US20140166242A1 - Cooling system for vehicle - Google Patents

Cooling system for vehicle Download PDF

Info

Publication number
US20140166242A1
US20140166242A1 US14/083,867 US201314083867A US2014166242A1 US 20140166242 A1 US20140166242 A1 US 20140166242A1 US 201314083867 A US201314083867 A US 201314083867A US 2014166242 A1 US2014166242 A1 US 2014166242A1
Authority
US
United States
Prior art keywords
refrigerant
condenser
cooling water
vehicle
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/083,867
Inventor
Jae Yeon Kim
Wan Je Cho
Jun-Il Jang
Byoung Hoon An
Yoon Sung Kim
Soon-Jong Lee
Jae-yong Kim
Jin-Seok Lim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Motor Co
Doowon Climate Control Co Ltd
Hanon Systems Corp
Original Assignee
Hyundai Motor Co
Halla Visteon Climate Control Corp
Doowon Climate Control Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Motor Co, Halla Visteon Climate Control Corp, Doowon Climate Control Co Ltd filed Critical Hyundai Motor Co
Assigned to HALLA VISTEON CLIMATE CONTROL CORP., DOOWON CLIMATE CONTROL CO., LTD., HYUNDAI MOTOR COMPANY reassignment HALLA VISTEON CLIMATE CONTROL CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AN, BYOUNG HOON, CHO, WAN JE, JANG, JUN-IL, KIM, JAE YEON, KIM, JAE-YONG, KIM, YOON SUNG, LEE, SOON-JONG, LIM, JIN-SEOK
Publication of US20140166242A1 publication Critical patent/US20140166242A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0452Combination of units extending one behind the other with units extending one beside or one above the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0441Condensers with an integrated receiver containing a drier or a filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0091Radiators
    • F28D2021/0094Radiators for recooling the engine coolant

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

A cooling system for a vehicle that system includes a radiator disposed in a front of the vehicle, and introduced with cooling water thereinto to cool the cooling water through heat exchange with exterior air;. In addition, a first condenser is disposed at a first side of the radiator in a width direction of the vehicle and connected with the radiator via a cooling water pipe to be introduced with the cooling water, and introduced with refrigerant via a refrigerant pipe to condense the refrigerant through heat exchange with the cooling water therein. A second condenser is interconnected with the first condenser via the refrigerant pipe to be introduced with the refrigerant condensed by the first condenser, and disposed in a front of the radiator to additionally condense the refrigerant through mutual heat exchange of the exterior air introduced while driving the vehicle and the refrigerant.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims priority to and the benefit of Korean Patent Application No. 10-2012-0145729 filed in the Korean Intellectual Property Office on Dec. 13, 2012, the entire contents of which are incorporated herein by reference.
  • BACKGROUND
  • (a) Field of the Invention
  • The present invention relates to a cooling system for a vehicle, and more particularly, to a cooling system for a vehicle that includes a water-cooled condenser and an air-cooled condenser that use cooling water and exterior air, respectively when refrigerant is condensed in a radiator that cools the cooling water through heat exchange with the exterior air.
  • (b) Description of the Related Art
  • In general, an air-conditioner system of a vehicle allows a fresh interior environment to be maintained by controlling an interior temperature of the vehicle at an appropriate temperature regardless of an exterior temperature change.
  • The air-conditioner system includes a compressor that compresses refrigerant, a condenser that condenses the refrigerant compressed by the compressor and liquefies the condensed refrigerant, an expansion valve that rapidly expands the refrigerant which is condensed and liquefied by the condenser, and an evaporator that cools air blown to an interior in which the air-conditioner system is installed using evaporated latent heat of the refrigerant while evaporating the refrigerant expanded by the expansion valve as primary components.
  • However, in the conventional air-conditioner system, when a water-cooled condenser is applied in cooling for condensing the refrigerant, cooling water exchanges heat with the refrigerant in the condenser and thus a refrigerant temperature at an outlet of the condenser rises, thereby increasing required power.
  • Further, the water-cooled condenser has a larger heat capacity of the cooling water than an air-cooled condenser and thus condensing pressure drops, but a difference in temperature between the cooling water and the refrigerant is substantially small and the temperature of the cooling water is higher than that of outdoor air, and as a result, it is difficult to form sub cool. Therefore, whole cooling performance of the air-conditioner system may be degraded.
  • A cooling fan and a radiator that have a large capacity are required to prevent the aforementioned problem. Therefore, a layout is adverse in a narrow engine room and an adverse effect is exerted in terms of a whole weight of a vehicle and cost.
  • In addition, the water-cooled condenser needs to be mounted in the rear of a fender or in the rear of the engine room to mount the water-cooled condenser in the narrow engine room, and as a result, it may be difficult to install the system, and thus a connection pipe and a layout may be complicated, degrading assembly and mountability and simultaneously, thermal damage of the engine room may cause performance hindrance and refrigerant flow resistance increases and thus power consumption of a compressor increases.
  • In the case of an environment friendly vehicle that has a motor, an electric power component, and a stack, the cooling water cools each constituent element and thereafter, is introduced into the condenser and thus, as the temperature of the cooling water rises, a condensing amount of the refrigerant is further degraded.
  • The above information disclosed in this section is only for enhancement of understanding of the background of the invention and therefore it may contain information that does not form the prior art that is already known in this country to a person of ordinary skill in the art.
  • SUMMARY
  • The present invention provides a cooling system for a vehicle that reduces condensing pressure and increases condensing performance of refrigerant by applying both a water-cooled type using cooling water and an air-cooled type using outdoor air when condensing the refrigerant to improve cooling performance and may be included in a radiator that cools the cooling water via heat exchange with the exterior air to improve package performance.
  • An exemplary embodiment of the present invention provides a cooling system for a vehicle, including: a radiator disposed in a front of the vehicle, and introduced with cooling water thereinto to cool the cooling water via heat exchange with exterior air; a first condenser disposed at one side of the radiator in a width direction of the vehicle and connected with the radiator via a cooling water pipe to be introduced with the cooling water, and introduced with refrigerant via a refrigerant pipe to condense the refrigerant through heat exchange with the cooling water therein; and a second condenser interconnected with the first condenser via the refrigerant pipe to be introduced with the refrigerant condensed by the first condenser, and disposed in a front of the radiator to additionally condense the refrigerant through mutual heat exchange of the exterior air introduced while driving and the refrigerant.
  • The first condenser may include a housing having a cooling water inlet and a cooling water outlet on a first side and a second side of one surface, respectively to be connected with the radiator via the cooling water pipe; introduction and discharge tanks respectively mounted at a first end of the housing; connection tanks respectively mounted on a second end of the housing to correspond to the introduction tank and the discharge tank to be interconnected therein; and a plurality of refrigerant flow tubes that interconnect the introduction tank and the discharge tank with the connection tanks.
  • The respective refrigerant flow tubes may be mounted to be spaced apart at regular intervals in the longitudinal directions of the introduction tank, the discharge tank, and the first and second connection tanks. In addition, the respective refrigerant flow tubes may be alternately disposed at crossed positions in the longitudinal direction of the refrigerant flow tube, and as a result, a plurality of diaphragms that change a flow direction of the cooling water that flows within the housing may be mounted on the respective refrigerant flow tubes. Heat dissipating pins may be provided among the respective refrigerant flow tubes.
  • The first condenser may be interconnected with the discharge tank and the second condenser via the refrigerant pipe at a first side of the housing and mounted with a receiver dryer that separates gas-state refrigerant that remains in the condensed refrigerant discharged from the discharge tank. The first condenser may be connected with the second condenser in series via the receiver dryer.
  • The second condenser may be mounted on an upper front portion of the radiator in the longitudinal direction of the radiator. In addition, the second condenser may be configured by a pin-tube type heat exchanger. The radiator may include a first header tank with an inlet through which the cooling water is introduced; a second header tank disposed to be spaced apart from the first header tank at a regular interval and including the outlet through which the cooling water is discharged to discharge the cooling water cooled to the housing via the cooling water pipe; and a plurality of tubes that interconnect the first header tank and the second header tank, spaced apart at a regular interval in the longitudinal directions of the first and second header tanks, and having the heat dissipating pins mounted therein. The inlet and the outlet may be formed in the first header tank and the second header tank, respectively in opposite directions to each other.
  • According to a cooling system for a vehicle, exemplary embodiments of the present invention, condensing pressure may be reduced and condensing performance of refrigerant may be increased by applying both a water-cooled type using cooling water and an air-cooled type using outdoor air while condensing the refrigerant to improve cooling performance and the cooling system for a vehicle integrally configured to be included in a radiator cooling the cooling water through heat exchange with the exterior air to improve package performance.
  • As the condensing pressure of the refrigerant is reduced and the condensing performance of the refrigerant is improved, required power of a compressor may be reduced, thereby enhancing fuel efficiency of the vehicle.
  • Further, a first condenser adopting a water-cooled type may be mounted on a first side of the radiator in a width direction of the vehicle and a second condenser adopting an air-cooled type may be mounted in a front of the radiator, and as a result, the first and second condensers may be integrally configured, thereby simplifying a layout in the narrow engine room, improving spatial availability, and reducing a weight and saving manufacturing cost.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an exemplary view of a cooling system for a vehicle according to an exemplary embodiment of the present invention;
  • FIG. 2 is an exemplary front view of the cooling system for the vehicle according to the exemplary embodiment of the present invention;
  • FIG. 3, as an exemplary enlarged diagram of part A of FIG. 1, is an exemplary projection view of a first condenser applied to the cooling system for the vehicle according to the exemplary embodiment of the present invention;
  • FIG. 4 is an exemplary front view of the first condenser applied to the cooling system for the vehicle according to the exemplary embodiment of the present invention; and
  • FIG. 5 is an exemplary diagram illustrating the flow of cooling water and refrigerant passing through the first condenser in the cooling system for the vehicle according to the exemplary embodiment of the present invention.
  • DETAILED DESCRIPTION
  • It is understood that the term “vehicle” or “vehicular” or other similar term as used herein is inclusive of motor vehicles in general such as passenger automobiles including sports utility vehicles (SUV), buses, trucks, various commercial vehicles, watercraft including a variety of boats and ships, aircraft, and the like, and includes hybrid vehicles, electric vehicles, fuel cell vehicles, plug-in hybrid electric vehicles, fuel cell vehicles, hydrogen-powered vehicles and other alternative fuel vehicles (e.g. fuels derived from resources other than petroleum). As referred to herein, a hybrid vehicle is a vehicle that has two or more sources of power, for example both gasoline-powered and electric-powered vehicles.
  • The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • An exemplary embodiment of the present invention will hereinafter be described in detail with reference to the accompanying drawings.
  • Since configurations illustrated in exemplary embodiments and drawings in the specification are merely exemplary embodiments of the present invention, it should be appreciated that various equivalents and modification examples which can substitute the exemplary embodiments at the present application time.
  • In addition, throughout the specification, unless explicitly described to the contrary, the word “comprise” and variations such as “comprises” or “comprising,” will be understood to imply the inclusion of stated elements but not the exclusion of any other elements.
  • Further, terms such as “unit”, “means”, “portion”, “member”, etc. mean units of comprehensive configurations that perform at least one function or operation.
  • FIG. 1 is an exemplary view of a cooling system for a vehicle according to an exemplary embodiment of the present invention. FIG. 2 is an exemplary front view of the cooling system for the vehicle according to the exemplary embodiment of the present invention. FIG. 3, as an exemplary enlarged diagram of part A of FIG. 1, is an exemplary projection view of a first condenser applied to the cooling system for the vehicle according to the exemplary embodiment of the present invention. FIG. 4 is an exemplary front view of the first condenser applied to the cooling system for the vehicle according to the exemplary embodiment of the present invention. FIG. 5 is an exemplary diagram illustrating the flow of cooling water and refrigerant passing through the first condenser in the cooling system for the vehicle according to the exemplary embodiment of the present invention.
  • Referring to the figures, in a cooling system 100 for a vehicle according to an exemplary embodiment of the present invention, condensing pressure may be reduced and condensing performance of refrigerant may be increased by applying both a water-cooled type using cooling water and an air-cooled type using exterior air while condensing the refrigerant to improve cooling performance and the cooling system 100 may be included in a radiator that cools the cooling water through heat exchange with the exterior air to improve package performance.
  • In particular, the cooling system 100 for the vehicle according to the exemplary embodiment of the present invention may include a radiator 110, a first condenser 120, and a second condenser 130, as illustrated in FIGS. 1 and 2. The radiator 110 may be disposed in a front of the vehicle, and cooling water may be introduced into the radiator 110 to cool the cooling water through heat exchange with exterior air. A cooling fan (not illustrated) that blows wind may be mounted on a rear side of the radiator 110. The cooling fan may direct the wind to the radiator 110 together with exterior air which may introduced while driving to cool the radiator 110.
  • In the exemplary embodiment, the first condenser 120 may be disposed at a first side of the radiator 110 in a width direction of the vehicle and may be connected with the radiator 110 via a cooling water pipe 111 and the cooling water may be introduced into the first condenser 120, and refrigerant may be introduced through a refrigerant pipe 121 to condense the refrigerant through heat exchange with the cooling water therein.
  • Furthermore, the first condenser 120 may include include a housing 122, introduction and discharge tanks 125 and 126, a connection tank 127, and a refrigerant flow tube 128, as illustrated in FIGS. 3 and 4. The housing 122 may include a cooling water inlet 123 and a cooling water outlet 124 on a first side and a second side of one surface, respectively to be connected with the radiator 110 via the cooling water pipe 111.
  • The introduction tank 125 may be connected with the refrigerant pipe 121 to introduce the refrigerant therein and the discharge tank 126 may be connected with the refrigerant pipe 121 to discharge the refrigerant.
  • In the exemplary embodiment, the connection tanks 127 may be mounted on a second end of the housing 122 to correspond to the introduction tank 125 and the discharge tank 126, respectively to be interconnected therein. In addition, the refrigerant flow tube 128 may include a plurality of tubes to interconnect the introduction tank 125 and the discharge tank 126 with the connection tanks 127.
  • The respective refrigerant flow tubes 128 may be mounted to be spaced apart at regular intervals in the longitudinal directions of the introduction tank 125, the discharge tank 126, and the connection tank 127. Further, the plurality of refrigerant flow tubes 128 may be mounted to be spaced apart at regular intervals in the longitudinal directions of the introduction tank 125, the discharge tank 126, and the connection tank 127. The respective refrigerant flow tubes 128 may be alternately disposed at crossed positions in the longitudinal direction of the refrigerant flow tube 128, and as a result, a plurality of diaphragms 129 that change a flow direction of the cooling water that flows within the housing 122 may be mounted on the respective refrigerant flow tubes 128.
  • As the respective diaphragms 129 are alternately disposed at crossed positions at a first side and a second side of the respective refrigerant flow tubes 128 as illustrated in FIG. 5A, when the cooling water of which cooling is completed while passing through the radiator 110 is introduced into the housing 122 to flow toward the cooling water outlet 124, the cooling water may flow to the first side and the second side based on the diaphragm 129. As a result, when the refrigerant passes through the respective refrigerant flow tubes 128 of the first condenser 120, a contact area of the refrigerant with the cooling water may be increased, and thus, the refrigerant may be more efficiently condensed.
  • In addition, when the refrigerant is introduced into the introduction tank 125 via the refrigerant pipe 121 as illustrated in FIG. 5B, the refrigerant may flow toward the connection tank 127 via the respective refrigerant flow tubes 128 and may be moved and discharged to the discharge tank 126 from the connection tank 127 along the refrigerant flow tube 128.
  • Heat dissipating pins P may be provided among the respective refrigerant flow tubes 128 to efficiently dissipate heat transferred from the refrigerant that flows into the tubes to the cooling water introduced into the housing 122.
  • In addition, the second condenser 130 may be interconnected with the first condenser 120 via the refrigerant pipe 121 to be introduced with the refrigerant condensed by the first condenser 120, and the second condenser 130 may be disposed in the front of the radiator 110 to additionally condense the refrigerant through mutual heat exchange of the exterior air introduced while driving and the refrigerant. In particular, the second condenser 130 may be configured by a pin-tube type heat exchanger and may be mounted on an upper front portion of the radiator 110 in the longitudinal direction of the radiator 110.
  • Meanwhile, in the exemplary embodiment, the radiator 110 may include a first header tank 113, a second header tank 115, and a plurality of tubes 117. The first header tank 113 may include the inlet 112 through which the cooling water may be introduced and may be connected with the cooling water pipe 111. In addition, the second header tank 115 may be disposed to be spaced apart from the first header tank 113 at a regular interval and may include the outlet 114 through which the cooling water may be discharged, and as a result, the cooling water cooled via the cooling water pipe 111 may be discharged to the housing 122. Specifically, the inlet 112 and the outlet 114 may be formed within the first header tank 113 and the second header tank 115 in opposite directions to each other, respectively.
  • In addition, the respective tubes 117 may interconnect the first header tank 113 and the second header tank 115, and may be spaced apart at a regular interval in the longitudinal directions of the first and second header tanks 113 and 115. The heat dissipating pins P may be mounted among the tubes 117.
  • In the radiator 110 configured as above as the pin-tube type heat exchanger, exterior air introduced among the respective tubes 117 may be introduced into the first header tank 113 to be cooled through heat exchange with the cooling water that flows to the second header tank 115 through the respective tubes 117. In particular, the heat dissipating pins P may be configured among the respective tubes 117 to dissipate heat transferred from the cooling water that flows through the respective tubes 117 to the exterior.
  • Moreover, in the exemplary embodiment, when the first and second header tanks 113 and 115 are disposed in upper and lower portions of the radiator 110, respectively has been described as an exemplary embodiment, but the present invention is not limited thereto and the first and second header tanks 113 and 115 may be formed in a cross flow type in which the first and second header tanks 113 and 115 are disposed at both sides of the radiator 110 based on the width direction of the vehicle, respectively to be interconnected with each other via the respective tubes 117.
  • Furthermore, in the exemplary embodiment, the first condenser 120 may be interconnected with the discharge tank 126 and the second condenser 130 via the refrigerant pipe 121 at a first side of the housing 122 and a receiver dryer 140 that separates gas-state refrigerant that remains in the condensed refrigerant discharged from the discharge tank 126 may be mounted on the first condenser 120. As a result, the refrigerant may be discharged to the receiver dryer 140 from the discharge tank 126 as illustrated in FIG. 5B, and the refrigerant may be discharged while the gas-state refrigerant is separated while passing through the receiver dryer 140 to be supplied to the second condenser 130 through the refrigerant pipe 121.
  • In particular, the first condenser 120 may be connected with the second condenser 130 in series via the receiver dryer 140. As a result, only liquid-state refrigerant in primarily condensed refrigerant discharged from the first condenser 120 from which the gas-state refrigerant is separated, which is not subjected to state change through the receiver dryer 140 may be introduced into the second condenser 130, to be secondarily condensed through heat exchange with exterior air.
  • Moreover, in the exemplary embodiment, the receiver dryer 140 may be mounted on one side of the first condenser 120 as described in an exemplary embodiment, but the present invention is not limited thereto and the receiver dryer 140 may be integrally mounted on one side of the second condenser 130. In other words, in the exemplary embodiment, the first condenser 120 may be configured by the water-cooled type in which the cooling water as a cooling fluid is introduced into the first condenser 120 and exchanges heat with the refrigerant introduced into the first condenser 120 and the second condenser 130 may be configured by the air-cooled type in which the refrigerant exchanges heat with exterior air introduced from the exterior of the vehicle while the vehicle is driven.
  • Accordingly, the first condenser 120 configured by the water-cooled type may cool the refrigerant using cooling water having a larger heat transfer coefficient than the exterior air to reduce condensing pressure therein.
  • In addition, the second condenser 130 configured by the air-cooled type may receive only the liquid-state refrigerant in the refrigerant condensed while passing through the first condenser 120, via the receiver dryer 140 to cool the liquid-state refrigerant using the outdoor air to increase the temperature difference between the exterior air and the refrigerant, thereby facilitating formation of sub cool and reducing a heat transfer amount of the refrigerant pipe 121.
  • In the cooling system 100 for the vehicle according to the exemplary embodiment of the present invention configured as above, the first and second condensers 120 and 130 that complement disadvantages of the respective types by efficiently using the reduction of the condensing pressure which is an advantage of the water-cooled type and the facilitation of the sub cool formation which is an advantage of the air-cooled type may be integrally configured at a lateral side and a front side of the radiator 110 to improve a size and the spatial availability in the narrow engine room.
  • Moreover, in describing the cooling system 100 for the vehicle according to the exemplary embodiment of the present invention, the second condenser 130 is connected with the first condenser 120 via the receiver dryer 140 is described as an exemplary embodiment, but the present invention is not limited thereto. In other words, the second condenser 130 may be connected by changing a layout of the refrigerant pipe 121 to directly receive mixed refrigerant of liquid and gas refrigerant discharged from the first condenser 120 to condense the refrigerant through heat exchange with the exterior and thereafter, discharge the condensed refrigerant to the receiver dryer 140 and receive only the liquid refrigerant from which the gas refrigerant is separated from the receiver dryer 140 again to additionally condense the liquid refrigerant.
  • Further, the second condenser 130 may be internally separated and diaphragmed into at least one space to more efficiently condense the refrigerant by sequentially condensing the refrigerant for each state of the refrigerant for improvement of condensing efficiency of the refrigerant.
  • Accordingly, when the cooling system 100 for the vehicle according to the exemplary embodiment of the present invention configured as above is applied, condensing pressure may be reduced and condensing performance of refrigerant may be increased by applying both a water-cooled type using cooling water and an air-cooled type using exterior air while condensing the refrigerant to improve cooling performance and the cooling system 100 may be integrally included in a radiator 110 that cools the cooling water through heat exchange with the exterior air to improve package performance.
  • As the condensing pressure of the refrigerant is reduced and the condensing performance of the refrigerant is improved, required power of a compressor may be reduced, thereby enhancing fuel efficiency of the vehicle. Further, the first condenser 120 adopting a water-cooled type may be mounted on a first side of the radiator 110 in the width direction of the vehicle and the second condenser 130 adopting the air-cooled type may be mounted in the front of the radiator 110, and as a result, the first and second condensers may be integrally configured, thereby simplifying the layout in the narrow engine room, improving the spatial availability, and reducing a weight and saving manufacturing cost.
  • While this invention has been described in connection with what is presently considered to be exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the accompanying claims.
  • Description of symbols
    100: Cooling module 110: Radiator
    111: Cooling water pipe 112: Inlet
    113: First header tank 114: Outlet
    115: Second header tank 117: Tube
    120: First condenser 121: Refrigerant pipe
    122: Housing 123: Refrigerant inlet
    124: Refrigerant outlet 125: Introduction tank
    126: Discharge tank 127: Connection tank
    128: Refrigerant flow tube 129: Diaphragm
    130: Second condenser 140: Receiver dryer
    P: Heat dissipating pin

Claims (20)

What is claimed is:
1. A cooling system for a vehicle, comprising:
a radiator disposed in a front of the vehicle, and introduced with cooling water thereinto to cool the cooling water through heat exchange with exterior air;
a first condenser disposed at a first side of the radiator in a width direction of the vehicle and connected with the radiator via a cooling water pipe to be introduced with the cooling water, and introduced with refrigerant via a refrigerant pipe to condense the refrigerant through heat exchange with the cooling water therein; and
a second condenser interconnected with the first condenser via the refrigerant pipe to be introduced with the refrigerant condensed by the first condenser, and disposed in a front of the radiator to condense the refrigerant through mutual heat exchange of the exterior air introduced while driving and the refrigerant.
2. The cooling system for a vehicle, wherein the first condenser includes:
a housing that includes a cooling water inlet and a cooling water outlet on a first side and a second side of one surface, respectively to be connected with the radiator via the cooling water pipe;
introduction and discharge tanks respectively mounted at a first end of the housing;
connection tanks respectively mounted on a second end of the housing to correspond to the introduction tank and the discharge tank to be interconnected therein; and
a plurality of refrigerant flow tubes that interconnect the introduction tank and the discharge tank with the connection tanks.
3. The cooling system for a vehicle of claim 2, wherein the respective refrigerant flow tubes are mounted to be spaced apart at regular intervals in the longitudinal directions of the introduction tank, the discharge tank, and the first and second connection tanks.
4. The cooling system for a vehicle of claim 2, wherein the respective refrigerant flow tubes are alternately disposed at crossed positions in the longitudinal direction of the refrigerant flow tube, and a plurality of diaphragms that change a flow direction of the cooling water that flows within the housing are mounted on the respective refrigerant flow tubes.
5. The cooling system for a vehicle of claim 2, wherein heat dissipating pins are provided among the respective refrigerant flow tubes.
6. The cooling system for a vehicle of claim 2, wherein the first condenser is interconnected with the discharge tank and the second condenser via the refrigerant pipe at a first side of the housing and is mounted with a receiver dryer that separates gas-state refrigerant that remains in the condensed refrigerant discharged from the discharge tank.
7. The cooling system for a vehicle of claim 6, wherein the first condenser is connected with the second condenser in series via the receiver dryer.
8. The cooling system for a vehicle of claim 1, wherein the second condenser is mounted on an upper front portion of the radiator in the longitudinal direction of the radiator.
9. The cooling system for a vehicle of claim 1, wherein the second condenser is configured by a pin-tube type heat exchanger.
10. The cooling system for a vehicle of claim 2, wherein the radiator includes:
a first header tank with an inlet through which the cooling water is introduced;
a second header tank disposed to be spaced apart from the first header tank at a regular interval, wherein the second header tank includes the outlet through which the cooling water is discharged to discharge the cooling water cooled to the housing via the cooling water pipe; and
a plurality of tubes that interconnect the first header tank and the second header tank, spaced apart at a regular interval in the longitudinal directions of the first and second header tanks, and having the heat dissipating pins mounted therein.
11. The cooling system for a vehicle of claim 10, wherein the inlet and the outlet are formed in the first header tank and the second header tank, respectively in opposite directions to each other.
12. A method of cooling for a vehicle, comprising:
introducing cooling water into a radiator deposed in a front of the vehicle to cool the cooling water through heat exchange with exterior air;
introducing refrigerant via a refrigerant pipe to a first condenser disposed at a first side of the radiator in a width direction of the vehicle and connected with the radiator via a cooling water pipe to condense the refrigerant through heat exchange with the cooling water therein; and
introducing the refrigerant condensed by the first condenser to a second condenser interconnected with the first condense via the refrigerant pipe and disposed in a front of the radiator to condense the refrigerant through mutual heat exchange of the exterior air introduced while driving and the refrigerant.
13. The method of claim 12, wherein the first condenser includes:
a housing that includes a cooling water inlet and a cooling water outlet on a first side and a second side of one surface, respectively to be connected with the radiator via the cooling water pipe;
introduction and discharge tanks respectively mounted at a first end of the housing;
connection tanks respectively mounted on a second end of the housing to correspond to the introduction tank and the discharge tank to be interconnected therein; and
a plurality of refrigerant flow tubes that interconnect the introduction tank and the discharge tank with the connection tanks.
14. The method of claim 13, wherein the respective refrigerant flow tubes are mounted to be spaced apart at regular intervals in the longitudinal directions of the introduction tank, the discharge tank, and the first and second connection tanks.
15. The method of claim 13, wherein the respective refrigerant flow tubes are alternately disposed at crossed positions in the longitudinal direction of the refrigerant flow tube, and a plurality of diaphragms that change a flow direction of the cooling water that flows within the housing are mounted on the respective refrigerant flow tubes.
16. The method of claim 13, wherein heat dissipating pins are provided among the respective refrigerant flow tubes.
17. The method of claim 13, wherein the first condenser is interconnected with the discharge tank and the second condenser via the refrigerant pipe at a first side of the housing and is mounted with a receiver dryer that separates gas-state refrigerant that remains in the condensed refrigerant discharged from the discharge tank.
18. The method of claim 17, wherein the first condenser is connected with the second condenser in series via the receiver dryer.
19. The method of claim 12, wherein the second condenser is mounted on an upper front portion of the radiator in the longitudinal direction of the radiator.
20. The method of claim 12, wherein the second condenser is configured by a pin-tube type heat exchanger.
US14/083,867 2012-12-13 2013-11-19 Cooling system for vehicle Abandoned US20140166242A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0145729 2012-12-13
KR20120145729A KR101490906B1 (en) 2012-12-13 2012-12-13 Cooling module for vehicle

Publications (1)

Publication Number Publication Date
US20140166242A1 true US20140166242A1 (en) 2014-06-19

Family

ID=50821633

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/083,867 Abandoned US20140166242A1 (en) 2012-12-13 2013-11-19 Cooling system for vehicle

Country Status (5)

Country Link
US (1) US20140166242A1 (en)
JP (1) JP2014118140A (en)
KR (1) KR101490906B1 (en)
CN (1) CN103868286A (en)
DE (1) DE102013224201A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180299148A1 (en) * 2015-06-15 2018-10-18 Byd Company Limited Air conditioning system for vehicle and vehicle having same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106324956A (en) * 2015-06-30 2017-01-11 海信集团有限公司 Laser light source heat dissipation system and laser projection system
KR102518597B1 (en) * 2018-10-30 2023-04-05 현대자동차 주식회사 Cooling module for vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2018037A (en) * 1933-09-29 1935-10-22 Foster Wheeler Corp Heat exchanger
US3967677A (en) * 1975-05-28 1976-07-06 Mobil Oil Corporation Heat exchanger baffles
US4063431A (en) * 1976-08-11 1977-12-20 Gerhard Dankowski Compact cooling system for automotive vehicles
US4475588A (en) * 1981-09-28 1984-10-09 Mcquay Inc. Heat exchanger with tubes fixed at baffles
US4577682A (en) * 1984-08-30 1986-03-25 Ga Technologies Inc. Heat exchanger
USRE35710E (en) * 1988-10-24 1998-01-06 Sanden Corporation Heat exchanger having a radiator and a condenser
US6705103B2 (en) * 2000-12-23 2004-03-16 Robert Bosch Gmbh Device and method for cooling
US20100212874A1 (en) * 2007-06-20 2010-08-26 Halla Climate Control Corp. Cooling system for a vehicle

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602470Y2 (en) * 1978-07-14 1985-01-23 三洋電機株式会社 Heat exchanger for refrigerator
JPH08197645A (en) * 1995-01-30 1996-08-06 Nippondenso Co Ltd Production of heat exchanger
JP4078766B2 (en) * 1999-08-20 2008-04-23 株式会社デンソー Heat exchanger
JP2001124439A (en) * 1999-10-25 2001-05-11 Showa Alum Corp Condenser with supercooling unit
JP3728534B2 (en) * 2001-04-09 2005-12-21 漢拏空調株式会社 Aluminum radiator
JP2006162176A (en) * 2004-12-08 2006-06-22 Mitsubishi Heavy Ind Ltd Heat exchanger and vehicular air conditioner
KR100559567B1 (en) 2004-12-17 2006-03-15 기아자동차주식회사 Oil cooling system for automatic transmission
JP4970022B2 (en) * 2006-08-02 2012-07-04 カルソニックカンセイ株式会社 Combined heat exchanger and combined heat exchanger system
JP2009008299A (en) * 2007-06-27 2009-01-15 Calsonic Kansei Corp Tank structure of heat exchanger
JP2009166529A (en) * 2008-01-11 2009-07-30 Calsonic Kansei Corp Vehicular condenser
JP2010127508A (en) * 2008-11-26 2010-06-10 Calsonic Kansei Corp Combined heat exchanger
KR101173157B1 (en) * 2010-02-01 2012-08-16 한라공조주식회사 Air-Conditioning System for Vehicle having Water-Cooled Condenser and Water-Cooled Heat Exchanger for Supercooling
KR101674030B1 (en) * 2010-09-27 2016-11-09 한온시스템 주식회사 Condenser
KR101719643B1 (en) * 2010-12-03 2017-03-24 한온시스템 주식회사 Cooling module of hybrid vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2018037A (en) * 1933-09-29 1935-10-22 Foster Wheeler Corp Heat exchanger
US3967677A (en) * 1975-05-28 1976-07-06 Mobil Oil Corporation Heat exchanger baffles
US4063431A (en) * 1976-08-11 1977-12-20 Gerhard Dankowski Compact cooling system for automotive vehicles
US4475588A (en) * 1981-09-28 1984-10-09 Mcquay Inc. Heat exchanger with tubes fixed at baffles
US4577682A (en) * 1984-08-30 1986-03-25 Ga Technologies Inc. Heat exchanger
USRE35710E (en) * 1988-10-24 1998-01-06 Sanden Corporation Heat exchanger having a radiator and a condenser
US6705103B2 (en) * 2000-12-23 2004-03-16 Robert Bosch Gmbh Device and method for cooling
US20100212874A1 (en) * 2007-06-20 2010-08-26 Halla Climate Control Corp. Cooling system for a vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180299148A1 (en) * 2015-06-15 2018-10-18 Byd Company Limited Air conditioning system for vehicle and vehicle having same

Also Published As

Publication number Publication date
JP2014118140A (en) 2014-06-30
CN103868286A (en) 2014-06-18
KR101490906B1 (en) 2015-02-06
KR20140077034A (en) 2014-06-23
DE102013224201A1 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
US10753686B2 (en) Condenser for vehicle
US9440512B2 (en) Air conditioning system for vehicle
KR101542978B1 (en) Cooling module for vehicle
US9140473B2 (en) Condenser for vehicle
KR101438608B1 (en) Cooling module for vehicle
US20140360704A1 (en) Radiator for vehicle
US10486500B2 (en) Centralized energy module for vehicle
US10919361B2 (en) Cooling module for vehicle
WO2010061808A1 (en) Compound heat exchange unit
US20140096560A1 (en) Cooling system for vehicle
CN110901347A (en) Concentrated energy module for a vehicle
US9534849B2 (en) Cooling module for vehicle
US20140166242A1 (en) Cooling system for vehicle
KR20160096235A (en) Air conditioner system for vehicle
KR20150017401A (en) Radiator for vehicle
US20090249810A1 (en) Evaporator
US11904677B2 (en) Cooling module placed on side of vehicle
KR102439432B1 (en) Cooling module for hybrid vehicle
US8893521B2 (en) Multi-cooling module for vehicle
KR101619187B1 (en) Condenser for vehicle
KR101658157B1 (en) Cooling System for Motor Vehicle
KR20160091463A (en) Air conditioner system for vehicle
US11511600B2 (en) Cooling system for vehicle
KR20160012397A (en) Air conditioner system for vehicle
KR20160017156A (en) Air conditioner system for vehicle

Legal Events

Date Code Title Description
AS Assignment

Owner name: HYUNDAI MOTOR COMPANY, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, JAE YEON;CHO, WAN JE;JANG, JUN-IL;AND OTHERS;REEL/FRAME:031631/0645

Effective date: 20130806

Owner name: HALLA VISTEON CLIMATE CONTROL CORP., KOREA, REPUBL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, JAE YEON;CHO, WAN JE;JANG, JUN-IL;AND OTHERS;REEL/FRAME:031631/0645

Effective date: 20130806

Owner name: DOOWON CLIMATE CONTROL CO., LTD., KOREA, REPUBLIC

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, JAE YEON;CHO, WAN JE;JANG, JUN-IL;AND OTHERS;REEL/FRAME:031631/0645

Effective date: 20130806

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION