US20160213230A1 - Reduced area imaging device incorporated within endoscopic devices - Google Patents

Reduced area imaging device incorporated within endoscopic devices Download PDF

Info

Publication number
US20160213230A1
US20160213230A1 US15/090,358 US201615090358A US2016213230A1 US 20160213230 A1 US20160213230 A1 US 20160213230A1 US 201615090358 A US201615090358 A US 201615090358A US 2016213230 A1 US2016213230 A1 US 2016213230A1
Authority
US
United States
Prior art keywords
connector
image sensor
endoscope
steering
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/090,358
Inventor
Jeffrey L. Adair
Kevin Ewing WIGGINS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micro-Imaging Solutions LLC
Original Assignee
Micro-Imaging Solutions LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26871479&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20160213230(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US08/944,322 external-priority patent/US5929901A/en
Priority claimed from US09/929,531 external-priority patent/US7030904B2/en
Priority claimed from US12/889,287 external-priority patent/US20110034769A1/en
Application filed by Micro-Imaging Solutions LLC filed Critical Micro-Imaging Solutions LLC
Priority to US15/090,358 priority Critical patent/US20160213230A1/en
Assigned to MICRO-IMAGING SOLUTIONS, LLC reassignment MICRO-IMAGING SOLUTIONS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ADAIR, JEFFREY L., WIGGINS, KEVIN EWING
Publication of US20160213230A1 publication Critical patent/US20160213230A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00112Connection or coupling means
    • A61B1/00121Connectors, fasteners and adapters, e.g. on the endoscope handle
    • A61B1/00124Connectors, fasteners and adapters, e.g. on the endoscope handle electrical, e.g. electrical plug-and-socket connection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00112Connection or coupling means
    • A61B1/00114Electrical cables in or with an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00131Accessories for endoscopes
    • A61B1/00135Oversleeves mounted on the endoscope prior to insertion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00131Accessories for endoscopes
    • A61B1/00137End pieces at either end of the endoscope, e.g. caps, seals or forceps plugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • A61B1/051Details of CCD assembly
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0607Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for annular illumination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes

Definitions

  • CMOS imagers which consist of randomly accessible pixels with an amplifier at each pixel site.
  • active pixel-type imagers the amplifier placement results in lower noise levels than CCDs or other solid state imagers.
  • Another major advantage is that these CMOS imagers can be mass produced on standard semiconductor production lines.
  • One particularly notable advance in the area of CMOS imagers including active pixel-type arrays is the CMOS imager described in U.S. Pat. No. 5,471,515 to Fossum, et al. This CMOS imager can incorporate a number of other different electronic controls that are usually found on multiple circuit boards of much larger size.
  • the timing and control circuitry and/or the processing circuitry may be placed in the handle of the endoscope. It is even completed that some circuitry could be placed in the handle of the endoscope while remaining circuitry is placed within the remote control box. Because of the small size of the elements making up the imaging device coupled with the ability to provide wireless communications between the elements, great diversification is provided for the combinations of locations at which the different elements may be employed.
  • control wires 24 may communicate with a control mechanism (not shown) integrated on the handle portion 12 for manipulating the distal end 16 of the endoscope in a desired direction.
  • the flexible tubular portion 14 coupled with a steerable feature enables the endoscope to be placed within winding bodily passages or other locations difficult to reach within the body.
  • this chroma portion of the signal is sent to a delay line 126 where the signal is then further reduced by switch 128 .
  • the output of switch 128 is sent through a balanced modulator 130 and also to the Y chroma mixer 132 where the processed chroma portion of the signal is mixed with the processed non-chroma portion.
  • the output from the Y chroma mixer 132 is sent to the NTSC/PAL encoder 134 , commonly known in the art as a “composite” encoder.
  • the composite frequencies are added to the signal leaving the Y chroma mixer 132 in encoder 134 to produce the post-video signal which may be accepted by a television or other video display device.

Abstract

A reduced area imaging device is provided for use in medical or dental instruments such as an endoscope. The imaging device is provided in various configurations, and connections between the imaging device elements and a video display may be achieved by wired or wireless connections. A connector assembly located near the imaging device interconnects the imaging device to an image/power cable extending through the endoscope. The connector provides strain relief and stabilization for electrically interconnecting the imager to the cable. The connector also serves as the structure for anchoring the distal ends of steering wires extending through the body of the endoscopic device. The connector includes a strain relief member mounted over a body of the connector. The connector allows a steering wire capability without enlarging the profile of the distal tip of the endoscopic device.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. Ser. No. 14/291,583 filed on May 30, 2014, which is a continuation of U.S. Ser. No. 13/732,908 filed on Jan. 2, 2013, now U.S. Pat. No. 8,885,034, which is a continuation of U.S. Ser. No. 12/889,287 filed on Sep. 23, 2010, which is a continuation-in-part of U.S. Ser. No. 11/245,960, filed on Oct. 6, 2005, which is a continuation of U.S. patent application Ser. No. 09/929,531, filed on Aug. 13, 2001, now U.S. Pat. No. 7,030,904, which is a continuation-in-part of U.S. Ser. No. 09/496,312 filed on Feb. 1, 2000, now U.S. Pat. No. 6,275,255, which is a continuation of U.S. Ser. No. 09/175,685 filed Oct. 20, 1998, now U.S. Pat. No. 6,043,839, which is a continuation-in-part of U.S. Ser. No. 08/944,322, filed Oct. 6, 1997, now U.S. Pat. No. 5,929,901.
  • FIELD OF THE INVENTION
  • This invention relates to solid state image sensors incorporated within wireless endoscopes, and more particularly, to solid state image sensors which are incorporated within wireless endoscopes that wirelessly transmit video images for viewing.
  • BACKGROUND OF THE INVENTION
  • In recent years, endoscopic surgery has become the accepted standard for conducting many types of surgical procedures, both in the medical and dental arenas. The availability of imaging devices enabling a surgeon or dentist to view a particular surgical area through a small diameter endoscope which is introduced into small cavities or openings in the body results in much less patient trauma as well as many other advantages.
  • In many hospitals, the rod lens endoscope is still used in endoscopic surgery. The rod lens endoscope includes a very precise group of lenses in an elongate and rigid tube which are able to accurately transmit an image to a remote camera in line with the lens group. The rod lens endoscope, because of its cost of manufacture, failure rate, and requirement to be housed within a rigid and straight housing, is being increasingly replaced by solid state imaging technology which enables the image sensor to be placed at the distal tip of the investigating device. The three most common solid state image sensors include charged coupled devices (CCD), charge injection devices (CID) and photo diode arrays (PDA). In the mid-1980s, complementary metal oxide semiconductors (CMOS) were developed for industrial use. CMOS imaging devices offer improved functionality and simplified system interfacing. Furthermore, many CMOS imagers can be manufactured at a fraction of the cost of other solid state imaging technologies.
  • One particular advance in CMOS technology has been in the active pixel-type CMOS imagers which consist of randomly accessible pixels with an amplifier at each pixel site. One advantage of active pixel-type imagers is that the amplifier placement results in lower noise levels than CCDs or other solid state imagers. Another major advantage is that these CMOS imagers can be mass produced on standard semiconductor production lines. One particularly notable advance in the area of CMOS imagers including active pixel-type arrays is the CMOS imager described in U.S. Pat. No. 5,471,515 to Fossum, et al. This CMOS imager can incorporate a number of other different electronic controls that are usually found on multiple circuit boards of much larger size. For example, timing circuits, and special functions such as zoom and anti-jitter controls can be placed on the same circuit board containing the CMOS pixel array without significantly increasing the overall size of the host circuit board. Furthermore, this particular CMOS imager requires 100 times less power than a CCD-type imager. In short, the CMOS imager disclosed in Fossum, et al. has enabled the development of a “camera on a chip.”
  • Passive pixel-type CMOS imagers have also been improved so that they too can be used in an imaging device which qualifies as a “camera on a chip.” In short, the major difference between passive and active CMOS pixel arrays is that a passive pixel-type imager does not perform signal amplification at each pixel site. One example of a manufacturer which has developed a passive pixel array with performance nearly equal to known active pixel devices and being compatible with the read out circuitry disclosed in the U.S. Pat. No. 5,471,515 is VLSI Vision, Ltd., 1190 Saratoga Avenue, Suite 180, San Jose, Calif. 95129. A further description of this passive pixel device may be found in applicant's U.S. Pat. No. 5,986,693 entitled “Reduced Area Imaging Devices Incorporated Within Surgical Instruments,” which is hereby incorporated by reference.
  • In addition to the active pixel-type CMOS imager which is disclosed in U.S. Pat. No. 5,471,515, there have been developments in the industry for other solid state imagers which have resulted in the ability to have a “camera on a chip.” For example, Suni Microsystems, Inc. of Mountain View, Calif., has developed a CCD/CMOS hybrid which combines the high quality image processing of CCDs with standard CMOS circuitry construction. In short, Suni Microsystems, Inc. has modified the standard CMOS and CCD manufacturing processes to create a hybrid process providing CCD components with their own substrate which is separate from the P well and N well substrates used by the CMOS components. Accordingly, the CCD and CMOS components of the hybrid may reside on different regions of the same chip or wafer. Additionally, this hybrid is able to run on a low power source (5 volts) which is normally not possible on standard CCD imagers which require 10 to 30 volt power supplies. A brief explanation of this CCD/CMOS hybrid can be found in the article entitled “Startup Suni Bets on Integrated Process” found in Electronic News, Jan. 20, 1997 issue. This reference is hereby incorporated by reference for purposes of explaining this particular type of imaging processor.
  • Another example of a recent development in solid state imaging is the development of a CMOS imaging sensor which is able to achieve analog to digital conversion on each of the pixels within the pixel array. This type of improved CMOS imager includes transistors at every pixel to provide digital instead of analog output that enable the delivery of decoders and sense amplifiers much like standard memory chips. With this new technology, it may, therefore, be possible to manufacture a true digital “camera on a chip.” This CMOS imager has been developed by a Stanford University joint project and is headed by Professor Abbas el-Gamal.
  • A second approach to creating a CMOS-based digital imaging device includes the use of an over-sample converter at each pixel with a one bit comparator placed at the edge of the pixel array instead of performing all of the analog to digital functions on the pixel. This new design technology has been called MOSAD (multiplexed over sample analog to digital) conversion. The result of this new process is low power usage, along with the capability to achieve enhanced dynamic range, possibly up to 20 bits. This process has been developed by Amain Electronics of Simi Valley, Calif. A brief description of both of the processes developed by Stanford University and Amain Electronics can be found in an article entitled “A/D Conversion Revolution for CMOS Sensor?,” September 1998 issue of Advanced Imaging. This reference is also hereby incorporated by reference for purposes of explaining these particular types of imaging processors.
  • The above-mentioned developments in solid state imaging technology have shown that “camera on a chip” devices will continue to be enhanced not only in terms of the quality of imaging which may be achieved, but also in the specific construction of the devices which may be manufactured by new breakthrough processes.
  • Although the “camera on a chip” concept is one which has great merit for application in many industrial areas, a need still exists for a reduced area imaging device which can be used in even the smallest type of endoscopic instruments in order to view areas in the body that are particularly difficult to access, and to further minimize patient trauma by an even smaller diameter invasive instrument.
  • It is one general object of this invention to provide a wireless endoscope incorporating reduced area imaging devices which take advantage of “camera on a chip” technology, but rearrange the circuitry in a stacked relationship so that there is a minimum profile presented when used within a surgical instrument or other investigative device. It is another object of this invention to provide a wireless endoscope utilizing low cost imaging devices which may be “disposable.” It is yet another object of this invention to provide reduced area imaging devices capable of wireless communications which may be used in conjunction with standard endoscopes by placing the imaging device through channels which normally receive other surgical devices, or receive liquids or gases for flushing a surgical area. It is yet another object of this invention to provide a surgical device with imaging capability which may be battery powered and may wirelessly communicate for viewing video images.
  • In addition to the intended use of the wireless endoscope with respect to surgical procedures conducted by medical doctors, it is also contemplated that the invention described herein has great utility with respect to oral surgery and general dental procedures wherein a very small imaging device can be used to provide an image of particularly difficult to access locations. Additionally, while the foregoing invention has application with respect to the medical and dental fields, it will also be appreciated by those skilled in the art that the small size of the imaging device set forth herein coupled with the wireless communication feature can be applied to other functional disciplines wherein the imaging device can be used to view difficult to access locations for industrial equipment and the like. Therefore, the imaging device of this invention could be used to replace many industrial boroscopes.
  • The “camera on a chip” technology can be furthered improved with respect to reducing its profile area and incorporating such a reduced area imaging device into very small investigative instruments which can be used in the medical, dental, or other industrial fields.
  • SUMMARY OF THE INVENTION
  • In accordance with the present invention, reduced area imaging devices are provided. The term “imaging device” as used herein describes the imaging elements and processing circuitry which is used to produce a video signal which may be accepted by a standard video device such as a television or video monitor accompanying a personal computer. The term “image sensor” as used herein describes the components of a solid state imaging device which captures images and stores them within the structure of each of the pixels in the array of pixels found in the imaging device. As further discussed below, the timing and control circuits can be placed either on the same planar structure as the pixel array, in which case the image sensor can also be defined as an integrated circuit, or the timing and control circuitry can be placed remote from the pixel array. The terms “signal” or “image signal” as used herein, and unless otherwise more specifically defined, refer to an image which at some point during its processing by the imaging device, is found in the form of electrons which have been placed in a specific format or domain. The term “processing circuitry” as used herein refers to the electronic components within the imaging device which receive the image signal from the image sensor and ultimately place the image signal in a usable format. The terms “timing and control circuits” or “circuitry” as used herein refer to the electronic components which control the release of the image signal from the pixel array.
  • In a first embodiment of the endoscope, the imaging device utilizes wired connections for interconnecting the various elements of the imaging device, and utilizes wired connections for transferring video images to a video display.
  • In a second embodiment of the endoscope, a wireless communications means may be used to allow various elements of the imaging device to communicate with one another. Transfer of video images to a video display can also be achieved by the wireless communications means. Thus in the second embodiment, the endoscope does not have to be physically connected to other operating room equipment which greatly enhances the ease of using the wireless endoscope. Particularly in endoscopic procedures which are conducted in hard to reach locations within the body, a wireless endoscope is advantageous because there are no trailing cables or sterile drapes which otherwise complicate maneuvering of the endoscope. In general, enhanced maneuverability of the endoscope is provided by the wireless communications.
  • One particularly advantageous wireless technology usable with the endoscope of this invention is known as “Bluetooth”. Another recent wireless technology which is usable with the invention is a wireless protocol known as “IEEE 802.15.13”. This wireless standard is developing under the joint efforts of Kodak, Motorola, Cisco and the International Electronic and Electrical Engineers Standards Association (IEEE) Wireless Personal Area Network Working Group (WPAN). Bluetooth technology provides a universal radio interface in the 2.4 GHz frequency band that enables portable electronic devices to connect and communicate wirelessly via short-range ad hoc networks. Bluetooth radios operate in an unlicenced Instrumentation, Scientific, Medical (ISM) band at 2.4 Ghz. Bluetooth is a combination of circuit and packet switching. Slots can be reserved for synchronous packets. Each packet is transmitted in a different hop frequency. A packet nominally covers a single slot, but can be extended to cover up to five slots. Bluetooth can support an asynchronous data channel, up to three simultaneous synchronous voice channels, or a channel that simultaneously supports asynchronous data and synchronous voice. Spectrum spreading is accomplished by frequency hopping 79 hops displaced by 1 MHZ starting at 2.402 Ghz and stopping at 2.480 GHz. The maximum frequency hopping rate is 1600 hops per second. The nominal link range is 10 centimeters to 10 meters, but can be extended to more than 100 meters by increasing the transmit power. A shaped binary FM modulation is applied to minimize transceiver complexity. The gross data rate is 1 Mb/second. A time division multiplex scheme is used for full-duplex transmission. Additional information describing the Bluetooth global specification is found on the world wide web at www.bluetooth.com. Additional information regarding the technical specification for the IEEE 802.15.13 standard may be found www.ieee802.org/15 under the link for the Task Force Three (TG3). The content of both of these websites is hereby incorporated by reference for purposes of disclosing these types of communication standards.
  • In a first arrangement of the imaging device, the image sensor, with or without the timing and control circuitry, may be placed at the distal tip of the endoscopic instrument while the remaining processing circuitry may be found in a small remote control box which may wirelessly communicate with the image sensor.
  • In a second arrangement of the imaging device, the image sensor and the processing circuitry may all be placed in a stacked arrangement of circuit boards and positioned at the distal tip of the endoscopic instrument. In this second arrangement, the pixel array of the image sensor may be placed by itself on its own circuit board while the timing and control circuitry and processing circuitry are placed on one or more other circuit boards. Alternatively, the circuitry for timing and control may be placed with the pixel array on one circuit board, while the remaining processing circuitry can be placed on one or more of the other circuit boards.
  • In another alternative arrangement, the imaging device may be adapted for use with a standard rod lens endoscope wherein the imaging device is placed within a standard camera housing which is configured to connect to a standard “C” or “V” mount connector.
  • In yet another arrangement, the timing and control circuitry and/or the processing circuitry may be placed in the handle of the endoscope. It is even completed that some circuitry could be placed in the handle of the endoscope while remaining circuitry is placed within the remote control box. Because of the small size of the elements making up the imaging device coupled with the ability to provide wireless communications between the elements, great diversification is provided for the combinations of locations at which the different elements may be employed.
  • A simplified endoscope may be used which includes a very small diameter tubular portion which is inserted within the patient. The tubular portion may be made of a flexible material having a central lumen or opening therein for receiving the elements of the imaging device. The tubular portion may be modified to include an additional concentric tube placed within the central lumen and which enables a plurality of light fibers to be placed circumferentially around the periphery of the distal end of the tubular portion. Additionally, control wires may extend along the tubular portion in order to make the endoscope steerable. The material used to make the endoscope can be compatible with any desired sterilization protocol, or the entire endoscope can be made sterile and disposable after use.
  • In the second embodiment of the endoscope wherein processing circuitry is housed within the endoscope, and for the arrangement of the imaging device which calls for the array of pixels and the timing and control circuitry to be placed on the same circuit board, only one conductor is required in order to electrically transfer the image signal to the processing circuitry. In the other configuration of the imaging device wherein the timing and control circuits are incorporated onto other circuit boards, a plurality of connections are required in order to connect the timing and control circuitry to the pixel array and the one conductor is also required to transfer the image signal.
  • In each of the different arrangements of the imaging device where circuitry is housed in the handle of the endoscope, the handle can have one or more channels or bores for making space available for such circuitry.
  • Thus, the wireless communications made integral with the endoscope of the second embodiment provides an improved endoscope wherein the improvement comprises variations of wireless communications for transmission of image signals that are viewed on a desired video display.
  • In another aspect of the invention, the imaging device is housed within an endoscopic instrument in which the endoscope is steerable by incorporating a steering connector assembly located near the imaging device. The connector assembly is constructed so that it does not enlarge the profile of the capsule that houses the imaging device, yet the connector assembly facilitates precise and accurate control of the distal end of the endoscope with a four-way deflection capability. More specifically, the image sensor has a frontal profile defined by a length and width dimension, and the connector assembly does not extend beyond this frontal profile or a slightly larger frontal profile defined by the length and width dimension of the capsule.
  • The connector assembly has dual functionality in providing a means to anchor the distal ends of the steering wires as well as to provide a structure for attaching the electrical leads of an image/power cable to electrical traces housed in the connector assembly that extend to electrically contact electrical connection points on the imaging device.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1a illustrates a first arrangement of the imaging device including a fragmentary cross-sectional view of a generic endoscopic instrument in the first embodiment, and a fragmentary perspective view of a control box, the endoscope and control box each incorporating elements of a reduced area imaging device;
  • FIG. 1b is an enlarged fragmentary partially exploded perspective view of the distal end of the endoscopic instrument specifically illustrating the arrangement of the image sensor with respect to the other elements of the tubular portion of the endoscope;
  • FIG. 2a is a fragmentary cross-sectional view of the endoscope in the first embodiment, and a second arrangement of the imaging device wherein the imaging device is incorporated in its entirety at the distal tip of the endoscope;
  • FIG. 2b is an enlarged fragmentary partially exploded perspective view of the distal end of the endoscope of FIG. 2a illustrating the imaging device;
  • FIG. 3a is a fragmentary cross-sectional view of the image sensor incorporated with a standard camera housing for connection to a rod lens endoscope;
  • FIG. 3b is a fragmentary cross-sectional view of the imaging device incorporated within the camera housing of FIG. 3 a;
  • FIG. 3c is a fragmentary cross-sectional view similar to that of FIG. 3b illustrating a battery as an alternate source of power;
  • FIG. 4 is a schematic diagram of the functional electronic components which make up the imaging device;
  • FIG. 4a is an enlarged schematic diagram of a circuit board which may include the array of pixels and the timing and control circuitry;
  • FIG. 4b is an enlarged schematic diagram of a video processing board having placed thereon the processing circuitry which processes the pre-video signal generated by the array of pixels and which converts the pre-video signal to a post-video signal which may be accepted by a standard video device;
  • FIGS. 5a-5e are schematic diagrams that illustrate an example of specific circuitry which may be used to make the imaging device.
  • FIG. 6 is a fragmentary cross-sectional view of an endoscope in the second embodiment wherein image signals in a desired video ready format are wirelessly transmitted to a remote video display monitor for viewing by a user;
  • FIG. 6a is another fragmentary cross-sectional view of the endoscope of FIG. 6 showing an alternate source of light in the form of a fiber optic cable connected to an external light source;
  • FIG. 6b is another fragmentary cross-sectional view of the endoscope of FIG. 6 showing processing circuitry incorporated within the handle of the endoscope as opposed to the circuitry placed within the tubular portion of the endoscope;
  • FIG. 7 illustrates a transceiver radio module which receives image signals transmitted by the wireless endoscope of FIG. 6\FIG. 6a , and conditions the received image signals for direct reception by a display monitor;
  • FIG. 8 illustrates another endoscope of the second embodiment wherein some image signal processing is conducted remote from the endoscope;
  • FIG. 8a illustrates a removable battery housing which may be recharged by removing the housing and plugging it into the recharge receptacle on the control box of FIG. 9; and
  • FIG. 9 illustrates the arrangement of the imaging device which incorporates the control box wherein image signals from the endoscope in FIG. 8 are in a first or pre-format and are transmitted wirelessly to the control box, circuitry in the control box processes the image signals in a second or final format, and the control box then wirelessly transmits the image signals to a secondary receiver which receives the image signals and conditions the image signals for direct reception by the display monitor.
  • FIG. 10 is a partially exploded fragmentary perspective view of an endoscopic instrument incorporating the imaging device of the present invention, along with a connector assembly to facilitate steering of the instrument;
  • FIG. 11 is a greatly enlarged fragmentary perspective view of FIG. 10 showing further details of the connector assembly;
  • FIG. 12 is another greatly enlarged fragmentary perspective view illustrating details of the connector assembly; and
  • FIG. 13 is a fragmentary perspective view illustrating the endoscopic instrument connected to a conventional steering device enabling precise and accurate steering of the distal tip of the endoscopic instrument.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • In accordance with one arrangement of the imaging device as shown in FIG. 1a , an endoscope 10 in the first embodiment is provided which incorporates a reduced area imaging device 11, shown in FIG. 1b . As further discussed below, the elements of the imaging device may all be found at one location or the elements may be separated from one another and interconnected by the appropriate cable(s). The array of pixels making up the image sensor captures images and stores them in the form of electrical energy by conversion of light photons to electrons. This conversion takes place by the photo diodes in each pixel which communicate with one or more capacitors which store the electrons. The structure of the endoscope 10 in the first embodiment includes a flexible or rigid tubular portion 14 which is inserted into the body of the patient and is placed at the appropriate location for viewing a desired surgical area. The tubular portion 14 attaches at its proximal end to a handle portion 12 which may be grasped by a surgeon who is conducting the endoscopic procedure. The handle 12 may include a central lumen or channel 13 which receives one or more cables or other structures which extend to the distal end 16 of tubular portion 14. Handle portion 12 may further include a supplementary channel 15 which intersects with central channel 13 and which may provide another point of entry for other cables, fluids or operative instruments to be placed through the endoscope.
  • FIG. 1b illustrates the distal end of the endoscope 16. The distal end 16 may be characterized by an outer tube 18 which traverses the length of the tubular portion 14 and connects to the handle portion 12. Placed concentrically within the outer tube 18 may be one or more inner tubes 20. In FIG. 1b , the gap between inner tube 20 and outer tube 18 forms a space in which one or more light fibers 22 or control wires 24 may be placed. As well understood by those skilled in the art, a plurality of circumferentially spaced light fibers as illustrated in FIG. 1b can be used to illuminate the surgical site. Additionally, the control wires 24 may communicate with a control mechanism (not shown) integrated on the handle portion 12 for manipulating the distal end 16 of the endoscope in a desired direction. The flexible tubular portion 14 coupled with a steerable feature enables the endoscope to be placed within winding bodily passages or other locations difficult to reach within the body.
  • An image sensor 40 may be placed within the central channel defined by inner tube 20. In the configuration shown in FIG. 1b , a cable 26 is used to house the conductors which communicate with the image sensor 40. An intermediate support tube 28 may be placed concentrically outside of cable 26 and concentrically within inner tube 20 to provide the necessary support for the cable 26 as it traverses through the inner channel defined by inner tube 20. In lieu of support tube 28, other well-known means may be provided to stabilize the cable 26 such as clips or other fastening means which may attach to the inner concentric surface of inner tube 20.
  • A control box 30 may be placed remote from the endoscope 10. The control box 30 contains some of the processing circuitry which is used to process the image signal produced by image sensor 40. Therefore, the imaging device 11 as previously defined would include the processing circuitry within control box 30 and the image sensor 40 located at the distal tip of the endoscope. Control box 30 communicates with image sensor 40 by means of cable 32 which may simply be an insulated and shielded cable which houses therein cable 26. Cable 32 is stabilized with respect to the handle portion 12 by means of a fitting 34 which ensures that cable 32 cannot be inadvertently pushed or pulled within channel 13. Additionally, an additional fitting 35 may be provided to stabilize the entry of a light cable 36 which houses the plurality of light fibers 22. Light cable 36 runs along cable 32 to the distal end of the endoscope, or light cable 36 can join cable 32 within the channel 13 as shown in FIG. 1a . Thus cable 32 would house both the light fibers and the conductors which interconnect the control box 30 to the image sensor 40.
  • Image sensor 40 is illustrated as being a planar and square shaped member. However, the image sensor may be modified to be in a planar and circular shape to better fit within the channel defined by inner tube 20. Accordingly, FIG. 1b further shows an alternate shaped image sensor 40′ which is round. A lens group or system 42 may be incorporated at the distal end of the endoscope in order to manipulate the image prior to it being impinged upon the array of pixels on the image sensor 40. This lens system 42 may be sealed at the distal end 16 of the endoscope so that the tubular portion 14 is impervious to fluids entering through the distal end 16. In the configuration of the imaging device 11 in FIGS. 1a and 1b , there are only three conductors which are necessary for providing power to the image sensor 40, and for transmitting an image from the image sensor 40 back to the processing circuitry found within control box 30. Namely, there is a power conductor 44, a grounding conductor 46, and an image signal conductor 48 each of which are hard wired to the image sensor. Thus, cable 26 may simply be a three-conductor 50 ohm cable.
  • Image sensor 40 can be as small as 1 mm in its largest dimension. However, a more preferable size for most endoscopic procedures would dictate that the image sensor 40 be between 4 mm to 8 mm in its largest dimension. The image signal electrically transmitted from the image sensor through conductor 48 is also herein referred to as a pre-video signal. Once the pre-video signal has been electrically transmitted from image sensor 40 by means of conductor 48, it is received by video processing board 50. Video processing board 50 then carries out all the necessary conditioning of the pre-video signal and places it in a form so that it may be viewed directly on a standard video device, television or standard computer video monitor. The signal produced by the video processing board 50 can be further defined as a post-video signal which can be accepted by a standard video device. As shown in FIG. 1a , a conductor 49 is provided which electrically transmits the post-video signal to an output connector 58 on the exterior surface of control box 30. The cable (not shown) extending from the desired video device (not shown) may receive the post-video signal by means of connector 58. Power supply board 52 may convert incoming power received through power source 54 into the desired voltage. In the preferred imager incorporated in this invention, the power to the imaging device is simply a direct current which can be a 1.5 volt to a 12 volt source. Incoming power from, for example, a wall receptacle, communicates with power supply board 52 by connector 56. Power supply board 52 takes the incoming power source and regulates it to the desired level. Additionally, ground 46 is also shown as extending back to the source of power through connector 56.
  • FIG. 2a illustrates a second arrangement of the imaging device wherein the imaging device is self-contained entirely within the distal end 16 of the endoscope, and a power source which drives the circuitry within the imaging device may come from a battery 66 housed within handle portion 12.
  • As shown in FIG. 2b , the video processing board 50 may be placed directly behind image sensor 40. A plurality of pin connectors 62 serve to electrically couple image sensor 40 with video processing board 50 depending upon the specific configuration of image sensor 40, pin connectors 62 may be provided either for structural support only, or to provide a means by which image signals are electrically transmitted between image sensor 40 and board 50. When necessary, one or more supplementary boards 60 may be provided which further contain processing circuitry to process the image signal and present it in a form which may be directly received by a desired video device. The area which is occupied by image sensor 40 may be defined as the profile area of the imaging device and which determines its critical dimensions. Any imaging elements that are found on boards 50 or 60 must be able to be placed on one or more circuit boards which are longitudinally aligned with image sensor 40 along longitudinal axis XX. If the profile area is not critical in terms of limiting the largest sized imaging element within the imaging device, then the additional circuit boards 50 and 60 which are normally placed in line with image sensor 40 can be aligned in an offset manner or may be larger than the profile area of image sensor 40. In the configuration of FIG. 2b , it is desirable that elements 40, 50 and 60 be approximately the same size so that they may fit uniformly within the central channel of the endoscope. Additionally, image sensor 40 may be bonded to lens system 42 in order to provide further structural support to the imaging device 11 when mounted within the distal end 16.
  • Referring back to the handle portion 12 in FIG. 2a , an additional channel 64 may be provided in order that a power supply cable 68 may communicate with battery 66. Conveniently, battery 66 may itself be mounted within a well 65 formed in handle portion 12. Cable 68 carries the conductor 44 and ground 46. Cable 68 may intersect with cable 33 within channel 13, cables 68 and 33 extending then to the distal end 16. Cable 33 can be a single conductor cable which transmits the post-video signal to a desired video device. In other words, cable 33 may simply be an insulated and shielded housing for conductor 49 which carries the post-video signal. Because a preferred image sensor of the imaging device 11 may only require a 5 volt power supply, a battery is an ideal power source in lieu of a conductor which would trail the endoscope. Accordingly, the endoscope is made more mobile and easier to handle by eliminating at least one of the trailing cables.
  • FIG. 3a illustrates yet another arrangement or configuration of the imaging device wherein the imaging device can be used in conjunction with a standard rod lens endoscope 70. As shown, rod lens endoscope 70 includes a lens train 72 which includes a plurality of highly precise lenses (not shown) which are able to transmit an image from the distal end of the endoscope, to a camera in line with the endoscope. The rod lens endoscope is equipped with a light guide coupling post 74. Light guide post 74 connects to a source of light in the form of a cable 77 having a plurality of fiber optic strands (not shown) which communicate with a source of light (not shown). The most common arrangement of the rod lens endoscope also includes a “C” or “V” mount connector 78 which attaches to the eyepiece 76. The “C” or “V” mount attaches at its other end to a camera group 80. The camera group 80 houses one or more of the elements of the imaging device. In this configuration, the small size of the imaging device is not a critical concern since the imaging device is not being placed at the distal end of the endoscope. However, the incorporation of the imaging device in a housing which would normally hold a traditional camera still provides an advantageous arrangement. As shown, the camera group 80 may include a housing 82 which connects to a power/video cable 86. Fitting 87 is provided to couple cable 86 to the interior elements of the camera group 80 found within housing 82. FIG. 3a illustrates an arrangement of the imaging device 11 wherein the image sensor 40 is placed by itself within the housing 82 and the processing circuitry of the imaging device can be positioned in a remote control box as shown in FIG. 1a . Accordingly, only three conductors 44, 46 and 48 are necessary for providing power to the image sensor 40 and for transmitting the pre-video signal to the control box. Alternatively, as shown in FIG. 3b , the entire imaging device 11 may be incorporated within camera group 80, each of the elements of the imaging device being placed in the stacked arrangement similar to FIG. 2b . As discussed above, size is not as much of a concern in the embodiment of FIGS. 3a and 3b since the camera group housing 82 is much larger than the distal tip of the endoscope of FIGS. 1a and 2 a.
  • FIG. 3c also illustrates the use of a battery 66 which provides source of power to the imaging device in either FIG. 3a or 3 b. In this arrangement, housing 82 is altered to include a battery housing 69 which houses the battery 66 therein. Battery housing 69 may include a very small diameter channel which may allow conductor 48 or 49 to communicate directly with the processing circuitry or video device, respectively. It will also be understood that the embodiment in FIG. 1a may incorporate the use of a battery 66 as the source of power. Thus, handle 12 in FIG. 1a may be altered in the same way as housing 82 to allow a battery to be attached to the handle portion 12.
  • In all of the arrangements of the imaging device discussed above with respect to the first embodiment of the endoscope, each of the elements or components of the imaging device electrically communicate with one another through a wired connection.
  • FIG. 4 is a schematic diagram illustrating one way in which the imaging device 11 may be constructed. As illustrated, the image sensor 40 may include the timing and control circuits on the same planar structure. Power is supplied to image sensor 40 by power supply board 52. The connection between image sensor 40 and board 52 may simply be a cable having two conductors therein, one for ground and another for transmitting the desired voltage. These are illustrated as conductors 44 and 46. The output from image sensor 40 in the form of the pre-video signal is input to video processor board 50 by means of the conductor 48. In the configuration of FIG. 4, conductor 48 may simply be a 50 ohm conductor. Power and ground also are supplied to video processing board 50 by conductors 44 and 46 from power supply board 52. The output signal from the video processor board 50 is in the form of the post-video signal and which may be carried by conductor 49 which can also be a 50 ohm conductor.
  • In the first arrangement of the imaging device illustrated in FIG. 1a , cable 32 can be used to house conductors 44, 46 and 48. In the arrangement shown in FIG. 2a , cable 33 can be used to house conductor 49 by itself when a battery power source is used, or alternatively, cable 33 may house conductors 44, 46 and 49 if the arrangement of FIG. 2a utilizes a power source from board 52.
  • Optionally, a supplementary processing board 60 may be provided to further enhance the pre-video signal. As shown in FIG. 4, the supplementary board 60 may be placed such that the pre-video signal from image sensor 40 is first sent to the supplementary board and then output to the video processor board 50. In this case, the output from board 50 can be carried along conductor 51. This output can be defined as an enhanced pre-video signal. Furthermore, the post-video signal from video processor board 50 may return to the supplementary board 60 for further processing, as further discussed below. The conductor used to electrically transmit the post-video signal back to the supplementary board is shown as conductor 59. The power supply board 52 may also provide power to the supplementary board in the same manner as to image sensor 40 and board 50. That is, a simple hard-wired connection is made onto the supplementary board for the ground and voltage carrying conductors. As discussed above, image sensor 40 may be placed remotely from boards 50 and 60. Alternatively, image sensor 40, and boards 50 and 60 each may be placed within the distal end of the endoscope.
  • Although FIG. 4 illustrates the image sensor and the timing and control circuits being placed on the same planar structure, it is possible to separate the timing and control circuits from the pixel array and place the timing and control circuits onto video processing board 50. The advantage in placing the timing and control circuits on the same planar structure as the image sensor is that only three connections are required between image sensor 40 and the rest of the imaging device, namely, conductors 44, 46 and 48. Additionally, placing the timing and control circuits on the same planar structure with the pixel array results in the pre-video signal having less noise. Furthermore, the addition of the timing and control circuits to the same planar structure carrying the image sensor only adds a negligible amount of size to one dimension of the planar structure. If the pixel array is to be the only element on the planar structure, then additional connections must be made between the planar structure and the video processing board 50 in order to transmit the clock signals and other control signals to the pixel array. For example, a ribbon-type cable (not shown) or a plurality of 50 ohm coaxial cables (not shown) must be used in order to control the downloading of information from the pixel array. Each of these additional connections would be hard wired between the boards.
  • FIG. 4a is a more detailed schematic diagram of image sensor 40 which contains an array of pixels 90 and the timing and control circuits 92. One example of a pixel array 90 which can be used within the invention is similar to that which is disclosed in U.S. Pat. No. 5,471,515 to Fossum, et al., said patent being incorporated by reference herein. More specifically, FIG. 3 of Fossum, et al. illustrates the circuitry which makes up each pixel in the array of pixels 90. The array of pixels 90 as described in Fossum, et al. is an active pixel group with intra-pixel charged transfer. The image sensor made by the array of pixels is formed as a monolithic complementary metal oxide semiconductor integrated circuit which may be manufactured in an industry standard complementary metal oxide semiconductor process. The integrated circuit includes a focal plane array of pixel cells, each one of the cells including a photo gate overlying the substrate for accumulating the photo generated charges. In broader terms, as well understood by those skilled in the art, an image impinges upon the array of pixels, the image being in the form of photons which strike the photo diodes in the array of pixels. The photo diodes or photo detectors convert the photons into electrical energy or electrons which are stored in capacitors found in each pixel circuit. Each pixel circuit has its own amplifier which is controlled by the timing and control circuitry discussed below. The information or electrons stored in the capacitors is unloaded in the desired sequence and at a desired frequency, and then sent to the video processing board 50 for further processing.
  • Although the active pixel array disclosed in U.S. Pat. No. 5,471,515 is mentioned herein, it will be understood that the hybrid CCD/CMOS described above, or any other solid state imaging device may be used wherein timing and control circuits can be placed either on the same planar structure with the pixel array, or may be separated and placed remotely. Furthermore, it will be clearly understood that the invention claimed herein is not specifically limited to an image sensor as disclosed in the U.S. Pat. No. 5,471,515, but encompasses any image sensor which may be configured for use in conjunction with the other processing circuitry which makes up the imaging device of this invention.
  • The timing and control circuits 92 are used to control the release of the image information or image signal stored in the pixel array. In the image sensor of Fossum, et al., the pixels are arranged in a plurality of rows and columns. The image information from each of the pixels is first consolidated in a row by row fashion, and is then downloaded from one or more columns which contain the consolidated information from the rows. As shown in FIG. 4a , the control of information consolidated from the rows is achieved by latches 94, counter 96, and decoder 98. The operation of the latches, counter and decoder is similar to the operation of similar control circuitry found in other imaging devices. That is, a latch is a means of controlling the flow of electrons from each individual addressed pixel in the array of pixels. When a latch 94 is enabled, it will allow the transfer of electrons to the decoder 98. The counter 96 is programmed to count a discrete amount of information based upon a clock input from the timing and control circuits 92. When the counter 96 has reached its set point or overflows, the image information is allowed to pass through the latches 94 and be sent to the decoder 98 which places the consolidated information in a serial format. Once the decoder 98 has decoded the information and placed it in the serial format, then the row driver 100 accounts for the serial information from each row and enables each row to be downloaded by the column or columns. In short, the latches 94 will initially allow the information stored in each pixel to be accessed. The counter 96 then controls the amount of information flow based upon a desired time sequence. Once the counter has reached its set point, the decoder 98 then knows to take the information and place it in the serial format. The whole process is repeated, based upon the timing sequence that is programmed. When the row driver 100 has accounted for each of the rows, the row driver reads out each of the rows at the desired video rate.
  • The information released from the column or columns is also controlled by a series of latches 102, a counter 104 and a decoder 106. As with the information from the rows, the column information is also placed in a serial format which may then be sent to the video processing board 50. This serial format of column information is the pre-video signal carried by conductor 48. The column signal conditioner 108 places the column serial information in a manageable format in the form of desired voltage levels. In other words, the column signal conditioner 108 only accepts desired voltages from the downloaded column(s).
  • The clock input to the timing and control circuits 92 may simply be a quartz crystal timer. This clock input is divided into many other frequencies for use by the various counters. The run input to the timing and control circuit 92 may simply be an on/off control. The default input can allow one to input the pre-video signal to a video processor board which may run at a frequency of other than 30 hertz. The data input controls functions such as zoom. At least for a CMOS type active pixel array which can be accessed in a random manner, features such as zoom are easily manipulated by addressing only those pixels which locate a desired area of interest by the surgeon.
  • A further discussion of the timing and control circuitry which may be used in conjunction with an active pixel array is disclosed in U.S. Pat. No. 5,471,515 and is also described in an article entitled “Active Pixel Image Sensor Integrated With Readout Circuits” appearing in NASA Tech Briefs, October 1996, pp. 38 and 39. This particular article is also incorporated by reference.
  • Once image sensor 40 has created the pre-video signal, it is sent to the video processing board 50 for further processing. At board 50, as shown in FIG. 4b , the pre-video signal is passed through a series of filters. One common filter arrangement may include two low pass filters 114 and 116, and a band pass filter 112. The band pass filter only passes low frequency components of the signal. Once these low frequency components pass, they are then sent to detector 120 and white balance circuit 124, the white balance circuit distinguishing between the colors of red and blue. The white balance circuit helps the imaging device set its normal, which is white. The portion of the signal passing through low pass filter 114 then travels through gain control 118 which reduces the magnitude or amplitude of this portion to a manageable level. The output from gain control 118 is then fed back to the white balance circuit 124. The portion of the signal traveling through filter 116 is placed through the processor 122. In the processor 122, the portion of the signal carrying the luminance or non-chroma is separated and sent to the Y chroma mixer 132. Any chroma portion of the signal is held in processor 122.
  • Referring to the output of the white balance circuit 124, this chroma portion of the signal is sent to a delay line 126 where the signal is then further reduced by switch 128. The output of switch 128 is sent through a balanced modulator 130 and also to the Y chroma mixer 132 where the processed chroma portion of the signal is mixed with the processed non-chroma portion. Finally, the output from the Y chroma mixer 132 is sent to the NTSC/PAL encoder 134, commonly known in the art as a “composite” encoder. The composite frequencies are added to the signal leaving the Y chroma mixer 132 in encoder 134 to produce the post-video signal which may be accepted by a television or other video display device.
  • Referring back to FIG. 4, it further illustrates supplementary board 60 which may be used to digitally enhance or otherwise further condition the pre-video signal produced from image sensor 40. For example, digital enhancement can brighten or otherwise clarify the edges of an image viewed on a video screen. Additionally, the background images may be removed thus leaving only the foreground images or vice versa. The connection between image sensor 40 and board 60 may simply be the conductor 48 which may also transfer the pre-video signal to board 50. Once the pre-video signal has been digitally enhanced on supplementary board 60, it is then sent to the video processor board 50 by means of another conductor 51. The pre-video signal is an analog signal. The digitally enhanced pre-video signal may either be a digital signal or it may be converted back to the analog domain prior to being sent to board 50.
  • In addition to digital enhancement, supplementary board 60 may further include other circuitry which may further condition the post-video signal so that it may be viewed in a desired format other than NTSC/PAL. As shown in FIG. 4, intermediate conductor 59 may transmit the signal output from Y chroma mixer 132 back to the supplementary board 60 where the signal is further encoded for viewing in a particular format. One common encoder which can be used includes an RGB encoder 154. The RGB encoder separates the signal into three separate colors (red, green and blue) so that the surgeon may selectively choose to view only those images containing one or more of the colors. Particularly in tissue analysis where dyes are used to color the tissue, the RGB encoder may help the surgeon to identify targeted tissue.
  • The next encoder illustrated in FIG. 4 is a SVHS encoder 156 (super video home system). This encoder splits or separates the luminance portion of the signal and the chroma portion of the signal prior to entering the video device. Some observers believe that a cleaner signal is input to the video device by such a separation which in turn results in a more clear video image viewed on the video device. The last encoder illustrated in FIG. 4 is a VGA encoder 158 which enables the signal to be viewed on a standard VGA monitor which is common to many computer monitors.
  • One difference between the arrangement of image sensor 40 and the outputs found in FIG. 3 of the Fossum, et al. patent is that in lieu of providing two analog outputs [namely, VS out (signal) and VR out (reset)], the reset function takes place in the timing and control circuitry 92. Accordingly, the pre-video signal only requires one conductor 48.
  • FIGS. 5a-5e illustrate in more detail one example of circuitry which may be used in the video processing board 50 in order to produce a post-video signal which may be directly accepted by a video device such as a television. The circuitry disclosed in FIGS. 5a-5e is very similar to circuitry which is found in a miniature quarter-inch Panasonic camera, Model KS-162. It will be understood by those skilled in the art that the particular arrangement of elements found in FIGS. 5a-5e are only exemplary of the type of video processing circuitry which may be incorporated in order to take the pre-video signal and condition it to be received by a desired video device.
  • As shown in FIG. 5 a, 5 volt power is provided along with a ground by conductors 44 and 46 to board 50. The pre-video signal carried by conductor 48 is buffered at buffer 137 and then is transferred to amplifying group 138. Amplifying group 138 amplifies the signal to a usable level as well as achieving impedance matching for the remaining circuitry.
  • The next major element is the automatic gain control 140 shown in FIG. 5b . Automatic gain control 140 automatically controls the signal from amplifying group 138 to an acceptable level and also adds other characteristics to the signal as discussed below. More specifically, automatic gain control 140 conditions the signal based upon inputs from a 12 channel digital to analog converter 141. Converter 141 retrieves stored information from EEPROM (electrically erasable programmable read only memory) 143. EEPROM 143 is a non-volatile memory element which may store user information, for example, settings for color, tint, balance and the like. Thus, automatic gain control 140 changes the texture or visual characteristics based upon user inputs. The signal leaving the automatic gain control 140 is an analog signal until being converted by analog to digital converter 142.
  • Digital signal processor 144 of FIG. 5c further processes the converted signal into a serial type digital signal. One function of the microprocessor 146 is to control the manner in which digital signal processor 144 sorts the digital signals emanating from converter 142. Microprocessor 146 also controls analog to digital converter 142 in terms of when it is activated, when it accepts data, when to release data, and the rate at which data should be released. Microprocessor 146 may also control other functions of the imaging device such as white balance. The microprocessor 146 may selectively receive the information stored in the EEPROM 143 and carry out its various commands to further control the other elements within the circuitry.
  • After the signal is processed by digital signal processor 144, the signal is sent to digital encoder 148 illustrated in FIG. 5d . Some of the more important functions of digital encoder 148 are to encode the digital signal with synchronization, modulated chroma, blanking, horizontal drive, and the other components necessary so that the signal may be placed in a condition for reception by a video device such as a television monitor. As also illustrated in FIG. 5d , once the signal has passed through digital encoder 148, the signal is reconverted into an analog signal through digital to analog converter 150.
  • This reconverted analog signal is then buffered at buffers 151 and then sent to amplifier group 152 of FIG. 5e which amplifies the signal so that it is readily accepted by a desired video device. Specifically, as shown in FIG. 5e , one SVHS outlet is provided at 160, and two composite or NTSC outlets are provided at 162 and 164, respectively.
  • Now turning to a discussion of the endoscope of the second embodiment, attention is first directed to FIG. 6. In this second embodiment, like reference numerals denote matching elements from the endoscope of the first embodiment. The endoscope of the second embodiment also can be characterized as a common or generic endoscope except for the imaging device and the wireless communications means incorporated in this second embodiment. FIG. 6 more specifically illustrates the arrangement of the imaging device wherein processing of the image signals is conducted within the endoscope such that a post-video signal is ready for transmission to a display monitor. As shown, video processing board 50 is mounted adjacent the image sensor 40 in the distal tip of the endoscope. As discussed above, one or more supplementary boards 60 may also be mounted adjacent the video processing board 50 for further processing of the image signals to produce a post-video signal of a desired format. Alternatively, and as further discussed below, some or all of the processing circuitry may be mounted within the handle 12, in a specified portion of the channel 13. There is ample room within channel 13, or some other bore which could be formed in the handle to receive processing circuitry. The construction of the distal tip of the endoscope in the second embodiment can be the same as in the first embodiment. Thus, steering wires (not shown) and circumferentially spaced light fibers (not shown) may be incorporated in the endoscope. Cable 32 carrying the post-video signals electrically connects to a transceiver radio element 170 which is housed within channel 13 towards the proximal end of the handle 12. Transceiver radio element 170 conditions the post video signals in accordance with the desired wireless standard. More specifically, the transceiver radio element adds a high frequency carrier signal and baseband protocol to the post video signals, and then wirelessly transmits the post video signals via antennae 174 to the transceiver radio module 178. The transceiver radio module 178 authenticates the received signals, strips the signals of the carrier frequency, and then routs the signals in the final video format to a display monitor 196. It should also be understand that the communications between the transceiver radio element 170 and the transceiver radio module 178 are not simply one-way communications; rather, the communications are two way in accordance with the Bluetooth standard or IEEE standard. For example, not only does the transceiver radio element 170 transmit image signals, but the transceiver radio element 170 also receives and processes authentication signals from the radio transceiver module 178. Similarly, not only does the transceiver radio module 178 receive and process image signals, but the module 178 also transmits authentication signals. A power switch (not shown) may also be incorporated within the endoscope to selectively energize or de-energize the image sensor 40 and the transceiver radio element 170.
  • Transceiver radio module 178 receives the post-video signals via antennae 180, decodes the signals, and then electrically transmits them to the monitor 196 for viewing by the user. The endoscope in this second embodiment is powered by a battery 176 which is housed adjacent the antennae 174. Electrical leads (not shown) extend from the battery 176 to power the image sensor and the transceiver radio element 170. As discussed further below, antennae 174 and battery 176 may be secured within their own casing or housing 172 which then connects to the handle 12 of the endoscope. Transceiver radio module 178 may simply be powered by the same electrical power source (not shown) which powers the display monitor 196, such as conventional 110 volt, 3 phase power. In order to recharge the battery 176 of the endoscope, the transceiver radio module may be a combination unit which also has a battery charge circuit 182 for recharging battery 176. Charge circuit 182 would also be powered by a conventional power source, preferably the same power source powering the transceiver module 178 and the display monitor 196. Circuit 182 would have a charging receptacle, shown schematically as receptacle 186, for receiving the battery 176. FIG. 6 also shows a self-contained white light source in the form of light source 192 which is housed in channel 15 between interior plug 194 and exterior plug or access cover 195. Alternatively, as shown in FIG. 6a , an exterior source of light 198 could be used which transmits light through the cable 36. The self contained light source 192 is preferred because the endoscope is then free from all trailing cables or other wiring.
  • FIG. 6b illustrates the endoscope having another cavity or opening 210 formed therein for housing some or all of the processing circuitry. As shown, the video processor board 50 has been moved to the opening 210 and is supported in the opening by support 212 which is placed in the opening 210 at a selected depth to accommodate the particular sized circuitry placed in the opening. Conductor 214 interconnects the board 50 with image sensor 40, and conductor 214 can run coterminously with cable 32. Accordingly, the only imaging device element remaining in the distal end of the endoscope is the image sensor 40. Additionally, the timing and control circuits 92 could also be placed in the opening 210 along with the video processing circuitry. The co-pending application Ser. No. 09/368,246 is also incorporated herein by reference for purposes of disclosing circuitry placed in the handle of the endoscope.
  • FIGS. 8 and 9 illustrate another arrangement of the imaging device incorporated within the endoscope of the second embodiment. In preface, FIGS. 8 and 9 illustrate the arrangement in which some elements of the imaging device are placed within the endoscope, and remaining elements of the imaging device are placed within the control box 30. Wireless transmission of image signals takes place between the endoscope and the control box. Final transmission of the post-video signal can then be conducted either electrically through a cable interconnecting the display monitor and the control box, or final transmission may take place via another wireless transmission of the post-video signal from the control box to the display monitor.
  • Referring first to FIG. 8, the endoscope is shown which is identical to the endoscope shown in FIG. 6 with the exception that there is no video processor board 50 or other associated video processing circuitry housed within the endoscope. Thus, the transceiver radio element 170 receives a pre-video signal form the image sensor 40, and then wirelessly transmits the pre-video signal to the control box 30. The transceiver radio module 178 receives the pre-video signal and transfers the same to video processor board 50. Video processor board 50 alone or in conjunction with other processing circuitry such as a supplementary processing board 60 (not shown) places the image signal in a post-video format for direct reception by the display monitor 196. Additionally, it is also contemplated that the timing and control circuitry 92 could be placed in the control box 30. In such a case, the transceiver radio module 178 would not only transmit authentication signals, but also signals generated from the timing and control circuitry 92 for controlling the image sensor 40.
  • In lieu of a camera battery charge circuit incorporated within a unit which is co-located with the display monitor as shown in FIG. 7, the charge circuit 182 may be housed within the control box 30. Accordingly, circuit 182 could be powered by power supply board 52. Additionally, a camera power switch 184 could be included within control box 30 to selectively energize or de-energize the video processor board and its function in converting pre-video signals to post-video signals. As in the endoscope of FIG. 6, the endoscope of FIG. 8 could also have its own power switch (not shown) to energize or de-energize functioning of the imaging elements and the transceiver radio module 170.
  • FIG. 9 also illustrates a secondary communications scheme whereby the post video signals could be wirelessly transmitted to the display monitor 196. Optionally, video processor board 50 (or other processing circuitry) could electrically communicate with a secondary RF transmitter 200 which would transmit the post-video signals via antennae 202. These post-video signals would then be received via antennae 206 by a secondary RF receiver 204 mounted adjacent the display monitor 196. For this secondary transmission, Bluetooth could be used; however, it would be preferable to use a different transmission standard between the primary and the secondary communications to prevent potential interference. One example of a secondary RF transmitter which could be used is an rf-video transmitter model no. SDX-22, manufactured by RF-Video.com of Toronto, Canada. This type of transmitter also operates in the 2.4 GHz frequency, and provides 80 mW of RF power. An example of an acceptable secondary RF receiver which could be used is an rf-video receiver model no. VRX-24 also manufactured by RF-Video.com. This type of receiver has an adjustable frequency of 2.2 to 2.7 Ghz.
  • FIG. 8a illustrates that the battery 176 may be removed from the endoscope for recharge. As shown, housing 172 carries both the antennae 174 and the battery 176; however, it shall be understood that the housing 176 could alternatively only carry the battery 176, while the antennae 174 could be housed within channel 13 of the endoscope. One practical reason for placing antennae 174 within housing 172 is that the antennae is more easily replaced if it is located within a removable element. The distal end of the housing 172 is received within well or bore 208 in the endoscope. Well 208 could be threaded to match external threads on the distal end of the housing 172, or other means such as a clip or a friction fit could be used as understood by those skilled in the art in order to connect housing 172 to the endoscope. Similarly, the proximal end of the housing 172 could be threaded or otherwise adapted so that the proximal end of the housing 172 could be received by receptacle 186 for recharge of the battery 176. As yet another option for recharge of the battery 176, a recharge cable 188 including respective fittings/connectors 190 at each end of the cable 188 could be used to interconnect battery 176 with receptacle 186. Thus if cable 188 were used, housing 172 could remain attached to the endoscope. One situation which might lend itself for use of cable 188 would be if battery 176 became discharged to the point where it failed or was in danger of failing to provide enough potential to the image sensor and transceiver radio element during a surgical procedure. Cable 188 could then be used to provide instantaneous power to the endoscope.
  • Referring to FIGS. 10-12, in another aspect of the present invention, a steering connector assembly is provided in combination with the imaging device to provide a steering capability for the endoscope without increasing the size of the profile for the endoscopic device. One common prior art method of incorporating a steering capability involves the use of externally mounted steering wires and a yoke or bracket that is fitted over the distal end of the endoscope. The use of an externally mounted steering device greatly enlarges the front profile of the endoscope, and thereby prevents use of the endoscope in small passages or cavities within the body. Additionally, externally mounted steering devices can complicate overall maneuverability of the endoscope by further limiting the flexibility of the endoscope. The connector assembly of the present invention provides a fully contained or internally isolated steering capability that avoids these disadvantages of the prior art. Referring to the FIGS. 10-12, an endoscopic device is illustrated including a steering connector assembly 300 that interconnects a CMOS camera module 302 with the body of the endoscopic device. A polymer jacket 304 houses the camera elements shown in phantom lines. The endoscopic device includes one or more flexible distal body portions 306 that may articulate or bend based upon control of the steering wires 310 that extend through passages formed in the sheath of the endoscope. Preferably, the steering wires 310 run through the jacket or sheath of the endoscopic device from the proximal end as shown in FIG. 10 to the distal end as shown in FIGS. 11 and 12. The endoscopic device may also include a more rigid proximal body portion 308 that connects to a steering assembly 340 as shown in FIG. 13.
  • Referring to FIG. 11, details of the steering connector assembly 300 are shown. The connector assembly includes a connector body or base 320 that may be a molded piece characterized by a plurality of transverse or laterally extending flanges 324 interconnected by an orthogonally extending center member 325. The connector body 320 provides gaps or spaces in which electrical traces 322 may be housed. The electrical traces 322 electrically interconnect the CMOS imager 316 to the electrical wires 315 of the image/power cable 314, as also shown in FIG. 12. The distal end of the connector body 320 includes an imager support base 318 that is used to mount the CMOS imager 316. The electrical traces 322 therefore also extend through the mount 318 and connect to the various electrical pins or connections (not shown) of the imager 316. The proximal end of the body 320 has a smaller width dimension defined by a pair of cutouts or notches formed on opposite lateral sides of the proximal end. A strain relief member or cap 326 is mounted over the proximal end of the body 320 at the location of the notches. The strain relief member 326 serves to protect the electrical traces 322, and also serves as the anchoring point for the distal ends of the steering wires 310. As shown, the strain relief member 326 may be two channel shaped elements that attach to the opposite lateral sides of the body 320 at its proximal end. The exterior lateral edges of the member 326 are substantially planer with the exterior lateral edges of the distal end of the body 320. As illustrated, the distal ends 328 of the steering wires 310 may be embedded within the facing surface of the strain relief member 326, and the steering wires then extend proximally through the sheath of the distal body portion 306 of the endoscopic device. As illustrated, four steering wires are arranged in a rectangular arrangement and located at corners of the rectangular arrangement. The strain relief member 326 as mounted results in a frontal profile for the connector assembly 300 that does not extend beyond the frontal profile of the imaging device or the capsule 302. As shown in FIG. 11, the upper surface of the strain relief member 326 is mounted over the upper surface of the body 320, and this arrangement is also repeated with respect to the lower surface of the member 326. Therefore, the strain relief member extends slightly beyond the upper and lower surfaces of the body 320. The imaging device 316 has a slightly larger frontal profile than that of the distal end of the body 320, so the strain relief member can be incorporated to not extend beyond the profile of the imaging device since the thickness of the strain relief elements are very small. Therefore, the strain relief member fits easily within the jacket 304 of the capsule 302 and the capsule size does not have to be enlarged.
  • Also referring to FIG. 12, in the reverse perspective view, a plurality of openings 330 can be seen that are formed through the sheath to receive the steering wires 310. The image/power cable 314 is also illustrated that houses the plurality of wires 315. These wires 315 carry the power and electronic signals to and from the CMOS imager. For clarity, FIG. 11 does not show the electrical cable 314 and wires 315. In use, the distal ends of the wires 315 (not shown) are anchored in the gaps between the flanges 324, and these wires make contact with the electrical traces 322 that also extend through the gaps 324.
  • Referring to FIG. 13, the endoscopic device is illustrated as connected to a conventional steering assembly 340 that is used to facilitate a number of functions for the endoscopic device, to include steering of the endoscopic device and the introduction of various fluids or instruments through the endoscopic device. Accordingly, the steering assembly 340 is illustrated with conventional controls, to include, steering controls 342 which can tension or loosen the wires to effect a desired articulation of the distal end of the endoscope. For example, one of the knobs/dials can control transverse movement while the other knob/dial can control longitudinal movement. The FIG. 13 also shows other conventional controls such as frame and shutter controls 344 for the imaging device, and various ports to receive gas, fluids and/or instruments. For example, the FIG. 13 shows a suction port 346, an air port 348, an auxiliary port 350, and a biopsy port 352. The ports 350 and 352 may receive instruments for conducting the desired surgical procedure, such as forceps, electrodes, etc.
  • The connector assembly 300 provides a structure for anchoring steering wires and for stabilizing and supporting electrical connections between the imaging device and the image/power cable. The connector assembly facilitates a steering capability but does not enlarge the frontal profile of the imaging device since the steering wires are housed within the sheath of the endoscope and are anchored internally within the distal end of the endoscope. Accordingly, the imaging device is maintained in a very small configuration which provides great advantages in terms of reducing the invasive nature of surgical procedures, as well as providing additional options for use of the imaging device to be steered into an optimal location for imaging difficult to access locations within a body. Additionally, the location at which the steering wires are anchored, namely, at the connector assembly itself, allows for optimum control in which the distal end of the endoscopic device can be maneuvered. In summary, the connector assembly fulfills two distinct purposes, namely, providing strain relief and support to the electrical traces and electrical wires, and serving to anchor the distal ends of the steering wires. The steering capability provided is usable with any of the imaging embodiments disclosed herein, to include both wired and wireless imaging capabilities.
  • From the foregoing, it is apparent that an entire imaging device may be incorporated within the distal tip of an endoscope, or may have some elements of the imaging device being placed in a small remote box adjacent to the endoscope. Based upon the type of image sensor used, the profile area of the imaging device may be made small enough to be placed into an endoscope which has a very small diameter tube. Additionally, the imaging device may be placed into the channels of existing endoscopes to provide additional imaging capability without increasing the size of the endoscope. The imaging device may be powered by a standard power input connection in the form of a power cord, or a small battery may be used. In order to enhance the freedom of using the endoscope without trailing cables, the endoscope may include wireless transmission capabilities. A wireless endoscope also has advantages with respect to overall surgical efficiency in conducting procedures by minimizing requirements to drape or shield cables in the sterile field, and by providing an endoscope which has unlimited movement capabilities without having to orient or otherwise handle the endoscope to account for twisted cables, drapes, or other components which are normally associated with endoscopic devices. A wireless transmission of post-video signals from the endoscope directly to the video display can be done to provide video images. Alternatively, the imaging device can be separated into components which are located in the endoscope and in a remote control box. Pre-video signals are wirelessly transmitted to the control box, and then post-video signals are provided to the video display either through a secondary wireless transmission, or by a conventional hard wired connection.
  • This invention has been described in detail with reference to particular embodiments thereof, but it will be understood that various other modifications can be effected within the spirit and scope of this invention.

Claims (10)

What is claimed is:
1. An endoscopic device including an image sensor for producing images of a surgical site, said device comprising:
a tubular portion including a distal end, a proximal end, and a central passageway extending through said tubular portion;
a CMOS image sensor positioned in said tubular portion for receiving images of a surgical site, said image sensor producing an image signal;
a connector for interconnecting electrical leads of the CMOS image sensor to electrical wires of an image/power cable that transmits image signals from the image sensor through the cable to a video device, said connector having a body and a plurality of transverse extensions and at least one orthogonal center member connecting the lateral extensions, a plurality of gaps formed between each of said lateral extensions, said connector having a proximal end thereof with a smaller width dimension;
a plurality of electrical traces extending though the gaps of said connector for electrically interconnecting the image sensor to the electrical wires of the image/power cable;
a strain relief cap connected to said connector, said strain relief cap covering at least of portion of said electrical traces extending through said connector; and
a plurality of steering wires extending through said tubular portion for steering a distal end of the endoscopic device to position the image sensor, said steering wires having distal ends connected to said strain relief cap and proximal ends extending through said tubular portion.
2. A device as claimed in claim 1, wherein:
said strain relief cap includes a pair of channels secured over opposite lateral sides of said proximal end of said connector, and said steering wires being anchored to a facing surface of said strain relief cap.
3. A device, as claimed in claim 1, wherein:
said plurality of steering wires include four steering wires, said steering wires arranged in a rectangular arrangement and located at corners of the rectangular arrangement.
4. A device, as claimed in claim 1, wherein:
said image sensor has a frontal profile defined by a length and width dimension, and said strain relief cap being secured to said connector such that the connector and strain relief cap when connected do not extend beyond said frontal profile.
5. A device, as claimed in claim 1, wherein:
said image/power cable are located radially interior of said steering wires.
6. A device, as claimed in claim 1, wherein:
said connector further includes a portion thereof attached to said image sensor for mounting of the image sensor to the connector.
7. A device, as claimed in claim 1, wherein:
a capsule covers said image sensor at said distal end of said tubular portion, and said capsule has a frontal profile defined by a length and width dimension, and said strain relief cap being secured to said connector such that the connector and strain relief cap when connected do not extend beyond said frontal profile.
8. A device, as claimed in claim 1, further including:
a steering assembly attached at a proximal end of said tubular portion for receiving said steering wires and said cable, said steering assembly providing a steering capability to said endoscope through manipulation of said steering wires.
9. An endoscopic device including an image sensor for producing images of a surgical site, said device comprising:
a tubular portion including a distal end, a proximal end, and a central passageway extending through said tubular portion;
a CMOS image sensor positioned in said tubular portion for receiving images of a surgical site, said image sensor producing an image signal;
a connector for interconnecting electrical leads of the image sensor to electrical wires of an image/power cable that transmits image signals from the image sensor through the cable to a video device, said connector having a body;
a plurality of electrical traces extending though the gaps of said connector for electrically interconnecting the image sensor to the electrical wires of the image/power cable;
a strain relief cap connected to said connector, said strain relief cap covering at least of portion of said electrical traces extending through said connector;
a plurality of steering wires extending through said tubular portion for steering a distal end of the endoscopic device to position the image sensor, said steering wires having distal ends connected to said strain relief cap and proximal ends extending through said tubular portion; and
a steering assembly attached at a proximal end of said tubular portion for receiving said steering wires and said cable, said steering assembly providing a steering capability to said endoscope through manipulation of said steering wires.
10. A device, as claimed in claim 9, wherein:
said connector body has a plurality of transverse extensions and at least one orthogonal center member connecting the lateral extensions, a plurality of gaps formed between each of said lateral extensions, said connector having a proximal end thereof with a smaller width dimension; and
said strain relief cap includes a pair of channels secured over opposite lateral sides of said proximal end of said connector, and said steering wires being anchored to a facing surface of said strain relief cap.
US15/090,358 1997-10-06 2016-04-04 Reduced area imaging device incorporated within endoscopic devices Abandoned US20160213230A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/090,358 US20160213230A1 (en) 1997-10-06 2016-04-04 Reduced area imaging device incorporated within endoscopic devices

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US08/944,322 US5929901A (en) 1997-10-06 1997-10-06 Reduced area imaging devices incorporated within surgical instruments
US09/175,685 US6043839A (en) 1997-10-06 1998-10-20 Reduced area imaging devices
US09/496,312 US6275255B1 (en) 1997-10-06 2000-02-01 Reduced area imaging devices
US09/929,531 US7030904B2 (en) 1997-10-06 2001-08-13 Reduced area imaging device incorporated within wireless endoscopic devices
US11/245,960 US20060022234A1 (en) 1997-10-06 2005-10-06 Reduced area imaging device incorporated within wireless endoscopic devices
US12/889,287 US20110034769A1 (en) 1997-10-06 2010-09-23 Reduced area imaging device incorporated within wireless endoscopic devices
US13/732,908 US8885034B2 (en) 1997-10-06 2013-01-02 Reduced area imaging device incorporated within endoscopic devices
US14/291,583 US9307895B2 (en) 1997-10-06 2014-05-30 Reduced area imaging device incorporated within endoscopic devices
US15/090,358 US20160213230A1 (en) 1997-10-06 2016-04-04 Reduced area imaging device incorporated within endoscopic devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/291,583 Continuation US9307895B2 (en) 1997-10-06 2014-05-30 Reduced area imaging device incorporated within endoscopic devices

Publications (1)

Publication Number Publication Date
US20160213230A1 true US20160213230A1 (en) 2016-07-28

Family

ID=26871479

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/175,685 Expired - Lifetime US6043839A (en) 1997-09-11 1998-10-20 Reduced area imaging devices
US09/496,312 Expired - Lifetime US6275255B1 (en) 1997-09-11 2000-02-01 Reduced area imaging devices
US15/090,358 Abandoned US20160213230A1 (en) 1997-10-06 2016-04-04 Reduced area imaging device incorporated within endoscopic devices

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/175,685 Expired - Lifetime US6043839A (en) 1997-09-11 1998-10-20 Reduced area imaging devices
US09/496,312 Expired - Lifetime US6275255B1 (en) 1997-09-11 2000-02-01 Reduced area imaging devices

Country Status (1)

Country Link
US (3) US6043839A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190357758A1 (en) * 2017-02-15 2019-11-28 Infinite Arthroscopy, Inc. Limited Wireless medical imaging system comprising a head unit and a light cable that comprises an integrated light source
US11096774B2 (en) 2016-12-09 2021-08-24 Zenflow, Inc. Systems, devices, and methods for the accurate deployment of an implant in the prostatic urethra
USD938584S1 (en) 2020-03-30 2021-12-14 Lazurite Holdings Llc Hand piece
US11246245B2 (en) * 2017-10-17 2022-02-08 Panasonic Intellectual Property Management Co., Ltd. Camera
USD972176S1 (en) 2020-08-06 2022-12-06 Lazurite Holdings Llc Light source
US11890213B2 (en) 2019-11-19 2024-02-06 Zenflow, Inc. Systems, devices, and methods for the accurate deployment and imaging of an implant in the prostatic urethra
US11931010B2 (en) 2017-03-24 2024-03-19 Covidien Lp Endoscopes and methods of treatment

Families Citing this family (202)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6211904B1 (en) 1997-09-11 2001-04-03 Edwin L. Adair Surgical devices incorporating reduced area imaging devices
US20110034769A1 (en) 1997-10-06 2011-02-10 Micro-Imaging Solutions Llc Reduced area imaging device incorporated within wireless endoscopic devices
US8317689B1 (en) 1999-09-13 2012-11-27 Visionscope Technologies Llc Miniature endoscope system
IL132944A (en) 1999-11-15 2009-05-04 Arkady Glukhovsky Method for activating an image collecting process
KR100800040B1 (en) * 2000-03-08 2008-01-31 기븐 이미징 리미티드 A capsule for in vivo imaging
US6958766B2 (en) 2000-04-06 2005-10-25 Gendex Corporation Dental video imaging system
US6692430B2 (en) * 2000-04-10 2004-02-17 C2Cure Inc. Intra vascular imaging apparatus
IL135571A0 (en) * 2000-04-10 2001-05-20 Doron Adler Minimal invasive surgery imaging system
JP2002076314A (en) * 2000-08-30 2002-03-15 Texas Instr Japan Ltd Ultra-miniature imaging device
US6532328B1 (en) * 2000-10-31 2003-03-11 International Business Machines Corporation Network cable with optical identification element
KR20030086349A (en) * 2001-04-06 2003-11-07 덴츠플라이 인터내셔널 인코포레이티드 Dental video imaging system
ATE404114T1 (en) * 2001-06-18 2008-08-15 Given Imaging Ltd SWALLOWABLE IN-VIVO CAPSULE WITH A CIRCUIT BOARD HAVING RIGID AND FLEXIBLE SECTIONS
EP1421775A4 (en) * 2001-06-28 2009-12-23 Given Imaging Ltd In vivo imaging device with a small cross sectional area and methods for construction thereof
US10595710B2 (en) * 2001-10-19 2020-03-24 Visionscope Technologies Llc Portable imaging system employing a miniature endoscope
US20070167681A1 (en) * 2001-10-19 2007-07-19 Gill Thomas J Portable imaging system employing a miniature endoscope
US6863651B2 (en) * 2001-10-19 2005-03-08 Visionscope, Llc Miniature endoscope with imaging fiber system
US8038602B2 (en) * 2001-10-19 2011-10-18 Visionscope Llc Portable imaging system employing a miniature endoscope
CA2469773A1 (en) * 2001-12-11 2003-07-03 C2Cure Inc. Apparatus, method and system for intravascular photographic imaging
US20030216622A1 (en) * 2002-04-25 2003-11-20 Gavriel Meron Device and method for orienting a device in vivo
US6665468B2 (en) * 2002-04-30 2003-12-16 The Curators Of The University Of Missouri Focal plane array optical data extraction and memory
US7662094B2 (en) * 2002-05-14 2010-02-16 Given Imaging Ltd. Optical head assembly with dome, and device for use thereof
WO2003098913A2 (en) * 2002-05-16 2003-11-27 Cbyond Inc. Miniature camera head
US7307661B2 (en) * 2002-06-26 2007-12-11 Vbk Inc. Multifunctional integrated image sensor and application to virtual interface technology
US7248281B2 (en) * 2002-07-16 2007-07-24 Fujinon Corporation Electronic endoscope apparatus which superimposes signals on power supply
WO2004014227A1 (en) * 2002-08-13 2004-02-19 Given Imaging Ltd. System for in vivo sampling and analysis
US7662093B2 (en) * 2002-09-30 2010-02-16 Given Imaging, Ltd. Reduced size imaging device
AU2003269438A1 (en) * 2002-09-30 2004-04-19 Given Imaging Ltd. In-vivo sensing system
JP4746876B2 (en) * 2002-10-15 2011-08-10 ギブン イメージング リミテッド Apparatus, system and method for transferring a signal to a mobile device
US20080045788A1 (en) * 2002-11-27 2008-02-21 Zvika Gilad Method and device of imaging with an in vivo imager
JP2006512130A (en) * 2002-12-26 2006-04-13 ギブン・イメージング・リミテツド Immobilizable in vivo sensing device
US7833151B2 (en) * 2002-12-26 2010-11-16 Given Imaging Ltd. In vivo imaging device with two imagers
WO2004059568A1 (en) * 2002-12-26 2004-07-15 Given Imaging Ltd. In vivo imaging device and method of manufacture thereof
US7591783B2 (en) 2003-04-01 2009-09-22 Boston Scientific Scimed, Inc. Articulation joint for video endoscope
US20050245789A1 (en) 2003-04-01 2005-11-03 Boston Scientific Scimed, Inc. Fluid manifold for endoscope system
US8118732B2 (en) 2003-04-01 2012-02-21 Boston Scientific Scimed, Inc. Force feedback control system for video endoscope
US20040199052A1 (en) 2003-04-01 2004-10-07 Scimed Life Systems, Inc. Endoscopic imaging system
US7578786B2 (en) 2003-04-01 2009-08-25 Boston Scientific Scimed, Inc. Video endoscope
US7604589B2 (en) * 2003-10-01 2009-10-20 Given Imaging, Ltd. Device, system and method for determining orientation of in-vivo devices
JP4104523B2 (en) * 2003-10-02 2008-06-18 オリンパス株式会社 Video signal generator
WO2005043231A2 (en) * 2003-10-31 2005-05-12 Vkb Inc. Optical apparatus for virtual interface projection and sensing
US20050137468A1 (en) * 2003-12-18 2005-06-23 Jerome Avron Device, system, and method for in-vivo sensing of a substance
US7647090B1 (en) 2003-12-30 2010-01-12 Given Imaging, Ltd. In-vivo sensing device and method for producing same
US7821564B2 (en) * 2003-12-30 2010-10-26 Given Imaging Ltd. Assembly for aligning an optical system
US8702597B2 (en) * 2003-12-31 2014-04-22 Given Imaging Ltd. Immobilizable in-vivo imager with moveable focusing mechanism
WO2005062717A2 (en) 2003-12-31 2005-07-14 Given Imaging Ltd. In-vivo sensing device with detachable part
US20060015013A1 (en) * 2004-06-30 2006-01-19 Zvika Gilad Device and method for in vivo illumination
US8500630B2 (en) * 2004-06-30 2013-08-06 Given Imaging Ltd. In vivo device with flexible circuit board and method for assembly thereof
US7643865B2 (en) * 2004-06-30 2010-01-05 Given Imaging Ltd. Autonomous in-vivo device
US7596403B2 (en) 2004-06-30 2009-09-29 Given Imaging Ltd. System and method for determining path lengths through a body lumen
US7300397B2 (en) * 2004-07-29 2007-11-27 C2C Cure, Inc. Endoscope electronics assembly
US8083671B2 (en) 2004-09-30 2011-12-27 Boston Scientific Scimed, Inc. Fluid delivery system for use with an endoscope
US7479106B2 (en) 2004-09-30 2009-01-20 Boston Scientific Scimed, Inc. Automated control of irrigation and aspiration in a single-use endoscope
EP1799095A2 (en) 2004-09-30 2007-06-27 Boston Scientific Scimed, Inc. Adapter for use with digital imaging medical device
EP1799094A2 (en) 2004-09-30 2007-06-27 Boston Scientific Scimed, Inc. Multi-functional endoscopic system for use in electrosurgical applications
US7241263B2 (en) 2004-09-30 2007-07-10 Scimed Life Systems, Inc. Selectively rotatable shaft coupler
EP1799096A2 (en) 2004-09-30 2007-06-27 Boston Scientific Scimed, Inc. System and method of obstruction removal
AU2005229684A1 (en) * 2004-11-04 2006-05-18 Given Imaging Ltd Apparatus and method for receiving device selection and combining
US20060164510A1 (en) * 2005-01-24 2006-07-27 Doron Adler Sensor with narrow mounting profile
US7860556B2 (en) * 2005-02-02 2010-12-28 Voyage Medical, Inc. Tissue imaging and extraction systems
US8050746B2 (en) 2005-02-02 2011-11-01 Voyage Medical, Inc. Tissue visualization device and method variations
US11478152B2 (en) 2005-02-02 2022-10-25 Intuitive Surgical Operations, Inc. Electrophysiology mapping and visualization system
US20080015569A1 (en) 2005-02-02 2008-01-17 Voyage Medical, Inc. Methods and apparatus for treatment of atrial fibrillation
US8078266B2 (en) 2005-10-25 2011-12-13 Voyage Medical, Inc. Flow reduction hood systems
US10064540B2 (en) * 2005-02-02 2018-09-04 Intuitive Surgical Operations, Inc. Visualization apparatus for transseptal access
US8137333B2 (en) 2005-10-25 2012-03-20 Voyage Medical, Inc. Delivery of biological compounds to ischemic and/or infarcted tissue
US7930016B1 (en) 2005-02-02 2011-04-19 Voyage Medical, Inc. Tissue closure system
US7918787B2 (en) 2005-02-02 2011-04-05 Voyage Medical, Inc. Tissue visualization and manipulation systems
US9510732B2 (en) 2005-10-25 2016-12-06 Intuitive Surgical Operations, Inc. Methods and apparatus for efficient purging
US7860555B2 (en) 2005-02-02 2010-12-28 Voyage Medical, Inc. Tissue visualization and manipulation system
IL167782A (en) * 2005-03-31 2011-12-29 Given Imaging Ltd Antenna for in-vivo imaging system
US20060221218A1 (en) * 2005-04-05 2006-10-05 Doron Adler Image sensor with improved color filter
JP4015666B2 (en) * 2005-04-07 2007-11-28 オリンパスメディカルシステムズ株式会社 In-subject information acquisition system
US8097003B2 (en) * 2005-05-13 2012-01-17 Boston Scientific Scimed, Inc. Endoscopic apparatus with integrated variceal ligation device
US7846107B2 (en) 2005-05-13 2010-12-07 Boston Scientific Scimed, Inc. Endoscopic apparatus with integrated multiple biopsy device
IL176231A (en) * 2005-06-14 2010-12-30 Given Imaging Ltd Modulator and method for producing a modulated signal
IL177045A (en) 2005-07-25 2012-12-31 Daniel Gat Device, system and method of receiving and recording and displaying in-vivo data with user entered data
US20070019099A1 (en) * 2005-07-25 2007-01-25 Vkb Inc. Optical apparatus for virtual interface projection and sensing
US20070019103A1 (en) * 2005-07-25 2007-01-25 Vkb Inc. Optical apparatus for virtual interface projection and sensing
US8052597B2 (en) 2005-08-30 2011-11-08 Boston Scientific Scimed, Inc. Method for forming an endoscope articulation joint
US8221310B2 (en) 2005-10-25 2012-07-17 Voyage Medical, Inc. Tissue visualization device and method variations
US20070129602A1 (en) * 2005-11-22 2007-06-07 Given Imaging Ltd. Device, method and system for activating an in-vivo imaging device
US7896805B2 (en) * 2005-11-23 2011-03-01 Given Imaging Ltd. In-vivo imaging device and optical system thereof
US20080312502A1 (en) * 2005-12-02 2008-12-18 Christopher Paul Swain System and Device for in Vivo Procedures
US20070156051A1 (en) * 2005-12-29 2007-07-05 Amit Pascal Device and method for in-vivo illumination
US20070167834A1 (en) * 2005-12-29 2007-07-19 Amit Pascal In-vivo imaging optical device and method
US9320417B2 (en) 2005-12-29 2016-04-26 Given Imaging Ltd. In-vivo optical imaging device with backscatter blocking
US7967759B2 (en) 2006-01-19 2011-06-28 Boston Scientific Scimed, Inc. Endoscopic system with integrated patient respiratory status indicator
US8888684B2 (en) 2006-03-27 2014-11-18 Boston Scientific Scimed, Inc. Medical devices with local drug delivery capabilities
US7955255B2 (en) 2006-04-20 2011-06-07 Boston Scientific Scimed, Inc. Imaging assembly with transparent distal cap
US8202265B2 (en) 2006-04-20 2012-06-19 Boston Scientific Scimed, Inc. Multiple lumen assembly for use in endoscopes or other medical devices
US20070270651A1 (en) * 2006-05-19 2007-11-22 Zvika Gilad Device and method for illuminating an in vivo site
US9055906B2 (en) 2006-06-14 2015-06-16 Intuitive Surgical Operations, Inc. In-vivo visualization systems
US20080097476A1 (en) 2006-09-01 2008-04-24 Voyage Medical, Inc. Precision control systems for tissue visualization and manipulation assemblies
US10004388B2 (en) 2006-09-01 2018-06-26 Intuitive Surgical Operations, Inc. Coronary sinus cannulation
JP2010502313A (en) 2006-09-01 2010-01-28 ボエッジ メディカル, インコーポレイテッド Method and apparatus for the treatment of atrial fibrillation
US10335131B2 (en) 2006-10-23 2019-07-02 Intuitive Surgical Operations, Inc. Methods for preventing tissue migration
KR101444485B1 (en) 2006-11-16 2014-09-24 스트리커 코포레이션 Wireless endoscopic camera
US20080183036A1 (en) 2006-12-18 2008-07-31 Voyage Medical, Inc. Systems and methods for unobstructed visualization and ablation
US8556807B2 (en) 2006-12-21 2013-10-15 Intuitive Surgical Operations, Inc. Hermetically sealed distal sensor endoscope
US8131350B2 (en) * 2006-12-21 2012-03-06 Voyage Medical, Inc. Stabilization of visualization catheters
US9226648B2 (en) 2006-12-21 2016-01-05 Intuitive Surgical Operations, Inc. Off-axis visualization systems
US8814779B2 (en) 2006-12-21 2014-08-26 Intuitive Surgical Operations, Inc. Stereoscopic endoscope
US20080161647A1 (en) * 2006-12-27 2008-07-03 Amit Pascal Device and method for multiple illumination fields of an in-vivo imaging device
EP2148608A4 (en) 2007-04-27 2010-04-28 Voyage Medical Inc Complex shape steerable tissue visualization and manipulation catheter
US8657805B2 (en) 2007-05-08 2014-02-25 Intuitive Surgical Operations, Inc. Complex shape steerable tissue visualization and manipulation catheter
US8709008B2 (en) 2007-05-11 2014-04-29 Intuitive Surgical Operations, Inc. Visual electrode ablation systems
US20090030276A1 (en) * 2007-07-27 2009-01-29 Voyage Medical, Inc. Tissue visualization catheter with imaging systems integration
US8495999B2 (en) 2007-08-04 2013-07-30 John Adam Law Airway intubation device
US20090046171A1 (en) * 2007-08-16 2009-02-19 C2Cure, Inc. Non-linear color correction
US8235985B2 (en) 2007-08-31 2012-08-07 Voyage Medical, Inc. Visualization and ablation system variations
US20090062790A1 (en) * 2007-08-31 2009-03-05 Voyage Medical, Inc. Direct visualization bipolar ablation systems
US20090105532A1 (en) * 2007-10-22 2009-04-23 Zvika Gilad In vivo imaging device and method of manufacturing thereof
US20090125022A1 (en) * 2007-11-12 2009-05-14 Voyage Medical, Inc. Tissue visualization and ablation systems
US20090143640A1 (en) * 2007-11-26 2009-06-04 Voyage Medical, Inc. Combination imaging and treatment assemblies
US8858609B2 (en) * 2008-02-07 2014-10-14 Intuitive Surgical Operations, Inc. Stent delivery under direct visualization
US8515507B2 (en) * 2008-06-16 2013-08-20 Given Imaging Ltd. Device and method for detecting in-vivo pathology
US20090326572A1 (en) * 2008-06-27 2009-12-31 Ruey-Feng Peh Apparatus and methods for rapid tissue crossing
US9101735B2 (en) 2008-07-07 2015-08-11 Intuitive Surgical Operations, Inc. Catheter control systems
US8333012B2 (en) 2008-10-10 2012-12-18 Voyage Medical, Inc. Method of forming electrode placement and connection systems
US8894643B2 (en) 2008-10-10 2014-11-25 Intuitive Surgical Operations, Inc. Integral electrode placement and connection systems
US20100121139A1 (en) 2008-11-12 2010-05-13 Ouyang Xiaolong Minimally Invasive Imaging Systems
US9468364B2 (en) 2008-11-14 2016-10-18 Intuitive Surgical Operations, Inc. Intravascular catheter with hood and image processing systems
US8864654B2 (en) 2010-04-20 2014-10-21 Jeffrey B. Kleiner Method and apparatus for performing retro peritoneal dissection
US9717403B2 (en) 2008-12-05 2017-08-01 Jeffrey B. Kleiner Method and apparatus for performing retro peritoneal dissection
US20100256629A1 (en) * 2009-04-06 2010-10-07 Voyage Medical, Inc. Methods and devices for treatment of the ostium
US7931149B2 (en) * 2009-05-27 2011-04-26 Given Imaging Ltd. System for storing and activating an in vivo imaging capsule
US9642513B2 (en) 2009-06-18 2017-05-09 Endochoice Inc. Compact multi-viewing element endoscope system
EP3811847A1 (en) 2009-06-18 2021-04-28 EndoChoice, Inc. Multi-camera endoscope
US9901244B2 (en) 2009-06-18 2018-02-27 Endochoice, Inc. Circuit board assembly of a multiple viewing elements endoscope
US8926502B2 (en) 2011-03-07 2015-01-06 Endochoice, Inc. Multi camera endoscope having a side service channel
US9706903B2 (en) 2009-06-18 2017-07-18 Endochoice, Inc. Multiple viewing elements endoscope system with modular imaging units
US11864734B2 (en) 2009-06-18 2024-01-09 Endochoice, Inc. Multi-camera endoscope
US9402533B2 (en) 2011-03-07 2016-08-02 Endochoice Innovation Center Ltd. Endoscope circuit board assembly
US9872609B2 (en) 2009-06-18 2018-01-23 Endochoice Innovation Center Ltd. Multi-camera endoscope
US11278190B2 (en) 2009-06-18 2022-03-22 Endochoice, Inc. Multi-viewing element endoscope
US9101287B2 (en) 2011-03-07 2015-08-11 Endochoice Innovation Center Ltd. Multi camera endoscope assembly having multiple working channels
US9492063B2 (en) 2009-06-18 2016-11-15 Endochoice Innovation Center Ltd. Multi-viewing element endoscope
US9713417B2 (en) 2009-06-18 2017-07-25 Endochoice, Inc. Image capture assembly for use in a multi-viewing elements endoscope
WO2012120507A1 (en) 2011-02-07 2012-09-13 Peermedical Ltd. Multi-element cover for a multi-camera endoscope
US9101268B2 (en) 2009-06-18 2015-08-11 Endochoice Innovation Center Ltd. Multi-camera endoscope
US11547275B2 (en) 2009-06-18 2023-01-10 Endochoice, Inc. Compact multi-viewing element endoscope system
US10165929B2 (en) 2009-06-18 2019-01-01 Endochoice, Inc. Compact multi-viewing element endoscope system
US8516691B2 (en) * 2009-06-24 2013-08-27 Given Imaging Ltd. Method of assembly of an in vivo imaging device with a flexible circuit board
US8648932B2 (en) * 2009-08-13 2014-02-11 Olive Medical Corporation System, apparatus and methods for providing a single use imaging device for sterile environments
US9179831B2 (en) * 2009-11-30 2015-11-10 King Systems Corporation Visualization instrument
US8694071B2 (en) 2010-02-12 2014-04-08 Intuitive Surgical Operations, Inc. Image stabilization techniques and methods
AU2011230538B2 (en) 2010-03-25 2016-01-07 DePuy Synthes Products, Inc. System and method for providing a single use imaging device for medical applications
US9814522B2 (en) 2010-04-06 2017-11-14 Intuitive Surgical Operations, Inc. Apparatus and methods for ablation efficacy
EP2848190B1 (en) 2010-09-08 2016-11-02 Covidien LP Catheter with imaging assembly
EP3718466B1 (en) 2010-09-20 2023-06-07 EndoChoice, Inc. Endoscope distal section comprising a unitary fluid channeling component
US9560953B2 (en) 2010-09-20 2017-02-07 Endochoice, Inc. Operational interface in a multi-viewing element endoscope
CN103403605A (en) 2010-10-28 2013-11-20 恩多巧爱思创新中心有限公司 Optical systems for multi-sensor endoscopes
JP6054874B2 (en) 2010-12-09 2016-12-27 エンドチョイス イノベーション センター リミテッド Flexible electronic circuit board for multi-camera endoscope
US11889986B2 (en) 2010-12-09 2024-02-06 Endochoice, Inc. Flexible electronic circuit board for a multi-camera endoscope
EP3420886B8 (en) 2010-12-09 2020-07-15 EndoChoice, Inc. Flexible electronic circuit board multi-camera endoscope
US8873816B1 (en) 2011-04-06 2014-10-28 Given Imaging Ltd. Method and system for identification of red colored pathologies in vivo
US8749686B2 (en) 2011-04-29 2014-06-10 Truesense Imaging, Inc. CCD image sensors and methods
CA2835081A1 (en) 2011-05-03 2012-11-08 Endosee Corporation Method and apparatus for hysteroscopy and endometrial biopsy
JP6348061B2 (en) 2011-05-12 2018-06-27 デピュー シンセス プロダクツ, インコーポレーテッドDePuy Synthes Products, Inc. Sub-row parallel digitizer system and method for hybrid stacked image sensor using vertical interconnect
US20130066338A1 (en) 2011-09-09 2013-03-14 Richard Romley Methods and devices for manipulating and fastening tissue
US9572571B2 (en) 2011-09-09 2017-02-21 Endogastric Solutions, Inc. Methods and devices for manipulating and fastening tissue
EP2604172B1 (en) 2011-12-13 2015-08-12 EndoChoice Innovation Center Ltd. Rotatable connector for an endoscope
EP3659491A1 (en) 2011-12-13 2020-06-03 EndoChoice Innovation Center Ltd. Removable tip endoscope
US10244927B2 (en) 2011-12-29 2019-04-02 Cook Medical Technologies Llc Space-optimized visualization catheter with camera train holder
US9668643B2 (en) 2011-12-29 2017-06-06 Cook Medical Technologies Llc Space-optimized visualization catheter with oblong shape
EP3150106B1 (en) 2011-12-29 2024-03-27 Cook Medical Technologies LLC Space-optimized visualization catheter having a camera train holder in a catheter with off-centered lumens
US9622646B2 (en) 2012-06-25 2017-04-18 Coopersurgical, Inc. Low-cost instrument for endoscopically guided operative procedures
US9560954B2 (en) 2012-07-24 2017-02-07 Endochoice, Inc. Connector for use with endoscope
US10568496B2 (en) 2012-07-26 2020-02-25 DePuy Synthes Products, Inc. Continuous video in a light deficient environment
KR102143807B1 (en) 2012-07-26 2020-08-31 디퍼이 신테스 프로덕츠, 인코포레이티드 Camera system with minimal area monolithic cmos image sensor
MX346174B (en) 2012-07-26 2017-03-10 Depuy Synthes Products Inc Ycbcr pulsed illumination scheme in a light deficient environment.
USD717340S1 (en) 2012-09-07 2014-11-11 Covidien Lp Display screen with enteral feeding icon
US9517184B2 (en) 2012-09-07 2016-12-13 Covidien Lp Feeding tube with insufflation device and related methods therefor
US9198835B2 (en) 2012-09-07 2015-12-01 Covidien Lp Catheter with imaging assembly with placement aid and related methods therefor
USD735343S1 (en) 2012-09-07 2015-07-28 Covidien Lp Console
USD716841S1 (en) 2012-09-07 2014-11-04 Covidien Lp Display screen with annotate file icon
BR112015022884A2 (en) 2013-03-15 2017-07-18 Olive Medical Corp minimize i / o image sensor and driver counts in endoscope applications
US10517469B2 (en) 2013-03-15 2019-12-31 DePuy Synthes Products, Inc. Image sensor synchronization without input clock and data transmission clock
AU2014233464B2 (en) 2013-03-15 2018-11-01 DePuy Synthes Products, Inc. Scope sensing in a light controlled environment
WO2014144947A1 (en) 2013-03-15 2014-09-18 Olive Medical Corporation Super resolution and color motion artifact correction in a pulsed color imaging system
AU2014233193B2 (en) 2013-03-15 2018-11-01 DePuy Synthes Products, Inc. Controlling the integral light energy of a laser pulse
US9993142B2 (en) 2013-03-28 2018-06-12 Endochoice, Inc. Fluid distribution device for a multiple viewing elements endoscope
US9986899B2 (en) 2013-03-28 2018-06-05 Endochoice, Inc. Manifold for a multiple viewing elements endoscope
US10499794B2 (en) 2013-05-09 2019-12-10 Endochoice, Inc. Operational interface in a multi-viewing element endoscope
US9257763B2 (en) 2013-07-02 2016-02-09 Gyrus Acmi, Inc. Hybrid interconnect
US9510739B2 (en) 2013-07-12 2016-12-06 Gyrus Acmi, Inc. Endoscope small imaging system
US9324145B1 (en) 2013-08-08 2016-04-26 Given Imaging Ltd. System and method for detection of transitions in an image stream of the gastrointestinal tract
US9370295B2 (en) 2014-01-13 2016-06-21 Trice Medical, Inc. Fully integrated, disposable tissue visualization device
US10342579B2 (en) 2014-01-13 2019-07-09 Trice Medical, Inc. Fully integrated, disposable tissue visualization device
US11547446B2 (en) 2014-01-13 2023-01-10 Trice Medical, Inc. Fully integrated, disposable tissue visualization device
US10084944B2 (en) 2014-03-21 2018-09-25 DePuy Synthes Products, Inc. Card edge connector for an imaging sensor
CN104288848B (en) * 2014-10-31 2017-04-05 陈舒华 Eustachian tube check and treatment device
US10045758B2 (en) 2014-11-26 2018-08-14 Visura Technologies, LLC Apparatus, systems and methods for proper transesophageal echocardiography probe positioning by using camera for ultrasound imaging
CN107106132A (en) 2014-11-26 2017-08-29 维色拉科技公司 Equipment, system and method for carrying out appropriate Transesophageal echocardiography probe positioning by using the video camera for ultrasonic imaging
EP3267674B1 (en) * 2015-03-04 2019-08-21 Sony Corporation Image pickup device
JP6072389B1 (en) * 2015-06-03 2017-02-01 オリンパス株式会社 Endoscope connector
CN108024695B (en) 2015-08-11 2021-05-04 特里斯医疗有限公司 Fully integrated disposable tissue visualization device
WO2017072862A1 (en) * 2015-10-27 2017-05-04 オリンパス株式会社 Image pickup unit and endoscope
WO2017087448A1 (en) 2015-11-16 2017-05-26 Infinite Arthroscopy Inc, Limited Wireless medical imaging system
US10702305B2 (en) 2016-03-23 2020-07-07 Coopersurgical, Inc. Operative cannulas and related methods
US11622753B2 (en) 2018-03-29 2023-04-11 Trice Medical, Inc. Fully integrated endoscope with biopsy capabilities and methods of use
WO2019222481A1 (en) 2018-05-17 2019-11-21 Zenflow, Inc. Systems, devices, and methods for the accurate deployment and imaging of an implant in the prostatic urethra

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5603697A (en) * 1995-02-14 1997-02-18 Fidus Medical Technology Corporation Steering mechanism for catheters and methods for making same
US6141037A (en) * 1998-03-18 2000-10-31 Linvatec Corporation Video camera system and related method

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US33854A (en) * 1861-12-03 Improvement in portable body-batteries
US4491865A (en) * 1982-09-29 1985-01-01 Welch Allyn, Inc. Image sensor assembly
DE3715417A1 (en) * 1986-05-13 1987-11-19 Olympus Optical Co SEMICONDUCTOR IMAGE GENERATION DEVICE, AND ENDOSCOPE HERE EQUIPPED WITH IT
JPS6363426A (en) * 1986-09-04 1988-03-19 オリンパス光学工業株式会社 Electronic endoscope
IL83213A (en) * 1987-07-16 1991-08-16 Technion Res & Dev Foundation Intelligent scan image sensor
US4814648A (en) * 1987-09-24 1989-03-21 Texas Instruments Incorporated Low 1/f noise amplifier for CCD imagers
US4854302A (en) * 1987-11-12 1989-08-08 Welch Allyn, Inc. Video equipped endoscope with needle probe
US4869246A (en) * 1987-12-11 1989-09-26 Adair Edwin Lloyd Method for controllably embolyzing blood vessels
US5116317A (en) * 1988-06-16 1992-05-26 Optimed Technologies, Inc. Angioplasty catheter with integral fiber optic assembly
USRE33854E (en) 1989-02-03 1992-03-24 sterilizable sheathpe with .[.heat.].
US5162913A (en) * 1990-02-26 1992-11-10 Medical Concepts, Inc. Apparatus for modulating the output of a ccd camera
JP3216650B2 (en) * 1990-08-27 2001-10-09 オリンパス光学工業株式会社 Solid-state imaging device
JPH0775400B2 (en) * 1990-12-28 1995-08-09 松下電器産業株式会社 Camera head of solid-state imaging device and method of manufacturing the same
US5251613A (en) * 1991-05-06 1993-10-12 Adair Edwin Lloyd Method of cervical videoscope with detachable camera
DE4214283A1 (en) * 1992-04-30 1993-11-04 Schneider Co Optische Werke Contactless length measuring camera - contains semiconducting transducer moved axially within camera body during focussing
EP0658090B1 (en) * 1992-09-01 1998-11-04 Edwin L. Adair Sterilizable endoscope with separable disposable tube assembly
US5402768A (en) * 1992-09-01 1995-04-04 Adair; Edwin L. Endoscope with reusable core and disposable sheath with passageways
US5630782A (en) * 1992-09-01 1997-05-20 Adair; Edwin L. Sterilizable endoscope with separable auxiliary assembly
EP0587514A1 (en) * 1992-09-11 1994-03-16 Welch Allyn, Inc. Processor module for video inspection probe
US5381784A (en) * 1992-09-30 1995-01-17 Adair; Edwin L. Stereoscopic endoscope
US5471515A (en) * 1994-01-28 1995-11-28 California Institute Of Technology Active pixel sensor with intra-pixel charge transfer
US5605531A (en) * 1994-04-08 1997-02-25 Tilane Corporation Apparatus for use with endoscopy and fluoroscopy for automatic switching between video modes
US5630783A (en) * 1995-08-11 1997-05-20 Steinberg; Jeffrey Portable cystoscope
US5682199A (en) * 1996-03-28 1997-10-28 Jedmed Instrument Company Video endoscope with interchangeable endoscope heads
US5734418A (en) * 1996-07-17 1998-03-31 Welch Allyn, Inc. Endoscope with tab imager package
US5754313A (en) * 1996-07-17 1998-05-19 Welch Allyn, Inc. Imager assembly

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5603697A (en) * 1995-02-14 1997-02-18 Fidus Medical Technology Corporation Steering mechanism for catheters and methods for making same
US6141037A (en) * 1998-03-18 2000-10-31 Linvatec Corporation Video camera system and related method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11096774B2 (en) 2016-12-09 2021-08-24 Zenflow, Inc. Systems, devices, and methods for the accurate deployment of an implant in the prostatic urethra
US11903859B1 (en) 2016-12-09 2024-02-20 Zenflow, Inc. Methods for deployment of an implant
US11889987B2 (en) 2017-02-15 2024-02-06 Lazurite Holdings Llc Wireless imaging system
US10610089B2 (en) * 2017-02-15 2020-04-07 Infinite Arthroscopy, Inc. Limited Wireless imaging system comprising a head unit and a light cable that comprises an integrated light source
AU2018221566B2 (en) * 2017-02-15 2020-07-23 Infinite Arthroscopy Inc. Limited Wireless medical imaging system comprising a head unit and a light cable that comprises an integrated light source
US10932658B2 (en) 2017-02-15 2021-03-02 Infinite Arthroscopy, Inc. Limited Wireless imaging system comprising a head unit and a light cable that comprises an integrated light source
AU2020250242B2 (en) * 2017-02-15 2021-07-22 Infinite Arthroscopy Inc. Limited Wireless medical imaging system comprising a head unit and a light cable that comprises an integrated light source
US20190357758A1 (en) * 2017-02-15 2019-11-28 Infinite Arthroscopy, Inc. Limited Wireless medical imaging system comprising a head unit and a light cable that comprises an integrated light source
US11931010B2 (en) 2017-03-24 2024-03-19 Covidien Lp Endoscopes and methods of treatment
US11246245B2 (en) * 2017-10-17 2022-02-08 Panasonic Intellectual Property Management Co., Ltd. Camera
US11890213B2 (en) 2019-11-19 2024-02-06 Zenflow, Inc. Systems, devices, and methods for the accurate deployment and imaging of an implant in the prostatic urethra
USD938584S1 (en) 2020-03-30 2021-12-14 Lazurite Holdings Llc Hand piece
USD972176S1 (en) 2020-08-06 2022-12-06 Lazurite Holdings Llc Light source

Also Published As

Publication number Publication date
US6043839A (en) 2000-03-28
US6275255B1 (en) 2001-08-14

Similar Documents

Publication Publication Date Title
US9667896B2 (en) Reduced area imaging device incorporated within endoscopic devices
US20170302874A1 (en) Reduced area imaging device incorporated within endoscopic devices
US20160213230A1 (en) Reduced area imaging device incorporated within endoscopic devices
US7030904B2 (en) Reduced area imaging device incorporated within wireless endoscopic devices
US6310642B1 (en) Reduced area imaging devices incorporated within surgical instruments
EP1575092B1 (en) Reduced area images devices incorporated within surgical instruments
US5929901A (en) Reduced area imaging devices incorporated within surgical instruments
US6211904B1 (en) Surgical devices incorporating reduced area imaging devices
US6982740B2 (en) Reduced area imaging devices utilizing selected charge integration periods
US7002621B2 (en) Communication devices incorporating reduced area imaging devices
US6982742B2 (en) Hand-held computers incorporating reduced area imaging devices

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICRO-IMAGING SOLUTIONS, LLC, COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ADAIR, JEFFREY L.;WIGGINS, KEVIN EWING;REEL/FRAME:038189/0726

Effective date: 20100920

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE