US20110257660A1 - Apparatus for implanting an electrical stimulation lead - Google Patents

Apparatus for implanting an electrical stimulation lead Download PDF

Info

Publication number
US20110257660A1
US20110257660A1 US13/167,575 US201113167575A US2011257660A1 US 20110257660 A1 US20110257660 A1 US 20110257660A1 US 201113167575 A US201113167575 A US 201113167575A US 2011257660 A1 US2011257660 A1 US 2011257660A1
Authority
US
United States
Prior art keywords
introducer
guide wire
lead
region
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/167,575
Inventor
Timothy S. Jones
Terry Daglow
Peter B. Hegi
Thomas K. Hickman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/637,342 external-priority patent/US20050033393A1/en
Application filed by Individual filed Critical Individual
Priority to US13/167,575 priority Critical patent/US20110257660A1/en
Publication of US20110257660A1 publication Critical patent/US20110257660A1/en
Priority to US13/486,395 priority patent/US8463401B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0551Spinal or peripheral nerve electrodes
    • A61N1/0553Paddle shaped electrodes, e.g. for laminotomy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3415Trocars; Puncturing needles for introducing tubes or catheters, e.g. gastrostomy tubes, drain catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3468Trocars; Puncturing needles for implanting or removing devices, e.g. prostheses, implants, seeds, wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3401Puncturing needles for the peridural or subarachnoid space or the plexus, e.g. for anaesthesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36017External stimulators, e.g. with patch electrodes with leads or electrodes penetrating the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36021External stimulators, e.g. with patch electrodes for treatment of pain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36071Pain

Definitions

  • This invention relates generally to electrical stimulation leads for medical applications and in particular to a method and apparatus for implanting an electrical stimulation lead using a flexible introducer
  • One method of delivering electrical energy is to implant an electrode and position it in a precise location adjacent the spinal cord such that stimulation of the electrode causes a subjective sensation of numbness or tingling in the affected region of the body, known as “paresthesia.” Pain managing electrical energy is commonly delivered through electrodes positioned external to the dura layer surrounding the spinal cord.
  • the electrodes may be carried by either of two primary vehicles: a percutaneous lead and a laminotomy or “paddle” lead.
  • Percutaneous leads commonly have three or more equally-spaced electrodes. They are positioned above the dura layer using a needle that is passed through the skin, between the desired vertebrae and onto the top of the dura. Percutaneous leads deliver energy radially in all directions because of the circumferential nature of the electrode. Percutaneous leads can be implanted using a minimally invasive technique. In a typical percutaneous lead placement, a trial stimulation procedure is performed to determine the optimal location for the lead. Here, a needle is placed through the skin and between the desired vertebrae. The percutaneous lead is then threaded through the needle into the desired location over the spinal cord dura. Percutaneous leads may also be positioned in other regions of the body near peripheral nerves for the same purpose.
  • Laminotomy or paddle style leads have a paddle-like configuration and typically possess multiple electrodes arranged in one or more independent columns.
  • Paddle style leads provide a more focused energy delivery than percutaneous leads because electrodes may be present on only one surface of the lead. Paddle style leads may be desirable in certain situations because they provide more direct stimulation to a specific surface and require less energy to produce a desired effect. Because paddle style leads are larger than percutaneous leads, they have historically required surgical implantation through a procedure known as partial laminectomy that requires the resection and removal of vertebral tissue.
  • the present invention provides an introducer and process for implanting a paddle style electrical stimulation lead.
  • an introducer for implanting a paddle style electrical stimulation lead to enable electrical stimulation of nerve tissue.
  • the introducer includes an outer sheath and an inner penetrator.
  • the outer sheath may accommodate insertion of the paddle style electrical stimulation lead and may be inserted into a human body near the nerve tissue.
  • the inner penetrator is removably housed within the outer sheath and includes an inner channel configured to accommodate a guide wire, a tip end having a shape and size substantially conforming to that of the guide wire, a body region having a shape and size substantially conforming to that of the outer sheath, and one or more transition regions substantially connecting the tip end with the body region.
  • the inner penetrator may be advanced along the guide wire to a desired location relative to the nerve tissue and removed from the outer sheath leaving the outer sheath substantially in position for insertion of the paddle style electrical stimulation lead through the outer sheath into position proximate the nerve tissue. At least a portion of the transition regions of the inner penetrator may flex to substantially follow flexures in the guide wire during advancement of the inner penetrator along the guide wire.
  • a method for implanting a paddle style electrical stimulation lead to enable electrical stimulation of nerve tissue.
  • the method includes inserting a needle into tissue, positioning a guide wire through the needle into a desired location relative to the nerve tissue, removing the needle, and forming a tract for the paddle style electrical stimulation lead by advancing an introducer along the guide wire to a desired location.
  • the introducer includes an outer sheath and inner penetrator removably housed within the outer sheath, the inner penetrator including a tip end having a cross-sectional shape and size substantially conforming to a cross-sectional shape and size of the guide wire, a body region having a cross-sectional shape and size substantially conforming to a cross-sectional shape and size of the outer sheath, and one or more transition regions substantially connecting the tip end with the body region. At least a portion of the one or more transition regions flexes to substantially follow flexures in the guide wire during advancement of the inner penetrator along the guide wire.
  • the inner penetrator is removed, leaving the outer sheath substantially in position, and the paddle style electrical stimulation lead is inserted through the outer sheath until the paddle style electrical stimulation lead is positioned proximate the nerve tissue.
  • a method for implanting an electrical stimulation lead in a minimally invasive percutaneous manner to enable electrical stimulation of a human's spinal nerve tissue.
  • the method includes inserting a needle into the human's epidural space and inserting a guide wire through the needle until an end of the guide wire is positioned in the epidural space at a desired location relative to the spinal nerve tissue to be stimulated.
  • the position of the guide wire in the epidural space is verified using fluoroscopy, and the needle is removed, leaving the guide wire substantially in position.
  • An introducer is advanced along the guide wire until an end of the inner penetrator of the introducer is positioned in the epidural space at a desired location with respect to the spinal nerve tissue to be stimulated.
  • the introducer includes an outer sheath and an inner penetrator removably housed within the outer sheath, the inner penetrator of the introducer including an inner channel configured to accommodate the guide wire, a tip end having a cross-sectional shape and size substantially conforming to a cross-sectional shape and size of the guide wire, a body region having a cross-sectional shape and size substantially conforming to a cross-sectional shape and size of the outer sheath, and one or more transition regions substantially connecting the tip end with the body region.
  • the inner penetrator of the introducer advances along the guide wire, at least one of the tip transition regions flexes to substantially follow flexures in the guide wire, and the outer sheath of the introducer forms a tract in the epidural space.
  • the position of the introducer in the epidural space is verified using fluoroscopy.
  • the guide wire and the inner penetrator of the introducer are removed, leaving the outer sheath of the introducer substantially in position.
  • the electrical stimulation lead is inserted through the outer sheath of the introducer until the electrical stimulation lead is positioned in the epidural space proximate the spinal nerve tissue to be stimulated, and the positioning of the paddle style electrical stimulation lead in the epidural space is verified using fluoroscopy.
  • a system for implanting a paddle style electrical stimulation lead to enable electrical stimulation of a human's spinal nerve tissue includes a needle, a guide wire, and an introducer.
  • the introducer includes an outer sheath and an inner penetrator.
  • the outer sheath is configured to accommodate insertion of the paddle style electrical stimulation lead through the outer sheath and may be inserted through the human's skin and into the human's epidural space.
  • the inner penetrator is removably housed within the outer sheath and includes an inner channel configured to accommodate a guide wire, a tip end having a cross-sectional shape and size substantially conforming to a cross-sectional shape and size of the guide wire, a body region having a cross-sectional shape and size substantially conforming to a cross-sectional shape and size of the outer sheath, and one or more transition regions substantially connecting the tip end with the body region.
  • the inner penetrator may be advanced along the guide wire until an end of the inner penetrator is positioned in the epidural space at a desired location relative to spinal nerve tissue to be stimulated, the outer sheath forming an insertion tract as the inner penetrator advances along the guide wire.
  • a tip transition region of the inner penetrator is formed from a particular material and has a wall thickness sufficiently thin such that during advancement of the inner penetrator along the guide wire, the tip transition region may flex to substantially follow flexures in the guide wire.
  • the inner penetrator is configured to be removed from the outer sheath leaving the outer sheath substantially in position for insertion of the paddle style electrical stimulation lead through the outer sheath into position proximate the spinal nerve tissue to be stimulated.
  • the system also includes an implantable generator to power the paddle style electrical stimulation lead.
  • a lead introducer kit for preparing to implant an electrical stimulation lead for electrical stimulation of nerve tissue.
  • the lead introducer kit includes a needle, a guide wire, a lead blank having a similar shape and size as an electrical stimulation lead to be inserted proximate the nerve tissue, and an introducer.
  • the lead blank is configured for insertion into the human body to determine whether the electrical stimulation lead may be inserted into position proximate nerve tissue to be stimulated.
  • the introducer includes an outer sheath and an inner penetrator.
  • the outer sheath is operable to be inserted into a human body near nerve tissue to be stimulated.
  • the inner penetrator is removably housed within the outer sheath and includes an inner channel configured to accommodate the guide wire.
  • the inner penetrator is configured to be advanced along the guide wire to a desired location relative to the nerve tissue and removed from the outer sheath leaving the outer sheath substantially in position for insertion of the lead blank through the outer sheath to determine whether the electrical stimulation lead may be inserted into position proximate the nerve tissue to be stimulated.
  • a stimulation lead introducer is positioned over a body portion of an electrical stimulation lead that is at least partially implanted in a human body.
  • the stimulation lead introducer includes an outer sheath and an inner penetrator removably housed within the outer sheath and comprising an inner channel, a tip region of the inner penetrator extending out from the outer sheath, the stimulation lead introducer being positioned such that the body portion of the electrical stimulation lead is partially disposed within an inner channel of the inner penetrator.
  • the stimulation lead introducer is advanced along the body portion of the electrical stimulation lead until the tip region of the inner penetrator is located adjacent a stimulation portion of the electrical stimulation lead.
  • the outer sheath is advanced relative to the inner penetrator until the outer sheath covers at least a portion of the stimulation portion of the electrical stimulation lead.
  • the outer sheath, the inner penetrator, and the electrical stimulation lead are then removed from the human body.
  • Certain embodiments may provide one or more technical advantages. For example, certain embodiments may allow a paddle style electrical stimulation lead to be inserted using a minimally invasive procedure, using an introducer, rather than a partial laminectomy or other more invasive surgical procedure. Certain embodiments may provide a guide wire, introducer and paddle style electrical stimulation lead composed in part or entirely of radio-opaque material to allow for fluoroscopic verification of the position of the guide wire, introducer and lead. Certain embodiments may provide an inner penetrator including a hollow tip configured to extend beyond the outer sheath, the tip having a raised circumferential ridge configured to create resistance when the circumferential ridge contacts the human's tissue.
  • inventions may provide a smooth transition between the inner penetrator and the outer sheath to prevent the introducer from getting caught or stuck in the tissue.
  • Certain embodiments may provide an inner penetrator having a substantially flexible tip that may flex to maneuver around obstructions or physical structures in the body and/or to follow curvatures in a guide wire.
  • Certain embodiments may provide a lead introducer kit including a lead blank that may be used to determine whether an actual electrical stimulation lead may be inserted into a desired position in the body. Thus, in situations where it is determined (using the lead blank) that the actual lead cannot be inserted into the desired position in the body, the actual lead not need to be removed from its packaging or inserted into the body, thus saving the actual lead for another use.
  • Certain embodiments may provide a desirable method for removing an implanted electrical stimulation lead using a lead introducer having an outer sheath and in inner penetrator. Certain embodiments may provide all, some, or none of these advantages. Certain embodiments may provide one or more other technical advantages, one or more of which may be readily apparent to those skilled in the art from the figures, description and claims included herein.
  • FIG. 1A illustrates an example introducer for implanting a paddle style electrical stimulation lead according to one embodiment of the invention
  • FIG. 1B illustrates an example inner penetrator of the introducer shown in FIG. 1A ;
  • FIG. 1C illustrates an example of an outer sheath of the introducer shown in FIG. 1A ;
  • FIG. 1D illustrates an example of a tip of the introducer shown in FIG. 1A ;
  • FIG. 1E illustrates an example of a tip of the outer sheath of the introducer shown in FIG. 1A ;
  • FIG. 1F illustrates a side view of an example of the tip of the introducer shown in FIG. 1A ;
  • FIG. 2A illustrates an example introducer for implanting a paddle style electrical stimulation lead according to another embodiment of the invention
  • FIG. 2B illustrates an example inner penetrator of the introducer shown in FIG. 2A ;
  • FIG. 2C illustrates an example of an outer sheath of the introducer shown in FIG. 2A ;
  • FIG. 2D illustrates a perspective view of the introducer shown in FIG. 2A ;
  • FIG. 2E illustrates an example tip region of the inner penetrator shown in FIG. 2B ;
  • FIGS. 2F-2H illustrate an example of a body portion and tip portion of the outer sheath shown in FIG. 2C ;
  • FIG. 3A illustrates an example of a needle inserted into a human's epidural space
  • FIG. 3B illustrates an example of a guide wire being inserted through a needle into a human's epidural space
  • FIG. 3C illustrates an example of an introducer being inserted over a guide wire into a human's epidural space
  • FIG. 3D illustrates an example of an inner penetrator being removed from the outer sheath of an introducer in a human's epidural space
  • FIG. 3E illustrates an example of a paddle style lead being inserted through an introducer into a human's epidural space
  • FIG. 3F illustrates an example of a paddle style lead implanted in a human's epidural space
  • FIG. 4A illustrates an example of a stimulation system
  • FIG. 4B illustrates an example of a stimulation system
  • FIG. 5 is a flow chart describing steps for implanting a stimulation system
  • FIGS. 6A-6E illustrate an example method of removing an implanted paddle style electrical stimulation lead from a human's epidural space using an introducer according to one embodiment of the invention
  • FIGS. 7A-7D illustrate example views of a lead introducer flexing as it moves along a guide wire within the body according to certain embodiments of the invention
  • FIG. 8 illustrates an example lead introducer kit for preparing to implant an electrical stimulation lead for electrical stimulation of nerve tissue in a human, according to one embodiment of the invention
  • FIG. 9 illustrates an example lead blank including a paddle style stimulating portion having a scalloped shape
  • FIG. 10 illustrates an example paddle style electrical stimulation lead having electrodes on only one side, and markings indicating the directional orientation of the lead, according to one embodiment of the invention
  • FIG. 11 illustrates an example paddle style electrical stimulation lead having a substantially uniform paddle-shaped cross-section extending along the body of the lead, according to one embodiment of the invention.
  • FIG. 12 illustrates an example paddle style electrical stimulation lead having a tear away body portion, according to one embodiment of the invention.
  • FIG. 1A illustrates an example introducer 10 a for implanting a paddle style electrical stimulation lead percutaneously according to one embodiment of the invention.
  • Introducer 10 a may be used to percutaneously introduce a percutaneous or paddle style lead into the epidural space of a user who requires electrical stimulation treatment directed to spinal nerve tissue, for example, for pain management.
  • introducer 10 a may be used to percutaneously introduce any of the percutaneous or paddle style leads shown and/or described in U.S. Publication No. 2002/0022873, filed on Aug. 10, 2001; U.S. Provisional Application No. 60/645,405, filed on Apr. 28, 2004; and/or U.S. Provisional Application No. 60/566,373, filed on Jan. 19, 2005.
  • introducer 10 a may be used to implant a percutaneous or paddle style lead into other tissue for electrostimulation treatment of a peripheral nerve.
  • introducer 10 a includes an outer sheath 12 a and an inner penetrator 14 a.
  • FIG. 1B illustrates an example inner penetrator 14 a disassembled from outer sheath 12 a.
  • Inner penetrator 14 a includes handle 16 a, connector 17 a, and body 18 a having proximal end 19 a and distal end or tip 20 a. Tip 20 a may be tapered.
  • Connector 17 a connects handle 16 a to body 18 a.
  • An inner channel 22 a is formed through handle 16 a and body 18 a and connects opening 26 a of handle 16 a to opening 21 a of tip 20 a.
  • Inner channel 22 a may be configured to attach to a syringe.
  • Inner channel 22 a is wide enough to accommodate guide wires of various sizes along which introducer 10 a may be advanced during use.
  • Inner penetrator 14 a may be formed from a plastic, such as silastic, HDPE or another polymer, or any other suitable material. Tip 20 a of inner penetrator 14 a may be curved as shown in FIGS. 1A-1C or may be curved into any other suitable shapes by an operator before inserting the introducer. In certain embodiments, inner penetrator 14 a may be bent or curved into a suitable configuration to allow passage around an anatomical obstruction, or formed into any other shape suitable for particular anatomic regions of the body.
  • FIG. 1C illustrates outer sheath 12 a disassembled from inner penetrator 14 a.
  • the lumen 28 of outer sheath 12 a may range in width, for example from approximately 2 mm to approximately 6 mm. Lumen 28 may be oblong, oval, or substantially rectangular as needed to accommodate paddle style leads of various configurations.
  • Outer sheath 12 a may taper slightly at tip 29 . Tip 29 of outer sheath 12 a may be beveled to allow easier passage through tissue and to allow inner penetrator 14 a to protrude out of tip 29 .
  • outer sheath 12 a may be formed from a flexible material, such as a plastic or polymer, such as PEBAX, or any other suitable polyethylene type material, for example, such that outer sheath 12 a may flex to follow a guide wire and/or to maneuver around obstructions or physical structures in the body.
  • outer sheath 12 a may be formed from a more rigid material, such as a metal, such as stainless steel or titanium, or any other suitable material that is stiff and resists bending when outer sheath 12 a is inserted through the paravertebral tissue and into the epidural space.
  • inner penetrator 14 a includes tapered tip 20 a shown in FIG. 1D . Tapered tip 20 a protrudes out of outer sheath 12 a. Tapered tip 20 a preferably allows introducer 10 a to pass easily over a guide wire without creating a false passage in an undesirable location in the tissue.
  • tip 20 a includes a raised circumferential shoulder or ridge 23 a configured to provide an indication or “feel” to a physician as raised ridge 23 a comes in contact with the ligamentum flavum.
  • This “feel” occurs when raised ridge 23 a comes in contact with the ligamentum flavum causing a slight resistance, pressure, or “notch” feel to the physician as raised ridge 23 a comes in contact with and passes through the ligamentum flavum.
  • this aspect may provide an important indication to the physician as to the location of outer sheath 12 a and thus introducer 10 a as a whole.
  • Such a raised ridge 23 a can also be applied to needles or cutting devices that otherwise fail to provide physicians sufficient “feel” or a locative indication as the needle cuts through the ligamentum flavum.
  • the edge of outer sheath 12 a in FIG. 1E could be configured into a cutting surface for a paddle insertion type needle.
  • the improvement of raised ridge 23 a on such a cutting device would provide the needed “feel” or indication to the physician as to where the needle was in the human tissue, thus providing confidence to the physician, as the physician uses such a large needle, that the needle has not yet entered the interthecal space.
  • raised ridge 23 a assists in spreading the fibers of the paravertebral muscle and ligaments as it is inserted.
  • Raised ridge 23 a may be angled to assist insertion, for example, at an angle of thirty-five to forty-five degrees or any other angle that would facilitate passage of outer sheath through tissue.
  • raised ridge 23 a ultimately makes contact with the ligamentum flavum and rests against it during insertion of a guide wire and an electrical stimulation lead.
  • outer sheath 12 a, lumen 28 a, and inner penetrator 14 a may have oblong, oval, or substantially rectangular cross-sections as needed to accommodate paddle style leads of various configurations. Such configuration also prevents inner penetrator 14 a from rotating within lumen 28 a of outer sheath 12 a, which may be advantageous for inserting a lead into the target region in the body. For example, such configuration that prevents the rotation of inner penetrator 14 a within lumen 28 a may allow an operator to ensure that the lead is facing in the desired direction.
  • a non-circular cross-section may provide additional flexibility to introducer 10 , which may be advantageous for navigating into particular regions in the body, such as the epidural region, for example.
  • outer sheath 12 a, inner penetrator 14 a, or both may be formed from radio-opaque material or may include radio-opaque markers that allow the position of outer sheath 12 a, inner penetrator 14 a, or both to be visualized with fluoroscopy or plain x-rays, for example, during the insertion process to insure proper positioning in the epidural space.
  • FIG. 2A illustrates another example introducer 10 b for implanting a paddle style electrical stimulation lead percutaneously according to another embodiment of the invention.
  • Introducer 10 b may be used to percutaneously introduce a percutaneous or paddle style lead into the epidural space of a user who requires electrical stimulation treatment directed to nerve tissue (e.g., spinal nerve tissue), for example, for pain management.
  • nerve tissue e.g., spinal nerve tissue
  • the same or an analogous, perhaps smaller, introducer 10 b may be used to implant a percutaneous or paddle style lead into other tissue for electrostimulation treatment of a peripheral nerve.
  • introducer 10 b may include an outer sheath 12 b and an inner penetrator 14 b.
  • FIG. 2B illustrates an example inner penetrator 14 b disassembled from outer sheath 12 b.
  • Inner penetrator 14 b includes a handle portion 16 b, a body portion 18 b, a distal or tip end 20 b, and a tip portion 25 b connecting body portion 18 b with a tip end 20 b.
  • Tip portion 25 b may include one or more transition regions 26 b, which may provide a transition between the cross-sectional shape and size of body portion 18 b and the cross-sectional shape and size of tip end 20 b, as discussed in greater detail with reference to FIG. 2D .
  • one or more transition regions 26 b may be tapered.
  • Handle portion 16 b may include an inner penetrator locking device 32 b, which may interact with a locking device of outer sheath 12 b (discussed below regarding FIG. 2C ) in order to lock inner penetrator 14 b in position within outer sheath 12 b.
  • an inner penetrator locking device 32 b may interact with a locking device of outer sheath 12 b (discussed below regarding FIG. 2C ) in order to lock inner penetrator 14 b in position within outer sheath 12 b.
  • any other type of handle known to those in the art may also be used.
  • An inner channel 22 b is formed through handle portion 16 b, body portion 18 b, and tip portion 25 b to connect an opening 26 b in handle portion 16 b with an opening 21 b in tip end 20 b.
  • Inner channel 22 b may be configured to attach to a syringe at a lure lock located at handle portion 16 b or through another opening.
  • Inner channel 22 b may be configured to accommodate guide wires of various sizes along which introducer 10 b may be advanced during use.
  • the diameter of inner channel 22 b tapers proximate handle portion 16 b, remains constant along the length of body portion 16 b, and tapers slightly proximate tip region 25 b.
  • inner channel 22 b may not include a tapered portion.
  • Inner penetrator 14 b may be formed from a plastic, such as silastic, HDPE or another polymer, or any other suitable material.
  • the shape of inner penetrator 14 b may be configured to facilitate steering of inner penetrator 14 b.
  • one or more indentions, notches, or score lines may be formed in inner penetrator 14 b to increase the flexibility and steerability of inner penetrator 14 b.
  • FIG. 2C illustrates outer sheath 12 b disassembled from inner penetrator 14 b.
  • Outer sheath 12 b includes a handle portion 27 b, a body portion 31 b, a tip portion 30 b, and a tip end 29 b through which inner penetrator 14 b may protrude, such as shown in FIGS. 2A and 2D .
  • the inner channel, or lumen, 28 b of outer sheath 12 b may range in width, for example from approximately 2 mm to approximately 6 mm.
  • the cross-section of lumen 28 b may be oblong, oval, or substantially rectangular as needed to accommodate paddle style leads of various configurations.
  • outer sheath 12 b may have a similar cross-section as lumen 28 b.
  • the outer surface of outer sheath 12 b may have an oblong, oval, or substantially rectangular cross-section.
  • outer sheath 12 b, lumen 28 b, and inner penetrator 14 b may have oblong, oval, or substantially rectangular cross-sections as needed to accommodate paddle style leads of various configurations.
  • such configuration may prevent inner penetrator 14 b from rotating within lumen 28 b of outer sheath 12 b, which may be advantageous for inserting and/or navigating a lead into the target region in the body.
  • Outer sheath 12 b may taper slightly proximate tip end 29 b, which may be beveled to be substantially flush against the outer surface of inner penetrator 14 b to allow easier passage through tissue, as discussed below.
  • outer sheath 12 b is formed from a plastic or polymer material, or any other suitable material that allows flexing when outer sheath 12 b is inserted through certain tissue, such as the paravertebral tissue and into the epidural space, for example.
  • both outer sheath 12 b and inner penetrator 14 b are formed from plastic or polymer materials, but inner penetrator 14 b is more flexible than outer sheath 12 b due to the particular materials used to form outer sheath 12 b and inner penetrator 14 b and/or the size, wall thickness, or other dimensions of outer sheath 12 b and inner penetrator 14 b.
  • outer sheath 12 b is formed from substantially rigid material, such as a metal, such as stainless steel or titanium, or any other suitable material that is stiff and resists flexing when outer sheath 12 b is inserted through the paravertebral tissue and into the epidural space.
  • substantially rigid material such as a metal, such as stainless steel or titanium, or any other suitable material that is stiff and resists flexing when outer sheath 12 b is inserted through the paravertebral tissue and into the epidural space.
  • Handle portion 27 b may include an outer sheath locking device 33 b, which may interact with inner penetrator locking device 32 b shown in FIG. 2B in order to lock inner penetrator 14 b in position within outer sheath 12 b.
  • Inner penetrator locking device 32 b and outer sheath locking device 33 b may include any devices suitable to interact to lock inner penetrator 14 b within outer sheath 12 b.
  • locking devices 32 b and 33 b may include threaded portions such that inner penetrator 14 b and outer sheath 12 b may be locked and unlocked by rotation of at least one of locking devices 32 b and 33 b.
  • locking devices 32 b and 33 b may snap together to lock inner penetrator 14 b within outer sheath 12 b.
  • Locking inner penetrator 14 b within outer sheath 12 b may prevent outer sheath 12 b from sliding down over inner penetrator 14 b, which may damage tissue in the body or cause other problems.
  • some embodiments do not include a locking mechanism.
  • inner penetrator 14 b and/or outer sheath 12 b may be partially or completely formed from one or more materials that may be detected by one or more medical imaging techniques, such as ultrasound, fluoroscopy, MRI, fMRI and/or X-ray, such that the location of the inner penetrator 14 b and/or outer sheath 12 b within the human body may be determined.
  • inner penetrator 14 b and/or outer sheath 12 b may be formed from or doped with a radio-opaque material, such as barium sulphate (BaSO 4 ), for example.
  • a radio-opaque material such as barium sulphate (BaSO 4 )
  • inner penetrator 14 b and/or outer sheath 12 b may include markers that may be detected by one or more of such medical imaging techniques. As shown in FIGS. 2B and 2C , inner penetrator 14 b may include a first radio-opaque marker 34 b and outer sheath 12 b may include a second radio-opaque marker 35 b. The location of inner penetrator 14 b relative to outer sheath 12 b may be determined based on the determined relative location of markers 34 b and 35 b. In addition, first and second radio-opaque markers 34 b and 35 b may have different radiopacity such that markers 34 b and 35 b may be distinguished from each other.
  • FIG. 2D illustrates a perspective view of introducer 10 b.
  • inner penetrator 14 b may be locked within outer sheath 12 b by locking devices 32 b and 33 b. Tip portion 25 b of inner penetrator 14 b protrudes through tip end 29 b of outer sheath 12 b.
  • inner penetrator 14 b may be configured to be advanced along a guide wire to a desired location relative to particular nerve tissue to be stimulated and removed from outer sheath 12 b, leaving outer sheath 12 b substantially in position for insertion of an electrical stimulation lead through outer sheath 12 b into position proximate the nerve tissue to be stimulated.
  • Tip portion 25 b of inner penetrator 14 b may be sufficient to flex to substantially follow flexures (such as bends or curves) in the guide wire during advancement of inner penetrator 14 b along the guide wire.
  • tip portion 25 b may be formed from particular flexible materials and may have sufficiently thin walls, as discussed below with reference to FIG. 2E .
  • outer sheath 12 b may be formed from flexible materials and may have sufficiently thin walls in order to provide some flexibility of introducer 10 b.
  • FIG. 2E illustrates a partial detailed view of body portion 18 b and tip portion 25 b of inner penetrator 14 b, as well as a portion of tip portion 30 b of outer sheath 12 b, of introducer 10 b.
  • tip portion 25 b of inner penetrator 14 b includes three transition regions 26 b, which may provide a transition between the cross-sectional shape and size of body portion 18 b and the cross-sectional shape and size of tip end 20 b.
  • Transition regions 26 b include a tip transition region 36 b, a middle transition region 37 b, and a body transition region 38 b.
  • Tip transition region 36 b has a substantially circular cross-section extending along the length of tip transition region 36 b and tapering slightly toward tip end 20 b.
  • Middle transition region 37 b has a substantially circular and constant cross-section along the length of middle transition region 37 b.
  • middle transition region 37 b is not tapered.
  • Body transition region 38 b has a cross-section that transitions from the cross-section of body portion 18 b, which may substantially match the cross-section of lumen 28 b of outer sheath 12 b.
  • body transition region 38 b transitions from a substantially oval cross-section adjacent body portion 18 b to a substantially circular cross-section adjacent middle transition region 37 b.
  • Body transition region 38 b may have a more severe taper than tip transition region 36 b.
  • tip transition region 36 b, middle transition region 37 b, and body transition region 38 b may be selected to provide substantial flexibility to tip region 25 b such that inner penetrator 14 b may flex around particular features in the body, and such that when the inner penetrator 14 b is advanced along a guide wire, tip regions 25 b may flex to substantially follow flexures in the guide wire such that the guide wire is not significantly displaced by the advancing tip region 25 b of inner penetrator 14 b.
  • the wall thickness of tip transition region 36 b may decrease toward tip end 20 b.
  • the wall thickness T ipt of tip transition region 36 b is less than or approximately equal to 0.02 inches at its thickest point along tip transition region 36 b.
  • the wall thickness T ipt of tip transition region 36 b may be less than 0.01 inches at tip end 20 b.
  • the wall thickness T ipt is approximately 0.006 inches at tip end 20 b.
  • the decreased wall thickness, T ipt , of tip transition region 36 b toward tip end 20 b may provide for increased flexibility of tip transition region 36 b.
  • both the inner diameter, denoted as “ID ipt ,” and the outer diameter, denoted as “OD ipt ,” of tip transition region 36 b may decrease or taper toward tip end 20 b.
  • the tapered outer diameter OD ipt and reduced wall thickness, T ipt , of tip transition region 36 b at tip end 20 b may provide a relatively smooth transition between tip end 20 b and a guide wire extending through tip opening 21 b. Such smooth transition may reduce or eliminate the likelihood of the juncture between tip end 20 b and a guide wire getting stuck or caught up, or pushing tissue forward, as inner penetrator 14 b is advanced within the body.
  • the tapered inner diameter ID ipt may provide for a tight or close fit at tip end 20 b with a guide wire running through opening 22 b of inner penetrator 14 b.
  • the tapered inner diameter ID ipt provides for an interference fit between inner penetrator 14 b and a guide wire, at least at tip end 20 b of inner penetrator 14 b.
  • the length of tip transition region 36 b may be selected to provide desired flexibility of tip transition region 36 b.
  • the ratio of the length L ipt to wall thickness T ipt at the thickest point may be greater than or approximately equal to 20 to 1.
  • the ratio of the length L ipt to outer diameter OD ipt may be greater than or approximately equal to 2.5 to 1.
  • Such configuration and dimensions may provide desired flexibility for tip transition region 36 b.
  • the wall thickness of middle transition region 37 b may be less than or approximately equal to 0.02 inches. In a particular embodiment, wall thickness T ipm is approximately 0.010 inches. Such configuration and dimensions may provide desired flexibility for middle transition region 37 b.
  • middle transition region 37 b denoted as length “L ipm ,” compared to wall thickness T ipm , the inner diameter and/or the outer diameter of middle transition region 37 b, may be selected to provide desired flexibility of middle transition region 36 b.
  • the ratio of the length L ipm to wall thickness T ipm may be greater than or approximately equal to 30 to 1.
  • the ratio of the length L ipm to the outer diameter of middle transition region 37 b may be greater than or approximately equal to 3 to 1.
  • Such configuration and dimensions may provide desired flexibility for middle transition region 37 b.
  • the total length of tip transition region 36 b and middle transition region 37 b (L ipt +L ipm ) compared to the wall thickness at the thickest point along transition regions 36 b and 37 b or compared to the inner diameter and/or the outer diameter of middle transition region 37 b, may be selected to provide desired flexibility of middle transition region 36 b.
  • the ratio of the total length of tip transition region 36 b and middle transition region 37 b (L ipt +L ipm ) to the wall thickness T ipm may be greater than or approximately equal to 40 to 1.
  • the ratio of the total length of tip transition region 36 b and middle transition region 37 b (L ipt +L ipm ) to the outer diameter of middle transition region 37 b may be greater than or approximately equal to 5 to 1.
  • Such configuration and dimensions may provide desired flexibility for tip portion 25 b of inner penetrator 14 b.
  • the relatively long nose provided by tip transition region 36 b and middle transition region 37 b may provide more flexibility than a tip having a substantially uniform taper from body portion 18 b to the tip end 20 b of inner penetrator 14 b, which flexibility may be desirable for navigating inner penetrator 14 b along a guide wire, for example.
  • transition regions 26 b Although the embodiment shown in FIG. 2E includes three transition regions 26 b, it should be understood that other embodiments may include more or less than three transition regions 26 b (which may or may not include one or more transition regions 26 b similar to transition regions 36 b, 37 b and/or 38 b shown in FIG. 2E ), or zero transition regions 26 b.
  • tip portion 30 b of outer sheath 12 b may be tapered to provide a relatively smooth transition between tip end 29 b and body portion 18 b of inner penetrator 14 b protruding through tip end 29 b.
  • body portion 18 b of inner penetrator 14 b may not protrude through tip end 29 b of outer sheath 12 b when inner penetrator 14 b is fully advanced within (and/or locked together with) outer sheath 12 b.
  • tip end 29 b may substantially align with the intersection of body portion 18 b and body transition region 38 b of inner penetrator 14 b.
  • FIGS. 2F-2H illustrates a detailed view of body portion 31 b and tip portion 30 b of outer sheath 12 b of introducer 10 b in accordance with one embodiment of the invention.
  • FIG. 2F is a partial side view of outer sheath 12 b
  • FIG. 2G is an end view of outer sheath 12 b
  • FIG. 2H is a cross-sectional view taken along the length of body portion 31 b of outer sheath 12 b.
  • Body portion 31 b has a substantially oval or oblong cross-section extending along the length of body portion 31 b.
  • Tip portion 30 b has a substantially oval or oblong cross-section that tapers in the direction from the end adjacent body portion 31 b toward tip end 29 b.
  • the cross-section of lumen 28 b at the tip end 29 b of outer sheath 12 b may substantially conform to the exterior cross-section of body portion 18 b of inner penetrator 14 b.
  • the materials and dimensions of body portion 31 b and/or tip portion 30 b of outer sheath 12 b may be selected to provide some degree of flexibility to outer sheath 12 b such that outer sheath 12 b may flex around particular features in the body, and such that when introducer 10 b is advanced along a guide wire, outer sheath 12 b (along with inner penetrator 14 b ) may flex to substantially follow curvatures in the guide wire such that the guide wire is not significantly displaced by the advancing introducer 10 .
  • the wall thickness of tip portion 30 b may decrease toward tip end 29 b.
  • the wall thickness T ost of tip portion 30 b is less than or approximately equal to 0.03 inches at its thickest point along tip portion 30 b and/or less than 0.02 inches at tip end 29 b.
  • the wall thickness T ost is between approximately 0.007 inches and approximately 0.018 inches around the cross-sectional perimeter at tip end 29 b.
  • the decreased wall thickness, T ost , of tip portion 30 b toward tip end 29 b may provide for increased flexibility of tip portion 30 b.
  • both the horizontal inner diameter “ID osth ” and the horizontal outer diameter, “OD osth ” of tip portion 30 b, and both the vertical inner diameter “ID stv ” and the vertical outer diameter “OD ostv ” of tip portion 30 b may decrease or taper toward tip end 29 b.
  • the terms “horizontal” and “vertical” are used merely for illustrative purposes of FIGS. 2F-2G , as outer sheath 12 b may be positioned in any orientation.
  • the tapered outer diameters OD osth and OD ostv and reduced wall thickness, T ost , at tip end 29 b may provide a relatively smooth transition between tip end 29 b and body portion 18 b of inner penetrator 14 b (better illustrated in FIG. 2E ). Such smooth transition may reduce or eliminate the likelihood of the juncture between outer sheath 12 b and inner penetrator 14 b getting stuck or caught up, or pushing tissue forward, as introducer 10 b is advanced within the body.
  • the tapered lumen 28 b may provide for a tight or close fit at tip end 29 b of outer sheath 12 b with the outer surface of body portion 18 b of inner penetrator 14 b, such that inner penetrator 14 b may be held substantially in place by outer sheath 12 b.
  • the tapered lumen 28 b provides for an interference fit between outer sheath 12 b and inner penetrator 14 b, at least at tip end 29 b of outer sheath 12 b.
  • the length of tip portion 30 b may be selected to provide desired flexibility of tip portion 30 b.
  • the ratio of the length L ost to wall thickness T ost at the thinnest point may be greater than or approximately equal to 10 to 1.
  • Such configuration and dimensions may provide desired flexibility for tip portion 30 b.
  • the wall thickness of body portion 31 b may be less than or approximately equal to 0.03 inches. In a particular embodiment, wall thickness T osm is approximately 0.024 inches. Such configuration and dimensions may provide desired flexibility for middle transition region 37 b.
  • FIGS. 3A-3F illustrate an example method of implanting a paddle style electrical stimulation lead into a human's epidural space using an example introducer 10 (such as introducer 10 a or introducer 10 b, for example).
  • Spinal cord 47 is also shown.
  • a location between two vertebrae is selected for the procedure.
  • the site may be selected using fluoroscopy.
  • the first step in performing the procedure is to insert needle 41 , preferably at an angle, into the skin, and through the subcutaneous tissue and ligamentum flavum 44 of the spine, and into a human's epidural space 40 .
  • the introducer might be inserted at an angle of approximately thirty-five to approximately forty-five degrees.
  • 3A illustrates insertion of needle 41 through the skin between spinous processes 42 of two vertebrae 43 . Entry into epidural space 40 by needle 41 may be confirmed using standard methods such as the “loss-of-resistance” technique after stylet 45 , or inner portion of needle 41 , is removed.
  • guide wire 46 may be inserted through needle 41 into epidural space 40 , shown in FIG. 3B .
  • a guide wire is used in a preferred embodiment of the method of insertion but is not required to insert a paddle style lead through the introducer. This part of the procedure may be performed under fluoroscopic guidance for example. Fluoroscopy may be used to check the position of guide wire 46 in epidural space 40 before inserting introducer 10 .
  • a removable stylet may be inserted into a channel extending within and along the length of guide wire 46 and manipulated by the operator in order to help steer guide wire 46 into position.
  • the stylet may also provide additional rigidity to guide wire 46 , which may be desired in particular applications.
  • needle 41 is removed. If a stylet was inserted into guide wire 46 as discussed above, the stylet may or may not be removed. For example, the stylet may be left in guide wire 46 in order to increase the rigidity or strength of guide wire 46 in order to resist guide wire 46 being moved by the advancement of introducer 10 , as discussed below.
  • introducer 10 may then be inserted, preferably at an angle of approximately thirty-five to approximately forty-five degrees, although the exact angle may differ depending on technique and a patient's anatomy, over guide wire 46 and into epidural space 40 using guide wire 46 as a guide.
  • the technique of passing introducer 10 over guide wire 46 helps ensure proper placement of introducer 10 into epidural space 40 and helps avoid inadvertent passage of introducer 10 into an unsuitable location.
  • the operator may choose to cut the skin around the insertion site with a scalpel to facilitate subsequent entry of introducer 10 through the needle entry site.
  • a stylet within guide wire 46 may increase the rigidity of guide wire 46 to resist guide wire 46 being moved or dislocated by introducer 10 as introducer 10 advances along guide wire 46 .
  • the tip of inner penetrator 14 and/or all or portions of outer sheath 12 may flex to maneuver around obstructions or physical structures in the body (such as a spinous process 42 , vertebrae 43 , or any other structure in the body) and/or to substantially follow curvatures in guide wire 46 , rather than displacing portions of guide wire 46 , which may cause damage to the body.
  • An example of such flexing is shown and discussed below with reference to FIGS. 7A-7D .
  • introducer 10 As introducer 10 is passed through the skin it elongates the hole in the skin made by needle 41 . As introducer 10 is passed deeper into the paravertebral tissues, it spreads the fibers of tissue, muscle and ligamentum flavum 44 and forms a tract through these tissues and into epidural space 40 , preferably without cutting the tissues. At the level in the tissues where introducer 10 meets and penetrates ligamentum flavum 44 there is a second loss of resistance when inner penetrator 14 has completely penetrated the ligamentum flavum 44 . Shoulder or ridge 23 of outer sheath 12 is preferably lodged against ligamentum flavum 44 during insertion of a paddle style lead.
  • inner penetrator 14 and guide wire 46 may be removed, leaving outer sheath 12 positioned in epidural space 40 , as shown in FIG. 3D .
  • paddle style lead 50 may then be inserted through outer sheath 12 and positioned at an optimal vertebral level, using fluoroscopy for example, for the desired therapeutic effect.
  • outer sheath 12 may then be removed leaving only paddle style lead 50 in epidural space 40 , where paddle style lead 50 can be further manipulated if necessary to achieve a desired therapeutic effect.
  • Paddle style lead 50 may be secured by suturing it to a spinous process.
  • a removable stylet may be inserted into a channel extending within and along the length of lead 50 and manipulated by the operator in order to help steer lead 50 into position, such as described in U.S. Publication No. 2002/0022873, filed on Aug. 10, 2001, for example.
  • the stylet may also provide additional rigidity to lead 50 , which may be desired in particular applications.
  • introducer 10 may be used to implant paddle style lead 50 into epidural space 40 for spinal nerve stimulation.
  • the same or an analogous, perhaps smaller, introducer 10 may be used to implant an analogous paddle style lead 50 into any appropriate region of the body for peripheral nerve stimulation.
  • a paddle style lead 50 may have an outer sheath 12 and lumen 28 with a width of approximately 1 mm to approximately 3 mm.
  • a similar method of insertion may be used to implant a paddle style electrical stimulation lead into a human's peripheral nerve tissue.
  • a site for insertion in tissue near a nerve is selected.
  • the first step in performing the procedure is to insert a needle into the skin and through the subcutaneous tissue and into tissue near a peripheral nerve. If the needle has a stylet, it may be removed and a guide wire may be inserted through the needle and into the tissue near a peripheral nerve. A guide wire may not be required. Fluoroscopy may or may not be used to guide insertion of a guide wire into tissue near a peripheral nerve.
  • introducer 10 may be inserted, preferably at an angle that would depend on the anatomy of the body near the peripheral nerve to be stimulated. As introducer 10 is passed through tissues, it elongates the tract made by a needle or guide wire and spreads the tissue. After positioning introducer 10 in tissue adjacent to the peripheral nerve to be stimulated, inner penetrator 14 is removed. A paddle style lead may then be inserted through outer sheath 12 . Outer sheath 12 may then be removed leaving only the paddle style lead in position near the peripheral nerve to be stimulated.
  • FIGS. 4A and 4B there are shown two embodiments of a stimulation system 200 , 300 in accordance with the present invention.
  • the stimulation systems generate and apply a stimulus to a tissue or to a certain location of a body.
  • the system 200 , 300 includes a stimulation or energy source 210 , 310 and a lead 50 for application of the stimulus.
  • the lead 110 shown in FIGS. 4A and 4B is the paddle style lead 50 of the present invention.
  • the stimulation system 200 includes the lead 50 that is coupled to the stimulation source 210 .
  • the stimulation source 210 includes an implantable pulse generator (IPG).
  • IPG implantable pulse generator
  • an implantable pulse generator (IPG) is implanted within the body (not shown) that is to receive electrical stimulation from the stimulation source 210 .
  • An example IPG may be one manufactured by Advanced Neuromodulation Systems, Inc., such as the Genesis® System, part numbers 3604, 3608, 3609, and 3644, or the Eon® System, part numbers 65-3716, 65-3851, and 64-1254.
  • the stimulation system 300 includes the lead 50 that is coupled to the stimulation source 310 .
  • the stimulation source 310 includes a wireless receiver.
  • the stimulation source 310 comprising a wireless receiver is implanted within the body (not shown) that is to receive electrical stimulation from the stimulation source 310 .
  • An example wireless receiver 310 may be those wireless receivers manufactured by Advanced Neuromodulation Systems, Inc., such as the Renew® System, part numbers 3408 and 3416.
  • the wireless receiver (not shown) within stimulation source 310 is capable of receiving wireless signals from a wireless transmitter 320 .
  • the wireless signals are represented in FIG. 4B by wireless link symbol 330 .
  • the wireless transmitter 320 and a controller 340 are located outside of the body that is to receive electrical stimulation from the stimulation source 310 .
  • a user of the stimulation source 310 may use the controller 340 to provide control signals for the operation of the stimulation source 310 .
  • the controller 340 provides control signals to the wireless transmitter 320 .
  • the wireless transmitter 320 transmits the control signals (and power) to the receiver in the stimulation source 310 and the stimulation source 310 uses the control signals to vary the signal parameters of the electrical signals that are transmitted through lead 110 to the stimulation site.
  • An example wireless transmitter 320 may be those transmitters manufactured by Advanced Neuromodulation Systems, Inc., such as the Renew® System, part numbers 3508 and 3516.
  • the connectors are not visible in FIGS. 4A and 4B because the contact electrodes are situated within a receptacle (not shown) of the stimulation source 210 , 310 .
  • the connectors are in electrical contact with a generator (not shown) of electrical signals within the stimulation source 210 , 310 .
  • the stimulation source 210 , 310 generates and sends electrical signals via the lead 50 to the electrodes 160 .
  • the electrodes 160 are located at a stimulation site (not shown) within the body that is to receive electrical stimulation from the electrical signals.
  • a stimulation site may be, for example, adjacent to one or more nerves in the central nervous system (e.g., spinal cord) or peripheral nerves.
  • the stimulation source 210 , 310 is capable of controlling the electrical signals by varying signal parameters (e.g., intensity, duration, frequency) in response to control signals that are provided to the stimulation source 210 , 310 .
  • Lead 110 extends from the insertion site to the implant site (the area of placement of the generator).
  • the implant site is typically a subcutaneous pocket that receives and houses the IPG or receiver (providing stimulation source 210 , 310 ).
  • the implant site is usually positioned a distance away from the stimulation site, such as near the buttocks or other place in the torso area. In most cases, the implant site (and insertion site) is located in the lower back area, and lead 110 may extend through the epidural space (or other space) in the spine to the stimulation site (e.g., middle or upper back, neck, or brain areas).
  • the system of leads and/or extensions may be subject to mechanical forces and movement in response to body movement.
  • FIG. 5 illustrates the steps that may be used to implant a stimulation system 200 , 300 into a human.
  • FIGS. 6A-6E illustrate an example method of removing an implanted paddle style electrical stimulation lead 50 from a human's epidural space 40 using introducer 10 b according to one embodiment of the invention.
  • Such method may be used to remove an electrical stimulation lead 50 for any suitable reason, such as to relocate, replace, or repair the lead 50 , for example.
  • the method may be particularly advantageous for removing a lead 50 around which tissue may have grown and is thus firmly secured within the body.
  • the method may be similarly performed using any suitable introducer, such as introducer 10 a, for example.
  • a paddle style electrical stimulation lead 50 having a body portion 52 and a stimulating portion 54 may be implanted in a human's epidural space 40 in order to stimulate a nerve, such as discussed above regarding the method shown in FIGS. 3A-3F , for example.
  • An end 56 of lead 50 extends out of the epidural space 40 and, in some cases, out through the person's skin or into a subcutaneous pocket formed during implantation.
  • Introducer 10 b including inner penetrator 14 b inserted into outer sheath 12 b, may be inserted around body portion 52 of lead 50 such that end 56 of lead 50 runs though inner channel 22 b of inner penetrator 14 b. As shown in FIG. 6A , introducer 10 b may be advanced such that end 56 of lead 50 protrudes through opening 26 b in handle portion 16 b of inner penetrator 14 b.
  • a stylet 400 may be inserted into a channel that extends along the length of lead 50 , if appropriate.
  • stylet 400 may be a stylet typically used for guiding lead 50 during the positioning of lead 50 within the body.
  • Stylet 400 may be advanced partially or completely along the length of lead 50 , and may be advanced into stimulating portion 54 of lead 50 .
  • stylet 400 is inserted into lead 50 in order to increase the rigidity of lead 50 such that when the introducer 10 b advances along flexures in body portion 52 of lead 50 , tip region 25 b of inner penetrator 14 b and/or other portions of introducer 10 b may flex to substantially follow the flexures in body portion 52 of lead 50 .
  • introducer 10 b may be advanced along body portion 52 of lead 50 until tip region 25 b of inner penetrator 14 b is adjacent with, or comes into contact with, stimulating portion 54 of lead 50 . As it advances, introducer 10 b may separate tissue from body portion 52 of lead 50 , such as tissue that may have formed around body portion 52 over time, thus creating a passageway through the body. In situations in which body portion 52 extends out through the skin, the operator may choose to cut the skin around the entry point of lead 50 with a scalpel to facilitate subsequent entry of introducer 10 .
  • tip region 25 b of inner penetrator 14 b and/or all or portions of outer sheath 12 b may flex to maneuver around obstructions or physical structures in the body (such as a spinous process 42 , vertebrae 43 , or any other structure in the body) and/or to substantially follow curvatures in body portion 52 of lead 50 , rather than displacing portions of lead 50 , which may cause damage to the body or lead 50 .
  • An example of such flexing is shown and discussed below with reference to FIGS. 7A-7D .
  • this part of the procedure may be performed under fluoroscopic guidance.
  • fluoroscopy may identify radio-opaque markers 34 b and 35 b on inner penetrator 14 b and outer sheath 12 b, as well as radio-opaque portions of lead 50 , such that the operator (e.g., doctor) may determine the relative positions of introducer 10 b and lead 50 during the procedure.
  • outer sheath 12 b may be advanced forward (e.g. by sliding) relative to inner penetrator 14 b until outer sheath 12 b covers at least a portion of stimulation portion 54 of lead 50 .
  • Outer sheath 12 b may be advanced forward until it completely covers stimulation portion 54 of lead 50 .
  • Advancing outer sheath 12 b over stimulation portion 54 may separate tissue from stimulating portion 54 , such as tissue that may have grown attached to stimulating portion 54 . In some embodiments, this part of the procedure may be performed under fluoroscopic guidance.
  • fluoroscopy may identify radio-opaque markers 34 b and 35 b on inner penetrator 14 b and outer sheath 12 b, as well as radio-opaque portions of lead 50 , such that the operator (e.g., doctor) may determine the relative positions of inner penetrator 14 b, outer sheath 12 b, and stimulating portion 54 of lead 50 during the procedure.
  • the operator e.g., doctor
  • inner penetrator 14 b, outer sheath 12 b, and lead 50 may all be removed together through the passageway created by advancing introducer 10 b along lead 50 , as discussed above regarding FIG. 6C .
  • lead 50 may be removed from the body without causing significant damage to the body or to the lead 50 .
  • the method may be particularly advantageous for removing a lead 50 around which tissue may have grown and is thus firmly secured within the body.
  • FIGS. 7A-7D illustrate example views of introducer 10 b flexing as it moves along a guide wire 46 or stimulation lead 50 within the body, in accordance with certain embodiments of the invention.
  • all or portions of tip portion 25 b of inner penetrator 14 b may substantially flex to follow bands or curves in guide wire 46 or stimulation lead 50 .
  • tip transition region 36 b may be the most flexible, followed by middle transition region 37 b, followed by body transition region 38 b.
  • outer sheath 12 b may also flex to partially or substantially follow curvatures in guide wire 46 or stimulation lead 50 , such as shown in FIGS. 7C and 7D , for example.
  • Such flexibility of inner penetrator 14 b and/or outer sheath 12 b may provide several advantages, as discussed above. First, such flexibility may be advantageous for navigating introducer 10 b into particular regions in the body, such as the epidural region, for example, which may also reduce the likelihood of introducer 10 b damaging tissue in the body. Also, such flexibility may partially or substantially prevent introducer 10 b from displacing guide wire 46 as introducer 10 b moves along guide wire 46 (which displacement may disrupt the lead insertion or removal process and/or damage tissue in the body.
  • FIG. 8 illustrates an example lead introducer kit 500 for preparing to implant an electrical stimulation lead for electrical stimulation of nerve tissue in a human, according to one embodiment of the invention.
  • lead introducer kit 500 includes a lead blank 502 and one or more various tools or accessories for preparing for implanting an actual electrical stimulation lead into a human body.
  • the lead blank 502 may be used, for example, to determine whether an actual electrical stimulation lead to be implanted will fit into the target location in the body. For example, an electrical stimulation lead may not fit into the epidural space due to scar tissue or other blockages within the epidural space.
  • the electrical stimulation lead need not be removed from its packaging, thus allowing the electrical stimulation lead to be used on another patient or at a later time. This may be advantageous due to the relatively high cost of some electrical stimulation leads.
  • lead introducer kit 500 includes lead blank 502 , a needle 504 , and a guide wire 506 , and a lead introducer 508 .
  • Lead introducer kit 500 may include other tools or accessories for preparing to implant an electrical stimulation lead, but in preferred embodiments does not include the actual electrical stimulation lead.
  • Lead blank 502 may have an identical or similar shape and size as an electrical stimulation lead to be inserted into the body for electrical stimulation of nerve tissue.
  • lead blank 502 may be configured for insertion into the human body to determine whether the electrical stimulation lead may be inserted into the desired location proximate the nerve tissue to be stimulated.
  • lead blank 502 may be configured for insertion into the human body using the various methods and/or devices discussed herein, or using any other known methods and/or devices.
  • Lead blank 502 may include a removable stylet 510 which may be used for steering lead blank 502 during insertion and/or positioning of lead blank 502 .
  • Stylet 510 may be inserted into a channel extending within lead blank 502 and manipulated by an operator in order to help steer lead blank 502 .
  • the shape of lead blank 502 may be configured to facilitate steering of lead blank 502 .
  • lead blank 502 may be a paddle shape with one or more indentions, notches, or score lines that may increase the flexibility of lead blank 502 .
  • FIG. 9 illustrates an example lead blank 502 including a paddle style portion 514 having a scalloped shape. The scalloped shape may increase the flexibility and steerability of lead blank 502 .
  • Needle 504 may include any needle suitable for inserting guide wire 506 into a desired location in the body, such as a human's epidural space, for example, such as needle 41 discussed above regarding the method of FIGS. 3A-3F .
  • Needle 504 may include a removable stylet 516 , such as stylet 45 discussed above, for example.
  • Lead introducer 508 may include any one or more devices for inserting lead blank 502 into the human body.
  • lead introducer 508 may comprise introducer 10 or introducer 10 b described herein, or any other suitable lead introducer.
  • lead introducer 508 may include an outer sheath 530 and an inner penetrator 532 .
  • Outer sheath 530 may be inserted into a human body near nerve tissue to be stimulated.
  • Inner penetrator 532 may be removably housed within outer sheath 530 and may include an inner channel configured to receive and be advanced along guide wire 506 to a desired location relative to the nerve tissue to be stimulated.
  • Inner penetrator 532 may then be removed from outer sheath 530 , leaving outer sheath 530 substantially in position for insertion (or attempted insertion) of lead blank 502 through the outer sheath to determine whether an actual electrical stimulation lead may be properly inserted into position proximate the nerve tissue to be stimulated.
  • an actual electrical stimulation lead may be properly inserted into position proximate the nerve tissue to be stimulated.
  • the electrical stimulation lead which may be included in a separate kit or otherwise packaged separately from lead introducer kit 500 , need not be removed from its packaging, thus avoiding wasting an electrical stimulation lead, which may be relatively expensive.
  • FIG. 10 illustrates an example paddle style electrical stimulation lead 50 a having electrodes on only one side, and markings indicating the directional orientation of the lead 50 a, according to one embodiment of the invention.
  • Paddle style lead 50 a may include any suitable number of electrodes 160 a. Electrodes 160 a may be flat electrodes that emit energy out of only of the two sides. Such electrodes 160 a may be desirable for very small paddle leads, for example. Since the electrodes 160 a emit energy out of only one side, the orientation (i.e., which side is facing in which direction) of the paddle style lead 50 a may be important, particularly when implanting the lead 50 a adjacent the target nerve tissue.
  • lead 50 a may include one or more markers 550 that may be detected by one or more medical imaging techniques (such as ultrasound, fluoroscopy, MRI, fMRI and/or X-ray, for example) to indicate the directional orientation of the lead 50 a.
  • lead 50 a may include one or more radio-opaque markers 550 having particular shapes or relative locations such that the operator may determine the orientation of the lead 50 a.
  • FIG. 11 illustrates an example paddle style electrical stimulation lead 50 b having a substantially uniform paddle-shaped cross-section extending along the body of the lead 50 b, according to one embodiment of the invention.
  • Paddle style lead 50 b includes a body portion 52 b and a stimulating portion 54 b, and a number of electrodes 160 b located at stimulating portion 54 b.
  • the cross-section of paddle style stimulating portion 54 b which may be, for example, a substantially oval, oblong, or rectangular cross-section, may substantially extend along all or at least a significant portion of the length of body portion 52 b.
  • the substantially uniform cross-section may extend at least to a point outside the epidural region, or outside the skin.
  • the substantially uniform cross-section may extend all the way back to the stimulation or power source. This uniform cross-section may make it easier to remove lead 50 b from a human body as compared with leads having a smaller cross-sectioned lead body.
  • epidural tissue may grow around an implanted lead body over time. Such tissue may impede the removal of traditional paddle style leads.
  • the substantially uniform cross-section of paddle style lead 50 b prevents or reduces the ability of such tissue to impede the removal of implanted lead 50 b from the body.
  • FIG. 12 illustrates an example paddle style electrical stimulation lead 50 c having a tear away body portion, according to one embodiment of the invention.
  • Paddle style lead 50 c may be similar to paddle style lead 50 b shown in FIG. 11 .
  • paddle style lead 50 c may includes a body portion 52 c, a stimulating portion 54 c, a number of electrodes 160 c located at stimulating portion 54 c, and a substantially uniform cross-section (such as a substantially oval, oblong, or rectangular cross-section, for example) extending back along body portion 52 c.
  • Body portion 52 c may include a tear-away portion 560 that may be torn away or otherwise removed, revealing a small cross-sectioned lead body (such as a standard lead body wire or cord, for example) that may extend back to the stimulation or power source. Tear-away portion 560 is indicated by perforated tear lines 562 . However, tear-away portion 560 may have any other configuration and may be removed in any other suitable manner. In some embodiments, such as shown in FIG. 12 , the distance from stimulating portion 54 c to tear-away portion 560 may be selected or designed such that when lead 50 c is implanted in the body, the forward edge of tear-away portion 560 may be located near or just outside the epidural region 562 , or the skin. Thus, lead 50 c may provide the advantage of being relatively easy to remove from the body (due to the substantially uniform cross-section, as discussed above), as well as providing a smaller, more manageable body portion 54 c leading back to the stimulation or power source.
  • lead 50 c may provide the advantage

Abstract

In one embodiment, an introducer is provided for implanting an electrical stimulation lead to enable electrical stimulation of nerve tissue. The introducer includes an outer sheath and an inner penetrator. The outer sheath may accommodate insertion of the electrical stimulation lead and may be inserted into a human body near the nerve tissue. The inner penetrator is removably housed within the outer sheath and includes an inner channel configured to accommodate a guide wire, a tip end having a shape and size substantially conforming to that of the guide wire, a body region having a shape and size substantially conforming to that of the outer sheath, and one or more transition regions substantially connecting the tip end with the body region. At least a portion of the transition regions of the inner penetrator may flex to substantially follow flexures in the guide wire during advancement of the inner penetrator.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 12/098,007, filed Apr. 4, 2008, pending, which is a divisional of U.S. application Ser. No. 11/119,438, filed Apr. 29, 2005, now U.S. Pat. No. 7,359,755, which is a continuation-in-part of U.S. application Ser. No. 10/637,342, filed Aug. 8, 2003, now abandoned, the disclosures of which are fully incorporated herein by reference.
  • BACKGROUND
  • This invention relates generally to electrical stimulation leads for medical applications and in particular to a method and apparatus for implanting an electrical stimulation lead using a flexible introducer One method of delivering electrical energy is to implant an electrode and position it in a precise location adjacent the spinal cord such that stimulation of the electrode causes a subjective sensation of numbness or tingling in the affected region of the body, known as “paresthesia.” Pain managing electrical energy is commonly delivered through electrodes positioned external to the dura layer surrounding the spinal cord. The electrodes may be carried by either of two primary vehicles: a percutaneous lead and a laminotomy or “paddle” lead.
  • Percutaneous leads commonly have three or more equally-spaced electrodes. They are positioned above the dura layer using a needle that is passed through the skin, between the desired vertebrae and onto the top of the dura. Percutaneous leads deliver energy radially in all directions because of the circumferential nature of the electrode. Percutaneous leads can be implanted using a minimally invasive technique. In a typical percutaneous lead placement, a trial stimulation procedure is performed to determine the optimal location for the lead. Here, a needle is placed through the skin and between the desired vertebrae. The percutaneous lead is then threaded through the needle into the desired location over the spinal cord dura. Percutaneous leads may also be positioned in other regions of the body near peripheral nerves for the same purpose.
  • Laminotomy or paddle style leads have a paddle-like configuration and typically possess multiple electrodes arranged in one or more independent columns. Paddle style leads provide a more focused energy delivery than percutaneous leads because electrodes may be present on only one surface of the lead. Paddle style leads may be desirable in certain situations because they provide more direct stimulation to a specific surface and require less energy to produce a desired effect. Because paddle style leads are larger than percutaneous leads, they have historically required surgical implantation through a procedure known as partial laminectomy that requires the resection and removal of vertebral tissue.
  • SUMMARY OF THE INVENTION
  • The present invention provides an introducer and process for implanting a paddle style electrical stimulation lead.
  • In one embodiment, an introducer is provided for implanting a paddle style electrical stimulation lead to enable electrical stimulation of nerve tissue. The introducer includes an outer sheath and an inner penetrator. The outer sheath may accommodate insertion of the paddle style electrical stimulation lead and may be inserted into a human body near the nerve tissue. The inner penetrator is removably housed within the outer sheath and includes an inner channel configured to accommodate a guide wire, a tip end having a shape and size substantially conforming to that of the guide wire, a body region having a shape and size substantially conforming to that of the outer sheath, and one or more transition regions substantially connecting the tip end with the body region. The inner penetrator may be advanced along the guide wire to a desired location relative to the nerve tissue and removed from the outer sheath leaving the outer sheath substantially in position for insertion of the paddle style electrical stimulation lead through the outer sheath into position proximate the nerve tissue. At least a portion of the transition regions of the inner penetrator may flex to substantially follow flexures in the guide wire during advancement of the inner penetrator along the guide wire.
  • In another embodiment, a method is provided for implanting a paddle style electrical stimulation lead to enable electrical stimulation of nerve tissue. The method includes inserting a needle into tissue, positioning a guide wire through the needle into a desired location relative to the nerve tissue, removing the needle, and forming a tract for the paddle style electrical stimulation lead by advancing an introducer along the guide wire to a desired location. The introducer includes an outer sheath and inner penetrator removably housed within the outer sheath, the inner penetrator including a tip end having a cross-sectional shape and size substantially conforming to a cross-sectional shape and size of the guide wire, a body region having a cross-sectional shape and size substantially conforming to a cross-sectional shape and size of the outer sheath, and one or more transition regions substantially connecting the tip end with the body region. At least a portion of the one or more transition regions flexes to substantially follow flexures in the guide wire during advancement of the inner penetrator along the guide wire. After advancing the introducer along the guide wire to the desired location, the inner penetrator is removed, leaving the outer sheath substantially in position, and the paddle style electrical stimulation lead is inserted through the outer sheath until the paddle style electrical stimulation lead is positioned proximate the nerve tissue.
  • In another embodiment, a method is provided for implanting an electrical stimulation lead in a minimally invasive percutaneous manner to enable electrical stimulation of a human's spinal nerve tissue. The method includes inserting a needle into the human's epidural space and inserting a guide wire through the needle until an end of the guide wire is positioned in the epidural space at a desired location relative to the spinal nerve tissue to be stimulated. The position of the guide wire in the epidural space is verified using fluoroscopy, and the needle is removed, leaving the guide wire substantially in position. An introducer is advanced along the guide wire until an end of the inner penetrator of the introducer is positioned in the epidural space at a desired location with respect to the spinal nerve tissue to be stimulated. The introducer includes an outer sheath and an inner penetrator removably housed within the outer sheath, the inner penetrator of the introducer including an inner channel configured to accommodate the guide wire, a tip end having a cross-sectional shape and size substantially conforming to a cross-sectional shape and size of the guide wire, a body region having a cross-sectional shape and size substantially conforming to a cross-sectional shape and size of the outer sheath, and one or more transition regions substantially connecting the tip end with the body region. as the inner penetrator of the introducer advances along the guide wire, at least one of the tip transition regions flexes to substantially follow flexures in the guide wire, and the outer sheath of the introducer forms a tract in the epidural space. The position of the introducer in the epidural space is verified using fluoroscopy. The guide wire and the inner penetrator of the introducer are removed, leaving the outer sheath of the introducer substantially in position. The electrical stimulation lead is inserted through the outer sheath of the introducer until the electrical stimulation lead is positioned in the epidural space proximate the spinal nerve tissue to be stimulated, and the positioning of the paddle style electrical stimulation lead in the epidural space is verified using fluoroscopy.
  • In another embodiment, a system for implanting a paddle style electrical stimulation lead to enable electrical stimulation of a human's spinal nerve tissue is provided. The system includes a needle, a guide wire, and an introducer. The introducer includes an outer sheath and an inner penetrator. The outer sheath is configured to accommodate insertion of the paddle style electrical stimulation lead through the outer sheath and may be inserted through the human's skin and into the human's epidural space. The inner penetrator is removably housed within the outer sheath and includes an inner channel configured to accommodate a guide wire, a tip end having a cross-sectional shape and size substantially conforming to a cross-sectional shape and size of the guide wire, a body region having a cross-sectional shape and size substantially conforming to a cross-sectional shape and size of the outer sheath, and one or more transition regions substantially connecting the tip end with the body region. The inner penetrator may be advanced along the guide wire until an end of the inner penetrator is positioned in the epidural space at a desired location relative to spinal nerve tissue to be stimulated, the outer sheath forming an insertion tract as the inner penetrator advances along the guide wire. A tip transition region of the inner penetrator is formed from a particular material and has a wall thickness sufficiently thin such that during advancement of the inner penetrator along the guide wire, the tip transition region may flex to substantially follow flexures in the guide wire. The inner penetrator is configured to be removed from the outer sheath leaving the outer sheath substantially in position for insertion of the paddle style electrical stimulation lead through the outer sheath into position proximate the spinal nerve tissue to be stimulated. The system also includes an implantable generator to power the paddle style electrical stimulation lead.
  • In another embodiment, a lead introducer kit for preparing to implant an electrical stimulation lead for electrical stimulation of nerve tissue is provided. The lead introducer kit includes a needle, a guide wire, a lead blank having a similar shape and size as an electrical stimulation lead to be inserted proximate the nerve tissue, and an introducer. The lead blank is configured for insertion into the human body to determine whether the electrical stimulation lead may be inserted into position proximate nerve tissue to be stimulated. The introducer includes an outer sheath and an inner penetrator. The outer sheath is operable to be inserted into a human body near nerve tissue to be stimulated. The inner penetrator is removably housed within the outer sheath and includes an inner channel configured to accommodate the guide wire. The inner penetrator is configured to be advanced along the guide wire to a desired location relative to the nerve tissue and removed from the outer sheath leaving the outer sheath substantially in position for insertion of the lead blank through the outer sheath to determine whether the electrical stimulation lead may be inserted into position proximate the nerve tissue to be stimulated.
  • In another embodiment, a method of removing an electrical stimulation lead from a human body is provided. A stimulation lead introducer is positioned over a body portion of an electrical stimulation lead that is at least partially implanted in a human body. The stimulation lead introducer includes an outer sheath and an inner penetrator removably housed within the outer sheath and comprising an inner channel, a tip region of the inner penetrator extending out from the outer sheath, the stimulation lead introducer being positioned such that the body portion of the electrical stimulation lead is partially disposed within an inner channel of the inner penetrator. The stimulation lead introducer is advanced along the body portion of the electrical stimulation lead until the tip region of the inner penetrator is located adjacent a stimulation portion of the electrical stimulation lead. The outer sheath is advanced relative to the inner penetrator until the outer sheath covers at least a portion of the stimulation portion of the electrical stimulation lead. The outer sheath, the inner penetrator, and the electrical stimulation lead are then removed from the human body.
  • Particular embodiments of the present invention may provide one or more technical advantages. For example, certain embodiments may allow a paddle style electrical stimulation lead to be inserted using a minimally invasive procedure, using an introducer, rather than a partial laminectomy or other more invasive surgical procedure. Certain embodiments may provide a guide wire, introducer and paddle style electrical stimulation lead composed in part or entirely of radio-opaque material to allow for fluoroscopic verification of the position of the guide wire, introducer and lead. Certain embodiments may provide an inner penetrator including a hollow tip configured to extend beyond the outer sheath, the tip having a raised circumferential ridge configured to create resistance when the circumferential ridge contacts the human's tissue. Other embodiments may provide a smooth transition between the inner penetrator and the outer sheath to prevent the introducer from getting caught or stuck in the tissue. Certain embodiments may provide an inner penetrator having a substantially flexible tip that may flex to maneuver around obstructions or physical structures in the body and/or to follow curvatures in a guide wire. Certain embodiments may provide a lead introducer kit including a lead blank that may be used to determine whether an actual electrical stimulation lead may be inserted into a desired position in the body. Thus, in situations where it is determined (using the lead blank) that the actual lead cannot be inserted into the desired position in the body, the actual lead not need to be removed from its packaging or inserted into the body, thus saving the actual lead for another use. Certain embodiments may provide a desirable method for removing an implanted electrical stimulation lead using a lead introducer having an outer sheath and in inner penetrator. Certain embodiments may provide all, some, or none of these advantages. Certain embodiments may provide one or more other technical advantages, one or more of which may be readily apparent to those skilled in the art from the figures, description and claims included herein.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • To provide a more complete understanding of the present invention and the features and advantages thereof, reference is made to the following description taken in conjunction with the accompanying drawings, in which:
  • FIG. 1A illustrates an example introducer for implanting a paddle style electrical stimulation lead according to one embodiment of the invention;
  • FIG. 1B illustrates an example inner penetrator of the introducer shown in FIG. 1A;
  • FIG. 1C illustrates an example of an outer sheath of the introducer shown in FIG. 1A;
  • FIG. 1D illustrates an example of a tip of the introducer shown in FIG. 1A;
  • FIG. 1E illustrates an example of a tip of the outer sheath of the introducer shown in FIG. 1A;
  • FIG. 1F illustrates a side view of an example of the tip of the introducer shown in FIG. 1A;
  • FIG. 2A illustrates an example introducer for implanting a paddle style electrical stimulation lead according to another embodiment of the invention;
  • FIG. 2B illustrates an example inner penetrator of the introducer shown in FIG. 2A;
  • FIG. 2C illustrates an example of an outer sheath of the introducer shown in FIG. 2A;
  • FIG. 2D illustrates a perspective view of the introducer shown in FIG. 2A;
  • FIG. 2E illustrates an example tip region of the inner penetrator shown in FIG. 2B;
  • FIGS. 2F-2H illustrate an example of a body portion and tip portion of the outer sheath shown in FIG. 2C;
  • FIG. 3A illustrates an example of a needle inserted into a human's epidural space;
  • FIG. 3B illustrates an example of a guide wire being inserted through a needle into a human's epidural space;
  • FIG. 3C illustrates an example of an introducer being inserted over a guide wire into a human's epidural space;
  • FIG. 3D illustrates an example of an inner penetrator being removed from the outer sheath of an introducer in a human's epidural space;
  • FIG. 3E illustrates an example of a paddle style lead being inserted through an introducer into a human's epidural space;
  • FIG. 3F illustrates an example of a paddle style lead implanted in a human's epidural space;
  • FIG. 4A illustrates an example of a stimulation system;
  • FIG. 4B illustrates an example of a stimulation system; and
  • FIG. 5 is a flow chart describing steps for implanting a stimulation system;
  • FIGS. 6A-6E illustrate an example method of removing an implanted paddle style electrical stimulation lead from a human's epidural space using an introducer according to one embodiment of the invention;
  • FIGS. 7A-7D illustrate example views of a lead introducer flexing as it moves along a guide wire within the body according to certain embodiments of the invention;
  • FIG. 8 illustrates an example lead introducer kit for preparing to implant an electrical stimulation lead for electrical stimulation of nerve tissue in a human, according to one embodiment of the invention;
  • FIG. 9 illustrates an example lead blank including a paddle style stimulating portion having a scalloped shape;
  • FIG. 10 illustrates an example paddle style electrical stimulation lead having electrodes on only one side, and markings indicating the directional orientation of the lead, according to one embodiment of the invention;
  • FIG. 11 illustrates an example paddle style electrical stimulation lead having a substantially uniform paddle-shaped cross-section extending along the body of the lead, according to one embodiment of the invention; and
  • FIG. 12 illustrates an example paddle style electrical stimulation lead having a tear away body portion, according to one embodiment of the invention.
  • DESCRIPTION OF EXAMPLE EMBODIMENTS
  • FIG. 1A illustrates an example introducer 10 a for implanting a paddle style electrical stimulation lead percutaneously according to one embodiment of the invention. Introducer 10 a may be used to percutaneously introduce a percutaneous or paddle style lead into the epidural space of a user who requires electrical stimulation treatment directed to spinal nerve tissue, for example, for pain management. For example, and not by way of limitation, introducer 10 a may be used to percutaneously introduce any of the percutaneous or paddle style leads shown and/or described in U.S. Publication No. 2002/0022873, filed on Aug. 10, 2001; U.S. Provisional Application No. 60/645,405, filed on Apr. 28, 2004; and/or U.S. Provisional Application No. 60/566,373, filed on Jan. 19, 2005. The same or an analogous, perhaps smaller, introducer 10 a may be used to implant a percutaneous or paddle style lead into other tissue for electrostimulation treatment of a peripheral nerve. In one embodiment, introducer 10 a includes an outer sheath 12 a and an inner penetrator 14 a.
  • FIG. 1B illustrates an example inner penetrator 14 a disassembled from outer sheath 12 a. Inner penetrator 14 a includes handle 16 a, connector 17 a, and body 18 a having proximal end 19 a and distal end or tip 20 a. Tip 20 a may be tapered. Connector 17 a connects handle 16 a to body 18 a. An inner channel 22 a is formed through handle 16 a and body 18 a and connects opening 26 a of handle 16 a to opening 21 a of tip 20 a. Inner channel 22 a may be configured to attach to a syringe. Inner channel 22 a is wide enough to accommodate guide wires of various sizes along which introducer 10 a may be advanced during use. Channel 22 a may taper or otherwise decrease in diameter as it traverses connector 17 a at the handle-body junction. Inner penetrator 14 a may be formed from a plastic, such as silastic, HDPE or another polymer, or any other suitable material. Tip 20 a of inner penetrator 14 a may be curved as shown in FIGS. 1A-1C or may be curved into any other suitable shapes by an operator before inserting the introducer. In certain embodiments, inner penetrator 14 a may be bent or curved into a suitable configuration to allow passage around an anatomical obstruction, or formed into any other shape suitable for particular anatomic regions of the body.
  • FIG. 1C illustrates outer sheath 12 a disassembled from inner penetrator 14 a. The lumen 28 of outer sheath 12 a may range in width, for example from approximately 2 mm to approximately 6 mm. Lumen 28 may be oblong, oval, or substantially rectangular as needed to accommodate paddle style leads of various configurations. Outer sheath 12 a may taper slightly at tip 29. Tip 29 of outer sheath 12 a may be beveled to allow easier passage through tissue and to allow inner penetrator 14 a to protrude out of tip 29.
  • In some embodiments, outer sheath 12 a may be formed from a flexible material, such as a plastic or polymer, such as PEBAX, or any other suitable polyethylene type material, for example, such that outer sheath 12 a may flex to follow a guide wire and/or to maneuver around obstructions or physical structures in the body. In other embodiments, outer sheath 12 a may be formed from a more rigid material, such as a metal, such as stainless steel or titanium, or any other suitable material that is stiff and resists bending when outer sheath 12 a is inserted through the paravertebral tissue and into the epidural space. In one embodiment, inner penetrator 14 a includes tapered tip 20 a shown in FIG. 1D. Tapered tip 20 a protrudes out of outer sheath 12 a. Tapered tip 20 a preferably allows introducer 10 a to pass easily over a guide wire without creating a false passage in an undesirable location in the tissue.
  • In one embodiment of outer sheath 12 a, shown in FIGS. 1D-1F, tip 20 a includes a raised circumferential shoulder or ridge 23 a configured to provide an indication or “feel” to a physician as raised ridge 23 a comes in contact with the ligamentum flavum. This “feel” occurs when raised ridge 23 a comes in contact with the ligamentum flavum causing a slight resistance, pressure, or “notch” feel to the physician as raised ridge 23 a comes in contact with and passes through the ligamentum flavum. As many physicians rely on “feel” while performing delicate procedures, this aspect may provide an important indication to the physician as to the location of outer sheath 12 a and thus introducer 10 a as a whole.
  • Such a raised ridge 23 a can also be applied to needles or cutting devices that otherwise fail to provide physicians sufficient “feel” or a locative indication as the needle cuts through the ligamentum flavum. For example, the edge of outer sheath 12 a in FIG. 1E could be configured into a cutting surface for a paddle insertion type needle. The improvement of raised ridge 23 a on such a cutting device would provide the needed “feel” or indication to the physician as to where the needle was in the human tissue, thus providing confidence to the physician, as the physician uses such a large needle, that the needle has not yet entered the interthecal space.
  • Further, raised ridge 23 a assists in spreading the fibers of the paravertebral muscle and ligaments as it is inserted. Raised ridge 23 a may be angled to assist insertion, for example, at an angle of thirty-five to forty-five degrees or any other angle that would facilitate passage of outer sheath through tissue. During insertion, raised ridge 23 a ultimately makes contact with the ligamentum flavum and rests against it during insertion of a guide wire and an electrical stimulation lead.
  • As shown in FIGS. 1D and 1E, in some embodiments, outer sheath 12 a, lumen 28 a, and inner penetrator 14 a may have oblong, oval, or substantially rectangular cross-sections as needed to accommodate paddle style leads of various configurations. Such configuration also prevents inner penetrator 14 a from rotating within lumen 28 a of outer sheath 12 a, which may be advantageous for inserting a lead into the target region in the body. For example, such configuration that prevents the rotation of inner penetrator 14 a within lumen 28 a may allow an operator to ensure that the lead is facing in the desired direction. In addition, a non-circular cross-section may provide additional flexibility to introducer 10, which may be advantageous for navigating into particular regions in the body, such as the epidural region, for example.
  • In one embodiment, outer sheath 12 a, inner penetrator 14 a, or both may be formed from radio-opaque material or may include radio-opaque markers that allow the position of outer sheath 12 a, inner penetrator 14 a, or both to be visualized with fluoroscopy or plain x-rays, for example, during the insertion process to insure proper positioning in the epidural space.
  • FIG. 2A illustrates another example introducer 10 b for implanting a paddle style electrical stimulation lead percutaneously according to another embodiment of the invention. Introducer 10 b may be used to percutaneously introduce a percutaneous or paddle style lead into the epidural space of a user who requires electrical stimulation treatment directed to nerve tissue (e.g., spinal nerve tissue), for example, for pain management. The same or an analogous, perhaps smaller, introducer 10 b may be used to implant a percutaneous or paddle style lead into other tissue for electrostimulation treatment of a peripheral nerve. Like introducer 10 a, introducer 10 b may include an outer sheath 12 b and an inner penetrator 14 b.
  • FIG. 2B illustrates an example inner penetrator 14 b disassembled from outer sheath 12 b. Inner penetrator 14 b includes a handle portion 16 b, a body portion 18 b, a distal or tip end 20 b, and a tip portion 25 b connecting body portion 18 b with a tip end 20 b. Tip portion 25 b may include one or more transition regions 26 b, which may provide a transition between the cross-sectional shape and size of body portion 18 b and the cross-sectional shape and size of tip end 20 b, as discussed in greater detail with reference to FIG. 2D. For example, one or more transition regions 26 b may be tapered. Handle portion 16 b may include an inner penetrator locking device 32 b, which may interact with a locking device of outer sheath 12 b (discussed below regarding FIG. 2C) in order to lock inner penetrator 14 b in position within outer sheath 12 b. However, any other type of handle known to those in the art may also be used.
  • An inner channel 22 b is formed through handle portion 16 b, body portion 18 b, and tip portion 25 b to connect an opening 26 b in handle portion 16 b with an opening 21 b in tip end 20 b. Inner channel 22 b may be configured to attach to a syringe at a lure lock located at handle portion 16 b or through another opening. Inner channel 22 b may be configured to accommodate guide wires of various sizes along which introducer 10 b may be advanced during use. In this embodiment, the diameter of inner channel 22 b tapers proximate handle portion 16 b, remains constant along the length of body portion 16 b, and tapers slightly proximate tip region 25 b. However, in other embodiments, inner channel 22 b may not include a tapered portion. Inner penetrator 14 b may be formed from a plastic, such as silastic, HDPE or another polymer, or any other suitable material. In addition, in some embodiments, the shape of inner penetrator 14 b may be configured to facilitate steering of inner penetrator 14 b. For example, one or more indentions, notches, or score lines may be formed in inner penetrator 14 b to increase the flexibility and steerability of inner penetrator 14 b.
  • FIG. 2C illustrates outer sheath 12 b disassembled from inner penetrator 14 b. Outer sheath 12 b includes a handle portion 27 b, a body portion 31 b, a tip portion 30 b, and a tip end 29 b through which inner penetrator 14 b may protrude, such as shown in FIGS. 2A and 2D. The inner channel, or lumen, 28 b of outer sheath 12 b may range in width, for example from approximately 2 mm to approximately 6 mm. In some embodiments, the cross-section of lumen 28 b may be oblong, oval, or substantially rectangular as needed to accommodate paddle style leads of various configurations. The outer surface of outer sheath 12 b may have a similar cross-section as lumen 28 b. Thus, for example, the outer surface of outer sheath 12 b may have an oblong, oval, or substantially rectangular cross-section. In some embodiments, outer sheath 12 b, lumen 28 b, and inner penetrator 14 b may have oblong, oval, or substantially rectangular cross-sections as needed to accommodate paddle style leads of various configurations. As discussed above regarding introducer 10 a, such configuration may prevent inner penetrator 14 b from rotating within lumen 28 b of outer sheath 12 b, which may be advantageous for inserting and/or navigating a lead into the target region in the body. Outer sheath 12 b may taper slightly proximate tip end 29 b, which may be beveled to be substantially flush against the outer surface of inner penetrator 14 b to allow easier passage through tissue, as discussed below.
  • In some embodiments, outer sheath 12 b is formed from a plastic or polymer material, or any other suitable material that allows flexing when outer sheath 12 b is inserted through certain tissue, such as the paravertebral tissue and into the epidural space, for example. In a particular embodiment, both outer sheath 12 b and inner penetrator 14 b are formed from plastic or polymer materials, but inner penetrator 14 b is more flexible than outer sheath 12 b due to the particular materials used to form outer sheath 12 b and inner penetrator 14 b and/or the size, wall thickness, or other dimensions of outer sheath 12 b and inner penetrator 14 b. In other embodiments, outer sheath 12 b is formed from substantially rigid material, such as a metal, such as stainless steel or titanium, or any other suitable material that is stiff and resists flexing when outer sheath 12 b is inserted through the paravertebral tissue and into the epidural space.
  • Handle portion 27 b may include an outer sheath locking device 33 b, which may interact with inner penetrator locking device 32 b shown in FIG. 2B in order to lock inner penetrator 14 b in position within outer sheath 12 b. Inner penetrator locking device 32 b and outer sheath locking device 33 b may include any devices suitable to interact to lock inner penetrator 14 b within outer sheath 12 b. For example, locking devices 32 b and 33 b may include threaded portions such that inner penetrator 14 b and outer sheath 12 b may be locked and unlocked by rotation of at least one of locking devices 32 b and 33 b. As another example, locking devices 32 b and 33 b may snap together to lock inner penetrator 14 b within outer sheath 12 b. Locking inner penetrator 14 b within outer sheath 12 b may prevent outer sheath 12 b from sliding down over inner penetrator 14 b, which may damage tissue in the body or cause other problems. However, some embodiments do not include a locking mechanism.
  • In some embodiments, inner penetrator 14 b and/or outer sheath 12 b may be partially or completely formed from one or more materials that may be detected by one or more medical imaging techniques, such as ultrasound, fluoroscopy, MRI, fMRI and/or X-ray, such that the location of the inner penetrator 14 b and/or outer sheath 12 b within the human body may be determined. For example, inner penetrator 14 b and/or outer sheath 12 b may be formed from or doped with a radio-opaque material, such as barium sulphate (BaSO4), for example. As another example, inner penetrator 14 b and/or outer sheath 12 b may include markers that may be detected by one or more of such medical imaging techniques. As shown in FIGS. 2B and 2C, inner penetrator 14 b may include a first radio-opaque marker 34 b and outer sheath 12 b may include a second radio-opaque marker 35 b. The location of inner penetrator 14 b relative to outer sheath 12 b may be determined based on the determined relative location of markers 34 b and 35 b. In addition, first and second radio- opaque markers 34 b and 35 b may have different radiopacity such that markers 34 b and 35 b may be distinguished from each other.
  • FIG. 2D illustrates a perspective view of introducer 10 b. In this configuration, inner penetrator 14 b may be locked within outer sheath 12 b by locking devices 32 b and 33 b. Tip portion 25 b of inner penetrator 14 b protrudes through tip end 29 b of outer sheath 12 b. As discussed below with reference to FIGS. 3A-3F, inner penetrator 14 b may be configured to be advanced along a guide wire to a desired location relative to particular nerve tissue to be stimulated and removed from outer sheath 12 b, leaving outer sheath 12 b substantially in position for insertion of an electrical stimulation lead through outer sheath 12 b into position proximate the nerve tissue to be stimulated. Tip portion 25 b of inner penetrator 14 b may be sufficient to flex to substantially follow flexures (such as bends or curves) in the guide wire during advancement of inner penetrator 14 b along the guide wire. In order to provide such flexibility, tip portion 25 b may be formed from particular flexible materials and may have sufficiently thin walls, as discussed below with reference to FIG. 2E. In addition, as discussed above, outer sheath 12 b may be formed from flexible materials and may have sufficiently thin walls in order to provide some flexibility of introducer 10 b.
  • FIG. 2E illustrates a partial detailed view of body portion 18 b and tip portion 25 b of inner penetrator 14 b, as well as a portion of tip portion 30 b of outer sheath 12 b, of introducer 10 b. In this embodiment, tip portion 25 b of inner penetrator 14 b includes three transition regions 26 b, which may provide a transition between the cross-sectional shape and size of body portion 18 b and the cross-sectional shape and size of tip end 20 b. Transition regions 26 b include a tip transition region 36 b, a middle transition region 37 b, and a body transition region 38 b. Tip transition region 36 b has a substantially circular cross-section extending along the length of tip transition region 36 b and tapering slightly toward tip end 20 b. Middle transition region 37 b has a substantially circular and constant cross-section along the length of middle transition region 37 b. Thus, in this embodiment, middle transition region 37 b is not tapered. Body transition region 38 b has a cross-section that transitions from the cross-section of body portion 18 b, which may substantially match the cross-section of lumen 28 b of outer sheath 12 b. In a particular embodiment, body transition region 38 b transitions from a substantially oval cross-section adjacent body portion 18 b to a substantially circular cross-section adjacent middle transition region 37 b. Body transition region 38 b may have a more severe taper than tip transition region 36 b.
  • The materials and dimensions of one or more of tip transition region 36 b, middle transition region 37 b, and body transition region 38 b may be selected to provide substantial flexibility to tip region 25 b such that inner penetrator 14 b may flex around particular features in the body, and such that when the inner penetrator 14 b is advanced along a guide wire, tip regions 25 b may flex to substantially follow flexures in the guide wire such that the guide wire is not significantly displaced by the advancing tip region 25 b of inner penetrator 14 b.
  • For example, the wall thickness of tip transition region 36 b, denoted as thickness “Tipt,” may decrease toward tip end 20 b. In some embodiments, the wall thickness Tipt of tip transition region 36 b is less than or approximately equal to 0.02 inches at its thickest point along tip transition region 36 b. The wall thickness Tipt of tip transition region 36 b may be less than 0.01 inches at tip end 20 b. In a particular embodiment, the wall thickness Tipt is approximately 0.006 inches at tip end 20 b. The decreased wall thickness, Tipt, of tip transition region 36 b toward tip end 20 b may provide for increased flexibility of tip transition region 36 b. In addition, as shown in FIG. 2E, both the inner diameter, denoted as “IDipt,” and the outer diameter, denoted as “ODipt,” of tip transition region 36 b may decrease or taper toward tip end 20 b. The tapered outer diameter ODipt and reduced wall thickness, Tipt, of tip transition region 36 b at tip end 20 b may provide a relatively smooth transition between tip end 20 b and a guide wire extending through tip opening 21 b. Such smooth transition may reduce or eliminate the likelihood of the juncture between tip end 20 b and a guide wire getting stuck or caught up, or pushing tissue forward, as inner penetrator 14 b is advanced within the body.
  • The tapered inner diameter IDipt may provide for a tight or close fit at tip end 20 b with a guide wire running through opening 22 b of inner penetrator 14 b. In some embodiments, the tapered inner diameter IDipt provides for an interference fit between inner penetrator 14 b and a guide wire, at least at tip end 20 b of inner penetrator 14 b.
  • In addition, the length of tip transition region 36 b, denoted as length “Lipt,” compared to wall thickness Tipt, inner diameter ID and/or outer diameter OD, may be selected to provide desired flexibility of tip transition region 36 b. For example, the ratio of the length Lipt to wall thickness Tipt at the thickest point may be greater than or approximately equal to 20 to 1. As another example, the ratio of the length Lipt to outer diameter ODipt may be greater than or approximately equal to 2.5 to 1. Such configuration and dimensions may provide desired flexibility for tip transition region 36 b.
  • The wall thickness of middle transition region 37 b, denoted as thickness “Tipm,” which remains substantially constant along the length of middle transition region 37 b, may be less than or approximately equal to 0.02 inches. In a particular embodiment, wall thickness Tipm is approximately 0.010 inches. Such configuration and dimensions may provide desired flexibility for middle transition region 37 b.
  • In addition, the length of middle transition region 37 b, denoted as length “Lipm,” compared to wall thickness Tipm, the inner diameter and/or the outer diameter of middle transition region 37 b, may be selected to provide desired flexibility of middle transition region 36 b. For example, the ratio of the length Lipm to wall thickness Tipm may be greater than or approximately equal to 30 to 1. As another example, the ratio of the length Lipm to the outer diameter of middle transition region 37 b may be greater than or approximately equal to 3 to 1. Such configuration and dimensions may provide desired flexibility for middle transition region 37 b.
  • The total length of tip transition region 36 b and middle transition region 37 b (Lipt+Lipm) compared to the wall thickness at the thickest point along transition regions 36 b and 37 b or compared to the inner diameter and/or the outer diameter of middle transition region 37 b, may be selected to provide desired flexibility of middle transition region 36 b. For example, the ratio of the total length of tip transition region 36 b and middle transition region 37 b (Lipt+Lipm) to the wall thickness Tipm may be greater than or approximately equal to 40 to 1. As another example, the ratio of the total length of tip transition region 36 b and middle transition region 37 b (Lipt+Lipm) to the outer diameter of middle transition region 37 b may be greater than or approximately equal to 5 to 1. Such configuration and dimensions may provide desired flexibility for tip portion 25 b of inner penetrator 14 b. The relatively long nose provided by tip transition region 36 b and middle transition region 37 b may provide more flexibility than a tip having a substantially uniform taper from body portion 18 b to the tip end 20 b of inner penetrator 14 b, which flexibility may be desirable for navigating inner penetrator 14 b along a guide wire, for example.
  • Although the embodiment shown in FIG. 2E includes three transition regions 26 b, it should be understood that other embodiments may include more or less than three transition regions 26 b (which may or may not include one or more transition regions 26 b similar to transition regions 36 b, 37 b and/or 38 b shown in FIG. 2E), or zero transition regions 26 b.
  • In the embodiment shown in FIG. 2E, when inner penetrator 14 b is fully advanced within (and/or locked together with) outer sheath 12 b, a portion of the body portion 18 b of inner penetrator 14 b may protrude out through tip end 29 b of outer sheath 12 b. As discussed below, tip portion 30 b of outer sheath 12 b may be tapered to provide a relatively smooth transition between tip end 29 b and body portion 18 b of inner penetrator 14 b protruding through tip end 29 b. In other embodiments, body portion 18 b of inner penetrator 14 b may not protrude through tip end 29 b of outer sheath 12 b when inner penetrator 14 b is fully advanced within (and/or locked together with) outer sheath 12 b. In one embodiment, tip end 29 b may substantially align with the intersection of body portion 18 b and body transition region 38 b of inner penetrator 14 b.
  • FIGS. 2F-2H illustrates a detailed view of body portion 31 b and tip portion 30 b of outer sheath 12 b of introducer 10 b in accordance with one embodiment of the invention. In particular, FIG. 2F is a partial side view of outer sheath 12 b, FIG. 2G is an end view of outer sheath 12 b, and FIG. 2H is a cross-sectional view taken along the length of body portion 31 b of outer sheath 12 b.
  • Body portion 31 b has a substantially oval or oblong cross-section extending along the length of body portion 31 b. Tip portion 30 b has a substantially oval or oblong cross-section that tapers in the direction from the end adjacent body portion 31 b toward tip end 29 b. The cross-section of lumen 28 b at the tip end 29 b of outer sheath 12 b may substantially conform to the exterior cross-section of body portion 18 b of inner penetrator 14 b.
  • In some embodiments, the materials and dimensions of body portion 31 b and/or tip portion 30 b of outer sheath 12 b may be selected to provide some degree of flexibility to outer sheath 12 b such that outer sheath 12 b may flex around particular features in the body, and such that when introducer 10 b is advanced along a guide wire, outer sheath 12 b (along with inner penetrator 14 b) may flex to substantially follow curvatures in the guide wire such that the guide wire is not significantly displaced by the advancing introducer 10.
  • For example, as shown in FIG. 2F, the wall thickness of tip portion 30 b, denoted as thickness “Tost,” which may be substantially uniform around the cross-sectional perimeter of tip portion 30 b, may decrease toward tip end 29 b. In some embodiments, the wall thickness Tost of tip portion 30 b is less than or approximately equal to 0.03 inches at its thickest point along tip portion 30 b and/or less than 0.02 inches at tip end 29 b. In a particular embodiment, the wall thickness Tost is between approximately 0.007 inches and approximately 0.018 inches around the cross-sectional perimeter at tip end 29 b. The decreased wall thickness, Tost, of tip portion 30 b toward tip end 29 b may provide for increased flexibility of tip portion 30 b.
  • In addition, as shown in FIG. 2F, the perimeter and/or cross-sectional area of lumen 28 b may decrease or taper toward tip end 29 b. In particular, in embodiments in which outer sheath 12 b, including tip portion 30 b, has an oval or oblong cross-section (such as shown in FIGS. 2G and 2H), both the horizontal inner diameter “IDosth” and the horizontal outer diameter, “ODosth” of tip portion 30 b, and both the vertical inner diameter “IDstv” and the vertical outer diameter “ODostv” of tip portion 30 b may decrease or taper toward tip end 29 b. The terms “horizontal” and “vertical” are used merely for illustrative purposes of FIGS. 2F-2G, as outer sheath 12 b may be positioned in any orientation.
  • The tapered outer diameters ODosth and ODostv and reduced wall thickness, Tost, at tip end 29 b may provide a relatively smooth transition between tip end 29 b and body portion 18 b of inner penetrator 14 b (better illustrated in FIG. 2E). Such smooth transition may reduce or eliminate the likelihood of the juncture between outer sheath 12 b and inner penetrator 14 b getting stuck or caught up, or pushing tissue forward, as introducer 10 b is advanced within the body.
  • The tapered lumen 28 b (e.g., tapered inner diameters IDosth and IDostv) may provide for a tight or close fit at tip end 29 b of outer sheath 12 b with the outer surface of body portion 18 b of inner penetrator 14 b, such that inner penetrator 14 b may be held substantially in place by outer sheath 12 b. In some embodiments, the tapered lumen 28 b provides for an interference fit between outer sheath 12 b and inner penetrator 14 b, at least at tip end 29 b of outer sheath 12 b.
  • In addition, the length of tip portion 30 b, denoted as length “Lost,” compared to wall thickness Tost, inner diameters IDosth and IDostv and/or outer diameters ODosth and ODostv, may be selected to provide desired flexibility of tip portion 30 b. For example, the ratio of the length Lost to wall thickness Tost at the thinnest point may be greater than or approximately equal to 10 to 1. Such configuration and dimensions may provide desired flexibility for tip portion 30 b.
  • The wall thickness of body portion 31 b, denoted as thickness “Tosm,” which remains substantially constant along the length of body portion 31 b, may be less than or approximately equal to 0.03 inches. In a particular embodiment, wall thickness Tosm is approximately 0.024 inches. Such configuration and dimensions may provide desired flexibility for middle transition region 37 b.
  • FIGS. 3A-3F illustrate an example method of implanting a paddle style electrical stimulation lead into a human's epidural space using an example introducer 10 (such as introducer 10 a or introducer 10 b, for example). Spinal cord 47 is also shown. A location between two vertebrae is selected for the procedure. The site may be selected using fluoroscopy. The first step in performing the procedure is to insert needle 41, preferably at an angle, into the skin, and through the subcutaneous tissue and ligamentum flavum 44 of the spine, and into a human's epidural space 40. In one embodiment of the method, for example, the introducer might be inserted at an angle of approximately thirty-five to approximately forty-five degrees. FIG. 3A illustrates insertion of needle 41 through the skin between spinous processes 42 of two vertebrae 43. Entry into epidural space 40 by needle 41 may be confirmed using standard methods such as the “loss-of-resistance” technique after stylet 45, or inner portion of needle 41, is removed.
  • After removing stylet 45 from needle 41, guide wire 46 may be inserted through needle 41 into epidural space 40, shown in FIG. 3B. A guide wire is used in a preferred embodiment of the method of insertion but is not required to insert a paddle style lead through the introducer. This part of the procedure may be performed under fluoroscopic guidance for example. Fluoroscopy may be used to check the position of guide wire 46 in epidural space 40 before inserting introducer 10. In some embodiments, a removable stylet may be inserted into a channel extending within and along the length of guide wire 46 and manipulated by the operator in order to help steer guide wire 46 into position. The stylet may also provide additional rigidity to guide wire 46, which may be desired in particular applications. Once the tip of guide wire 46 is in position within epidural space 40, needle 41 is removed. If a stylet was inserted into guide wire 46 as discussed above, the stylet may or may not be removed. For example, the stylet may be left in guide wire 46 in order to increase the rigidity or strength of guide wire 46 in order to resist guide wire 46 being moved by the advancement of introducer 10, as discussed below.
  • As shown in FIG. 3C, introducer 10 may then be inserted, preferably at an angle of approximately thirty-five to approximately forty-five degrees, although the exact angle may differ depending on technique and a patient's anatomy, over guide wire 46 and into epidural space 40 using guide wire 46 as a guide. The technique of passing introducer 10 over guide wire 46 helps ensure proper placement of introducer 10 into epidural space 40 and helps avoid inadvertent passage of introducer 10 into an unsuitable location. The operator may choose to cut the skin around the insertion site with a scalpel to facilitate subsequent entry of introducer 10 through the needle entry site. As discussed above, a stylet within guide wire 46 may increase the rigidity of guide wire 46 to resist guide wire 46 being moved or dislocated by introducer 10 as introducer 10 advances along guide wire 46. In some embodiments, as introducer 10 advances along flexures in guide wire 46, the tip of inner penetrator 14 and/or all or portions of outer sheath 12 may flex to maneuver around obstructions or physical structures in the body (such as a spinous process 42, vertebrae 43, or any other structure in the body) and/or to substantially follow curvatures in guide wire 46, rather than displacing portions of guide wire 46, which may cause damage to the body. An example of such flexing is shown and discussed below with reference to FIGS. 7A-7D.
  • As introducer 10 is passed through the skin it elongates the hole in the skin made by needle 41. As introducer 10 is passed deeper into the paravertebral tissues, it spreads the fibers of tissue, muscle and ligamentum flavum 44 and forms a tract through these tissues and into epidural space 40, preferably without cutting the tissues. At the level in the tissues where introducer 10 meets and penetrates ligamentum flavum 44 there is a second loss of resistance when inner penetrator 14 has completely penetrated the ligamentum flavum 44. Shoulder or ridge 23 of outer sheath 12 is preferably lodged against ligamentum flavum 44 during insertion of a paddle style lead.
  • Once introducer 10 has completely penetrated ligamentum flavum, inner penetrator 14 and guide wire 46 may be removed, leaving outer sheath 12 positioned in epidural space 40, as shown in FIG. 3D. As shown in FIG. 3E, paddle style lead 50 may then be inserted through outer sheath 12 and positioned at an optimal vertebral level, using fluoroscopy for example, for the desired therapeutic effect. As shown in FIG. 3F, outer sheath 12 may then be removed leaving only paddle style lead 50 in epidural space 40, where paddle style lead 50 can be further manipulated if necessary to achieve a desired therapeutic effect. Paddle style lead 50 may be secured by suturing it to a spinous process. In some embodiments, a removable stylet may be inserted into a channel extending within and along the length of lead 50 and manipulated by the operator in order to help steer lead 50 into position, such as described in U.S. Publication No. 2002/0022873, filed on Aug. 10, 2001, for example. The stylet may also provide additional rigidity to lead 50, which may be desired in particular applications.
  • As described above, introducer 10 may be used to implant paddle style lead 50 into epidural space 40 for spinal nerve stimulation. The same or an analogous, perhaps smaller, introducer 10 may be used to implant an analogous paddle style lead 50 into any appropriate region of the body for peripheral nerve stimulation. For example, such a paddle style lead 50 may have an outer sheath 12 and lumen 28 with a width of approximately 1 mm to approximately 3 mm.
  • A similar method of insertion (not expressly shown) may be used to implant a paddle style electrical stimulation lead into a human's peripheral nerve tissue. In this embodiment of the invention a site for insertion in tissue near a nerve is selected. The first step in performing the procedure is to insert a needle into the skin and through the subcutaneous tissue and into tissue near a peripheral nerve. If the needle has a stylet, it may be removed and a guide wire may be inserted through the needle and into the tissue near a peripheral nerve. A guide wire may not be required. Fluoroscopy may or may not be used to guide insertion of a guide wire into tissue near a peripheral nerve. Once the tip of the guide wire, or needle, is in the tissue near a peripheral nerve, introducer 10 may be inserted, preferably at an angle that would depend on the anatomy of the body near the peripheral nerve to be stimulated. As introducer 10 is passed through tissues, it elongates the tract made by a needle or guide wire and spreads the tissue. After positioning introducer 10 in tissue adjacent to the peripheral nerve to be stimulated, inner penetrator 14 is removed. A paddle style lead may then be inserted through outer sheath 12. Outer sheath 12 may then be removed leaving only the paddle style lead in position near the peripheral nerve to be stimulated.
  • Now referring to FIGS. 4A and 4B, there are shown two embodiments of a stimulation system 200, 300 in accordance with the present invention. The stimulation systems generate and apply a stimulus to a tissue or to a certain location of a body. In general terms, the system 200, 300 includes a stimulation or energy source 210, 310 and a lead 50 for application of the stimulus. The lead 110 shown in FIGS. 4A and 4B is the paddle style lead 50 of the present invention.
  • As shown in FIG. 4A, the stimulation system 200 includes the lead 50 that is coupled to the stimulation source 210. In one embodiment, the stimulation source 210 includes an implantable pulse generator (IPG). As is known in the art, an implantable pulse generator (IPG) is implanted within the body (not shown) that is to receive electrical stimulation from the stimulation source 210. An example IPG may be one manufactured by Advanced Neuromodulation Systems, Inc., such as the Genesis® System, part numbers 3604, 3608, 3609, and 3644, or the Eon® System, part numbers 65-3716, 65-3851, and 64-1254.
  • As shown in FIG. 4B, the stimulation system 300 includes the lead 50 that is coupled to the stimulation source 310. The stimulation source 310 includes a wireless receiver. As is known in the art, the stimulation source 310 comprising a wireless receiver is implanted within the body (not shown) that is to receive electrical stimulation from the stimulation source 310. An example wireless receiver 310 may be those wireless receivers manufactured by Advanced Neuromodulation Systems, Inc., such as the Renew® System, part numbers 3408 and 3416.
  • The wireless receiver (not shown) within stimulation source 310 is capable of receiving wireless signals from a wireless transmitter 320. The wireless signals are represented in FIG. 4B by wireless link symbol 330. The wireless transmitter 320 and a controller 340 are located outside of the body that is to receive electrical stimulation from the stimulation source 310. A user of the stimulation source 310 may use the controller 340 to provide control signals for the operation of the stimulation source 310. The controller 340 provides control signals to the wireless transmitter 320. The wireless transmitter 320 transmits the control signals (and power) to the receiver in the stimulation source 310 and the stimulation source 310 uses the control signals to vary the signal parameters of the electrical signals that are transmitted through lead 110 to the stimulation site. An example wireless transmitter 320 may be those transmitters manufactured by Advanced Neuromodulation Systems, Inc., such as the Renew® System, part numbers 3508 and 3516.
  • As will be appreciated, the connectors are not visible in FIGS. 4A and 4B because the contact electrodes are situated within a receptacle (not shown) of the stimulation source 210, 310. The connectors are in electrical contact with a generator (not shown) of electrical signals within the stimulation source 210, 310. The stimulation source 210, 310 generates and sends electrical signals via the lead 50 to the electrodes 160. Understandably, the electrodes 160 are located at a stimulation site (not shown) within the body that is to receive electrical stimulation from the electrical signals. A stimulation site may be, for example, adjacent to one or more nerves in the central nervous system (e.g., spinal cord) or peripheral nerves. The stimulation source 210, 310 is capable of controlling the electrical signals by varying signal parameters (e.g., intensity, duration, frequency) in response to control signals that are provided to the stimulation source 210, 310.
  • As described above, once lead 110 is inserted into either the epidural space or near the peripheral nerve, introducer 10 is removed. Lead 110 extends from the insertion site to the implant site (the area of placement of the generator). The implant site is typically a subcutaneous pocket that receives and houses the IPG or receiver (providing stimulation source 210, 310). The implant site is usually positioned a distance away from the stimulation site, such as near the buttocks or other place in the torso area. In most cases, the implant site (and insertion site) is located in the lower back area, and lead 110 may extend through the epidural space (or other space) in the spine to the stimulation site (e.g., middle or upper back, neck, or brain areas). Once the system is implanted, the system of leads and/or extensions may be subject to mechanical forces and movement in response to body movement. FIG. 5 illustrates the steps that may be used to implant a stimulation system 200, 300 into a human.
  • FIGS. 6A-6E illustrate an example method of removing an implanted paddle style electrical stimulation lead 50 from a human's epidural space 40 using introducer 10 b according to one embodiment of the invention. Such method may be used to remove an electrical stimulation lead 50 for any suitable reason, such as to relocate, replace, or repair the lead 50, for example. As discussed below, the method may be particularly advantageous for removing a lead 50 around which tissue may have grown and is thus firmly secured within the body. Although the method is discussed with reference to introducer 10 b, the method may be similarly performed using any suitable introducer, such as introducer 10 a, for example.
  • As shown in FIG. 6A, a paddle style electrical stimulation lead 50 having a body portion 52 and a stimulating portion 54 may be implanted in a human's epidural space 40 in order to stimulate a nerve, such as discussed above regarding the method shown in FIGS. 3A-3F, for example. An end 56 of lead 50 extends out of the epidural space 40 and, in some cases, out through the person's skin or into a subcutaneous pocket formed during implantation. Introducer 10 b, including inner penetrator 14 b inserted into outer sheath 12 b, may be inserted around body portion 52 of lead 50 such that end 56 of lead 50 runs though inner channel 22 b of inner penetrator 14 b. As shown in FIG. 6A, introducer 10 b may be advanced such that end 56 of lead 50 protrudes through opening 26 b in handle portion 16 b of inner penetrator 14 b.
  • As shown in FIG. 6B, in some embodiments or situations, a stylet 400 may be inserted into a channel that extends along the length of lead 50, if appropriate. For example, stylet 400 may be a stylet typically used for guiding lead 50 during the positioning of lead 50 within the body. Stylet 400 may be advanced partially or completely along the length of lead 50, and may be advanced into stimulating portion 54 of lead 50. As discussed below, stylet 400 is inserted into lead 50 in order to increase the rigidity of lead 50 such that when the introducer 10 b advances along flexures in body portion 52 of lead 50, tip region 25 b of inner penetrator 14 b and/or other portions of introducer 10 b may flex to substantially follow the flexures in body portion 52 of lead 50.
  • As shown in FIG. 6C, introducer 10 b may be advanced along body portion 52 of lead 50 until tip region 25 b of inner penetrator 14 b is adjacent with, or comes into contact with, stimulating portion 54 of lead 50. As it advances, introducer 10 b may separate tissue from body portion 52 of lead 50, such as tissue that may have formed around body portion 52 over time, thus creating a passageway through the body. In situations in which body portion 52 extends out through the skin, the operator may choose to cut the skin around the entry point of lead 50 with a scalpel to facilitate subsequent entry of introducer 10. In addition, as introducer 10 b advances along flexures in body portion 52 of lead 50, due at least in part to the added strength added to lead 50 by stylet 400, tip region 25 b of inner penetrator 14 b and/or all or portions of outer sheath 12 b may flex to maneuver around obstructions or physical structures in the body (such as a spinous process 42, vertebrae 43, or any other structure in the body) and/or to substantially follow curvatures in body portion 52 of lead 50, rather than displacing portions of lead 50, which may cause damage to the body or lead 50. An example of such flexing is shown and discussed below with reference to FIGS. 7A-7D. In some embodiments, this part of the procedure may be performed under fluoroscopic guidance. For example, fluoroscopy may identify radio- opaque markers 34 b and 35 b on inner penetrator 14 b and outer sheath 12 b, as well as radio-opaque portions of lead 50, such that the operator (e.g., doctor) may determine the relative positions of introducer 10 b and lead 50 during the procedure.
  • As shown in FIG. 6D, when introducer 10 b has been advanced until inner penetrator 14 b is adjacent with or contacting stimulating portion 54 of lead 50, outer sheath 12 b may be advanced forward (e.g. by sliding) relative to inner penetrator 14 b until outer sheath 12 b covers at least a portion of stimulation portion 54 of lead 50. Outer sheath 12 b may be advanced forward until it completely covers stimulation portion 54 of lead 50. Advancing outer sheath 12 b over stimulation portion 54 may separate tissue from stimulating portion 54, such as tissue that may have grown attached to stimulating portion 54. In some embodiments, this part of the procedure may be performed under fluoroscopic guidance. For example, fluoroscopy may identify radio- opaque markers 34 b and 35 b on inner penetrator 14 b and outer sheath 12 b, as well as radio-opaque portions of lead 50, such that the operator (e.g., doctor) may determine the relative positions of inner penetrator 14 b, outer sheath 12 b, and stimulating portion 54 of lead 50 during the procedure.
  • As shown in FIG. 6E, inner penetrator 14 b, outer sheath 12 b, and lead 50 may all be removed together through the passageway created by advancing introducer 10 b along lead 50, as discussed above regarding FIG. 6C. In this manner, lead 50 may be removed from the body without causing significant damage to the body or to the lead 50. As discussed above, the method may be particularly advantageous for removing a lead 50 around which tissue may have grown and is thus firmly secured within the body.
  • FIGS. 7A-7D illustrate example views of introducer 10 b flexing as it moves along a guide wire 46 or stimulation lead 50 within the body, in accordance with certain embodiments of the invention. In particular, all or portions of tip portion 25 b of inner penetrator 14 b may substantially flex to follow bands or curves in guide wire 46 or stimulation lead 50. In some embodiments, due to the relative shapes and dimensions (e.g., the relative wall thicknesses) of tip transition region 36 b, middle transition region 37 b, and body transition region 38 b, tip transition region 36 b may be the most flexible, followed by middle transition region 37 b, followed by body transition region 38 b. In addition, in some embodiments, such as where outer sheath 12 b is formed from a polymer, all or portions of outer sheath 12 b may also flex to partially or substantially follow curvatures in guide wire 46 or stimulation lead 50, such as shown in FIGS. 7C and 7D, for example.
  • Such flexibility of inner penetrator 14 b and/or outer sheath 12 b may provide several advantages, as discussed above. First, such flexibility may be advantageous for navigating introducer 10 b into particular regions in the body, such as the epidural region, for example, which may also reduce the likelihood of introducer 10 b damaging tissue in the body. Also, such flexibility may partially or substantially prevent introducer 10 b from displacing guide wire 46 as introducer 10 b moves along guide wire 46 (which displacement may disrupt the lead insertion or removal process and/or damage tissue in the body.
  • FIG. 8 illustrates an example lead introducer kit 500 for preparing to implant an electrical stimulation lead for electrical stimulation of nerve tissue in a human, according to one embodiment of the invention. Generally, lead introducer kit 500 includes a lead blank 502 and one or more various tools or accessories for preparing for implanting an actual electrical stimulation lead into a human body. The lead blank 502 may be used, for example, to determine whether an actual electrical stimulation lead to be implanted will fit into the target location in the body. For example, an electrical stimulation lead may not fit into the epidural space due to scar tissue or other blockages within the epidural space. Thus, if it is determined using lead blank 502 that an electrical stimulation lead will not fit into the target location in the body, the electrical stimulation lead need not be removed from its packaging, thus allowing the electrical stimulation lead to be used on another patient or at a later time. This may be advantageous due to the relatively high cost of some electrical stimulation leads.
  • In the embodiment shown in FIG. 8, lead introducer kit 500 includes lead blank 502, a needle 504, and a guide wire 506, and a lead introducer 508. Lead introducer kit 500 may include other tools or accessories for preparing to implant an electrical stimulation lead, but in preferred embodiments does not include the actual electrical stimulation lead. Lead blank 502 may have an identical or similar shape and size as an electrical stimulation lead to be inserted into the body for electrical stimulation of nerve tissue. As discussed above, lead blank 502 may be configured for insertion into the human body to determine whether the electrical stimulation lead may be inserted into the desired location proximate the nerve tissue to be stimulated. For example, lead blank 502 may be configured for insertion into the human body using the various methods and/or devices discussed herein, or using any other known methods and/or devices.
  • Lead blank 502 may include a removable stylet 510 which may be used for steering lead blank 502 during insertion and/or positioning of lead blank 502. Stylet 510 may be inserted into a channel extending within lead blank 502 and manipulated by an operator in order to help steer lead blank 502. In addition, in some embodiments, the shape of lead blank 502 may be configured to facilitate steering of lead blank 502. For example, lead blank 502 may be a paddle shape with one or more indentions, notches, or score lines that may increase the flexibility of lead blank 502. For instance, FIG. 9 illustrates an example lead blank 502 including a paddle style portion 514 having a scalloped shape. The scalloped shape may increase the flexibility and steerability of lead blank 502.
  • Needle 504 may include any needle suitable for inserting guide wire 506 into a desired location in the body, such as a human's epidural space, for example, such as needle 41 discussed above regarding the method of FIGS. 3A-3F. Needle 504 may include a removable stylet 516, such as stylet 45 discussed above, for example.
  • Lead introducer 508 may include any one or more devices for inserting lead blank 502 into the human body. In some embodiments, lead introducer 508 may comprise introducer 10 or introducer 10 b described herein, or any other suitable lead introducer. Thus, in some embodiments, lead introducer 508 may include an outer sheath 530 and an inner penetrator 532. Outer sheath 530 may be inserted into a human body near nerve tissue to be stimulated. Inner penetrator 532 may be removably housed within outer sheath 530 and may include an inner channel configured to receive and be advanced along guide wire 506 to a desired location relative to the nerve tissue to be stimulated. Inner penetrator 532 may then be removed from outer sheath 530, leaving outer sheath 530 substantially in position for insertion (or attempted insertion) of lead blank 502 through the outer sheath to determine whether an actual electrical stimulation lead may be properly inserted into position proximate the nerve tissue to be stimulated. Thus, as discussed above, if lead blank 502 will not fit into the target location in the body, it may be determined that the actual electrical stimulation lead will similarly not fit into the target location. Thus, the electrical stimulation lead, which may be included in a separate kit or otherwise packaged separately from lead introducer kit 500, need not be removed from its packaging, thus avoiding wasting an electrical stimulation lead, which may be relatively expensive.
  • FIG. 10 illustrates an example paddle style electrical stimulation lead 50 a having electrodes on only one side, and markings indicating the directional orientation of the lead 50 a, according to one embodiment of the invention. Paddle style lead 50 a may include any suitable number of electrodes 160 a. Electrodes 160 a may be flat electrodes that emit energy out of only of the two sides. Such electrodes 160 a may be desirable for very small paddle leads, for example. Since the electrodes 160 a emit energy out of only one side, the orientation (i.e., which side is facing in which direction) of the paddle style lead 50 a may be important, particularly when implanting the lead 50 a adjacent the target nerve tissue.
  • Thus, lead 50 a may include one or more markers 550 that may be detected by one or more medical imaging techniques (such as ultrasound, fluoroscopy, MRI, fMRI and/or X-ray, for example) to indicate the directional orientation of the lead 50 a. For example, lead 50 a may include one or more radio-opaque markers 550 having particular shapes or relative locations such that the operator may determine the orientation of the lead 50 a.
  • FIG. 11 illustrates an example paddle style electrical stimulation lead 50 b having a substantially uniform paddle-shaped cross-section extending along the body of the lead 50 b, according to one embodiment of the invention. Paddle style lead 50 b includes a body portion 52 b and a stimulating portion 54 b, and a number of electrodes 160 b located at stimulating portion 54 b. The cross-section of paddle style stimulating portion 54 b, which may be, for example, a substantially oval, oblong, or rectangular cross-section, may substantially extend along all or at least a significant portion of the length of body portion 52 b. In some embodiments, the substantially uniform cross-section may extend at least to a point outside the epidural region, or outside the skin. In particular embodiments, the substantially uniform cross-section may extend all the way back to the stimulation or power source. This uniform cross-section may make it easier to remove lead 50 b from a human body as compared with leads having a smaller cross-sectioned lead body. For example, epidural tissue may grow around an implanted lead body over time. Such tissue may impede the removal of traditional paddle style leads. The substantially uniform cross-section of paddle style lead 50 b prevents or reduces the ability of such tissue to impede the removal of implanted lead 50 b from the body.
  • FIG. 12 illustrates an example paddle style electrical stimulation lead 50 c having a tear away body portion, according to one embodiment of the invention. Paddle style lead 50 c may be similar to paddle style lead 50 b shown in FIG. 11. In particular, paddle style lead 50 c may includes a body portion 52 c, a stimulating portion 54 c, a number of electrodes 160 c located at stimulating portion 54 c, and a substantially uniform cross-section (such as a substantially oval, oblong, or rectangular cross-section, for example) extending back along body portion 52 c. Body portion 52 c may include a tear-away portion 560 that may be torn away or otherwise removed, revealing a small cross-sectioned lead body (such as a standard lead body wire or cord, for example) that may extend back to the stimulation or power source. Tear-away portion 560 is indicated by perforated tear lines 562. However, tear-away portion 560 may have any other configuration and may be removed in any other suitable manner. In some embodiments, such as shown in FIG. 12, the distance from stimulating portion 54 c to tear-away portion 560 may be selected or designed such that when lead 50 c is implanted in the body, the forward edge of tear-away portion 560 may be located near or just outside the epidural region 562, or the skin. Thus, lead 50 c may provide the advantage of being relatively easy to remove from the body (due to the substantially uniform cross-section, as discussed above), as well as providing a smaller, more manageable body portion 54 c leading back to the stimulation or power source.
  • Although the present invention has been described with several embodiments, a number of changes, substitutions, variations, alterations, and modifications may be suggested to one skilled in the art, and it is intended that the invention encompass all such changes, substitutions, variations, alterations, and modifications as fall within the spirit and scope of the appended claims.

Claims (16)

1. A method of implanting an electrical stimulation lead in a minimally invasive percutaneous manner to enable electrical stimulation of a human's spinal nerve tissue, comprising:
inserting a needle into the epidural space;
inserting a guide wire through the needle until an end of the guide wire is positioned in the epidural space at a desired location relative to the spinal nerve tissue to be stimulated;
removing the needle and leaving the guide wire substantially in position;
advancing an introducer, the introducer comprising an sheath and a penetrator removably housed within the sheath, the penetrator of the introducer comprising a channel configured to accommodate the guide wire and further comprising a body portion and a flexible tip portion with the tip portion configured to extend beyond the sheath, the tip portion having at least three transition regions for providing a transition between the body portion and the tip portion, along the guide wire until an end of the penetrator of the introducer is positioned in the epidural space at a desired location with respect to the spinal nerve tissue to be stimulated, the sheath of the introducer forming a tract as the penetrator of the introducer advances along the guide wire;
removing the guide wire and the penetrator of the introducer and leaving the sheath of the introducer substantially in position; and
inserting the electrical stimulation lead through the sheath of the introducer until the electrical stimulation lead is positioned in the epidural space proximate the spinal nerve tissue to be stimulated.
2. The method of claim 1, wherein the three transition regions of the tip portion include a flexible tip region at the end of the tip portion, a middle region next to the tip region and the body region intermediate the middle region and the body portion.
3. The method of claim 2, wherein the tip region has a substantially circular cross-section extending along the length of the tip region.
4. The method of claim 3, wherein the tip region tapers from the middle region towards the end of the tip region.
5. The method of claim 4, wherein the middle region has a substantially circular and constant cross-section extending the length of the middle region.
6. The method of claim 5, wherein the body region tapers from the body toward the middle region at angle greater that the taper of the tip region.
7. The method of claim 6, wherein the cross section of the body region and the sheath have cross-sections of the same shape.
8. The method of claim 6, wherein the body region transitions from a substantially oval-cross-section adjacent the body to a substantially circular cross-section adjacent the middle region.
9. A method of implanting a system to enable electrical stimulation of a human's nerve tissue, comprising:
inserting a needle into tissue proximate nerve tissue to be stimulated;
inserting a guide wire through the needle until an end of the guide wire is positioned at a desired location relative to nerve tissue to be stimulated;
removing the needle and leaving the guide wire substantially in position;
advancing along a guide wire an introducer, the introducer comprising an sheath and a penetrator removably housed within the sheath, the penetrator of the introducer comprising a channel configured to accommodate the guide wire and further comprising a body portion and a flexible tip portion with the tip portion configured to extend beyond the sheath, the tip portion having at least three transition regions for providing a transition between the body portion and the tip portion, along the guide wire until an end of the penetrator of the introducer is positioned in the epidural space at a desired location with respect to the spinal nerve tissue to be stimulated, the sheath of the introducer forming a tract as the penetrator of the introducer advances along the guide wire;
removing the guide wire and the penetrator of the introducer and leaving the sheath of the introducer substantially in position;
inserting an electrical stimulation lead through the sheath of the introducer until the electrical stimulation lead is positioned proximate the nerve tissue to be stimulated;
removing the outer sheath;
connecting the electrical stimulation lead to a generator; creating a subcutaneous pocket for a generator; and
inserting the generator into the subcutaneous pocket.
10. The method of claim 9, wherein the three transition regions of the tip portion include a flexible tip region at the end of the tip portion, a middle region next to the tip region and the body region intermediate the middle region and the body portion.
11. The method of claim 10, wherein the tip region has a substantially circular cross-section extending along the length of the tip region.
12. The method of claim 11, wherein the tip region tapers from the middle region towards the end of the tip region.
13. The method of claim 12, wherein the middle region has a substantially circular and constant cross-section extending the length of the middle region.
14. The method of claim 13, wherein the body region tapers from the body toward the middle region at angle greater that the taper of the tip region.
15. The method of claim 14, wherein the cross section of the body region and the sheath have cross-sections of the same shape.
16. The method of claim 14, wherein the body region transitions from a substantially oval-cross-section adjacent the body to a substantially circular cross-section adjacent the middle region.
US13/167,575 2003-08-08 2011-06-23 Apparatus for implanting an electrical stimulation lead Abandoned US20110257660A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/167,575 US20110257660A1 (en) 2003-08-08 2011-06-23 Apparatus for implanting an electrical stimulation lead
US13/486,395 US8463401B2 (en) 2003-08-08 2012-06-01 Apparatus for implanting an electrical stimulation lead

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10/637,342 US20050033393A1 (en) 2003-08-08 2003-08-08 Apparatus and method for implanting an electrical stimulation system and a paddle style electrical stimulation lead
US11/119,438 US7359755B2 (en) 2003-08-08 2005-04-29 Method and apparatus for implanting an electrical stimulation lead using a flexible introducer
US12/098,007 US8014873B2 (en) 2003-08-08 2008-04-04 Apparatus for implanting an electrical stimulation lead
US13/167,575 US20110257660A1 (en) 2003-08-08 2011-06-23 Apparatus for implanting an electrical stimulation lead

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/098,007 Continuation US8014873B2 (en) 2003-08-08 2008-04-04 Apparatus for implanting an electrical stimulation lead

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/486,395 Continuation US8463401B2 (en) 2003-08-08 2012-06-01 Apparatus for implanting an electrical stimulation lead

Publications (1)

Publication Number Publication Date
US20110257660A1 true US20110257660A1 (en) 2011-10-20

Family

ID=37308564

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/119,438 Expired - Lifetime US7359755B2 (en) 2003-08-08 2005-04-29 Method and apparatus for implanting an electrical stimulation lead using a flexible introducer
US12/098,007 Expired - Fee Related US8014873B2 (en) 2003-08-08 2008-04-04 Apparatus for implanting an electrical stimulation lead
US13/167,575 Abandoned US20110257660A1 (en) 2003-08-08 2011-06-23 Apparatus for implanting an electrical stimulation lead
US13/486,395 Expired - Lifetime US8463401B2 (en) 2003-08-08 2012-06-01 Apparatus for implanting an electrical stimulation lead

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/119,438 Expired - Lifetime US7359755B2 (en) 2003-08-08 2005-04-29 Method and apparatus for implanting an electrical stimulation lead using a flexible introducer
US12/098,007 Expired - Fee Related US8014873B2 (en) 2003-08-08 2008-04-04 Apparatus for implanting an electrical stimulation lead

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/486,395 Expired - Lifetime US8463401B2 (en) 2003-08-08 2012-06-01 Apparatus for implanting an electrical stimulation lead

Country Status (3)

Country Link
US (4) US7359755B2 (en)
EP (1) EP1877129B1 (en)
WO (1) WO2006119135A2 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120016377A1 (en) * 2010-07-15 2012-01-19 Greatbatch Ltd. Tunneling tool for implantable leads
US8463401B2 (en) 2003-08-08 2013-06-11 Advanced Neuromodulation Systems, Inc. Apparatus for implanting an electrical stimulation lead
US9220913B2 (en) 2013-05-06 2015-12-29 Medtronics, Inc. Multi-mode implantable medical device
US20160067476A1 (en) * 2012-06-13 2016-03-10 Mainstay Medical Limited Systems and methods for implanting electrode leads for use with implantable neuromuscular electrical stimulator
US9610436B2 (en) 2013-11-12 2017-04-04 Medtronic, Inc. Implant tools with attachment feature and multi-positional sheath and implant techniques utilizing such tools
US9636505B2 (en) 2014-11-24 2017-05-02 AtaCor Medical, Inc. Cardiac pacing sensing and control
US9636512B2 (en) 2014-11-05 2017-05-02 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system having multiple common polarity extravascular defibrillation electrodes
US9707389B2 (en) 2014-09-04 2017-07-18 AtaCor Medical, Inc. Receptacle for pacemaker lead
US9717898B2 (en) 2013-05-06 2017-08-01 Medtronic, Inc. Systems and methods for implanting a medical electrical lead
US9717923B2 (en) 2013-05-06 2017-08-01 Medtronic, Inc. Implantable medical device system having implantable cardioverter-defibrillator (ICD) system and substernal leadless pacing device
US9861811B2 (en) 2010-03-11 2018-01-09 Mainstay Medical Limited Electrical stimulator for treatment of back pain and methods of use
US9950159B2 (en) 2013-10-23 2018-04-24 Mainstay Medical Limited Systems and methods for restoring muscle function to the lumbar spine and kits for implanting the same
US10016603B2 (en) 2007-03-09 2018-07-10 Mainstay Medical Limited Systems and methods for restoring muscle function to the lumbar spine
US10118027B2 (en) 2013-11-12 2018-11-06 Medtronic, Inc. Open channel implant tools having an attachment feature and implant techniques utilizing such tools
US10117673B2 (en) 2014-11-21 2018-11-06 Flatmed Llc Methods and devices for safely positioning a needle syringe in a body cavity
US10195419B2 (en) 2012-06-13 2019-02-05 Mainstay Medical Limited Electrode leads for use with implantable neuromuscular electrical stimulator
US10328268B2 (en) 2014-09-04 2019-06-25 AtaCor Medical, Inc. Cardiac pacing
US10349978B2 (en) 2014-12-18 2019-07-16 Medtronic, Inc. Open channel implant tool with additional lumen and implant techniques utilizing such tools
US10434307B2 (en) 2013-10-15 2019-10-08 Medtronic, Inc. Methods and devices for subcutaneous lead implantation
US10471267B2 (en) 2013-05-06 2019-11-12 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system including substernal lead
US10471268B2 (en) 2014-10-16 2019-11-12 Mainstay Medical Limited Systems and methods for monitoring muscle rehabilitation
US10532203B2 (en) 2013-05-06 2020-01-14 Medtronic, Inc. Substernal electrical stimulation system
US10556117B2 (en) 2013-05-06 2020-02-11 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system including substernal pacing lead
US10729456B2 (en) 2014-12-18 2020-08-04 Medtronic, Inc. Systems and methods for deploying an implantable medical electrical lead
US10743960B2 (en) 2014-09-04 2020-08-18 AtaCor Medical, Inc. Cardiac arrhythmia treatment devices and delivery
US10925637B2 (en) 2010-03-11 2021-02-23 Mainstay Medical Limited Methods of implanting electrode leads for use with implantable neuromuscular electrical stimulator
US11083491B2 (en) 2014-12-09 2021-08-10 Medtronic, Inc. Extravascular implant tools utilizing a bore-in mechanism and implant techniques using such tools
US11097109B2 (en) 2014-11-24 2021-08-24 AtaCor Medical, Inc. Cardiac pacing sensing and control
US11103706B2 (en) 2007-03-09 2021-08-31 Mainstay Medical Limited Systems and methods for enhancing function of spine stabilization muscles associated with a spine surgery intervention
US11331488B2 (en) 2007-03-09 2022-05-17 Mainstay Medical Limited Systems and methods for enhancing function of spine stabilization muscles associated with a spine surgery intervention
US11406421B2 (en) 2016-07-05 2022-08-09 Mainstay Medical Limited Systems and methods for enhanced implantation of electrode leads between tissue layers
US11433232B2 (en) 2013-05-06 2022-09-06 Medtronic, Inc. Devices and techniques for anchoring an implantable medical device
US11666771B2 (en) 2020-05-29 2023-06-06 AtaCor Medical, Inc. Implantable electrical leads and associated delivery systems
US11672975B2 (en) 2019-05-29 2023-06-13 AtaCor Medical, Inc. Implantable electrical leads and associated delivery systems
US11679261B2 (en) 2007-03-09 2023-06-20 Mainstay Medical Limited Systems and methods for enhancing function of spine stabilization muscles associated with a spine surgery intervention
US11679262B2 (en) 2007-03-09 2023-06-20 Mainstay Medical Limited Systems and methods for restoring muscle function to the lumbar spine
US11684774B2 (en) 2010-03-11 2023-06-27 Mainstay Medical Limited Electrical stimulator for treatment of back pain and methods of use
US11786725B2 (en) 2012-06-13 2023-10-17 Mainstay Medical Limited Systems and methods for restoring muscle function to the lumbar spine and kits for implanting the same
US11951310B2 (en) 2020-11-06 2024-04-09 Mainstay Medical Limited Systems and methods for restoring muscle function to the lumbar spine

Families Citing this family (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10105592A1 (en) 2001-02-06 2002-08-08 Achim Goepferich Placeholder for drug release in the frontal sinus
US8317816B2 (en) 2002-09-30 2012-11-27 Acclarent, Inc. Balloon catheters and methods for treating paranasal sinuses
US20050033393A1 (en) * 2003-08-08 2005-02-10 Advanced Neuromodulation Systems, Inc. Apparatus and method for implanting an electrical stimulation system and a paddle style electrical stimulation lead
US20050288758A1 (en) * 2003-08-08 2005-12-29 Jones Timothy S Methods and apparatuses for implanting and removing an electrical stimulation lead
US8340779B2 (en) * 2003-08-29 2012-12-25 Medtronic, Inc. Percutaneous flat lead introducer
WO2005053789A2 (en) * 2003-11-25 2005-06-16 Advanced Neuromodulation Systems, Inc. Directional stimulation lead and orientation system, and improved percutaneous-insertion needle and method of implanting a lead
US9399121B2 (en) 2004-04-21 2016-07-26 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US7559925B2 (en) 2006-09-15 2009-07-14 Acclarent Inc. Methods and devices for facilitating visualization in a surgical environment
US8864787B2 (en) 2004-04-21 2014-10-21 Acclarent, Inc. Ethmoidotomy system and implantable spacer devices having therapeutic substance delivery capability for treatment of paranasal sinusitis
US8747389B2 (en) 2004-04-21 2014-06-10 Acclarent, Inc. Systems for treating disorders of the ear, nose and throat
US7462175B2 (en) 2004-04-21 2008-12-09 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
US9351750B2 (en) 2004-04-21 2016-05-31 Acclarent, Inc. Devices and methods for treating maxillary sinus disease
US8932276B1 (en) 2004-04-21 2015-01-13 Acclarent, Inc. Shapeable guide catheters and related methods
US8764729B2 (en) 2004-04-21 2014-07-01 Acclarent, Inc. Frontal sinus spacer
US9089258B2 (en) 2004-04-21 2015-07-28 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US8702626B1 (en) 2004-04-21 2014-04-22 Acclarent, Inc. Guidewires for performing image guided procedures
US7654997B2 (en) 2004-04-21 2010-02-02 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat
US8146400B2 (en) 2004-04-21 2012-04-03 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US7419497B2 (en) 2004-04-21 2008-09-02 Acclarent, Inc. Methods for treating ethmoid disease
US9554691B2 (en) 2004-04-21 2017-01-31 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US10188413B1 (en) 2004-04-21 2019-01-29 Acclarent, Inc. Deflectable guide catheters and related methods
US8894614B2 (en) 2004-04-21 2014-11-25 Acclarent, Inc. Devices, systems and methods useable for treating frontal sinusitis
US9101384B2 (en) 2004-04-21 2015-08-11 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, Nose and/or throat
US20070208252A1 (en) 2004-04-21 2007-09-06 Acclarent, Inc. Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses
US20190314620A1 (en) 2004-04-21 2019-10-17 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US7803150B2 (en) 2004-04-21 2010-09-28 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US7410480B2 (en) 2004-04-21 2008-08-12 Acclarent, Inc. Devices and methods for delivering therapeutic substances for the treatment of sinusitis and other disorders
US7361168B2 (en) 2004-04-21 2008-04-22 Acclarent, Inc. Implantable device and methods for delivering drugs and other substances to treat sinusitis and other disorders
US20060004323A1 (en) 2004-04-21 2006-01-05 Exploramed Nc1, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US20060063973A1 (en) 2004-04-21 2006-03-23 Acclarent, Inc. Methods and apparatus for treating disorders of the ear, nose and throat
US20070167682A1 (en) 2004-04-21 2007-07-19 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US20050283216A1 (en) * 2004-06-21 2005-12-22 Pyles Stephen T Apparatus and method for displacing tissue obstructions
US20060206182A1 (en) * 2004-06-21 2006-09-14 Pyles Stephen T Apparatus and method for displacing tissue obstructions
US8880191B2 (en) * 2004-08-31 2014-11-04 Stephen Pyles Method of implanting a spinal cord stimulator lead having multiple obstruction-clearing features
US20060206183A1 (en) * 2004-08-31 2006-09-14 Pyles Stephen T Spinal cord stimulator lead for neurostimulation having a fluid delivery lumen and/0r a distensible balloon
US20120277839A1 (en) 2004-09-08 2012-11-01 Kramer Jeffery M Selective stimulation to modulate the sympathetic nervous system
US20060052856A1 (en) 2004-09-08 2006-03-09 Kim Daniel H Stimulation components
US9205261B2 (en) 2004-09-08 2015-12-08 The Board Of Trustees Of The Leland Stanford Junior University Neurostimulation methods and systems
WO2006135753A1 (en) * 2005-06-09 2006-12-21 Medtronic, Inc. Introducer for therapy delivery elements
US8951225B2 (en) 2005-06-10 2015-02-10 Acclarent, Inc. Catheters with non-removable guide members useable for treatment of sinusitis
US8114113B2 (en) 2005-09-23 2012-02-14 Acclarent, Inc. Multi-conduit balloon catheter
CA2630211C (en) 2005-11-18 2016-11-01 Cardiac Concepts, Inc. System and method to modulate phrenic nerve to prevent sleep apnea
US10406366B2 (en) * 2006-11-17 2019-09-10 Respicardia, Inc. Transvenous phrenic nerve stimulation system
DE102006020363A1 (en) * 2006-04-28 2007-10-31 Gebr. Pajunk Besitzverwaltung Ohg Catheter set for epidural or peripheral nerve block
US8167899B2 (en) * 2006-05-04 2012-05-01 Warsaw Orthopedic, Inc. Retractable stylet and cannula combination
US7842038B2 (en) * 2006-05-04 2010-11-30 Warsaw Orthopedic, Inc. Method for using retractable stylet and cannula combination to form an opening in bone
US8190389B2 (en) 2006-05-17 2012-05-29 Acclarent, Inc. Adapter for attaching electromagnetic image guidance components to a medical device
US9820688B2 (en) 2006-09-15 2017-11-21 Acclarent, Inc. Sinus illumination lightwire device
US20100076534A1 (en) * 2006-10-25 2010-03-25 William Alan Mock Malleable needle having a plurality of electrodes for facilitating implantation of stimulation lead and method of implanting an electrical stimulation lead
US8019442B1 (en) 2006-10-25 2011-09-13 Advanced Neuromodulation Systems, Inc. Assembly kit for creating paddle-style lead from one or several percutaneous leads and method of lead implantation
CA2671286C (en) 2006-12-06 2017-09-19 Spinal Modulation, Inc. Delivery devices, systems and methods for stimulating nerve tissue on multiple spinal levels
US9314618B2 (en) * 2006-12-06 2016-04-19 Spinal Modulation, Inc. Implantable flexible circuit leads and methods of use
JP2010512186A (en) 2006-12-06 2010-04-22 スパイナル・モデュレーション・インコーポレイテッド Hard tissue anchor and delivery device
WO2008070808A2 (en) * 2006-12-06 2008-06-12 Spinal Modulation, Inc. Expandable stimulation leads and methods of use
US8439687B1 (en) 2006-12-29 2013-05-14 Acclarent, Inc. Apparatus and method for simulated insertion and positioning of guidewares and other interventional devices
WO2008094952A2 (en) * 2007-01-29 2008-08-07 Spinal Modulation, Inc. Sutureless lead retention features
US8346353B2 (en) * 2007-04-24 2013-01-01 St. Jude Medical Ab Implantable medical system for detecting incipient edema
US8118757B2 (en) 2007-04-30 2012-02-21 Acclarent, Inc. Methods and devices for ostium measurement
US8485199B2 (en) 2007-05-08 2013-07-16 Acclarent, Inc. Methods and devices for protecting nasal turbinate during surgery
US10206821B2 (en) 2007-12-20 2019-02-19 Acclarent, Inc. Eustachian tube dilation balloon with ventilation path
US9220889B2 (en) * 2008-02-11 2015-12-29 Intelect Medical, Inc. Directional electrode devices with locating features
WO2009105646A1 (en) * 2008-02-21 2009-08-27 Boston Scientific Neuromodulation Corporation Temporary neurostimulation lead identification device
US8182432B2 (en) 2008-03-10 2012-05-22 Acclarent, Inc. Corewire design and construction for medical devices
US9492655B2 (en) * 2008-04-25 2016-11-15 Boston Scientific Neuromodulation Corporation Stimulation system with percutaneously deliverable paddle lead and methods of making and using
US20160008593A1 (en) * 2008-05-12 2016-01-14 Advanced Neuromodulation Systems, Inc. Peripheral nerve field stimulator curved subcutaneous introducer needle with wing attachment specification
KR101653180B1 (en) 2008-07-30 2016-09-01 아클라런트, 인코포레이션 Paranasal ostium finder devices and methods
US7941227B2 (en) * 2008-09-03 2011-05-10 Boston Scientific Neuromodulation Corporation Implantable electric stimulation system and methods of making and using
EP2323724A1 (en) 2008-09-18 2011-05-25 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
CN102202729B (en) 2008-10-27 2014-11-05 脊髓调制公司 Selective stimulation systems and signal parameters for medical conditions
US9522269B2 (en) 2008-12-08 2016-12-20 Hui Zhu Needle and lead and methods of use
WO2010071494A1 (en) * 2008-12-19 2010-06-24 St.Jude Medical Ab A medical implantable lead and a method for ensuring proper and safe attachment of such a lead to an organ
JP5735924B2 (en) * 2009-01-14 2015-06-17 スパイナル・モデュレーション・インコーポレイテッドSpinal Modulation Inc. Stimulation leads and delivery systems and methods of use
US8262574B2 (en) * 2009-02-27 2012-09-11 Gynesonics, Inc. Needle and tine deployment mechanism
US20100241155A1 (en) 2009-03-20 2010-09-23 Acclarent, Inc. Guide system with suction
WO2010111358A2 (en) 2009-03-24 2010-09-30 Spinal Modulation, Inc. Pain management with stimulation subthreshold to parasthesia
US9486628B2 (en) 2009-03-31 2016-11-08 Inspire Medical Systems, Inc. Percutaneous access for systems and methods of treating sleep apnea
US8435290B2 (en) 2009-03-31 2013-05-07 Acclarent, Inc. System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
US7978742B1 (en) 2010-03-24 2011-07-12 Corning Incorporated Methods for operating diode lasers
CN102497823B (en) 2009-05-15 2016-05-11 脊髓调制公司 For the mthods, systems and devices of nerve regulation anatomy of spine structure
US8929998B2 (en) 2009-09-30 2015-01-06 Mayo Foundation For Medical Education And Research Percutaneous placement of electrodes
US11045221B2 (en) * 2009-10-30 2021-06-29 Medtronic, Inc. Steerable percutaneous paddle stimulation lead
US8486089B2 (en) * 2010-02-16 2013-07-16 Medtronic, Inc. Introducer for lead delivery
EP2539016B1 (en) 2010-02-22 2017-11-01 Richard B. North Percutaneous electrode system
US8876870B2 (en) * 2010-04-27 2014-11-04 Adnan Iqbal Qureshi Intraspinal device deployed through percutaneous approach into subarachnoid or intradural space of vertebral canal to protect spinal cord from external compression
US20110276056A1 (en) 2010-05-10 2011-11-10 Grigsby Eric J Methods, systems and devices for reducing migration
US9155492B2 (en) 2010-09-24 2015-10-13 Acclarent, Inc. Sinus illumination lightwire device
US8805519B2 (en) 2010-09-30 2014-08-12 Nevro Corporation Systems and methods for detecting intrathecal penetration
US8965482B2 (en) * 2010-09-30 2015-02-24 Nevro Corporation Systems and methods for positioning implanted devices in a patient
WO2012046231A2 (en) * 2010-10-04 2012-04-12 Nervomatrix Ltd. Electrode for finding points of low impedance and applying electrical stimulation thereto
EP2670478B1 (en) 2011-02-02 2016-07-27 Spinal Modulation Inc. Devices and systemsfor the targeted treatment of movement disorders
US9744349B2 (en) 2011-02-10 2017-08-29 Respicardia, Inc. Medical lead and implantation
WO2012112428A1 (en) * 2011-02-16 2012-08-23 Boston Scientific Neuromodulation Corporation Systems and methods for implanting paddle lead assemblies of electrical stimulation systems
US10758262B2 (en) 2011-06-20 2020-09-01 Medtronic, Inc. Medical assemblies and methods for implantation of multiple medical leads through a single entry
US8903508B2 (en) * 2012-03-08 2014-12-02 Advanced Neuromodulation Systems, Inc. Flexible paddle lead body with scored surfaces
US10751081B2 (en) * 2012-03-30 2020-08-25 Medtronic, Inc. Methods and tools for clearing the epidural space in preparation for medical lead implantation
US9687265B2 (en) * 2012-03-30 2017-06-27 Medtronic, Inc. Method and tools for clearing the epidural space in preparation for medical lead implantation
WO2013154756A1 (en) * 2012-04-10 2013-10-17 NeuroAccess Technologies Electrical lead placement system
WO2013177312A1 (en) * 2012-05-25 2013-11-28 Boston Scientific Neuromodulation Corporation Systems and method for implanting an electrical stimulation lead using a sheath
US9067056B2 (en) 2012-06-07 2015-06-30 Greatbatch Ltd. Lead spacer tool
WO2014045331A1 (en) * 2012-09-18 2014-03-27 テルモ株式会社 Puncturing tool and puncturing-tool assembly
US9308022B2 (en) 2012-12-10 2016-04-12 Nevro Corporation Lead insertion devices and associated systems and methods
US10016604B2 (en) 2013-03-15 2018-07-10 Globus Medical, Inc. Implantable pulse generator that generates spinal cord stimulation signals for a human body
US9872997B2 (en) 2013-03-15 2018-01-23 Globus Medical, Inc. Spinal cord stimulator system
US9887574B2 (en) 2013-03-15 2018-02-06 Globus Medical, Inc. Spinal cord stimulator system
US10080896B2 (en) 2013-03-15 2018-09-25 Cirtec Medical Corp. Implantable pulse generator that generates spinal cord stimulation signals for a human body
US9440076B2 (en) 2013-03-15 2016-09-13 Globus Medical, Inc. Spinal cord stimulator system
US9433437B2 (en) 2013-03-15 2016-09-06 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US10226628B2 (en) 2013-03-15 2019-03-12 Cirtec Medical Corp. Implantable pulse generator that generates spinal cord stimulation signals for a human body
US9629684B2 (en) 2013-03-15 2017-04-25 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US10413730B2 (en) 2013-03-15 2019-09-17 Cirtec Medical Corp. Implantable pulse generator that generates spinal cord stimulation signals for a human body
US9878170B2 (en) 2013-03-15 2018-01-30 Globus Medical, Inc. Spinal cord stimulator system
US9604050B2 (en) 2014-02-20 2017-03-28 Boston Scientific Neuromodulation Corporation Systems and methods for percutaneously implanting into a patient a paddle lead of an electrical stimulation system
US9192759B2 (en) 2014-03-31 2015-11-24 Dennison Hamilton System and method for stabilizing implanted spinal cord stimulators
US10555726B2 (en) 2014-06-19 2020-02-11 Cardiac Pacemakers, Inc Percutaneous tools for minimally invasive access to the carotid sheath for vagus nerve stimulation
US10265097B2 (en) 2014-09-25 2019-04-23 Cardiac Pacemakers, Inc. Needle assembly with retractable cutting edge
US9931109B2 (en) 2015-02-13 2018-04-03 Boston Scientific Neuromodulation Corporation Retractor and tools for implantation of electrical stimulation leads and methods of using and manufacture
EP4257038A3 (en) 2015-03-20 2023-11-15 Intelligent Implants Limited System for dynamically stimulating bone growth
US10881428B2 (en) 2015-04-22 2021-01-05 Medtronic, Inc. Shaped lead introducer for epidural space
WO2016176211A1 (en) 2015-04-28 2016-11-03 Boston Scientific Neuromodulation Corporation Systems and methods for making and using a lead introducer with a seal for an electrical stimulation system
US10617880B2 (en) 2015-12-08 2020-04-14 Intelligent Implants Limited System and method for an electrical implant device with increased patient compliance
EP4156204A1 (en) 2016-11-11 2023-03-29 Gynesonics, Inc. Controlled treatment of tissue and dynamic interaction with, and comparison of, tissue and/or treatment data
AU2018231031B2 (en) 2017-03-09 2023-11-02 Nevro Corp. Paddle leads and delivery tools, and associated systems and methods
JP2020534045A (en) 2017-09-21 2020-11-26 メドトロニック,インコーポレイテッド Imaging markers for stimulator reeds
US10434312B2 (en) 2017-11-03 2019-10-08 Amitabh Goel Electrode assembly for spinal cord stimulation
WO2019140286A2 (en) * 2018-01-11 2019-07-18 Wendel Mark Method and device for inserting at least one medical component within the body
AU2019242906A1 (en) 2018-03-29 2020-10-15 Nevro Corp. Leads having sidewall openings, and associated systems and methods
USD934438S1 (en) 2018-06-29 2021-10-26 Spr Therapeutics, Inc. Lead placement tool
US11576789B2 (en) 2018-10-03 2023-02-14 Intelligent Implants Limited System and method to alter bone growth in a targeted spatial region for the use with implants
WO2020172071A2 (en) 2019-02-19 2020-08-27 Boston Scientific Neuromodulation Corporation Lead introducers and systems and methods including the lead introducers
US11844706B2 (en) 2019-03-20 2023-12-19 Grabango Co. System and method for positioning and orienting an orthopedic implant
EP4051375A1 (en) 2019-11-01 2022-09-07 Intelligent Implants Limited System and method for embedding electronic components within an implant
CN117414527B (en) * 2023-11-21 2024-03-29 浙江迈达佩思医疗科技有限公司 Implantable electrode device for percutaneous acupoint stimulation and implantation method thereof

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2575611A (en) * 1949-07-22 1951-11-20 Flint Eaton And Company Iron choline citrates and method of preparing the same
US4306562A (en) * 1978-12-01 1981-12-22 Cook, Inc. Tear apart cannula
US4512351A (en) * 1982-11-19 1985-04-23 Cordis Corporation Percutaneous lead introducing system and method
US4573448A (en) * 1983-10-05 1986-03-04 Pilling Co. Method for decompressing herniated intervertebral discs
JPS60234671A (en) * 1984-05-09 1985-11-21 テルモ株式会社 Catheter inserter
US4950257A (en) * 1988-09-15 1990-08-21 Mallinckrodt, Inc. Catheter introducer with flexible tip
US5190528A (en) * 1990-10-19 1993-03-02 Boston University Percutaneous transseptal left atrial cannulation system
EP0558642B1 (en) * 1990-11-20 1997-01-02 InnerDyne, Inc. Tension guide and dilator
US5255691A (en) * 1991-11-13 1993-10-26 Medtronic, Inc. Percutaneous epidural lead introducing system and method
US5738650A (en) 1993-01-29 1998-04-14 Becton, Dickinson And Company Subarachnoid needle and method for administering therapeutic agents to the subarachnoid space
US5431676A (en) * 1993-03-05 1995-07-11 Innerdyne Medical, Inc. Trocar system having expandable port
US5562695A (en) * 1995-01-10 1996-10-08 Obenchain; Theodore G. Nerve deflecting conduit needle and method
US5782807A (en) * 1995-10-20 1998-07-21 Tfx Medical Incorporated Releasably locking introducer devices
GB9601147D0 (en) * 1996-01-19 1996-03-20 Smiths Industries Ltd Spinal epidural needle assemblies
US5792044A (en) * 1996-03-22 1998-08-11 Danek Medical, Inc. Devices and methods for percutaneous surgery
US5826576A (en) * 1996-08-08 1998-10-27 Medtronic, Inc. Electrophysiology catheter with multifunction wire and method for making
US5779715A (en) * 1997-07-28 1998-07-14 Irvine Biomedical, Inc. Lead extraction system and methods thereof
US6530902B1 (en) * 1998-01-23 2003-03-11 Medtronic, Inc. Cannula placement system
US6161047A (en) * 1998-04-30 2000-12-12 Medtronic Inc. Apparatus and method for expanding a stimulation lead body in situ
US6104960A (en) * 1998-07-13 2000-08-15 Medtronic, Inc. System and method for providing medical electrical stimulation to a portion of the nervous system
US6055456A (en) * 1999-04-29 2000-04-25 Medtronic, Inc. Single and multi-polar implantable lead for sacral nerve electrical stimulation
US6309401B1 (en) * 1999-04-30 2001-10-30 Vladimir Redko Apparatus and method for percutaneous implant of a paddle style lead
US6249707B1 (en) * 1999-04-30 2001-06-19 Medtronic, Inc. Apparatus and method for percutaneous implant of a paddle style lead
US6516227B1 (en) * 1999-07-27 2003-02-04 Advanced Bionics Corporation Rechargeable spinal cord stimulator system
US6725096B2 (en) * 2000-05-05 2004-04-20 Advanced Bionics Corporation Multiple in-line contact connector
WO2002001998A2 (en) * 2000-05-16 2002-01-10 Taut, Inc. Penetrating tip for trocar assembly
US20040015133A1 (en) * 2000-05-31 2004-01-22 Hussain Karim Epidural apparatus
US6895283B2 (en) 2000-08-10 2005-05-17 Advanced Neuromodulation Systems, Inc. Stimulation/sensing lead adapted for percutaneous insertion
US6971393B1 (en) * 2000-11-15 2005-12-06 George Mamo Minimally invasive method for implanting a sacral stimulation lead
US6847849B2 (en) * 2000-11-15 2005-01-25 Medtronic, Inc. Minimally invasive apparatus for implanting a sacral stimulation lead
US6512958B1 (en) * 2001-04-26 2003-01-28 Medtronic, Inc. Percutaneous medical probe and flexible guide wire
US7022109B1 (en) * 2001-07-09 2006-04-04 Ditto Deborah L Pain abatement catheter system
US7011647B2 (en) 2001-07-13 2006-03-14 Scimed Life Systems, Inc. Introducer sheath
US20030093105A1 (en) 2001-07-13 2003-05-15 Scimed Life Systems, Inc. Guide catheter for introduction into the subarachnoid space and methods of use thereof
US6554809B2 (en) * 2001-08-02 2003-04-29 Teodulo Aves Epidural catheter needle
US20050288758A1 (en) * 2003-08-08 2005-12-29 Jones Timothy S Methods and apparatuses for implanting and removing an electrical stimulation lead
US20050033393A1 (en) * 2003-08-08 2005-02-10 Advanced Neuromodulation Systems, Inc. Apparatus and method for implanting an electrical stimulation system and a paddle style electrical stimulation lead
US7359755B2 (en) 2003-08-08 2008-04-15 Advanced Neuromodulation Systems, Inc. Method and apparatus for implanting an electrical stimulation lead using a flexible introducer
US8340779B2 (en) * 2003-08-29 2012-12-25 Medtronic, Inc. Percutaneous flat lead introducer

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8463401B2 (en) 2003-08-08 2013-06-11 Advanced Neuromodulation Systems, Inc. Apparatus for implanting an electrical stimulation lead
US11679262B2 (en) 2007-03-09 2023-06-20 Mainstay Medical Limited Systems and methods for restoring muscle function to the lumbar spine
US10016603B2 (en) 2007-03-09 2018-07-10 Mainstay Medical Limited Systems and methods for restoring muscle function to the lumbar spine
US10828490B2 (en) 2007-03-09 2020-11-10 Mainstay Medical Limited Systems and methods for restoring muscle function to the lumbar spine
US11103706B2 (en) 2007-03-09 2021-08-31 Mainstay Medical Limited Systems and methods for enhancing function of spine stabilization muscles associated with a spine surgery intervention
US11679261B2 (en) 2007-03-09 2023-06-20 Mainstay Medical Limited Systems and methods for enhancing function of spine stabilization muscles associated with a spine surgery intervention
US11331488B2 (en) 2007-03-09 2022-05-17 Mainstay Medical Limited Systems and methods for enhancing function of spine stabilization muscles associated with a spine surgery intervention
US10925637B2 (en) 2010-03-11 2021-02-23 Mainstay Medical Limited Methods of implanting electrode leads for use with implantable neuromuscular electrical stimulator
US11471670B2 (en) 2010-03-11 2022-10-18 Mainstay Medical Limited Electrical stimulator for treatment of back pain and methods of use
US10661078B2 (en) 2010-03-11 2020-05-26 Mainstay Medical Limited Modular stimulator for treatment of back pain, implantable RF ablation system and methods of use
US11684774B2 (en) 2010-03-11 2023-06-27 Mainstay Medical Limited Electrical stimulator for treatment of back pain and methods of use
US9861811B2 (en) 2010-03-11 2018-01-09 Mainstay Medical Limited Electrical stimulator for treatment of back pain and methods of use
US10926083B2 (en) 2010-03-11 2021-02-23 Mainstay Medical Limited Stimulator for treatment of back pain utilizing feedback
US20120016377A1 (en) * 2010-07-15 2012-01-19 Greatbatch Ltd. Tunneling tool for implantable leads
US9381030B2 (en) * 2010-07-15 2016-07-05 Nuvectra Corporation Tunneling tool for implantable leads
US9981122B2 (en) * 2012-06-13 2018-05-29 Mainstay Medical Limited Systems and methods for implanting electrode leads for use with implantable neuromuscular electrical stimulator
US10449355B2 (en) 2012-06-13 2019-10-22 Mainstay Medical Limited Systems and methods for restoring muscle function to the lumbar spine and kits for implanting the same
US11376427B2 (en) 2012-06-13 2022-07-05 Mainstay Medical Limited Systems and methods for restoring muscle function to the lumbar spine and kits for implanting the same
US11786725B2 (en) 2012-06-13 2023-10-17 Mainstay Medical Limited Systems and methods for restoring muscle function to the lumbar spine and kits for implanting the same
US10195419B2 (en) 2012-06-13 2019-02-05 Mainstay Medical Limited Electrode leads for use with implantable neuromuscular electrical stimulator
US20160067476A1 (en) * 2012-06-13 2016-03-10 Mainstay Medical Limited Systems and methods for implanting electrode leads for use with implantable neuromuscular electrical stimulator
US9717898B2 (en) 2013-05-06 2017-08-01 Medtronic, Inc. Systems and methods for implanting a medical electrical lead
US11832848B2 (en) 2013-05-06 2023-12-05 Medtronic, Inc. Systems and methods for implanting a medical electrical lead
US11344720B2 (en) 2013-05-06 2022-05-31 Medtronic, Inc. Substernal electrical stimulation system
US11344737B2 (en) 2013-05-06 2022-05-31 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system including substernal lead
US11524157B2 (en) 2013-05-06 2022-12-13 Medtronic, Inc. Substernal leadless electrical stimulation system
US9220913B2 (en) 2013-05-06 2015-12-29 Medtronics, Inc. Multi-mode implantable medical device
US11857779B2 (en) 2013-05-06 2024-01-02 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system including substernal pacing lead
US10471267B2 (en) 2013-05-06 2019-11-12 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system including substernal lead
US9717923B2 (en) 2013-05-06 2017-08-01 Medtronic, Inc. Implantable medical device system having implantable cardioverter-defibrillator (ICD) system and substernal leadless pacing device
US10525272B2 (en) 2013-05-06 2020-01-07 Medtronic, Inc. Implantable medical device system having implantable cardioverter-defibrillator (ICD) system and substernal leadless pacing device
US10933230B2 (en) 2013-05-06 2021-03-02 Medtronic, Inc. Systems and methods for implanting a medical electrical lead
US10532203B2 (en) 2013-05-06 2020-01-14 Medtronic, Inc. Substernal electrical stimulation system
US10556117B2 (en) 2013-05-06 2020-02-11 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system including substernal pacing lead
US11433232B2 (en) 2013-05-06 2022-09-06 Medtronic, Inc. Devices and techniques for anchoring an implantable medical device
US10668270B2 (en) 2013-05-06 2020-06-02 Medtronic, Inc. Substernal leadless electrical stimulation system
US10434307B2 (en) 2013-10-15 2019-10-08 Medtronic, Inc. Methods and devices for subcutaneous lead implantation
US9950159B2 (en) 2013-10-23 2018-04-24 Mainstay Medical Limited Systems and methods for restoring muscle function to the lumbar spine and kits for implanting the same
US10118027B2 (en) 2013-11-12 2018-11-06 Medtronic, Inc. Open channel implant tools having an attachment feature and implant techniques utilizing such tools
US10531893B2 (en) 2013-11-12 2020-01-14 Medtronic, Inc. Extravascular implant tools with open sheath and implant techniques utilizing such tools
US9610436B2 (en) 2013-11-12 2017-04-04 Medtronic, Inc. Implant tools with attachment feature and multi-positional sheath and implant techniques utilizing such tools
US10398471B2 (en) 2013-11-12 2019-09-03 Medtronic, Inc. Implant tools with attachment feature and multi-positional sheath and implant techniques utilizing such tools
US10792490B2 (en) 2013-11-12 2020-10-06 Medtronic, Inc. Open channel implant tools and implant techniques utilizing such tools
US11229500B2 (en) 2014-09-04 2022-01-25 AtaCor Medical, Inc. Directional stimulation leads and methods
US10195422B2 (en) 2014-09-04 2019-02-05 AtaCor Medical, Inc. Delivery system for cardiac pacing
US11051847B2 (en) 2014-09-04 2021-07-06 AtaCor Medical, Inc. Cardiac pacing lead delivery system
US11857380B2 (en) 2014-09-04 2024-01-02 AtaCor Medical, Inc. Cardiac arrhythmia treatment devices and delivery
US11937987B2 (en) 2014-09-04 2024-03-26 AtaCor Medical, Inc. Cardiac arrhythmia treatment devices and delivery
US10105537B2 (en) 2014-09-04 2018-10-23 AtaCor Medical, Inc. Receptacle for pacemaker lead
US10022539B2 (en) 2014-09-04 2018-07-17 AtaCor Medical, Inc. Cardiac pacing
US10420933B2 (en) 2014-09-04 2019-09-24 AtaCor Medical, Inc. Cardiac pacing
US10743960B2 (en) 2014-09-04 2020-08-18 AtaCor Medical, Inc. Cardiac arrhythmia treatment devices and delivery
US10905885B2 (en) 2014-09-04 2021-02-02 AtaCor Medical, Inc. Cardiac defibrillation
US10328268B2 (en) 2014-09-04 2019-06-25 AtaCor Medical, Inc. Cardiac pacing
US11844949B2 (en) 2014-09-04 2023-12-19 AtaCor Medical, Inc. Cardiac defibrillation
US10315036B2 (en) 2014-09-04 2019-06-11 AtaCor Medical, Inc. Cardiac pacing sensing and control
US11026718B2 (en) 2014-09-04 2021-06-08 AtaCor Medical, Inc. Delivery system for cardiac pacing
US9707389B2 (en) 2014-09-04 2017-07-18 AtaCor Medical, Inc. Receptacle for pacemaker lead
US10471268B2 (en) 2014-10-16 2019-11-12 Mainstay Medical Limited Systems and methods for monitoring muscle rehabilitation
US9636512B2 (en) 2014-11-05 2017-05-02 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system having multiple common polarity extravascular defibrillation electrodes
US10117673B2 (en) 2014-11-21 2018-11-06 Flatmed Llc Methods and devices for safely positioning a needle syringe in a body cavity
US11097109B2 (en) 2014-11-24 2021-08-24 AtaCor Medical, Inc. Cardiac pacing sensing and control
US9636505B2 (en) 2014-11-24 2017-05-02 AtaCor Medical, Inc. Cardiac pacing sensing and control
US11931586B2 (en) 2014-11-24 2024-03-19 AtaCor Medical, Inc. Cardiac pacing sensing and control
US11083491B2 (en) 2014-12-09 2021-08-10 Medtronic, Inc. Extravascular implant tools utilizing a bore-in mechanism and implant techniques using such tools
US11766273B2 (en) 2014-12-18 2023-09-26 Medtronic, Inc. Systems and methods for deploying an implantable medical electrical lead
US10349978B2 (en) 2014-12-18 2019-07-16 Medtronic, Inc. Open channel implant tool with additional lumen and implant techniques utilizing such tools
US10729456B2 (en) 2014-12-18 2020-08-04 Medtronic, Inc. Systems and methods for deploying an implantable medical electrical lead
US11406421B2 (en) 2016-07-05 2022-08-09 Mainstay Medical Limited Systems and methods for enhanced implantation of electrode leads between tissue layers
US11937847B2 (en) 2016-07-05 2024-03-26 Mainstay Medical Limited Systems and methods for enhanced implantation of electrode leads between tissue layers
US11672975B2 (en) 2019-05-29 2023-06-13 AtaCor Medical, Inc. Implantable electrical leads and associated delivery systems
US11666771B2 (en) 2020-05-29 2023-06-06 AtaCor Medical, Inc. Implantable electrical leads and associated delivery systems
US11951310B2 (en) 2020-11-06 2024-04-09 Mainstay Medical Limited Systems and methods for restoring muscle function to the lumbar spine

Also Published As

Publication number Publication date
US8014873B2 (en) 2011-09-06
US20120245594A1 (en) 2012-09-27
US7359755B2 (en) 2008-04-15
EP1877129A2 (en) 2008-01-16
EP1877129B1 (en) 2017-12-06
WO2006119135A2 (en) 2006-11-09
US8463401B2 (en) 2013-06-11
WO2006119135A3 (en) 2006-12-21
US20050288759A1 (en) 2005-12-29
EP1877129A4 (en) 2011-06-15
US20080188916A1 (en) 2008-08-07

Similar Documents

Publication Publication Date Title
US8463401B2 (en) Apparatus for implanting an electrical stimulation lead
US20050288758A1 (en) Methods and apparatuses for implanting and removing an electrical stimulation lead
EP2468355B1 (en) Apparatus for implanting an electrical stimulation system and a paddle style electrical stimulation lead
US10173040B2 (en) Percutaneous flat lead introducer
US8180461B2 (en) Minimally invasive apparatus for implanting a sacral stimulation lead
US8571685B2 (en) Directional stimulation lead and orientation system
EP2429407B1 (en) Systems and devices for neuromodulating spinal anatomy
US10856904B2 (en) Flexible introducer
US20050049663A1 (en) Percutaneous flat lead introducer
EP2101861B1 (en) Attached implantable medical elongated members
US20130066331A1 (en) Tapered, curved stylets for inserting spinal cord modulation leads and associated systems and methods
EP3332718B1 (en) Cranial drill system
US20140257240A1 (en) Articulable introducer sheath
US20220087714A1 (en) Multi-port epidural needle
US10245435B1 (en) Wireless neural stimulator implantation

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION