Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2011169 A
Publication typeGrant
Publication dateAug 13, 1935
Filing dateApr 13, 1932
Priority dateApr 13, 1932
Publication numberUS 2011169 A, US 2011169A, US-A-2011169, US2011169 A, US2011169A
InventorsWappler Frederick Charles
Original AssigneeWappler Frederick Charles
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Forcipated surgical electrode
US 2011169 A
Abstract  available in
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Aug. 13, 1935. R Q WAPPLER 2,011,169

FORCIPATED SURGICAL ELECTRODE Filed April 15, 1932 3 Sheets-Sheet 1 INVENTOR Aug. 13, 1935. F. c. WAPPLER 2,011,169

. FORCIPATED SURGICAL ELECTRODE Filed April 13, 1952 5 Sheets-Sheet 2 Aug. 13, 1935. F. c. WAPPYLER 2,011,169

FORCIPATED SURGICAL ELECTRODE Filed April 15, 1932 ,5 Sheets-Sheet 3 INVENTOR Patented Aug. 13, 1935 PATENT OFFIQ E- EORCIPA EED SURGICAL. ELEQTRODE Frederick Charles Nappler, New Yrli, N. YL Application Aprill3, 1932,8eriallNo; 604,935

13 Glaims. (Cl. 174-89) My present invention relatesgenerally to surgical instruments and-has-par-ticularreference to surgical" instruments of thetype which are designed toapply electrical currents tothe human body;

' Although I have herein illustrated and shall hereinafter describe aparticular type- 0f surgical instrument wherein the operative electrode is in v the former 'a pair of complementaryjaws, never:

thelessit will beunderstood that the' broader phases of my invention arenot' restricted to an instrument having anys-pecific character of elec-- trode or electrodes. 7

The instruments to whichmy invention relates "are of the'type-wherebyhigh frequency alternating current may be applied to the part of the humanbody' to be-treated-by means of an electro-dearranged'usuallyat the forwardend of an sort" of manually-graspable control device.

J So

elongated stem orthe like, this electrode member-- being adapted for insertion into andthrough a fenestrated endoscopic tube whereby the electrode operates throughthe fenestrab The electrode member usually carries a binding post at its rear end and is provided with electrode-operat mechanism which extendsrear-Wardly along or through the stem'i'nto association with some The current which flows through the" body from the electrode isreturned to a. suitable source ofourrent by way ofarelatively large'indifferent elecrelatively bulky and cumbersome, especially WhEl'Glb is in the form of quartz or similar vitreone material. Furthermore, only the simplest. types of mechanical movements could be provided for with any'degree of economical success be cause of the obvious difiiculties involved in proper ly insulating the-electrodeand the binding post irc-mtheoperating mechanism; These diflicul ties have been especially difiicult to obviate in connection with forcipated instruments wherein a pair of cooperativewrcomplementary jaws of necessarily-great strengtha have been sought to be used as=operative electrodesiof the present character.

Myprcsent invention is. predicated UIJOIDthCi discovery that the useof a: proper type of high 5; frequency current, especially where. theroscillations are properly and. effectively-sustained ata maintained comparatively lowvoltage, permits: insulation to be dispensed with entirely: This remarkable phenomenon, due primarily, if not. solely, tothe present rapidz development inthe relatively new art of: employing; high. frequency: current for surgical purposes, has tremendously far-reaching effects in connection. with the art of instrumentmanuiacture andvdesignn Not only; 151 may electrode instruments be providediinigreat- 1y. sinplified forms, but instruments with. en'.-- tirely new characteristics 0f operation andlstructure may: be. manufactured economically and:

with feasibility and; safety. For example, my present. invention has enabled: me. tov desigm an entirely new type of electrode instrumenttof; forcipated character, audit is this general type of instrument whichhas been'illustrated and. Willi hereafter be described tolexemplify. thegeneral nature of my presentinvention;

It may thus-bestated-to be a more particular: object of: my. inventionto provide anew; and improved type of forcipatedssurgicahelectrode char;-- acterized by greatlsimplicity,remarkable strength, compactness and: full: opportunity for complete: illuminated visibility.

Whereas the art of bloodlessly cutting; or." punching;diseaseditissue, orxthe like;.by means." of. jaw electrodes has heretofore been:. highly une- 355. satisfactory and often utterly incapable? of: feasible accomplishment, my present invention permits suitably visualized:andilluminatedzforcepi jaws to be employed withigreat" ease: andlefiiciencys as electrodes of the character called: ion by 403 modern electro-surgery: present. invention] further permits instruments of this: type. and ofl othen widely varying. types,.to:- bevregularly em'-.-- ployed with safety in routlne;operatiyeipractice..

From-its broader aspect: my invention. consists 411s briefly inthe provisionof a new type ofoperative; electrode member which iscomposed of." an". 81011: gated stem; a conductive electrodeatf its forward; end, a binding post andcontrolideviceatr its rear: end; and electrodemperating mechanismlbetween; saidelectlrode and 'controlldevice, thesentire memt-- her" being insertable as aiunit into an. endoscopic tube and" the several parts thereof: being: assembled in mutually: uninsulated relationship:. The; endoscopio tube into which the electrodezisain-r 58:

serted is composed almost entirely of insulating material so that the path of current travel through the patient is restricted to one which emanates from the operative electrode or electrodes.

Where my invention is applied to a forcipated surgical electrode, I am enabled to provide a peculiarly eihcient and practical device which consists essentially of an elongated metallic stem and a pair of complementary conductive jaws mounted at the forward end of the stem, a binding post and control device for the jaws at the rear end of the stem, and jaw-operating mechanism extending rearwardly from the jaws to the control device, all of the parts thus entering into the instrument being arranged and assembled in uninsulated relationship which permits me to achieve not only great strength and compactness, but also remarkable and efficient illumination and visibility of the operative jaws.

I attain the foregoing objects and such other objects'and advantages as may hereinafter appear, or be pointed out, in the manner illustratively shown in the accompanying drawings, wherein Figure l is a perspective view of a surgical instrument of the present character;

- Figure 2 is a fragmentary side view of the forward portion of Figure 1, shown partly in section;

Figure 3 is an enlarged front end view of Figure 1;

Figure 4 is a side view of the electrode member and associated parts shown by itself, the jaws being open;

Figure 5 is an enlarged bottom view of the forward portion of Figure 4, the jaws being closed,

Figure 6 is an enlarged perspective view of the forward portion of Figure 4, with the jaws closed;

Figure '7 is a cross-sectional view taken substantially on the line of l'l of Figure 4;

Figure 8 is a view similar to Figure 4 showing a modified type of instrument, the jaws being open;

Figure 9 is a view similar to Figure 5 showing the jaws of Figure 8 from underneath;

Figure 10 is a front-end view of Figure 8; and

Figure 11 is a cross-sectional view taken substantially on the line i l of Figure 8.

In Figures 1-3, I have shown an electrode member of the present character associated with an endoscopic tube 20 having a forward lateral fenestra 2|. The tube 20 is composed of insulating material, such as hard rubber, or bakelite, and is preferably provided at its rear end with the insulating flange 22 and a connecting sleeve 23.

The sleeve 23 need not necessarily be of insulating material.

Carried by the sleeve 23 is the pet-cock 24 which communicates with the interior of the tube 20, and permits steam or fumes to be withdrawn from the latter during operations. The sleeve 23 is also provided with a connecting member or mechanism 25 which is adapted to facilitate the security with which the inner electrode member is held in association with the tube 20.

The electrode member is shown by itself in Figures 4-7 and consists of an elongated metallic stem having a relatively large tubular portion 26, and two relatively small tubes 2'! and 28, arranged along opposite sidesof the tube 26. At its rear end, the stem merges with the relatively enlarged plug portion 29, having bores which form continuations of the tubes 23, 27!, and 28. The

rear portion of the plug 29 carries the electrical binding post 38, the connector member 3! (adapted to cooperate with the device 25), and a fixed handle 32 of the manually-graspable control device. The plug 29 is also provided with a continuation 33 of the tube 25 terminating in a clamp device 34, which is adapted to facilitate the secure accommodation of a telescopic tube.

While any type of illuminating device or telescope may be used, I prefer to employ a telescope such as is described in U. S. Patent No. 1,680,491. This device is provided with the usual eye-piece 35, and the conductive sleeves 36. The latter are adapted to receive electrical connectors which supply the current for a miniature lamp 37 mounted at the forward tip of the telescope. Behind the lamp 3?, the telescope St is provided with a lens 39 which commands an obliquelyforward field of vision.

At its forward end, the tube 26 is provided with the substantially semi-circular extension flit which carries the complementary conductive electrode jaws. Both of these jaws are substantially U- shaped, and they are preferably constructed in a manner whereby one of them is adapted to nest within the other when the jaws are closed, as shown in Figures 5 and 6. In the form illustrated, the outer U-shaped jaw ll is integrally formed at the forward end of extension it, and it is preferably provided with teeth 12 along its rear edge. The inner movable jaw 43 is preferably provided with teeth M on its forward edge, and is pivoted as at 65 to the outer jaw ll. The jaw 63 is also provided with rearwardly extending cars 46' in which a crossbar ll is articulated. At its opposite ends the bar 47 is provided with two spaced control arms 48 and ie, which extend rearwardly through the tubes 2'1 and 28, respectively. At the rear ends of the arms 48 and it, they connect with a member 58 slidaoly mounted on the tubular extension 33 and engaged by the end 5! of the movable handle 52: of the control device. The handle 52 is pivoted to the handle 32, as at 53.

The manner in which the control device governs the cooperative movements of the jaws will be obvious from the description given. When the operator grasps the handles 32 and 52 of Figure 4, and moves the handle towards the handle 32, the member 50 is shifted towards the left, thus shifting the control arms 48 and 4% and moving the jaw 43 from the open position of Figure 4 into the closed positions of Figures 5 and 6. By manipulating the control device in reverse manner, the jaws are caused to open relatively to each other.

It is to be noted that the control arms 48 and 49 are arranged in sufiiciently spaced relationship to permit the lens 39 to command an unusually complete field of vision, amply illuminated by lamp Bl, through the space between arms t8 and 49. The jaws are thus maintained under constant illuminated vision, and the U-shaped configuration of the jaws prevents the rearward jaw from impeding equally efiicient visibility of the relatively forward jaw.

I am enabled to construct the jaws in the U- shaped manner shown without any sacrifice of strength or rigidity by virtue of the fact that the jaw portion of the device is entirely devoid of any insulating material. The integral association of the outer jaw with extension 40 lends strength and rigidity to it, and to the entire structure, and the mounting of the inner jaw, together with the rigid and staunch association therewith of the operating mechanism, constituted by the arms 68 and 49, provides an assembly of remarkable strength and ruggedness.

Notionly is the forward portion of the device devoid of insulation, but also. the rear portion, which includes the binding post 30': and the control device. Accordingly the entire assembly is unusually simple and: compact, and the. several.

parts; may. be manufactured and associated expeditiously within. a minimum space and with a minimum amount of material, yet with a maximum. or s rength and rigidity- Strange as; it may seem, the efficiency with which the device may be, used: is not in. the least impaired, by the uninsulated relationship of the several parts. The; operator may grasp. the controldevice with his bare hands-if. he wishes, and hemameven, place himself. in. parallel with. the circuit by touching, the patient with the: other hand. Not onlydoes the operator remain unaffected by any passage of current, but the functioning of the; jaws asoperative electrode conductors of the current is not in: the least mitigated. Accordingly all the advantages of modern highfrequency surgery are capable of enjoyment, together with, the obvious advantages of a forcipated instrument. Diseased tissue, tumors, adhesions, and the like, may be operated upon, resected, coagulated, cooked, or treated in any corresponding manner with remarkable efficiency and safety. Since any contactof the-electrode jaws with the tissue rendered completel hemostatic before the jaws are completely closed. The constriction of blood vessels and lymph'channels extends somewhat beyond the area or line-of contact, and the jaws, or forceps, are thus in eifectcapable of excising coagulated and bloodless masses. They may be further employed as pincers to remove dead tissue, and, in thisway, a wide variety of operative procedures may be effected. Should any blood vessel accidentally open, a brief passage of, current therethrough by contacting either of the jaws thereto renders it hemostatic.

InFigures 8-11, I have illustrated a slightly modified construction inwhichthe. elongated metallic stem of the electrode. member consists of the-tube 66 arranged alongside of a channel memher 6!. The stem is provided at, its rear end with a: plug portion 82, which carries, as in the embodimentalready described, an electrical binding post a connecting member 64, a fixed handle 65- of the control device, andthe extensionv 66 of the channel member 61.

The telescope 6! is adapted to be accommodated within the members GI and 66, the latter terminating in a clamp 68 of a character hereinbefore described. The telescope is of the type which has an illuminating lamp at its forward end and an objective lens 18 slightly to the rear, commanding an obliquely forward field of vision.

Mounted in the tube 60 is a control rod H, articulatedat its rear end 12 to the end of the movable handle 730i the control device. The handles 13,-and65 are pivoted, as at 14. I

The tube 60 is-provided at its forward end with an extension 15, the latter in turn provided with spaced guide-rods 16 and H. These rods terminate at their forward ends in the integrallyiormed U-shaped jaw l8, arranged as in the previous embodiment in a, substantially transverse planewith respect to the instrument as a whole.

The complementary movable; jaw I S-is slightly smaller than the jaw 18 so as to nest therewith when the'jaws are closednandlthe jaw 1:9 is provided at its end with the rearwardly-extending control arms 80 and 8|, these arms being in this embodiment provided with: sleeves 82'" and 83 which are adapted to engage slidably with the guide-rods l6: and H, respectively. At the rear, the arms 80sand Sl are-connected with the crosspiece 84 which ismounted on the forward end of the controlirod'. H

By manipulating the handles 55 and 131 of: the control device; the operator is enabled toadvance, or retract, the rod H, whereby the jaw T9 is correspondingly advanced, or retracted with respect to-the jaw 18. At all times, the telescope 61 commandsa full and complete visibility through the space-betweenthe arms Stand 21 of the'two jaws T18. and I9 and: the U-shaped configuration. of the jaws facilitates the eflicient illumination and visibility of the entire operative procedure. In many respects, the structure of FiguresS-Il is preferable because theabsence of any pivot between the jaws dispenses with. any necessity for closing; or joining, the free ends of the jaws even to the slight extent necessitated by the pivot arrangement 45 of Figure 6;

It isto be noted that all ofthe parts of thedevice ,are completely uninsulated from one another. The construction is thereby extremely simplified and capableof embodying, the requisite strength ina minimum space and with a minimum amount of material and manufacturing. ex,-

pense.

It will be understood that. the forcipated instrurnents herein described'are merely illustrative of a wide variety of instruments which, may be constructed in accordance with my present invention, and, they have-beenchosen by me as exemplifications of the broader phases, of my invention for. the reason that. they are typical of the types of instruments-which'have heretofore proven themselves to be unfeasible for use as conductors or applicators of highfrequency currents. Therefore, I do not intend to-limit my. invention to instruments having jaws, except in so far. as the same may be specifically referred to in the appended claims. Also, the details of construction have been shown and described merely by way of illustration. Any suitable control device other than the scissors-like handles might, for example, be employed. The stems of the electrode members may be constructedin a variety'of ways. 7 In general, it will be understood that the details herein described and illustrated may, in many respects, be alteredby those skilledin the art withoutdeparting from thespirit and scope of my invention as expressed in the appended claims. Having thusdescribedmy invention and illustrated its use, what I claim as new and desire to secure by Letters Patent is- 1. In a. forcipated surgical electrode, an elongated stem, a pair of complementary, conductive, mutually uninsulated, U-shaped-jawsmounted at the forward end of said stem, means for conducting high-frequency current through said stem to said jaws, and means for opening and closing said jaws, said means comprising a pair of spaced control arms extending rearwardly stem; to said, jaws, means for: opening, and. closing;

said jaws, said means comprising a pair of spaced control arms extending rearwardly from one of said jaws, and means carried by said stem for commanding an illuminated vision of said jaws through the space between said control arms.

3. In a forcipated surgical electrode, an elongated stem, a pair of complementary, conductive, mutually uninsulated U-shaped jaws mounted at the forward end of said stem, means for conducting high-frequency current through said stem to said jaws, means for opening and closing said jaws, said means comprising a pair of spaced control arms extending rearwardly from one of said jaws, and a telescope carried by said stem and having its objective arranged slightly to the rear of said jaws to command a field of vision through the space between said arms.

4. In a forcipated surgical electrode, an elongated stem, a pair of complementary, conductive, mutually uninsulated, U-shaped jaws mounted at the forward end of said stem and arranged substantially transverse to the latter, means for conducting high-frequency current through said stem to said jaws, a pair of spaced control arms extending rearwardly from one of said jaws for controlling its movements toward and away from the other jaw, and a telescope carried by said stem and commanding an obliquely forward visibility of said jaws through the space between said arms.

5. In a forcipated surgical electrode, an elongated stem, a pair of complementary, conductive, mutually uninsulated, U-shaped jaws mounted at the forward end of said stem, means for opening and closing said jaws, said means comprising a pair of spaced control arms extending rearwardly from one of said jaws, whereby the functioning of said jaws may be observed from the rear through the space between said control arms, and electric binding post at the rear portion of the stem and in electrical connection with said jaws, said binding post being adapted to establish an electrical connection with a source of high-frequency current so that the latter will be conducted through thestem to said jaws.

6. In a forcipated surgical electrode, an elongated stem having a substantially transverse, d-shaped, conductive jaw at its forward end, a complementary, U-shaped, conductive jaw pivoted at its rear end to the rear end of the first-named jaw and uninsulated from the latter, means for conducting high-frequency current through said stem to said jaws, a laterally disposed control arm extending rearwardly from the pivoted jaw, and means at the rear portion of the stem for axially reciprocating said arm to open and close said jaws relative to each other.

'7. In a forcipated surgical electrode, an elongated stem having a substantially transverse, U-snaped, conductive jaw at its forward end, a complementary, U-shaped, conductive jaw pivoted at its rear end to the rear end of the firstnamed jaw, a pair of spaced control arms extending rearwardly from the pivoted jaw and uninsulated from the latter, means for conducting high-frequency current through said stem to said jaws, and means at the rear portion of the stem for axially reciprocating said arms to move said jaw into and out of operative registry with the other jaw.

8. In a forcipated surgical electrode, an elongated stem having a substantially transverse, U-shaped, conductive jaw at its forward end, a complementary, U-shaped, conductive jaw pivoted at its rear end to the rear end of the firstnamed jaw and uninsulated from the latter, means for conducting high-frequency current through said stem to said jaws, a pair of spaced control arms extending rearwardly from the pivoted jaw, means for axially reciprocating said arms to actuate the jaws, and a telescope arranged to command visibility of said jaws through the space between said arms.

9. In a forcipated surgical electrode, an elongated stem having a substantially transverse, U-shaped, conductive jaw at its forward end, a pair of spaced conductive guide rods extending rearwardly from the free ends of said U, a complementary, conductive, U-shaped jaw slidably mounted on said guide rods, said jaws and guide rods being associated in mutually uninsulated relationship, means for conducting high-frequency current through said stem to said jaws, and means for sliding said complementary jaw along said rods to advance it and withdraw it from the other jaw.

10. In a forcipated surgical electrode, an elongated stem having a substantially transverse, U- shaped, conductive jaw at its forward end, a pair of spaced, conductive guide rods extending rearwardly from the free ends of said U, a complementary, conductive, U-shaped jaw, a pair of spaced, conductive control arms extending rearwardly from said complementary jaw and in slidable engagement with said guide rods, respectively, said jaws and guide rods being associated in mutually uninsulated relationship, means for conducting high-frequency current through said stem to said jaws, and means for axially reciproeating said arms to move said jaws into and out of operative registry.

11. In a forcipated surgical electrode, an elongated stem having a substantially transverse, U- shaped, conductive jaw at its forward end, a pair of spaced, conductive guide rods extending rearwardly from the free ends of said U, a complementary, conductive, U-shaped jaw, a pair of spaced, conductive control arms extending rearwardly from said complementary jaw and in slidable engagement with said guide rods, respectively, said jaws and guide rods being associated in mutually uninsulated relationship, means for conducting high-frequency current through said stem to said jaws, means for moving said control arms to actuate said jaws, and a telescope arranged to command visibility of said jaws through the space between said arms.

12. In a forcipated instrument of the character described, a stem, a U-shaped jaw at the forward end of the stem and provided at its ends with a pair of rearwardly extending guide rods, and a complementary, U-shaped jaw provided at its ends with a pair of rearwardly extending control arms in slidable engagement, respectively, with said guide rods.

13. In a forcipated instrument of the character described, a stem, a U-shaped jaw at the forward end of the stem and provided at its ends with a pair of rearwardly extending guide rods, a complementary, U-shaped jaw provided at its ends with a pair of rearwardly extending control arms in slidable engagement, respectively, with said guide rods, and a telescope arranged with its objective slightly behind said first-named jaw and commanding visibility of said jaws through the space betwen said control arms.

FREDERICK CHARLES WAPPLER

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2691370 *Mar 27, 1952Oct 12, 1954American Cystoscope Makers IncInstrument for heart surgery
US4003380 *Aug 29, 1975Jan 18, 1977F.L. FisherBipolar coagulation instrument
US4024869 *Dec 8, 1975May 24, 1977Richard Wolf GmbhResectoscopes
US4060087 *Jun 11, 1976Nov 29, 1977Richard Wolf GmbhSingle or double-shank cutting loop device for resectoscopes
US4220154 *Jul 8, 1977Sep 2, 1980Kurt SemmDevice for coagulating biological tissue
US4522206 *Jan 26, 1983Jun 11, 1985Dyonics, Inc.For cutting a range of body tissue
US4662371 *Jun 10, 1985May 5, 1987Whipple Terry LSurgical instrument
US4872456 *Nov 12, 1987Oct 10, 1989Hasson Harrith MTemplate incision device
US4919152 *May 18, 1988Apr 24, 1990Ralph GerMethod of closing the opening of a hernial sac
US4920961 *Jun 2, 1988May 1, 1990Circon CorporationSystem for disconnetably mounting an endoscope sheath with an endoscope tool
US4944443 *Apr 22, 1988Jul 31, 1990Innovative Surgical Devices, Inc.Surgical suturing instrument and method
US4994061 *Mar 6, 1989Feb 19, 1991Selvac CorporationHair grasping device
US5125553 *Mar 12, 1990Jun 30, 1992Stryker Sales CorporationSurgical suturing instrument and method
US5190541 *Oct 17, 1990Mar 2, 1993Boston Scientific CorporationSurgical instrument and method
US5207675 *Jul 15, 1991May 4, 1993Jerome CanadySurgical coagulation device
US5217458 *Apr 9, 1992Jun 8, 1993Everest Medical CorporationBipolar biopsy device utilizing a rotatable, single-hinged moving element
US5220928 *Jan 31, 1992Jun 22, 1993Stryker Sales CorporationSurgical procedure for joining tissue in an internal body cavity
US5256138 *Oct 4, 1990Oct 26, 1993The Birtcher CorporationElectrosurgical handpiece incorporating blade and conductive gas functionality
US5275608 *Oct 16, 1991Jan 4, 1994Implemed, Inc.Generic endoscopic instrument
US5373840 *Oct 2, 1992Dec 20, 1994Knighton; David R.Endoscope and method for vein removal
US5449356 *Oct 18, 1991Sep 12, 1995Birtcher Medical Systems, Inc.Multifunctional probe for minimally invasive surgery
US5569244 *Apr 20, 1995Oct 29, 1996Symbiosis CorporationLoop electrodes for electrocautery probes for use with a resectoscope
US5665100 *Jan 20, 1995Sep 9, 1997Yoon; InbaeMultifunctional instrument with interchangeable operating units for performing endoscopic procedures
US5669934 *Jun 5, 1995Sep 23, 1997Fusion Medical Technologies, Inc.Methods for joining tissue by applying radiofrequency energy to performed collagen films and sheets
US5707389 *Jun 7, 1995Jan 13, 1998Baxter International Inc.Side branch occlusion catheter device having integrated endoscope for performing endoscopically visualized occlusion of the side branches of an anatomical passageway
US5749895 *Sep 6, 1994May 12, 1998Fusion Medical Technologies, Inc.Method for bonding or fusion of biological tissue and material
US5766168 *Jan 11, 1996Jun 16, 1998Northgate Technologies, Inc.Perforated resectoscope electrode assembly
US5772576 *Dec 11, 1995Jun 30, 1998Embro Vascular L.L.C.For removing cylindrical tissue structures from human or animal bodies
US5797939 *Dec 27, 1996Aug 25, 1998Yoon; InbaeEndoscopic scissors with longitudinal operating channel
US5797958 *Dec 4, 1996Aug 25, 1998Yoon; InbaeEndoscopic grasping instrument with scissors
US5824015 *Jun 5, 1995Oct 20, 1998Fusion Medical Technologies, Inc.Method for welding biological tissue
US5902300 *Feb 5, 1997May 11, 1999Symbiosis CorporationElectrodes having upper and lower operating surfaces for electrocautery probes for use with a resectoscope
US5908419 *Feb 5, 1997Jun 1, 1999Symbiosis CorporationResectoscope roller electrode having high heat zone insert
US5919189 *May 13, 1997Jul 6, 1999Benderev; Theodore V.For cutting and coagulating tissue
US5938661 *Feb 5, 1997Aug 17, 1999Symbosis CorporationSingle arm electrocautery probes for use with a resectoscope
US5947994 *Aug 8, 1997Sep 7, 1999Baxter International Inc.Endoscopically-assisted device for endoluminal occlusion of anatomical passageway side branches
US5957923 *Oct 7, 1996Sep 28, 1999Symbiosis CorporationLoop electrodes for electrocautery probes for use with a resectoscope
US5984939 *May 1, 1997Nov 16, 1999Yoon; InbaeMultifunctional grasping instrument with cutting member and operating channel for use in endoscopic and non-endoscopic procedures
US6024750 *Aug 14, 1997Feb 15, 2000United States SurgicalUltrasonic curved blade
US6030383 *Oct 26, 1998Feb 29, 2000Benderev; Theodore V.Electrosurgical instrument and method of use
US6036667 *Aug 14, 1997Mar 14, 2000United States Surgical CorporationUltrasonic dissection and coagulation system
US6063050 *Oct 16, 1998May 16, 2000United States Surgical Corp.Ultrasonic dissection and coagulation system
US6071232 *Jun 29, 1998Jun 6, 2000Embro Vascular L.L.C.Apparatus for vein removal
US6267761Sep 9, 1997Jul 31, 2001Sherwood Services AgApparatus and method for sealing and cutting tissue
US6280407Mar 7, 2000Aug 28, 2001United States Surgical CorporationUltrasonic dissection and coagulation system
US6428468Jun 5, 2000Aug 6, 2002Cardiothoracic Systems, Inc.Apparatus and method for vein removal
US6468286Sep 6, 2001Oct 22, 2002The United States Surgical CorporationUltrasonic curved blade
US6506200Mar 14, 2000Jan 14, 2003Origin Medsystems, Inc.Tissue separation cannula and method
US6511494Nov 17, 2000Jan 28, 2003Embro CorporationVein harvesting system and method
US6558313Nov 17, 2000May 6, 2003Embro CorporationVein harvesting system and method
US6682528Sep 17, 2002Jan 27, 2004Sherwood Services AgEndoscopic bipolar electrosurgical forceps
US6682544Sep 11, 2002Jan 27, 2004United States Surgical CorporationUltrasonic curved blade
US6705986Mar 18, 2003Mar 16, 2004Embro CorporationVein harvesting system and method
US6726686Apr 1, 2002Apr 27, 2004Sherwood Services AgBipolar electrosurgical instrument for sealing vessels
US6869439Aug 19, 2002Mar 22, 2005United States Surgical CorporationUltrasonic dissector
US6932810Nov 14, 2001Aug 23, 2005Sherwood Services AgApparatus and method for sealing and cutting tissue
US6960210Sep 13, 2002Nov 1, 2005Sherwood Services AgLaparoscopic bipolar electrosurgical instrument
US6997926Feb 4, 2002Feb 14, 2006Boston Scientific Scimed, Inc.Resistance heated tissue morcellation
US7001404Jan 9, 2003Feb 21, 2006Origin Medsystems, Inc.Tissue separation cannula and method
US7033354Dec 4, 2003Apr 25, 2006Sherwood Services AgElectrosurgical electrode having a non-conductive porous ceramic coating
US7066875Jun 7, 2002Jun 27, 2006Cardio Thoracic Systems, Inc.Apparatus and method for vein removal
US7083618Apr 5, 2002Aug 1, 2006Sherwood Services AgVessel sealer and divider
US7090673Jan 22, 2002Aug 15, 2006Sherwood Services AgVessel sealer and divider
US7101371Jun 25, 2002Sep 5, 2006Dycus Sean TVessel sealer and divider
US7101372Apr 6, 2001Sep 5, 2006Sherwood Sevices AgVessel sealer and divider
US7101373Apr 6, 2001Sep 5, 2006Sherwood Services AgVessel sealer and divider
US7118570Apr 6, 2001Oct 10, 2006Sherwood Services AgVessel sealing forceps with disposable electrodes
US7118587Apr 6, 2001Oct 10, 2006Sherwood Services AgVessel sealer and divider
US7131970Nov 17, 2004Nov 7, 2006Sherwood Services AgOpen vessel sealing instrument with cutting mechanism
US7131971Feb 21, 2006Nov 7, 2006Sherwood Services AgVessel sealer and divider
US7135020Apr 6, 2001Nov 14, 2006Sherwood Services AgElectrosurgical instrument reducing flashover
US7147638Apr 29, 2004Dec 12, 2006Sherwood Services AgElectrosurgical instrument which reduces thermal damage to adjacent tissue
US7150097Jun 13, 2003Dec 19, 2006Sherwood Services AgMethod of manufacturing jaw assembly for vessel sealer and divider
US7150749Sep 29, 2004Dec 19, 2006Sherwood Services AgVessel sealer and divider having elongated knife stroke and safety cutting mechanism
US7156846Jun 13, 2003Jan 2, 2007Sherwood Services AgVessel sealer and divider for use with small trocars and cannulas
US7160298Apr 6, 2001Jan 9, 2007Sherwood Services AgElectrosurgical instrument which reduces effects to adjacent tissue structures
US7160299Apr 28, 2004Jan 9, 2007Sherwood Services AgMethod of fusing biomaterials with radiofrequency energy
US7179258Apr 7, 2004Feb 20, 2007Sherwood Services AgBipolar electrosurgical instrument for sealing vessels
US7195631Sep 9, 2004Mar 27, 2007Sherwood Services AgForceps with spring loaded end effector assembly
US7207990Jun 29, 2005Apr 24, 2007Sherwood Services AgLaparoscopic bipolar electrosurgical instrument
US7211040Feb 17, 2004May 1, 2007Embro CorporationVein harvesting system and method
US7214180Jan 6, 2003May 8, 2007Origin Medsystems, Inc.Method for cardiac restraint
US7223265Feb 16, 2006May 29, 2007Sherwood Services AgElectrosurgical electrode having a non-conductive porous ceramic coating
US7232440Oct 21, 2004Jun 19, 2007Sherwood Services AgBipolar forceps having monopolar extension
US7241296Dec 15, 2003Jul 10, 2007Sherwood Services AgBipolar electrosurgical instrument for sealing vessels
US7252667Jun 22, 2004Aug 7, 2007Sherwood Services AgOpen vessel sealing instrument with cutting mechanism and distal lockout
US7255697Aug 31, 2006Aug 14, 2007Sherwood Services AgVessel sealer and divider
US7264587Jan 17, 2003Sep 4, 2007Origin Medsystems, Inc.Endoscopic subxiphoid surgical procedures
US7267677Oct 30, 2002Sep 11, 2007Sherwood Services AgVessel sealing instrument
US7270660Jun 29, 2005Sep 18, 2007Sherwood Services AgApparatus and method for sealing and cutting tissue
US7270664May 5, 2006Sep 18, 2007Sherwood Services AgVessel sealing instrument with electrical cutting mechanism
US7276068Sep 2, 2004Oct 2, 2007Sherwood Services AgVessel sealing instrument with electrical cutting mechanism
US7288096Feb 18, 2003Oct 30, 2007Origin Medsystems, Inc.Apparatus for placement of cardiac defibrillator and pacer
US7329256Dec 23, 2005Feb 12, 2008Sherwood Services AgVessel sealing instrument
US7367976Nov 15, 2004May 6, 2008Sherwood Services AgBipolar forceps having monopolar extension
US7377920May 5, 2005May 27, 2008Sherwood Services AgLaparoscopic bipolar electrosurgical instrument
US7384420May 19, 2004Jun 10, 2008Sherwood Services AgVessel sealer and divider
US7384421Sep 30, 2005Jun 10, 2008Sherwood Services AgSlide-activated cutting assembly
US7384423Oct 8, 2002Jun 10, 2008Origin Medsystems, Inc.Tissue dissection method
US7398781Aug 9, 2000Jul 15, 2008Maquet Cardiovascular, LlcMethod for subxiphoid endoscopic access
US7435249Apr 6, 2001Oct 14, 2008Covidien AgElectrosurgical instruments which reduces collateral damage to adjacent tissue
US7442193Nov 20, 2003Oct 28, 2008Covidien AgElectrically conductive/insulative over-shoe for tissue fusion
US7442194May 7, 2007Oct 28, 2008Covidien AgBipolar forceps having monopolar extension
US7445621May 7, 2007Nov 4, 2008Covidien AgBipolar forceps having monopolar extension
US7458972Mar 27, 2007Dec 2, 2008Covidien AgElectrosurgical electrode having a non-conductive porous ceramic coating
US7473253Apr 6, 2001Jan 6, 2009Covidien AgVessel sealer and divider with non-conductive stop members
US7481810May 7, 2007Jan 27, 2009Covidien AgBipolar forceps having monopolar extension
US7491201May 14, 2004Feb 17, 2009Covidien AgTissue sealer with non-conductive variable stop members and method of sealing tissue
US7491202Mar 31, 2005Feb 17, 2009Covidien AgElectrosurgical forceps with slow closure sealing plates and method of sealing tissue
US7500975Oct 3, 2005Mar 10, 2009Covidien AgSpring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US7510556Nov 24, 2004Mar 31, 2009Coviden AgVessel sealing instrument
US7513898Jan 16, 2008Apr 7, 2009Covidien AgVessel sealing instrument
US7526342Oct 29, 2003Apr 28, 2009Maquet Cardiovascular LlcApparatus for endoscopic cardiac mapping and lead placement
US7540872Sep 19, 2005Jun 2, 2009Covidien AgArticulating bipolar electrosurgical instrument
US7553312Dec 21, 2007Jun 30, 2009Covidien AgVessel sealing instrument
US7582087Apr 6, 2001Sep 1, 2009Covidien AgVessel sealing instrument
US7594916Nov 22, 2005Sep 29, 2009Covidien AgElectrosurgical forceps with energy based tissue division
US7597693Jun 13, 2003Oct 6, 2009Covidien AgVessel sealer and divider for use with small trocars and cannulas
US7597698Jul 10, 2003Oct 6, 2009Maquet Cardiovascular LlcApparatus and method for endoscopic encirclement of pulmonary veins for epicardial ablation
US7628791Aug 19, 2005Dec 8, 2009Covidien AgSingle action tissue sealer
US7628792Sep 22, 2005Dec 8, 2009Covidien AgBilateral foot jaws
US7641653May 4, 2006Jan 5, 2010Covidien AgOpen vessel sealing forceps disposable handswitch
US7645289Jun 26, 2002Jan 12, 2010Tyco Healthcare Group LpConduit harvesting instrument and method
US7655007Dec 18, 2006Feb 2, 2010Covidien AgMethod of fusing biomaterials with radiofrequency energy
US7686804Jan 10, 2006Mar 30, 2010Covidien AgVessel sealer and divider with rotating sealer and cutter
US7686827Oct 21, 2005Mar 30, 2010Covidien AgMagnetic closure mechanism for hemostat
US7699861Dec 17, 2003Apr 20, 2010Tyco Healthcare Group LpConduit harvesting instrument and method
US7708735Jul 19, 2005May 4, 2010Covidien AgIncorporating rapid cooling in tissue fusion heating processes
US7744615Jul 18, 2006Jun 29, 2010Covidien AgApparatus and method for transecting tissue on a bipolar vessel sealing instrument
US7753909Apr 29, 2004Jul 13, 2010Covidien AgElectrosurgical instrument which reduces thermal damage to adjacent tissue
US7766910Nov 9, 2006Aug 3, 2010Tyco Healthcare Group LpVessel sealer and divider for large tissue structures
US7771425Feb 6, 2006Aug 10, 2010Covidien AgVessel sealer and divider having a variable jaw clamping mechanism
US7776036Mar 13, 2003Aug 17, 2010Covidien AgBipolar concentric electrode assembly for soft tissue fusion
US7776037Jul 7, 2006Aug 17, 2010Covidien AgSystem and method for controlling electrode gap during tissue sealing
US7789878Sep 29, 2006Sep 7, 2010Covidien AgIn-line vessel sealer and divider
US7799026Nov 13, 2003Sep 21, 2010Covidien AgCompressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7799028Sep 26, 2008Sep 21, 2010Covidien AgArticulating bipolar electrosurgical instrument
US7811283Oct 8, 2004Oct 12, 2010Covidien AgOpen vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
US7819872Sep 29, 2006Oct 26, 2010Covidien AgFlexible endoscopic catheter with ligasure
US7828798Mar 27, 2008Nov 9, 2010Covidien AgLaparoscopic bipolar electrosurgical instrument
US7837685Jul 13, 2005Nov 23, 2010Covidien AgSwitch mechanisms for safe activation of energy on an electrosurgical instrument
US7846158May 5, 2006Dec 7, 2010Covidien AgApparatus and method for electrode thermosurgery
US7846161Sep 29, 2006Dec 7, 2010Covidien AgInsulating boot for electrosurgical forceps
US7857812Dec 18, 2006Dec 28, 2010Covidien AgVessel sealer and divider having elongated knife stroke and safety for cutting mechanism
US7867163Dec 12, 2008Jan 11, 2011Maquet Cardiovascular LlcInstrument and method for remotely manipulating a tissue structure
US7877852Sep 19, 2008Feb 1, 2011Tyco Healthcare Group LpMethod of manufacturing an end effector assembly for sealing tissue
US7877853Sep 19, 2008Feb 1, 2011Tyco Healthcare Group LpMethod of manufacturing end effector assembly for sealing tissue
US7879035Nov 8, 2006Feb 1, 2011Covidien AgInsulating boot for electrosurgical forceps
US7887535Aug 17, 2004Feb 15, 2011Covidien AgVessel sealing wave jaw
US7887536Aug 19, 2009Feb 15, 2011Covidien AgVessel sealing instrument
US7896878Mar 12, 2009Mar 1, 2011Coviden AgVessel sealing instrument
US7909823Jan 17, 2006Mar 22, 2011Covidien AgOpen vessel sealing instrument
US7922718Oct 12, 2006Apr 12, 2011Covidien AgOpen vessel sealing instrument with cutting mechanism
US7922953Sep 28, 2006Apr 12, 2011Covidien AgMethod for manufacturing an end effector assembly
US7931649Feb 14, 2007Apr 26, 2011Tyco Healthcare Group LpVessel sealing instrument with electrical cutting mechanism
US7935052Feb 14, 2007May 3, 2011Covidien AgForceps with spring loaded end effector assembly
US7938842Oct 5, 1999May 10, 2011Maquet Cardiovascular LlcTissue dissector apparatus
US7947041Aug 19, 2009May 24, 2011Covidien AgVessel sealing instrument
US7951149Oct 17, 2006May 31, 2011Tyco Healthcare Group LpAblative material for use with tissue treatment device
US7951150Feb 22, 2010May 31, 2011Covidien AgVessel sealer and divider with rotating sealer and cutter
US7955332Sep 21, 2005Jun 7, 2011Covidien AgMechanism for dividing tissue in a hemostat-style instrument
US7959553Sep 30, 2008Jun 14, 2011Embro CorporationVein harvesting system and method
US7963965May 10, 2007Jun 21, 2011Covidien AgBipolar electrosurgical instrument for sealing vessels
US7972265Jul 21, 2004Jul 5, 2011Maquet Cardiovascular, LlcDevice and method for remote vessel ligation
US7981133Dec 21, 2007Jul 19, 2011Maquet Cardiovascular, LlcTissue dissection method
US8016827Oct 9, 2008Sep 13, 2011Tyco Healthcare Group LpApparatus, system, and method for performing an electrosurgical procedure
US8034052Nov 1, 2010Oct 11, 2011Covidien AgApparatus and method for electrode thermosurgery
US8070746May 25, 2007Dec 6, 2011Tyco Healthcare Group LpRadiofrequency fusion of cardiac tissue
US8123743Jul 29, 2008Feb 28, 2012Covidien AgMechanism for dividing tissue in a hemostat-style instrument
US8128624May 30, 2006Mar 6, 2012Covidien AgElectrosurgical instrument that directs energy delivery and protects adjacent tissue
US8142473Oct 3, 2008Mar 27, 2012Tyco Healthcare Group LpMethod of transferring rotational motion in an articulating surgical instrument
US8147489Feb 17, 2011Apr 3, 2012Covidien AgOpen vessel sealing instrument
US8162973Aug 15, 2008Apr 24, 2012Tyco Healthcare Group LpMethod of transferring pressure in an articulating surgical instrument
US8192433Aug 21, 2007Jun 5, 2012Covidien AgVessel sealing instrument with electrical cutting mechanism
US8197479Dec 10, 2008Jun 12, 2012Tyco Healthcare Group LpVessel sealer and divider
US8197633Mar 15, 2011Jun 12, 2012Covidien AgMethod for manufacturing an end effector assembly
US8211105May 7, 2007Jul 3, 2012Covidien AgElectrosurgical instrument which reduces collateral damage to adjacent tissue
US8221416Sep 12, 2008Jul 17, 2012Tyco Healthcare Group LpInsulating boot for electrosurgical forceps with thermoplastic clevis
US8235992Sep 23, 2008Aug 7, 2012Tyco Healthcare Group LpInsulating boot with mechanical reinforcement for electrosurgical forceps
US8235993Sep 24, 2008Aug 7, 2012Tyco Healthcare Group LpInsulating boot for electrosurgical forceps with exohinged structure
US8236025Sep 23, 2008Aug 7, 2012Tyco Healthcare Group LpSilicone insulated electrosurgical forceps
US8241210Jan 4, 2008Aug 14, 2012Maquet Cardiovascular LlcVessel retractor
US8241282Sep 5, 2008Aug 14, 2012Tyco Healthcare Group LpVessel sealing cutting assemblies
US8241283Sep 17, 2008Aug 14, 2012Tyco Healthcare Group LpDual durometer insulating boot for electrosurgical forceps
US8241284Jan 5, 2009Aug 14, 2012Covidien AgVessel sealer and divider with non-conductive stop members
US8251996Sep 23, 2008Aug 28, 2012Tyco Healthcare Group LpInsulating sheath for electrosurgical forceps
US8257352Sep 7, 2010Sep 4, 2012Covidien AgBipolar forceps having monopolar extension
US8257387Aug 15, 2008Sep 4, 2012Tyco Healthcare Group LpMethod of transferring pressure in an articulating surgical instrument
US8267935Apr 4, 2007Sep 18, 2012Tyco Healthcare Group LpElectrosurgical instrument reducing current densities at an insulator conductor junction
US8267936Sep 23, 2008Sep 18, 2012Tyco Healthcare Group LpInsulating mechanically-interfaced adhesive for electrosurgical forceps
US8277447Nov 18, 2009Oct 2, 2012Covidien AgSingle action tissue sealer
US8298228Sep 16, 2008Oct 30, 2012Coviden AgElectrosurgical instrument which reduces collateral damage to adjacent tissue
US8298232Mar 24, 2009Oct 30, 2012Tyco Healthcare Group LpEndoscopic vessel sealer and divider for large tissue structures
US8303582Sep 15, 2008Nov 6, 2012Tyco Healthcare Group LpElectrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique
US8303586Feb 10, 2009Nov 6, 2012Covidien AgSpring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US8317787Aug 28, 2008Nov 27, 2012Covidien LpTissue fusion jaw angle improvement
US8333765Jun 4, 2012Dec 18, 2012Covidien AgVessel sealing instrument with electrical cutting mechanism
US8348948Jul 29, 2010Jan 8, 2013Covidien AgVessel sealing system using capacitive RF dielectric heating
US8361071Aug 28, 2008Jan 29, 2013Covidien AgVessel sealing forceps with disposable electrodes
US8361072Nov 19, 2010Jan 29, 2013Covidien AgInsulating boot for electrosurgical forceps
US8366709Dec 27, 2011Feb 5, 2013Covidien AgArticulating bipolar electrosurgical instrument
US8382754Jan 26, 2009Feb 26, 2013Covidien AgElectrosurgical forceps with slow closure sealing plates and method of sealing tissue
US8394095Jan 12, 2011Mar 12, 2013Covidien AgInsulating boot for electrosurgical forceps
US8394096Apr 11, 2011Mar 12, 2013Covidien AgOpen vessel sealing instrument with cutting mechanism
US8425504Nov 30, 2011Apr 23, 2013Covidien LpRadiofrequency fusion of cardiac tissue
US8454602May 4, 2012Jun 4, 2013Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US8460331Apr 22, 2011Jun 11, 2013Maquet Cardiovascular, LlcTissue dissector apparatus and method
US8469956Jul 21, 2008Jun 25, 2013Covidien LpVariable resistor jaw
US8469957Oct 7, 2008Jun 25, 2013Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US8480696Jun 16, 2005Jul 9, 2013Medtronic, Inc.Minimally invasive coring vein harvester
US8486107Oct 20, 2008Jul 16, 2013Covidien LpMethod of sealing tissue using radiofrequency energy
US8496656Jan 16, 2009Jul 30, 2013Covidien AgTissue sealer with non-conductive variable stop members and method of sealing tissue
US8523898Aug 10, 2012Sep 3, 2013Covidien LpEndoscopic electrosurgical jaws with offset knife
US8535312Sep 25, 2008Sep 17, 2013Covidien LpApparatus, system and method for performing an electrosurgical procedure
US8540711Jul 10, 2007Sep 24, 2013Covidien AgVessel sealer and divider
US8551091Mar 30, 2011Oct 8, 2013Covidien AgVessel sealing instrument with electrical cutting mechanism
US8568444Mar 7, 2012Oct 29, 2013Covidien LpMethod of transferring rotational motion in an articulating surgical instrument
US8591506Oct 16, 2012Nov 26, 2013Covidien AgVessel sealing system
US8597296Aug 31, 2012Dec 3, 2013Covidien AgBipolar forceps having monopolar extension
US8597297Aug 29, 2006Dec 3, 2013Covidien AgVessel sealing instrument with multiple electrode configurations
US8623017Jul 23, 2009Jan 7, 2014Covidien AgOpen vessel sealing instrument with hourglass cutting mechanism and overratchet safety
US8623276Feb 9, 2009Jan 7, 2014Covidien LpMethod and system for sterilizing an electrosurgical instrument
US8636761Oct 9, 2008Jan 28, 2014Covidien LpApparatus, system, and method for performing an endoscopic electrosurgical procedure
US8641713Sep 15, 2010Feb 4, 2014Covidien AgFlexible endoscopic catheter with ligasure
US8647341Oct 27, 2006Feb 11, 2014Covidien AgVessel sealer and divider for use with small trocars and cannulas
US8668689Apr 19, 2010Mar 11, 2014Covidien AgIn-line vessel sealer and divider
US8679114Apr 23, 2010Mar 25, 2014Covidien AgIncorporating rapid cooling in tissue fusion heating processes
US8696667Aug 9, 2012Apr 15, 2014Covidien LpDual durometer insulating boot for electrosurgical forceps
US8734443Sep 19, 2008May 27, 2014Covidien LpVessel sealer and divider for large tissue structures
US8740901Jan 20, 2010Jun 3, 2014Covidien AgVessel sealing instrument with electrical cutting mechanism
US8764748Jan 28, 2009Jul 1, 2014Covidien LpEnd effector assembly for electrosurgical device and method for making the same
US8777835Jan 11, 2012Jul 15, 2014Embro CorporationVein harvesting system and method
US8784417Aug 28, 2008Jul 22, 2014Covidien LpTissue fusion jaw angle improvement
US8795274Aug 28, 2008Aug 5, 2014Covidien LpTissue fusion jaw angle improvement
USRE36043 *Jan 11, 1996Jan 12, 1999Embro Vascular, L.L.C.Endoscope and method for vein removal
USRE44834Dec 7, 2012Apr 8, 2014Covidien AgInsulating boot for electrosurgical forceps
EP0119405A1 *Jan 25, 1984Sep 26, 1984Dyonics, Inc.Surgical instrument for cutting fragments of cartilage and other tissue
EP0400288A2 *Mar 21, 1990Dec 5, 1990Richard Wolf GmbHBipolar coagulation apparatus
WO1992006642A1 *Oct 15, 1991Apr 30, 1992Boston Scient CorpSurgical instrument and method
WO1993001758A1 *Jul 14, 1992Feb 4, 1993Jerome CanadySurgical coagulation device
Classifications
U.S. Classification606/46, 606/49
International ClassificationA61B18/14, A61B18/00
Cooperative ClassificationA61B2218/008, A61B18/1442, A61B2018/00196
European ClassificationA61B18/14F