ⁇ m area of an approx. 150 nm thick polymer layer on glass substrates.
  • the surface roughness of the first layer of the electrode according to the invention is advantageously markedly less than that of the electrodes known from EP-A 686 662, for example, so that the short-circuit probability for OLEDs and OSCs is reduced with the electrodes according to the invention.
  • the first layer of the electrode according to the invention also preferably has a dry film thickness of 10 to 500 nm, particularly preferably 20 to 200 nm, most particularly preferably 50 to 200 nm.
  • the second layer of the electrode according to the invention preferably has a dry film thickness of 5 to 300 nm, particularly preferably 10 to 200 nm, particularly preferably 50 to 150 nm.
  • the electrode contains a first layer consisting of a polyanion and a polythiophene with repeating units having the general formula (I), in which R, A and x have the meaning given above, to which is applied a second layer consisting of a polymeric anion and a polythiophene with repeating units having the general formula (II-a) and/or (II-b).
  • the electrode contains a first layer consisting of polystyrene sulfonic acid and poly(3,4-ethylenedioxythiophene), to which is applied a second layer consisting of polystyrene sulfonic acid and poly(3,4-ethylenedioxythiophene), also referred to in professional circles as PEDT/PSA or PEDT:PSA.
  • the electrodes according to the invention are extremely suitable as electrodes in electrical and preferably in electro-optical structures, particularly in organic light-emitting diodes (OLEDs), organic solar cells (OSCs), electrophoretic or liquid crystalline displays (LCDs) and optical sensors.
  • OLEDs organic light-emitting diodes
  • OSCs organic solar cells
  • LCDs electrophoretic or liquid crystalline displays
  • Electro-optical structures generally contain two electrodes, at least one of which is transparent, and an electro-optically active coating system between them.
  • the electro-optical structure is an electroluminescent layer arrangement, also shortened hereafter to electroluminescent arrangement or EL arrangement.
  • the simplest case of such an EL arrangement consists of two electrodes, at least one of which is transparent, and an electro-optically active layer between these two electrodes.
  • other functional layers can also be included in such an electroluminescent layer structure, such as e.g. other charge-injecting, charge-transporting or charge-blocking interlayers.
  • Such layer structures are known to the person skilled in the art and described by way of example in (J. R. Sheats et al., Science 273 (1996), 884).
  • One layer can also take on several tasks.
  • the electro-optically active, i.e. usually light-emitting, layer can take on the functions of the other layers.
  • One or both of the electrodes can be applied to a suitable substrate, i.e. a suitable support.
  • the layer structure is then provided with appropriate contacts and optionally sheathed and/or encapsulated.
  • the structure of multi-layer systems can be obtained by physical vapour deposition (PVD), in which the layers are applied successively from the gas phase, or by casting methods.
  • PVD physical vapour deposition
  • Physical vapour deposition is used in conjunction with the shadow mask method to make structured LEDs which use organic molecules as emitters. Owing to the higher process speeds and smaller amount of waste material that is produced, and the associated cost savings, casting processes are generally preferred.
  • the electrodes according to the invention can advantageously be produced from solution/dispersion.
  • the present invention thus also provides an electroluminescent arrangement consisting of at least two electrodes, at least one of which is transparent, and an electro-optically active layer between the electrodes, characterised in that it contains an electrode according to the invention as the transparent electrode.
  • Preferred electroluminescent arrangements are ones which contain an electrode according to the invention applied to a suitable substrate, i.e. first and second layer, an emitter layer and a metal cathode.
  • the layer containing at least one organic, hole-injecting material preferably at least one polymeric anion and at least one polythiophene having the general formula (II-a) or (II-b), can function as the hole-injecting interlayer, for example.
  • Other functional layers listed above can optionally be included.
  • the electrically conductive layer is placed in contact with several electrically highly conductive metallic leads as the anode.
  • Substrate//(polyethylenedioxythiophene/polystyrene sulfonic acid) layer first layer//(polyethylenedioxythiophene/polystyrene sulfonic acid) layer (second layer)//emitter layer//metal cathode.
  • Other functional layers can optionally be included.
  • Corresponding structures with an electrode according to the invention are also advantageous in inverted OLED or OSC structures, i.e. if the layers are assembled in the reverse sequence.
  • a corresponding preferred embodiment of an inverted OLED is the following:
  • Active matrix substrates are generally non-transparent Si layers in which a transistor circuit has been processed under each light-emitting pixel.
  • the second layer is generally first applied to the emitter layer, as already described above, and then once this second layer has solidified, the first layer is applied to the emitter layer, as already described above.
  • Suitable emitter materials and materials for metal cathodes are those which are commonly used for electro-optical structures and are known to the person skilled in the art.
  • Metal cathodes are preferably those made from metals having a low work function, such as Mg, Ca, Ba, Cs, or metal salts such as LiF.
  • Conjugated polymers such as polyphenylene vinylenes or polyfluorenes or emitters from the class of low-molecular-weight emitters, also known in professional circles as “small molecules”, such as tris(8-hydroxyquinolinato)aluminium (Alq 3 ), are preferably used as emitter materials.
  • TCO layers such as ITO for example, or thin metal layers.
  • Organic layers are simpler to structure than inorganic layers, such as ITO for example.
  • Organic layers can be removed again with solvents, by optical irradiation (UV) or by thermal irradiation (laser ablation).
  • the double-layer electrode according to the invention comprising a first and second layer also shows clear advantages over known polymer electrodes.
  • the short-circuit probability for OLEDs and OSCs is reduced considerably with the electrodes according to the invention.
  • the significantly increased conductivity of the first electrode layer is also surprising, since it is known from the literature that reducing the particle size increases the surface resistance of resulting layers (A. Elschner et al., Asia Display IDW 2001, OEL 3-3, p. 1429). Even adding conductivity-increasing additives should not be expected to compensate for this negative influence of particle refinement on conductivity, let alone further increase the conductivity.
  • the effect obtained is unexpected, since in both layers the only electrically active component is the electrically conductive polythiophene, whereas the polymeric anions are electrically inert and primarily serve to keep the electrically conductive polymer or polythiophene in solution during polymerisation and the conductivity-increasing additives substantially volatise at drying temperatures of over 120° C.
  • busbars made from metals, for example, and known as busbars.
  • ITO address lines can be dispensed with on account of the invention.
  • metal leads in their place, metal leads (busbars) in combination with the electrode according to the invention carry out anode-side addressing (see FIG. 1 ).
  • Electrical leads 2 a and pixel frames 2 b with high conductivity are applied to a transparent support 1 , e.g. a glass plate. They could be applied for example by vapour deposition of metals or inexpensively by printing with metal pastes.
  • the polymeric electrode layer 3 is then deposited into the frames.
  • An adhesion promoter is optionally applied first, then the first electrode layer and finally the second electrode layer. These layers are preferably applied by spin coating, printing and inkjet printing.
  • the remaining structure corresponds to that of a standard passive matrix OLED and is known to the person skilled in the art.
  • ITO electrodes can be dispensed with on account of the invention.
  • metal leads in combination with the electrode according to the invention assume the function of the full-surface anode (see FIG. 2 ).
  • Electrical leads 2 with high conductivity are applied to a transparent support 1 , e.g. a glass plate, in the manner described in the previous paragraph, for example.
  • the polymeric electrode layer 3 is then deposited on top in the sequence described in the previous paragraph. The remaining structure corresponds to that of a standard OLED lamp.
  • the dispersions which are particularly suitable for producing the first electrode layer are likewise not known from the literature and are thus provided by the present invention.
  • the transmittance is measured with a UV/VIS spectrometer (PerkinElmer 900 with photo-integrating sphere) with an uncoated glass substrate in the control beam path.
  • the viscosity of the solutions examined here is measured with a Haake RV 1 rheometer with thermostat.
  • 13.5 g ⁇ 0.3 g of the solutions to be measured are weighed into the measuring slit and measured at a shear rate of 100 s ⁇ 1 at 20.0° C.
  • the conductivity is understood to be the reciprocal of the specific resistance. This is calculated from the product of the surface resistance and film thickness of the conductive polymer layer.
  • the surface resistance for conductive polymers is measured in accordance with DIN EN ISO 3915, the thickness of the polymer layer using a stylus profilometer.
  • the surface roughness Ra is measured using a scanning force microscope (Digital Instruments) by scanning a 1 ⁇ m by 1 ⁇ m area of an approx. 150 nm thick polymer layer on glass substrates.
  • % of the particles smaller than 25 nm was established by homogenisation.
  • the dispersion was then concentrated from approx. 1 wt. % to a solids content of 1.7 wt. %, filtered (Pall, pore size: 0.2 ⁇ m) and then mixed with 5 wt. % dimethyl sulfoxide (DMSO).
  • DMSO dimethyl sulfoxide
  • a) (According to the invention) Glass substrates were cut to a size of 50 ⁇ 50 mm 2 , cleaned and activated for 15 minutes with UV/ozone. The dispersion from example 1a) was then distributed over the glass substrate by means of a spin coater at the specified spin speed and an acceleration of 500 rpm/sec for 30 seconds. Parallel silver contacts were vapour deposited using a shadow mask and the surface resistance was determined. The film thickness was determined with a stylus profilometer (Tencor 500), the surface roughness with a scanning force microscope (Digital Instruments).
  • Approx. 2 ml of the dispersion from example 1a) were poured onto the substrate and then distributed on the glass substrate with the metal fingers using a spin coater at 1000 rpm and an acceleration of 500 rpm/sec for 30 seconds.
  • the substrate with the still wet electrode layer was then placed on a hot plate, covered with a Petri dish and dried for 5 minutes at 200° C.
  • the electrode layer was approx. 170 nm thick and had an electrical conductivity of 356 S/cm.
  • Metal electrodes were vapour deposited onto the emitter layer.
  • the vapour deposition system (Edwards) used for this step is built into an inert gas glove box (Braun).
  • the substrate was placed on a shadow mask with the emitter layer underneath.
  • the holes in the mask had a diameter of 2.0 mm and were a distance of 5.0 mm apart.
  • the mask was positioned such that the holes were exactly between the metal fingers.
  • the vapour deposition rates were 10 ⁇ /sec for Ba and 20 ⁇ /sec for Ag.
  • the two electrodes of the OLED were connected to a voltage source via electrical leads.
  • the positive pole was connected to the metal fingers, the negative pole to one of the vapour-deposited round metal electrodes.
  • the dependence of the OLED current and electroluminescence intensity (EL) on the voltage was recorded (Keithley 2400 current/voltage source).
  • the EL was detected with a photodiode (EG&G C30809E) with an electrometer connected to it (Keithley 6514) and the luminance calibrated with a luminance meter (Minolta LS-100).
  • the comparison shows that in the relevant voltage range the OLED according to the invention from example 4 with the two-layer electrode surprisingly has a markedly higher luminance L and efficiency ⁇ than the OLED from example 3 with the only one-layer electrode.
  • the comparison again shows that in the relevant voltage range the OLED according to the invention from example 6 with the two-layer electrode surprisingly has a markedly higher luminance L and efficiency ⁇ than the OLEDs from comparative examples 5 and 7 with the only one-layer electrode.
  • the comparison shows that the OLED according to the invention from example 6 with the two-layer electrode produced with the dispersion according to the invention has a very much higher rectification ratio (I+/I ⁇ ) than the OLED with the two-layer electrode from comparative example 8.

Abstract

The invention concerns a process for producing transparent multi-layer electrodes from conductive polymers, electrodes produced by this process and their use in electro-optical structures.

Description

    BACKGROUND OF THE INVENTION
  • Owing to their particular properties, displays based on organic light-emitting diodes (OLEDs) are an alternative to the established technology of liquid crystals (LCD). This novel technology offers advantages in particular in applications involving portable devices which are not plugged into the mains supply, such as mobile telephones, pagers and toys, for example.
  • The advantages of OLEDs include the extremely flat design, the property of generating their own light, which means that like liquid crystal displays (LCDs) they require no additional light source, the high luminous efficiency and the unrestricted viewing angle.
  • In addition to displays, however, OLEDs can also be used for lighting purposes, for example in large-area radiation emitters. Due to their extremely flat design, they can be used to build very thin lighting elements, which hitherto was not possible. The luminous efficiencies of OLEDs now exceed those of thermal radiation emitters, such as incandescent bulbs for example, and the emission spectrum can in principle be varied as desired through a suitable choice of emitter materials.
  • Neither OLED displays nor OLED lighting elements are limited to a flat, rigid design. Arrangements that are flexible or curved in any way are just as feasible owing to the flexibility of the organic functional layers.
  • An advantage of organic light-emitting diodes lies in their simple structure. This structure is conventionally as follows: a transparent electrode is applied to a transparent support, e.g. glass or plastic film. On top of this is at least one organic layer (emitter layer) or a stack of organic layers applied in succession. Finally a metal electrode is applied.
  • Organic solar cells (OSCs) have the same structure in principle (Halls et al., Nature 1995, 376, 498), except that in this case, conversely, light is converted into electrical energy.
  • The economic success of these novel electro-optical structures will depend not only on fulfilment of the technical requirements but substantially also on manufacturing costs. Simplified process steps leading to a reduction in manufacturing complexity and manufacturing costs are therefore of great importance.
  • TCO (transparent conducting oxide) layers such as indium-tin oxide (ITO) or antimony-tin oxide (ATO) or thin metal layers have hitherto conventionally been used as transparent electrodes in OLEDs or OSCs. The deposition of these inorganic layers takes place by sputtering, reactive surface atomisation (reactive sputtering) or thermal evaporation of the organic material in vacuo and is therefore complex and cost-intensive.
  • ITO layers are a substantial cost factor in the production of OLEDs or OSCs. ITO layers are used because they combine high electrical conductivity with high transparency. However, ITO has the following considerable disadvantages:
  • a) ITO can only be deposited in a complex, cost-intensive vacuum process (by reactive sputtering).
  • b) Temperatures of T>400° C. are necessary in the deposition process if high conductivities are to be obtained. In particular, the polymer substrates which are important for flexible displays do not withstand these temperatures.
  • c) ITO is brittle and forms cracks when shaped.
  • d) The metal indium is a raw material with only limited production, and supply shortages are predicted if consumption increases further.
  • e) The environmentally compatible disposal of electro-optical structures containing the heavy metal indium is a problem which has yet to be solved.
  • Despite these disadvantages, ITO layers are still used because of their favourable ratio of electrical conductivity to optical absorption and above all due to the lack of suitable alternatives. A high electrical conductivity is necessary to keep down the voltage drop across the transparent electrode in current-driven structures.
  • Alternatives to ITO as electrode materials have been discussed in the past, but hitherto no alternatives have been found which do not exhibit the disadvantages described above and which at the same time offer comparably good properties in electro-optical structures.
  • Thus a polymeric ITO substitute in which monomers are polymerised in situ on a substrate to form conductive layers has been described, such as e.g. in-situ polymerised poly(3,4-ethylenedioxy)thiophene, which is also abbreviated by specialists to in-situ-PEDT (WO-A 96/08047). However, as well as being likewise difficult to process on the substrate, these in-situ-PEDT layers have the disadvantage, particularly for applications in OLEDs, that firstly the material has a strong inherent colour and secondly that the electroluminescence efficiencies that can be achieved with it are low.
  • In addition, a complex of polyethylenedioxythiophene and polystyrene sulfonic acid, abbreviated by specialists to PEDT/PSA or PEDT:PSA, has been proposed as a polymeric ITO substitute (EP-A 686 662, Inganäs et al., Adv. Mater. 2002, 14, 662-665; Lee et al., Thin Solid Films 2000, 363, 225-228; W. H. Kim et al., Appl. Phys. Lett. 2002, Vol. 80, No. 20, 3844-3846). However, the conductivity of PEDT:PSA layers produced from formulations having a PEDT:PSA ratio such as 1:2.5 (percent by weight) is not particularly high, e.g. approx. 0.1 S/cm for an aqueous PEDT/PSA dispersion (available commercially as Baytron® P from H.C. Starck), and far removed from the desired value for ITO of 5000 to 10,000 S/cm. Although the conductivity can be raised to approx. 50 S/cm by adding additives such as e.g. dimethyl sulfoxide, N-methyl pyrrolidone, sorbitol, ethylene glycol or glycerol to such an aqueous PEDT/PSA dispersion, it is still well below the value for ITO. Furthermore, the fact that these formulations lead to relatively rough layer surfaces because of their coarse particle structure argues against the use of these layers as an ITO substitute in many electro-optical applications. In particular, for applications which are sensitive to short-circuits due to surface roughness, such as OLEDs and OSCs, these layers are thus not very suitable.
  • There was therefore still a requirement for a suitable substitute material for ITO which does not exhibit the disadvantages of ITO and at the same time offers equivalent properties in electrical or electro-optical structures.
  • BRIEF SUMMARY OF THE INVENTION
  • The object of the present invention was therefore to produce electrodes which can replace the conventional ITO electrodes without however exhibiting the aforementioned disadvantages.
  • The invention concerns a process for producing transparent multi-layer electrodes from conductive polymers, electrodes produced by this process and their use in electro-optical structures.
  • Surprisingly it has been found that electrodes consisting of at least two electrode layers, wherein the first electrode layer was produced from a polythiophene dispersion in which 50 wt. % of the particles are smaller than 50 nm and was applied to a second layer containing a hole-injecting material, satisfy these requirements.
  • The present invention thus provides a process for producing an electrode containing at least two layers, characterised in that:
  • a first layer is produced by applying a dispersion containing at least one polymeric anion and at least one optionally substituted polythiophene containing repeating units having the general formula (I),
  • Figure US20110210321A1-20110901-C00001
  • wherein A stands for an optionally substituted C1 to C5 alkylene radical, preferably for an optionally substituted C2 to C3 alkylene radical, R stands for a linear or branched, optionally substituted C1 to C18 alkyl radical, an optionally substituted C5 to C12 cycloalkyl radical, an optionally substituted C6 to C14 aryl radical, an optionally substituted C7 to C18 aralkyl radical, an optionally substituted C1 to C4 hydroxyalkyl radical or a hydroxyl radical, x stands for a whole number from 0 to 8, preferably for 0 or 1, and if several radicals R are bound to A, they can be the same or different, and 50 wt. % of the particles in the dispersion are smaller than 50 nm, to a suitable substrate and then allowing it to solidify, and then
  • a second layer is produced by applying at least one organic hole-injecting material and optionally at least one anion (from solution or dispersion or by physical vapour deposition) to the first layer and optionally then allowing it to solidify.
  • The general formula (I) should be understood to mean that x substituents R can be bound to the alkylene radical A.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING
  • The foregoing summary, as well as the following detailed description of the invention, may be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there are shown in the drawings certain embodiments which may presently be preferred. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown.
  • In the drawings:
  • FIG. 1 is a schematic representation of a portion of an OLED display in accordance with one embodiment of the present invention; and
  • FIG. 2 is a schematic representation of a portion of an OLED display in accordance with another embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Polythiophenes containing repeating units having the general formula (I) are preferably examples containing repeating units having the general formula (Ia),
  • Figure US20110210321A1-20110901-C00002
  • wherein R and x have the meaning given above.
  • The polythiophenes are particularly preferably examples containing repeating units having the general formula (Iaa)
  • Figure US20110210321A1-20110901-C00003
  • In preferred embodiments of the process according to the invention the polythiophenes are examples consisting of repeating units having the general formulae (I), preferably the general formulae (Ia) and particularly preferably the general formulae (Iaa).
  • Within the meaning of the invention the prefix poly should be understood to mean that more than one identical or different repeating unit is contained in the polymer or polythiophene. The polythiophenes contain a total of n repeating units having the general formula (I), wherein in particular n can be a whole number from 2 to 2000, preferably 2 to 100. Within a polythiophene the repeating units having the general formula (I) can be the same or different. Polythiophenes are preferred which have identical repeating units having the general formula (I), preferably having the general formulae (Ia) and particularly preferably having the general formulae (Iaa).
  • The polythiophenes preferably each carry H at the terminal groups.
  • In a particularly preferred embodiment, the polythiophene with repeating units having the general formula (I) is poly(3,4-ethylenedioxythiophene), i.e. a homopolythiophene consisting of repeating units having the formula (Iaa).
  • The dispersion for producing the first layer is preferably one in which 50 wt. % of the particles are smaller than 40 nm, preferably smaller than 30 nm.
  • The particle size distribution is determined with an analytical ultracentrifuge, as described in H. G. Müllner; Progr. Colloid Polym. Sci. 127 (2004) 9-13.
  • One or more additives which increase conductivity are particularly preferably added to the dispersion for producing the first layer, such as e.g. ether group-containing compounds, such as e.g. tetrahydrofuran, lactone group-containing compounds such as γ-butyrolactone, γ-valerolactone, amide or lactam group-containing compounds such as caprolactam, N-methyl caprolactam, N,N-dimethyl acetamide, N-methyl acetamide, N,N-dimethyl formamide (DMF), N-methyl formamide, N-methyl formanilide, N-methyl pyrrolidone (NMP), N-octyl pyrrolidone, pyrrolidone, sulfones and sulfoxides, such as e.g. sulfolane (tetramethylene sulfone), dimethyl sulfoxide (DMSO), sugars or sugar derivatives such as e.g. sucrose, glucose, fructose, lactose, sugar alcohols such as e.g. sorbitol, mannitol, furan derivatives such as e.g. 2-furan carboxylic acid, 3-furan carboxylic acid, and/or dialcohols or polyalcohols, such as e.g. ethylene glycol, glycerol, diethylene or triethylene glycol. Tetrahydrofuran, N-methyl formamide, N-methyl pyrrolidone, dimethyl sulfoxide or sorbitol are preferably used as conductivity-increasing additives. Dimethyl sulfoxide is particularly preferred. The additives are preferably added to the dispersions for producing the first layer in an amount of at least 0.1 wt. %, preferably at least 0.5 wt. %, particularly preferably at least 1 wt. %, based on the total weight of the dispersion.
  • The organic hole-injecting material can be a polymeric or low-molecular-weight material, the latter also being referred to in professional circles as a small-molecule material. Suitable examples of polymeric hole-injecting materials include polythiophenes, polyanilines, such as polyaniline/camphor sulfonic acid (PANI-CSA) (G. Gustafsson et al., Nature 357 (1992) 477), polyphenylamines, such as poly(arylene ether sulfones) containing tetraphenyl diamine and doped with tris(4-bromophenyl)aminium hexachloroantimonate (PTPDES:TBPAH) (A. Fukase et al., Polym. Adv. Technol. 13 (2002) 601) or poly(2,7-(9,9-di-n-octylfluorene)-alt-(1,4-phenylene-((4-sec-butylphenyl)imino)-1,4-phenylene)) (TFB) (J. S. Kim et al., Appl. Phys. Lett. 87 (2005) 23506), fluorinated polymers (L. S. Hung, Appl. Phys. Lett. 78 (2001) 673) and blends of these compounds.
  • Preferred polymeric, hole-injecting materials are optionally substituted polythiophenes containing repeating units having the general formula (II-a) and/or (II-b),
  • Figure US20110210321A1-20110901-C00004
  • wherein A stands for an optionally substituted C1 to C5 alkylene radical, preferably for an optionally substituted C2 to C3 alkylene radical, Y stands for O or S, R stands for a linear or branched, optionally substituted C1 to C18 alkyl radical, an optionally substituted C5 to C12 cycloalkyl radical, an optionally substituted C6 to C14 aryl radical, an optionally substituted C7 to C18 aralkyl radical, an optionally substituted C1 to C4 hydroxyalkyl radical or a hydroxyl radical, x stands for a whole number from 0 to 8, preferably for 0 or 1, and if several radicals R are bound to A, they can be the same or different, optionally also containing at least one polymeric anion.
  • Polythiophenes containing repeating units having the general formula (II-a) are preferably examples containing repeating units having the general formula (II-a-1) and/or (II-a-2),
  • Figure US20110210321A1-20110901-C00005
  • wherein R and x have the meaning given above.
  • They are particularly preferably polythiophenes containing repeating units having the general formula (II-aa-1) and/or (II-aa-2)
  • Figure US20110210321A1-20110901-C00006
  • In particularly preferred embodiments, the polythiophene with repeating units having the general formula (II-a) and/or (II-b) is poly(3,4-ethylenedioxythiophene), poly(3,4-ethyleneoxythiathiophene) or poly(thieno[3,4-b]thiophene, in other words a homopolythiophene consisting of repeating units having the formula (II-aa-1), (II-aa-2) or (II-b).
  • In further particularly preferred embodiments the polythiophene with repeating units having the general formula (II-a) and/or (II-b) is a copolymer consisting of repeating units having the formula (II-aa-1) and (II-aa-2), (II-aa-1) and (II-b), (II-aa-2) and (II-b) or (II-aa-1), (II-aa-2) and (II-b), copolymers consisting of repeating units having the formula (II-aa-1) and (II-aa-2) as well as (II-aa-1) and (II-b) being preferred.
  • Within the meaning of the invention, C1 to C5 alkylene radicals A are: methylene, ethylene, n-propylene, n-butylene or n-pentylene. C1 to C18 alkyl within the meaning of the invention stands for linear or branched C1 to C18 alkyl radicals such as, for example, methyl, ethyl, n-propyl or isopropyl, n-, iso-, sec- or tert-butyl, n-pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1-ethylpropyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, n-hexyl, n-heptyl, n-octyl, 2-ethylhexyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-hexadecyl or n-octadecyl, C5 to C12 cycloalkyl for C5 to C12 cycloalkyl radicals, such as cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl or cyclodecyl, C5 to C14 aryl for C6 to C14 aryl radicals such as phenyl or naphthyl, and C7 to C18 aralkyl for C7 to C18 aralkyl radicals such as, for example, benzyl, o-, m-, p-tolyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4-, 3,5-xylyl or mesityl. The above list serves to illustrate the invention by way of example and should not be regarded as exhaustive.
  • Numerous organic groups are suitable as optionally further substituents of the C1 to C5 alkylene radicals A, for example alkyl, cycloalkyl, aryl, halogen, ether, thioether, disulfide, sulfoxide, sulfone, sulfonate, amino, aldehyde, keto, carboxylic acid ester, carboxylic acid, carbonate, carboxylate, cyano, alkyl silane and alkoxy silane groups and carboxylamide groups.
  • Preferred polymeric anions are, for example, anions of polymeric carboxylic acids, such as polyacrylic acids, polymethacrylic acid or polymaleic acids, or polymeric sulfonic acids, such as polystyrene sulfonic acids and polyvinyl sulfonic acids. These polycarboxylic and polysulfonic acids can also be copolymers of vinyl carboxylic and vinyl sulfonic acids with other polymerisable monomers, such as acrylic acid esters and styrene.
  • The anion of polystyrene sulfonic acid (PSA) as a counterion is particularly preferred as the polymeric anion.
  • In addition to those mentioned above, partially fluorinated or perfluorinated polymers containing SO3 M+ or COOM+ groups are also suitable as polymeric anions for the second electrode layer, particularly in combination with the polythiophenes containing repeating units having the general formulae (II-a) and/or (II-b). Such a partially fluorinated or perfluorinated polymer containing SO3 M+ or COOM+ groups can be Nafion®, for example, which is commercially available. A mixture of anions of polystyrene sulfonic acid (PSA) and Nafion® is also suitable as polymeric anions for the second electrode layer.
  • The molecular weight of the polyacids delivering the polyanions is preferably 1000 to 2,000,000, particularly preferably 2000 to 500,000. The polyacids or their alkali salts are commercially available, e.g. polystyrene sulfonic acids and polyacrylic acids, or are obtainable by known methods (see e.g. Houben Weyl, Methoden der organischen Chemie, Vol. E 20 Makromolekulare Stoffe, Part 2 (1987), p. 1141 ff.).
  • The polythiophenes can be neutral or cationic. In preferred embodiments they are cationic, “cationic” referring only to the charges located on the polythiophene main chain. Depending on the substituent on the radicals R, the polythiophenes can carry positive and negative charges in the structural unit, the positive charges being located on the polythiophene main chain and the negative charges optionally on the radicals R substituted by sulfonate or carboxylate groups. In this case the positive charges of the polythiophene main chain can be partially or wholly saturated with the optionally present anionic groups on the radicals R. Considered as a whole, the polythiophenes can in these cases be cationic, neutral or even anionic. Nevertheless, within the meaning of the invention they are all regarded as cationic polythiophenes, since the positive charges on the polythiophene main chain are definitive. The positive charges are not shown in the formulae as their exact number and position cannot be definitively established. However, the number of positive charges is at least 1 and at most n, n being the total number of all repeating units (identical or different) within the polythiophene.
  • To compensate for the positive charge, if this has not already occurred as a result of the optionally sulfonate- or carboxylate-substituted and hence negatively charged radicals R, the cationic polythiophenes require anions as counterions.
  • Counterions can be monomeric or polymeric anions, the latter also being referred to hereafter as polyanions.
  • Polymeric anions can be those already listed above. Suitable monomeric anions are, for example, those of C1 to C20 alkane sulfonic acids, such as methane, ethane, propane, butane or higher sulfonic acids, such as dodecane sulfonic acid, of aliphatic perfluorosulfonic acids, such as trifluoromethane sulfonic acid, perfluorobutane sulfonic acid or perfluorooctane sulfonic acid, of aliphatic C1 to C20 carboxylic acids such as 2-ethylhexyl carboxylic acid, of aliphatic perfluorocarboxylic acids, such as trifluoroacetic acid or perfluorooctanoic acid, and of aromatic sulfonic acids optionally substituted by C1 to C20 alkyl groups, such as benzene sulfonic acid, o-toluene sulfonic acid, p-toluene sulfonic acid or dodecylbenzene sulfonic acid and of cycloalkane sulfonic acids such as camphor sulfonic acid or tetrafluoroborates, hexafluorophosphates, perchlorates, hexafluoroantimonates, hexafluoroarsenates or hexachloroantimonates.
  • The anions of p-toluene sulfonic acid, methane sulfonic acid or camphor sulfonic acid are particularly preferred.
  • Cationic polythiophenes which contain anions as counterions for charge compensation are often also referred to by specialists as polythiophene/(poly)anion complexes.
  • In the layers containing at least one polymeric anion and at least one polythiophene with repeating units having the general formula (I) or (II-a) and/or (II-b), the polymeric anion can function as a counterion. However, additional counterions can also be contained in the layer. The polymeric anion preferably serves as the counterion in this layer, however.
  • Polymeric anion(s) and polythiophene(s) can be contained in the first layer in a ratio by weight of 0.5:1 to 20:1, preferably 1:1 to 5:1. Polymeric anion(s) and polythiophene(s) can be contained in the second layer in a ratio by weight of 0.5:1 to 50:1, preferably 1:1 to 30:1, particularly preferably 2:1 to 20:1. The weight of the polythiophenes corresponds here to the weighed-in amount of the monomers used, assuming that a complete conversion takes place during polymerisation.
  • In preferred embodiments the first layer is produced from a dispersion containing a polyanion and a polythiophene with repeating units having the general formula (I), in which R, A and x have the above meaning, to which is applied a second layer from a dispersion containing a polymeric anion and a polythiophene with repeating units having the general formula (II-a) and/or (II-b).
  • In a most particularly preferred embodiment, the first layer is produced from a dispersion containing polystyrene sulfonic acid and poly(3,4-ethylenedioxythiophene), to which is applied a second layer from a dispersion containing polystyrene sulfonic acid and poly(3,4-ethylenedioxythiophene), also referred to in professional circles as PEDT/PSA or PEDT:PSA.
  • The dispersions—both for producing the first and for producing the second electrode layer—can also contain one or more solvents. Examples of suitable solvents are aliphatic alcohols such as methanol, ethanol, i-propanol and butanol, aliphatic ketones such as acetone and methyl ethyl ketone, aliphatic carboxylic acid esters such as acetic acid ethyl ester and acetic acid butyl ester, aromatic hydrocarbons such as toluene and xylene; aliphatic hydrocarbons such as hexane, heptane and cyclohexane, chlorinated hydrocarbons such as dichloromethane and dichloroethane, aliphatic nitriles such as acetonitrile, aliphatic sulfoxides and sulfones such as dimethyl sulfoxide and sulfolane, aliphatic carboxylic acids amides such as methyl acetamide, dimethyl acetamide and dimethyl formamide, aliphatic and araliphatic ethers such as diethyl ether and anisole. Water or a mixture of water and the aforementioned organic solvents can also be used as the solvent. Preferred solvents are water or other protic solvents such as alcohols, e.g. methanol, ethanol, i-propanol and butanol, and mixtures of water with these alcohols; the particularly preferred solvent is water.
  • If the dispersions contain one or more solvents, the solids content in these dispersions is preferably 0.01% to 20%, particularly preferably 0.1% to 10%, based on the total weight of the dispersion.
  • The dispersions for producing the first electrode layer preferably have a viscosity of 5 to 300 mPas, preferably 10 to 100 mPas. The dispersions for producing the second electrode layer preferably have a viscosity of 2 to 300 mPas, preferably 5 to 100 mPas.
  • The viscosity of the solutions examined here is measured with a Haake RV 1 rheometer with thermostat. In the clean and dry measuring beakers 13.5 g±0.3 g of the solutions to be measured are weighed into the measuring slit and measured at a shear rate of 100 s−1 at 20.0° C.
  • Further components can also be added to the dispersions for producing the second electrode layer, such as one or more organic binders that are soluble in organic solvents, such as polyvinyl acetate, polycarbonate, polyvinyl butyral, polyacrylic acid esters, polymethacrylic acid esters, polystyrene, polyacrylonitrile, polyvinyl chloride, polybutadiene, polyisoprene, polyethers, polyesters, silicones, styrene/acrylic acid ester, vinyl acetate/acrylic acid ester and ethylene/vinyl acetate copolymers, water-soluble binders such as polyvinyl alcohols and/or crosslinkers such as polyurethanes or polyurethane dispersions, polyacrylates, polyolefin dispersions, epoxy silanes, such as 3-glycidoxypropyl trialkoxysilane.
  • The dispersions are applied to the suitable substrate or to the first layer by known methods, e.g. by spin coating, impregnation, pouring, dropwise application, atomising, spraying, knife application, brushing or printing, for example inkjet, gravure, screen, flexographic or pad printing.
  • Application of the first and second layer containing at least one polymeric anion and at least one polythiophene with repeating units having the general formula (I) or (II-a) and/or (II-b) can be followed after solidification—by drying for example—by cleaning the layer—for example by washing.
  • Production of the dispersion from thiophenes having the general formula (II) takes place for example in an analogous manner to the conditions cited in EP-A 440 957. To obtain these particle sizes the dispersion is preferably homogenised once or more, optionally at elevated pressure, in the manner likewise known to the person skilled in the art to produce the first layer. The solids content can be adjusted in advance in the desired manner through the choice of the amounts of solvent that is optionally present or reduced by dilution or increased by concentration in the known manner afterwards.
  • Production of the polythiophene/polyanion complex and subsequent dispersion or redispersion in one or more solvents is also possible.
  • The first layer is solidified before the second layer is applied, in the case of solvent-containing dispersions in particular by removing the solvent or by oxidative crosslinking, preferably by exposing the dispersion layer to (ambient) oxygen.
  • The solvent that is optionally present can be removed after application of the solutions by simple evaporation at room temperature. To obtain faster processing speeds, however, it is more advantageous to remove the solvents at elevated temperatures, e.g. at temperatures of 20 to 300° C., preferably 40 to 200° C. Depending on the additive in the dispersion for producing the first electrode layer, its drying temperature can particularly preferably be chosen as 100 to 150° C. A thermal post-treatment can be carried out immediately, allied to the removal of the solvent, or some time after the production of the coating. Depending on the nature of the polymer used for the coating, the heat treatment can last from 5 seconds to several hours. Temperature profiles with differing temperatures and residence times can also be used for the thermal treatment.
  • The heat treatment can be performed by, for example, moving the coated substrates through a heated chamber at the desired temperature at a rate such that the desired residence time at the chosen temperature is achieved, or by bringing it into contact with a hot plate at the desired temperature for the desired residence time. The heat treatment can also take place in a heating oven or in several heating ovens, for example, each at different temperatures.
  • The substrate can be glass, extremely thin glass (flexible glass) or plastics, for example. Before application of the layer containing at least one conductive polymer, the substrate can be treated with an adhesion promoter. Such a treatment can take place by, for example, spin coating, impregnation, pouring, dropwise application, atomising, spraying, knife application, brushing or printing, for example inkjet, gravure, screen, flexographic or pad printing.
  • Particularly suitable plastics for the substrate are: polycarbonates, polyesters, such as e.g. PET and PEN (polyethylene terephthalate and polyethylene naphthalene dicarboxylate respectively), copolycarbonates, polysulfone, polyether sulfone (PES), polyimide, polyethylene, polypropylene or cyclic polyolefins or cyclic olefin copolymers (COC), hydrogenated styrene polymers or hydrogenated styrene copolymers.
  • Suitable polymer substrates can be films, for example, such as polyester films, PES films from Sumitomo or polycarbonate films from Bayer AG (Makrofol®).
  • Preferred low-molecular-weight hole-injecting materials are optionally substituted phthalocyanines, such as Cu phthalocyanine (S. A. Van Slyke et al., Appl. Phys. Lett. 69 (1996) 2160) or optionally substituted phenylamines such as 4,4′-bis(3-methylphenylphenylamino)biphenyl (TPD) or 4,4′,4″-tris(3-methylphenyl-phenylamino)triphenylamine (m-MTDATA) (Y. Shirota et al., Appl. Phys. Lett. 65 (1994) 807), which can optionally also be doped with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) or other donors or acceptors (M. Pfeiffer et al., Adv. Mat. 14 (2002) 1633).
  • Depending on the hole-injecting material, the second layer of the electrode according to the invention can be applied from solution, dispersion or from the gas phase. The second layer is preferably produced from solution or dispersion. In preferred embodiments of the process according to the invention, the second layer is produced from a dispersion containing at least one polymeric anion and at least one optionally substituted polythiophene containing repeating units having the general formula (II-a) and/or (II-b).
  • The process according to the invention can thus preferably be performed without the need for complex and expensive physical vapour deposition or sputtering processes. This also allows inter alia application on large surfaces. Furthermore, the polythiophene/polyanion layers can be applied at low temperatures, preferably room temperature. The process according to the invention is thus also suitable for application on polymeric, flexible substrates, which generally tolerate only low-temperature processes and cannot withstand the temperatures for ITO deposition.
  • The present invention also provides electrodes which can be produced and preferably were produced by means of the process according to the invention.
  • The electrodes according to the invention are preferably transparent electrodes. Transparent within the meaning of the invention means transparent for visible light.
  • The standard colour value Y of the first layer of the electrode according to the invention is preferably at least)Y(D65/10°)=50, particularly preferably at least) Y(D65/10°)=70.
  • The luminous transmittance is measured according to the wavelength in accordance with ASTM D 1003 and used to calculate the standard colour value Y—often also referred to as brightness—in accordance with ASTM E308. For a completely transparent sample Y=100, for an opaque sample Y=0. In light engineering terms, Y(D65/10°) is understood to be the standard colour value calculated using the standard light type D65 observed at an angle of 10° (cf. ASTM E308). The stated standard colour values refer to the pure layer, i.e. an uncoated substrate is also measured as a control.
  • The first layer of the electrode according to the invention preferably has an electrical conductivity of at least 300 Scm−1, particularly preferably at least 400 Scm−1.
  • Electrical conductivity is understood to be the reciprocal of the specific resistance. This is calculated from the product of the surface resistance and film thickness of the conductive polymer layer. The surface resistance for conductive polymers is measured in accordance with DIN EN ISO 3915, the thickness of the polymer layer using a stylus profilometer.
  • Furthermore, the first layer of the electrode according to the invention preferably exhibits a surface roughness Ra of less than 2.5 nm, preferably less than 1.5 nm.
  • The surface roughness Ra is measured using a scanning force microscope (Digital Instruments) by scanning a 1 μm by 1 μm area of an approx. 150 nm thick polymer layer on glass substrates.
  • The surface roughness of the first layer of the electrode according to the invention is advantageously markedly less than that of the electrodes known from EP-A 686 662, for example, so that the short-circuit probability for OLEDs and OSCs is reduced with the electrodes according to the invention.
  • The first layer of the electrode according to the invention also preferably has a dry film thickness of 10 to 500 nm, particularly preferably 20 to 200 nm, most particularly preferably 50 to 200 nm. The second layer of the electrode according to the invention preferably has a dry film thickness of 5 to 300 nm, particularly preferably 10 to 200 nm, particularly preferably 50 to 150 nm.
  • In preferred embodiments the electrode contains a first layer consisting of a polyanion and a polythiophene with repeating units having the general formula (I), in which R, A and x have the meaning given above, to which is applied a second layer consisting of a polymeric anion and a polythiophene with repeating units having the general formula (II-a) and/or (II-b).
  • In a most particularly preferred embodiment, the electrode contains a first layer consisting of polystyrene sulfonic acid and poly(3,4-ethylenedioxythiophene), to which is applied a second layer consisting of polystyrene sulfonic acid and poly(3,4-ethylenedioxythiophene), also referred to in professional circles as PEDT/PSA or PEDT:PSA.
  • The electrodes according to the invention are extremely suitable as electrodes in electrical and preferably in electro-optical structures, particularly in organic light-emitting diodes (OLEDs), organic solar cells (OSCs), electrophoretic or liquid crystalline displays (LCDs) and optical sensors.
  • Electro-optical structures generally contain two electrodes, at least one of which is transparent, and an electro-optically active coating system between them. In the case of OLEDs, the electro-optical structure is an electroluminescent layer arrangement, also shortened hereafter to electroluminescent arrangement or EL arrangement.
  • The simplest case of such an EL arrangement consists of two electrodes, at least one of which is transparent, and an electro-optically active layer between these two electrodes. However, other functional layers can also be included in such an electroluminescent layer structure, such as e.g. other charge-injecting, charge-transporting or charge-blocking interlayers. Such layer structures are known to the person skilled in the art and described by way of example in (J. R. Sheats et al., Science 273 (1996), 884). One layer can also take on several tasks. In the simplest case of an EL arrangement described above the electro-optically active, i.e. usually light-emitting, layer can take on the functions of the other layers. One or both of the electrodes can be applied to a suitable substrate, i.e. a suitable support. The layer structure is then provided with appropriate contacts and optionally sheathed and/or encapsulated.
  • The structure of multi-layer systems can be obtained by physical vapour deposition (PVD), in which the layers are applied successively from the gas phase, or by casting methods. Physical vapour deposition is used in conjunction with the shadow mask method to make structured LEDs which use organic molecules as emitters. Owing to the higher process speeds and smaller amount of waste material that is produced, and the associated cost savings, casting processes are generally preferred.
  • As already described above, the electrodes according to the invention can advantageously be produced from solution/dispersion.
  • The present invention thus also provides an electroluminescent arrangement consisting of at least two electrodes, at least one of which is transparent, and an electro-optically active layer between the electrodes, characterised in that it contains an electrode according to the invention as the transparent electrode.
  • Preferred electroluminescent arrangements are ones which contain an electrode according to the invention applied to a suitable substrate, i.e. first and second layer, an emitter layer and a metal cathode. In such an EL arrangement, the layer containing at least one organic, hole-injecting material, preferably at least one polymeric anion and at least one polythiophene having the general formula (II-a) or (II-b), can function as the hole-injecting interlayer, for example. Other functional layers listed above can optionally be included.
  • In particular, the electrically conductive layer is placed in contact with several electrically highly conductive metallic leads as the anode.
  • A preferred embodiment of the present invention is an EL arrangement consisting of layers in the following sequence:
  • Substrate//(polyethylenedioxythiophene/polystyrene sulfonic acid) layer (first layer)//(polyethylenedioxythiophene/polystyrene sulfonic acid) layer (second layer)//emitter layer//metal cathode. Other functional layers can optionally be included.
  • Corresponding structures with an electrode according to the invention are also advantageous in inverted OLED or OSC structures, i.e. if the layers are assembled in the reverse sequence. A corresponding preferred embodiment of an inverted OLED is the following:
  • Substrate//metal cathode//emitter layer//(polyethylenedioxythiophene/polystyrene sulfonic acid) layer (second layer)//(polyethylenedioxythiophene/polystyrene sulfonic acid) layer (first layer).
  • Inverted OLEDs, particularly in combination with active matrix substrates, are of great interest. Active matrix substrates are generally non-transparent Si layers in which a transistor circuit has been processed under each light-emitting pixel.
  • If electrodes according to the invention are used in inverted OLEDs, the second layer is generally first applied to the emitter layer, as already described above, and then once this second layer has solidified, the first layer is applied to the emitter layer, as already described above.
  • Suitable emitter materials and materials for metal cathodes are those which are commonly used for electro-optical structures and are known to the person skilled in the art. Metal cathodes are preferably those made from metals having a low work function, such as Mg, Ca, Ba, Cs, or metal salts such as LiF. Conjugated polymers such as polyphenylene vinylenes or polyfluorenes or emitters from the class of low-molecular-weight emitters, also known in professional circles as “small molecules”, such as tris(8-hydroxyquinolinato)aluminium (Alq3), are preferably used as emitter materials.
  • In electro-optical structures the electrode according to the invention has a number of advantages over known electrodes:
  • a) In OLEDs and OSCs, for example, there is no need for TCO layers, such as ITO for example, or thin metal layers.
  • b) In the case of flexible substrates, bending the substrate does not lead to cracks in the brittle TCO layers and a failure of the electro-optical structure, since these polymeric layers are very ductile and flexible.
  • c) Organic layers are simpler to structure than inorganic layers, such as ITO for example. Organic layers can be removed again with solvents, by optical irradiation (UV) or by thermal irradiation (laser ablation).
  • The double-layer electrode according to the invention comprising a first and second layer also shows clear advantages over known polymer electrodes. In particular, thanks to the fine particle structure and low surface roughness, the short-circuit probability for OLEDs and OSCs is reduced considerably with the electrodes according to the invention. The significantly increased conductivity of the first electrode layer is also surprising, since it is known from the literature that reducing the particle size increases the surface resistance of resulting layers (A. Elschner et al., Asia Display IDW 2001, OEL 3-3, p. 1429). Even adding conductivity-increasing additives should not be expected to compensate for this negative influence of particle refinement on conductivity, let alone further increase the conductivity. The electroluminescence efficiency in OLEDs can be increased significantly through the use of the electrodes according to the invention. In particular, using the electrodes according to the invention in accordance with the particularly preferred embodiments, wherein both the first and the second electrode layer contains PEDT:PSA, an increase in electroluminescence efficiency of 1 to 3 orders of magnitude can be achieved as compared with single-layer electrodes with the same device current.
  • The effect obtained is unexpected, since in both layers the only electrically active component is the electrically conductive polythiophene, whereas the polymeric anions are electrically inert and primarily serve to keep the electrically conductive polymer or polythiophene in solution during polymerisation and the conductivity-increasing additives substantially volatise at drying temperatures of over 120° C.
  • To keep the voltage drop between the anode contact point and the OLED anode especially low, highly conductive leads made from metals, for example, and known as busbars can be used.
  • In the case of passive matrix OLED displays, ITO address lines can be dispensed with on account of the invention. In their place, metal leads (busbars) in combination with the electrode according to the invention carry out anode-side addressing (see FIG. 1). Electrical leads 2 a and pixel frames 2 b with high conductivity are applied to a transparent support 1, e.g. a glass plate. They could be applied for example by vapour deposition of metals or inexpensively by printing with metal pastes. The polymeric electrode layer 3 is then deposited into the frames. An adhesion promoter is optionally applied first, then the first electrode layer and finally the second electrode layer. These layers are preferably applied by spin coating, printing and inkjet printing. The remaining structure corresponds to that of a standard passive matrix OLED and is known to the person skilled in the art.
  • In the case of homogeneously illuminating OLEDs (OLED lamps), ITO electrodes can be dispensed with on account of the invention. In their place, metal leads (busbars) in combination with the electrode according to the invention assume the function of the full-surface anode (see FIG. 2). Electrical leads 2 with high conductivity are applied to a transparent support 1, e.g. a glass plate, in the manner described in the previous paragraph, for example. The polymeric electrode layer 3 is then deposited on top in the sequence described in the previous paragraph. The remaining structure corresponds to that of a standard OLED lamp.
  • The dispersions which are particularly suitable for producing the first electrode layer are likewise not known from the literature and are thus provided by the present invention.
  • The invention will now be described in further detail with reference to the following non-limiting examples.
  • EXAMPLES
  • Particle size distributions given below were determined with an analytical ultracentrifuge, as described in H. G. Müllner; Progr. Colloid Polym. Sci. 127 (2004) 9-13.
  • The luminous transmittance is measured according to the wavelength in accordance with ASTM D 1003 and used to calculate the standard colour value Y in accordance with ASTM E308. For a completely transparent sample Y=100, for an opaque sample Y=0. In light engineering terms,)Y(D65/10°) is understood to be the standard colour value calculated using the standard light type D65 observed at an angle of 10° (cf. ASTM E308). The transmittance is measured with a UV/VIS spectrometer (PerkinElmer 900 with photo-integrating sphere) with an uncoated glass substrate in the control beam path.
  • The viscosity of the solutions examined here is measured with a Haake RV 1 rheometer with thermostat. In the clean and dry measuring beakers 13.5 g±0.3 g of the solutions to be measured are weighed into the measuring slit and measured at a shear rate of 100 s−1 at 20.0° C.
  • The conductivity is understood to be the reciprocal of the specific resistance. This is calculated from the product of the surface resistance and film thickness of the conductive polymer layer. The surface resistance for conductive polymers is measured in accordance with DIN EN ISO 3915, the thickness of the polymer layer using a stylus profilometer.
  • The surface roughness Ra is measured using a scanning force microscope (Digital Instruments) by scanning a 1 μm by 1 μm area of an approx. 150 nm thick polymer layer on glass substrates.
  • Example 1 Production of a PEDT:PSA Dispersion for Producing the First Electrode Layer:
  • a) (According to the invention) In a commercially obtainable aqueous polyethylenedioxythiophene/polystyrene sulfonic acid dispersion (PEDT:PSA dispersion) with a polyethylenedioxythiophene/polystyrene acid weight ratio of 1:2.5, a solids content of approx. 1 wt. % and a viscosity of approx. 300 mPas at a shear rate of 100 s−1 and at 20° C. (Baytron® PHC V4 from H.C. Starck GmbH), a particle size distribution with a d50 value of 25 nm, i.e. 50 wt. % of the particles smaller than 25 nm, was established by homogenisation. The dispersion was then concentrated from approx. 1 wt. % to a solids content of 1.7 wt. %, filtered (Pall, pore size: 0.2 μm) and then mixed with 5 wt. % dimethyl sulfoxide (DMSO). The viscosity of this solution was approx. 45 mPas at a shear rate of 100 s−1 and at 20° C.
  • b) (Comparative example) A commercially obtainable aqueous PEDT:PSA dispersion with a polyethylenedioxythiophene/polystyrene sulfonic acid weight ratio of 1:2.5, a solids content of approx. 1 wt. % and a viscosity of approx. 300 mPas at a shear rate of 100 s−1 and at 20° C. (Baytron® PHC V4 from H.C. Starck GmbH), having a particle size distribution with a d50 value of 243 nm, was filtered. Due to its coarse character, this dispersion could only be filtered through a 10 μm filter.
  • c) (Comparative example) A PEDT:PSA dispersion was produced as described in 1b) and then mixed with 5 wt. % dimethyl sulfoxide. This dispersion too could only be filtered through a 10 μm filter due to its coarse character.
  • Example 2 Production and Characterisation of a First Electrode Layer:
  • a) (According to the invention) Glass substrates were cut to a size of 50×50 mm2, cleaned and activated for 15 minutes with UV/ozone. The dispersion from example 1a) was then distributed over the glass substrate by means of a spin coater at the specified spin speed and an acceleration of 500 rpm/sec for 30 seconds. Parallel silver contacts were vapour deposited using a shadow mask and the surface resistance was determined. The film thickness was determined with a stylus profilometer (Tencor 500), the surface roughness with a scanning force microscope (Digital Instruments).
  • b) (Comparative example) Glass substrates were prepared as described in 2a), coated with a dispersion from example 1b) and their standard colour value, surface resistance, film thickness and surface roughness were determined.
  • c) (Comparative example) Glass substrates were prepared as described in 2a), coated with a dispersion from example 1c) and their standard colour value, surface resistance, film thickness and surface roughness were determined.
  • TABLE 1
    Film thickness, conductivity, standard colour value and surface rough-
    ness of the first electrode layers from examples 2a), b) and c).
    Spin Film Conduc- Standard Surface
    speed thickness tivity colour value roughness
    Example [rpm] [mm] [S/cm] Y(D65/10°) Ra [nm]
    2a) 950 129 621 89.1 1.39
    2b) 1250 146 56 86.9 1.93
    2c) 1200 158 601 85.3 3.53
  • The comparison of the first electrode layers from examples 2a) to 2c) shows that with comparable film thickness and standard colour value, the conductivity of the first electrode layer from example 2a) is the highest and at the same time the surface roughness is the lowest.
  • Example 3
  • Production of an OLED without a Second Electrode Layer
  • 1. Substrates with metallic fingers:
  • Glass substrates were cut to a size of 50×50 mm2 and cleaned. Then metal fingers in silver were vapour deposited onto the substrate using a shadow mask. The parallel metal lines with a width of 1 mm and a distance of 5 mm apart were connected by means of a central bar running perpendicular to them and had a height of 170 nm. Immediately before coating, the substrate surfaces were cleaned and activated with UV/ozone (UVP Inc., PR-100) for 15 minutes.
  • 2. Application of a first electrode layer using a PEDT:PSA dispersion according to the invention:
  • Approx. 2 ml of the dispersion from example 1a) were poured onto the substrate and then distributed on the glass substrate with the metal fingers using a spin coater at 1000 rpm and an acceleration of 500 rpm/sec for 30 seconds. The substrate with the still wet electrode layer was then placed on a hot plate, covered with a Petri dish and dried for 5 minutes at 200° C. The electrode layer was approx. 170 nm thick and had an electrical conductivity of 356 S/cm.
  • 3. Application of the emitter layer:
  • Approx. 2 ml of a 1 wt. % xylene solution of the emitter Green 1300 LUMATION™—also abbreviated hereafter to DGP—(Dow Chemical Company) were filtered (Millipore HV, 0.45 μm) and distributed on the dried first electrode layer. The supernatant solution of the emitter was spun off by rotating the disc at 500 rpm and an acceleration of 200 rpm/sec for 30 seconds. The substrate coated in this way was then dried on a hot plate for 5 minutes at 110° C. The overall coating thickness was 250 nm.
  • 4. Application of the metal cathodes:
  • Metal electrodes were vapour deposited onto the emitter layer. The vapour deposition system (Edwards) used for this step is built into an inert gas glove box (Braun). The substrate was placed on a shadow mask with the emitter layer underneath. The holes in the mask had a diameter of 2.0 mm and were a distance of 5.0 mm apart. The mask was positioned such that the holes were exactly between the metal fingers. Under a pressure of p=10−3 Pa, a 5 nm thick Ba layer followed by a 200 nm Ag layer were vapour deposited one after the other from two vapour deposition boats. The vapour deposition rates were 10 Å/sec for Ba and 20 Å/sec for Ag.
  • 5. Characterisation of the OLEDs:
  • For electro-optical characterisation the two electrodes of the OLED were connected to a voltage source via electrical leads. The positive pole was connected to the metal fingers, the negative pole to one of the vapour-deposited round metal electrodes.
  • The dependence of the OLED current and electroluminescence intensity (EL) on the voltage was recorded (Keithley 2400 current/voltage source). The EL was detected with a photodiode (EG&G C30809E) with an electrometer connected to it (Keithley 6514) and the luminance calibrated with a luminance meter (Minolta LS-100).
  • Example 4
  • Production of an OLED According to the Invention with a First and Second Electrode Layer:
  • This was performed as in example 3, with the difference that between step 2 and 3 a second electrode layer consisting of PEDT:PSA was applied. To this end 2 ml of an aqueous PEDT:PSA dispersion (Baytron® P CH8000 from H.C. Starck GmbH, PEDT:PSA weight ratio 1:20, solids content approx. 2.5 wt. %, viscosity approx. 12 mPas at 700 s−1 at 20° C.), which had first been filtered (Millipore HV, 0.45 μm), were distributed onto the dried first electrode layer with a spin coater at 1000 rpm and an acceleration of 200 rpm/sec for 30 seconds. The substrate with the still wet second electrode layer was then placed on a hot plate, covered with a Petri dish and dried for 5 minutes at 200° C. The two electrode layers together had a film thickness of 270 nm.
  • TABLE 2
    OLED current I, luminance L and efficiency η of the OLEDs from
    example 3 and 4
    4 V 8 V
    I [mA/ L [cd/ η [cd/ I [mA/ L [cd/ η [cd/
    cm2] m2] A] cm2] m2] A]
    Example  7.0  19 0.27 385.4  7230 1.88
    4
    Example 18.9 660 3.48 503.2 20148 4.00
    3
  • The comparison shows that in the relevant voltage range the OLED according to the invention from example 4 with the two-layer electrode surprisingly has a markedly higher luminance L and efficiency η than the OLED from example 3 with the only one-layer electrode.
  • Comparative Example 5
  • This was performed as described in example 3, with the following difference in the film thicknesses:
  • Device structure:
  • Metal fingers//first electrode layer (75 nm)//DGP (80 nm)//Ba//Ag
  • Example 6
  • (According to the Invention)
  • This was performed as described in example 4, with the following difference in the film thicknesses:
  • Device structure:
  • Metal fingers//first electrode layer (75 nm)//second electrode layer (80 nm)//DGP (80 nm)//Ba//Ag
  • Comparative Example 7
  • This was performed as in example 5, with the following difference: instead of the dispersion from example 1a), a dispersion from example 1b) is used to produce the first electrode layer.
  • Device structure:
  • Metal fingers//first electrode layer (80 nm)//DGP (80 nm)//Ba//Ag
  • Comparative Example 8
  • This was performed as in example 6, with the following difference: instead of the dispersion from example 1a), a dispersion from example 1b) is used to produce the first electrode layer.
  • Device structure:
  • Metal fingers//first electrode layer (80 nm)//second electrode layer (80 nm)//DGP (80 nm)//Ba//Ag
  • The characterisation of the OLEDs took place as described in examples 3 and 4.
  • TABLE 3
    OLED current I, luminance L and efficiency η of the OLEDs
    from Ex. 5-8:
    4V 8V
    I [mA/ L [cd/ η [cd/ I [mA/ L [cd/ η [cd/
    cm2] m2] A] I+/I− cm2] m2] A] I+/I−
    Ex. 28.6  128 0.45 1.40E+01 524.5  9052 1.73 1.84E+01
    5
    Ex. 21.4 1300 6.07 3.50E+05 477.6 25730 5.39 7.09E+04
    6
    Ex. 17.1  138 0.80 4.20E+00 500.0 18600 3.72 7.42E+00
    7
    Ex. 25.7 1628 6.33 4.20E+01 383.7 21700 5.66 1.88E+01
    8
  • The comparison again shows that in the relevant voltage range the OLED according to the invention from example 6 with the two-layer electrode surprisingly has a markedly higher luminance L and efficiency η than the OLEDs from comparative examples 5 and 7 with the only one-layer electrode. In addition, the comparison shows that the OLED according to the invention from example 6 with the two-layer electrode produced with the dispersion according to the invention has a very much higher rectification ratio (I+/I−) than the OLED with the two-layer electrode from comparative example 8.
  • It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present invention as defined by the appended claims.

Claims (22)

1. A process for producing an electrode, the process comprising:
(a) providing a substrate;
(b) applying a dispersion to the substrate and allowing the dispersion to solidify to form a first layer, wherein the dispersion comprises at least one polymeric anion and at least one polythiophene having repeating units corresponding to the general formula (I):
Figure US20110210321A1-20110901-C00007
wherein A in each repeating unit independently represents a substituted or unsubstituted C1 to C5 alkylene radical, each R independently represents a linear or branched, substituted or unsubstituted C1 to C18 alkyl radical, a substituted or unsubstituted C5 to C12 cycloalkyl radical, a substituted or unsubstituted C6 to C14 aryl radical, a substituted or unsubstituted C7 to C18 aralkyl radical, a substituted or unsubstituted C1 to C4 hydroxyalkyl radical or a hydroxyl radical, x in each repeating unit independently represents a whole number from 0 to 8, and wherein 50 wt. % of particles in the dispersion are smaller than 50 nm; and
(c) applying at least one organic hole-injecting material to the first layer to form a second layer.
2. The process according to claim 1, wherein the dispersion further comprises one or more additives selected from the group consisting of ether group-containing compounds, lactone group-containing compounds, amide group-containing compounds, lactam group-containing compounds, sulfones, sulfoxides, sugars, sugar derivatives, sugar alcohols, furan derivatives, dialcohols, polyalcohols and mixtures thereof, wherein the one or more additives is present in an amount of at least 0.1 wt. %, based on the dispersion.
3. The process according to claim 1, wherein A in each repeating unit independently represents a substituted or unsubstituted C2 to C3 alkyl radical and x in each repeating unit independently represents 0 or 1.
4. The process according to claim 1, wherein the at least one polythiophene having repeating units corresponding to the general formula (I) comprises poly(3,4-ethylenedioxythiophene).
5. The process according to claim 1, wherein the at least one polymeric anion comprises an anion of a polymeric carboxylic or sulfonic acid.
6. The process according to claim 1, wherein the at least one polymeric anion comprises an anion of polystyrene sulfonic acid.
7. The process according to claim 4, wherein the at least one polymeric anion comprises an anion of polystyrene sulfonic acid.
8. The process according to claim 1, wherein the at least one polythiophene having repeating units corresponding to the general formula (I) and the at least one polymeric anion are present in the first layer in a ratio by weight of 0.5:1 to 20:1.
9. The process according to claim 1, wherein the at least one organic, hole-injecting material comprises a substituted or unsubstituted polythiophene having repeating units corresponding to the general formula (II-a) and/or (II-b):
Figure US20110210321A1-20110901-C00008
wherein A in each repeating unit independently represents a substituted or unsubstituted C1 to C5 alkylene radical, Y in each repeating unit independently represents O or S, each R independently represents a linear or branched, substituted or unsubstituted C1 to C18 alkyl radical, a substituted or unsubstituted C5 to C12 cycloalkyl radical, a substituted or unsubstituted C6 to C14 aryl radical, a substituted or unsubstituted C7 to C18 aralkyl radical, a substituted or unsubstituted C1 to C4 hydroxyalkyl radical or a hydroxyl radical, x in each repeating unit independently represents a whole number from 0 to 8.
10. The process according to claim 9, wherein the substituted or unsubstituted polythiophene having repeating units corresponding to the general formula (II-a) and/or (II-b) is applied to the first layer as a second dispersion, and wherein the second dispersion further comprises at least one polymeric anion.
11. The process according to claim 9, wherein the substituted or unsubstituted polythiophene having repeating units corresponding to the general formula (II-a) and/or (II-b) comprises poly(3,4-ethylenedioxythiophene).
12. The process according to claim 11, wherein the at least one polythiophene having repeating units corresponding to the general formula (I) comprises poly(3,4-ethylenedioxythiophene).
13. The process according to claim 1, wherein the at least one organic, hole-injecting material comprises a doped or undoped material selected from the group consisting of substituted or unsubstituted phthalocyanines, phenylamines and combinations thereof.
14. An electrode prepared by the process according to claim 1.
15. An electrode prepared by the process according to claim 4.
16. An electrode prepared by the process according to claim 7.
17. The electrode according to claim 14, wherein the first layer has a conductivity of at least 300 Scm−1.
18. The electrode according to claim 14, wherein the first layer has a surface roughness Ra of less than 2.5 nm.
19. The electrode according to claim 14, wherein the first layer has a dry film thickness of 10 to 500 nm.
20. (canceled)
21. (canceled)
22. An electroluminescent arrangement comprising at least two electrodes, and an electro-optically active layer disposed between the at least two electrodes, wherein one of the at least two electrodes is an electrode according to claim 14.
US13/103,503 2005-12-14 2011-05-09 Transparent polymeric electrodes for electro-optical structures, process for producing the same, and dispersions used in such processes Abandoned US20110210321A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/103,503 US20110210321A1 (en) 2005-12-14 2011-05-09 Transparent polymeric electrodes for electro-optical structures, process for producing the same, and dispersions used in such processes

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE200510060159 DE102005060159A1 (en) 2005-12-14 2005-12-14 Transparent polymeric electrode for electro-optical assemblies
DE102005060159.6 2005-12-14
US11/637,411 US7938986B2 (en) 2005-12-14 2006-12-12 Transparent polymeric electrodes for electro-optical structures, processes for producing the same, and dispersions used in such processes
US13/103,503 US20110210321A1 (en) 2005-12-14 2011-05-09 Transparent polymeric electrodes for electro-optical structures, process for producing the same, and dispersions used in such processes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/637,411 Division US7938986B2 (en) 2005-12-14 2006-12-12 Transparent polymeric electrodes for electro-optical structures, processes for producing the same, and dispersions used in such processes

Publications (1)

Publication Number Publication Date
US20110210321A1 true US20110210321A1 (en) 2011-09-01

Family

ID=37908305

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/637,411 Active 2027-05-24 US7938986B2 (en) 2005-12-14 2006-12-12 Transparent polymeric electrodes for electro-optical structures, processes for producing the same, and dispersions used in such processes
US13/103,503 Abandoned US20110210321A1 (en) 2005-12-14 2011-05-09 Transparent polymeric electrodes for electro-optical structures, process for producing the same, and dispersions used in such processes

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/637,411 Active 2027-05-24 US7938986B2 (en) 2005-12-14 2006-12-12 Transparent polymeric electrodes for electro-optical structures, processes for producing the same, and dispersions used in such processes

Country Status (7)

Country Link
US (2) US7938986B2 (en)
EP (2) EP1798785B1 (en)
JP (2) JP5319064B2 (en)
KR (1) KR101346437B1 (en)
CN (1) CN1983661B (en)
DE (1) DE102005060159A1 (en)
IL (1) IL180037A0 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014048561A3 (en) * 2012-09-27 2014-07-10 Heraeus Precious Metals Gmbh & Co. Kg Use of pedot/pss dispersions of high pedot content for the production of capacitors and solar cells
US20240043682A1 (en) * 2021-12-31 2024-02-08 Huazhong University Of Science And Technology Alcohol dispersion of conductive polyethylenedioxythiophene, and method for preparing same and use of same

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10103416A1 (en) * 2001-01-26 2002-08-01 Bayer Ag Electroluminescent devices
DE10335727A1 (en) * 2003-08-05 2005-02-24 H.C. Starck Gmbh Transparent electrode for electro-optical assemblies
DE102007063617B4 (en) 2007-02-16 2021-09-02 Pictiva Displays International Limited Method for repairing an electroluminescent organic semiconductor element
KR100917709B1 (en) * 2007-10-23 2009-09-21 에스케이씨 주식회사 Membrane using composition of conductive polymers
WO2009058838A1 (en) * 2007-11-02 2009-05-07 Konarka Technologies, Inc. Organic photovoltaic cells
TW200951410A (en) * 2008-01-28 2009-12-16 Koninkl Philips Electronics Nv Lighting unit with photosensor
DE102008023008A1 (en) * 2008-05-09 2009-11-12 H.C. Starck Gmbh Novel polythiophene-polyanion complexes in non-polar organic solvents
GB2462688B (en) * 2008-08-22 2012-03-07 Cambridge Display Tech Ltd Opto-electrical devices and methods of manufacturing the same
US8174000B2 (en) * 2009-02-11 2012-05-08 Universal Display Corporation Liquid compositions for inkjet printing of organic layers or other uses
CN102891261B (en) * 2011-07-22 2015-10-28 海洋王照明科技股份有限公司 electroluminescent device and preparation method thereof
CN102650777A (en) * 2011-08-25 2012-08-29 京东方科技集团股份有限公司 Monitor and manufacturing method thereof
US8906752B2 (en) 2011-09-16 2014-12-09 Kateeva, Inc. Polythiophene-containing ink compositions for inkjet printing
US10879010B2 (en) 2012-02-27 2020-12-29 Kemet Electronics Corporation Electrolytic capacitor having a higher cap recovery and lower ESR
US11482382B2 (en) 2012-02-27 2022-10-25 Kemet Electronics Corporation Electrolytic capacitor and process for forming an electrolytic capacitor
US10643796B2 (en) 2012-02-27 2020-05-05 Kemet Electronics Corporation Conductive polymer dispersion with enhanced coverage
KR102006731B1 (en) * 2012-10-17 2019-08-02 삼성전자주식회사 Liquid crystal shutter and image capturing apparatus
KR102034870B1 (en) * 2012-12-18 2019-10-22 삼성디스플레이 주식회사 Organic light emiiting display and method for fabricating the same
CN103928630B (en) * 2013-01-11 2016-09-21 顾玉奎 A kind of modification indium-tin oxide anode
KR20150084257A (en) * 2014-01-13 2015-07-22 삼성디스플레이 주식회사 Flexible display device
FR3022079B1 (en) * 2014-06-10 2017-08-25 Commissariat Energie Atomique ORGANIC ELECTRONIC DEVICE AND METHOD FOR PREPARING THE SAME
WO2017106452A1 (en) * 2015-12-15 2017-06-22 Kemet Electronics Corporation Conductive polymer dispersion with enhanced coverage
CN109935727B (en) 2017-12-15 2020-06-09 京东方科技集团股份有限公司 Substrate, display device and preparation method of conductive film
KR102174374B1 (en) * 2018-02-21 2020-11-04 고려대학교 세종산학협력단 A composition for an organic electroluminescent device, a hole injecting layer material produced therefrom and an organic electroluminescent device comprising the same
WO2019164180A1 (en) * 2018-02-21 2019-08-29 고려대학교 세종산학협력단 Composition for organic electroluminescent device, hole injection layer material manufactured therefrom, and organic electroluminescent device comprising hole injection layer
JP7442502B2 (en) 2018-08-10 2024-03-04 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション Solid electrolytic capacitors containing intrinsically conductive polymers
CN112805798A (en) 2018-08-10 2021-05-14 阿维科斯公司 Solid electrolytic capacitor containing polyaniline
WO2020033820A1 (en) 2018-08-10 2020-02-13 Avx Corporation Solid electrolytic capacitor formed from conductive polymer particles
CN110112311B (en) * 2019-05-10 2020-10-27 武汉华星光电半导体显示技术有限公司 Display panel and display module
WO2020236573A1 (en) 2019-05-17 2020-11-26 Avx Corporation Solid electrolytic capacitor
CN114521278A (en) 2019-09-18 2022-05-20 京瓷Avx元器件公司 Solid electrolytic capacitor for use at high voltage
JP2023506714A (en) 2019-12-10 2023-02-20 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション Solid electrolytic capacitor containing precoat and intrinsically conductive polymer
US11776759B2 (en) 2019-12-10 2023-10-03 KYOCER AVX Components Corporation Tantalum capacitor with increased stability
US11631548B2 (en) 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300575A (en) * 1990-02-08 1994-04-05 Bayer Aktiengesellschaft Polythiophene dispersions, their production and their use
CA2148544A1 (en) * 1994-05-06 1995-11-07 Friedrich Jonas Conductive Coatings
US5719467A (en) * 1995-07-27 1998-02-17 Hewlett-Packard Company Organic electroluminescent device
US5766515A (en) * 1994-05-06 1998-06-16 Bayer Aktiengessellschaft Conductive coatings
US20010022497A1 (en) * 2000-02-23 2001-09-20 Dai Nippon Printing Co., Electroluminescent device and process for producing the same
US6358437B1 (en) * 1997-12-23 2002-03-19 Bayer Aktiengesellschaft Screen printing paste for producing electrically conductive coatings
US20020077450A1 (en) * 2000-11-22 2002-06-20 Stephan Kirchmeyer Polythiophenes
US20020136923A1 (en) * 2001-01-26 2002-09-26 Friedrich Jonas Electroluminescent arrangements
US20040260016A1 (en) * 2003-06-20 2004-12-23 Agfa-Gevaert Process for preparing electroconductive coatings
US20040265623A1 (en) * 2003-06-26 2004-12-30 Osram Opto Semiconductors Gmbh Conducting polymer for electronic devices
US20050053801A1 (en) * 2003-08-05 2005-03-10 Andreas Elschner Transparent electrode for electro-optical structures
US6887556B2 (en) * 2001-12-11 2005-05-03 Agfa-Gevaert Material for making a conductive pattern
US20050175861A1 (en) * 2004-02-10 2005-08-11 H.C. Starck Gmbh Polythiophene compositions for improving organic light-emitting diodes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4211461A1 (en) * 1992-04-06 1993-10-07 Agfa Gevaert Ag Antistatic plastic parts
ES2191057T3 (en) 1994-09-06 2003-09-01 Koninkl Philips Electronics Nv ELECTROLUMINISCENT DEVICE THAT INCLUDES A LAYER OF POLY-3,4-DIOXYTIOPHEN.
DE19841803A1 (en) * 1998-09-12 2000-03-16 Bayer Ag Organic electroluminescent device, i.e. light-emitting diode, has hole-injecting layer of polymeric organic conductor formed by coating from solution or from sub-micron dispersion
US7390438B2 (en) * 2003-04-22 2008-06-24 E.I. Du Pont De Nemours And Company Water dispersible substituted polydioxythiophenes made with fluorinated polymeric sulfonic acid colloids
EP1639607A1 (en) * 2003-06-20 2006-03-29 Agfa-Gevaert Process for preparing electroconductive coatings
DK1524678T3 (en) * 2003-10-17 2009-11-02 Starck H C Gmbh Electrolyte capacitors with polymeric outer layers
DE102004010145A1 (en) * 2004-02-27 2005-09-15 H.C. Starck Gmbh Deformable electroluminescent device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300575A (en) * 1990-02-08 1994-04-05 Bayer Aktiengesellschaft Polythiophene dispersions, their production and their use
CA2148544A1 (en) * 1994-05-06 1995-11-07 Friedrich Jonas Conductive Coatings
US5766515A (en) * 1994-05-06 1998-06-16 Bayer Aktiengessellschaft Conductive coatings
US6083635A (en) * 1994-05-06 2000-07-04 Bayer Ag Conductive coatings
US5719467A (en) * 1995-07-27 1998-02-17 Hewlett-Packard Company Organic electroluminescent device
US6358437B1 (en) * 1997-12-23 2002-03-19 Bayer Aktiengesellschaft Screen printing paste for producing electrically conductive coatings
US20010022497A1 (en) * 2000-02-23 2001-09-20 Dai Nippon Printing Co., Electroluminescent device and process for producing the same
US20020077450A1 (en) * 2000-11-22 2002-06-20 Stephan Kirchmeyer Polythiophenes
US7053174B2 (en) * 2000-11-22 2006-05-30 Bayer Aktiengesellschaft Polythiophenes
US20020136923A1 (en) * 2001-01-26 2002-09-26 Friedrich Jonas Electroluminescent arrangements
US6887556B2 (en) * 2001-12-11 2005-05-03 Agfa-Gevaert Material for making a conductive pattern
US20040260016A1 (en) * 2003-06-20 2004-12-23 Agfa-Gevaert Process for preparing electroconductive coatings
US20040265623A1 (en) * 2003-06-26 2004-12-30 Osram Opto Semiconductors Gmbh Conducting polymer for electronic devices
US20050053801A1 (en) * 2003-08-05 2005-03-10 Andreas Elschner Transparent electrode for electro-optical structures
US20050175861A1 (en) * 2004-02-10 2005-08-11 H.C. Starck Gmbh Polythiophene compositions for improving organic light-emitting diodes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Kim et al., Ehancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate by a change of solvents), Synthetic Metals, 126, 2002, 311-316 *
Kirchmeyer et al., Scientific importance, properties, and growing applications of poly(3,4-ethylenedioxythiophene, J.Mater.Chem, 2005, 15, 2077-2088. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014048561A3 (en) * 2012-09-27 2014-07-10 Heraeus Precious Metals Gmbh & Co. Kg Use of pedot/pss dispersions of high pedot content for the production of capacitors and solar cells
US10026521B2 (en) 2012-09-27 2018-07-17 Heraeus Precious Metals Gmbh & Co. Kg Use of PEDOT/PSS dispersions of high PEDOT content for the production of capacitors and solar cells
TWI632570B (en) * 2012-09-27 2018-08-11 黑拉耶烏斯貴金屬公司 A capacitor, the production process and use thereof, a dispersion,the preparation process and use thereof, an organic solar cell and the production process thereof, and electronic circuits
US20240043682A1 (en) * 2021-12-31 2024-02-08 Huazhong University Of Science And Technology Alcohol dispersion of conductive polyethylenedioxythiophene, and method for preparing same and use of same

Also Published As

Publication number Publication date
EP2731160A1 (en) 2014-05-14
JP2007207750A (en) 2007-08-16
EP1798785A3 (en) 2010-07-21
JP2013249468A (en) 2013-12-12
US20070131914A1 (en) 2007-06-14
JP5319064B2 (en) 2013-10-16
DE102005060159A1 (en) 2007-06-21
KR101346437B1 (en) 2014-01-02
KR20070063435A (en) 2007-06-19
IL180037A0 (en) 2008-01-20
JP5775902B2 (en) 2015-09-09
EP1798785B1 (en) 2014-03-05
EP1798785A2 (en) 2007-06-20
CN1983661A (en) 2007-06-20
CN1983661B (en) 2013-09-25
US7938986B2 (en) 2011-05-10

Similar Documents

Publication Publication Date Title
US7938986B2 (en) Transparent polymeric electrodes for electro-optical structures, processes for producing the same, and dispersions used in such processes
KR101239437B1 (en) Transparent Electrode for Electro-Optical Structures
US20050175861A1 (en) Polythiophene compositions for improving organic light-emitting diodes
KR101372135B1 (en) Polythiophene Formulations for Improving Organic Light Emitting Diodes
US9896587B2 (en) Planarizing agents and devices
KR102233863B1 (en) Transparent Layers of High Conductivity and High Efficiency in OLEDs and Process for Their Production
US9306186B2 (en) Organic electronic device and method of manufacturing the same
KR20140032406A (en) Fluorinated amines as sam in oleds

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION