Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2138500 A
Publication typeGrant
Publication dateNov 29, 1938
Filing dateOct 28, 1936
Priority dateOct 28, 1936
Publication numberUS 2138500 A, US 2138500A, US-A-2138500, US2138500 A, US2138500A
InventorsBenjamin F Miessner
Original AssigneeMiessner Inv S Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apparatus for the production of music
US 2138500 A
Abstract  available in
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Nov. 29, 1938. B. F. MIESSNER APPARATUS FOR THE PRODUCTION OF MUSIC 2 Sheets-Sheet l Filed Oct. 28, 1936 JJ AMPLITUDE FREOENCY Nov. 29, 1938. B. F. MEESSNER APPARATUS FOR THE PRODUCTION OF MUSIC Filed Oct. 28, 1936 2 Sheets-Sheet 2 II'IL mww wmkuu Patented Nov. 29, 1938 UNITED STATES APPARATUS FOR- THE PRODUCTION or MUSI Benjaminl. Miessncr, Millburn, N. J., assignor to Miessner Inventions, Inc., a. corporation of New Jersey Application October 28, 1936, Serial No. 107,971

27 Claims.

This invention relates to musical instruments, and more particularly to those wherein electric oscillations are selectively produced, controlled and translated into sound.

One object of the invention is to provide an instrument of this type wherein, in the initial production of the oscillations, there is employed an element vibratable at will at any of a plurality of frequencies, as distinguished from the employment of a plurality of elements selectively vibratable. I

An allied objectof the invention is to provide such an instrument with appropriate controls over its tonal output.

Another object is to provide an instrument wherein there are employed without unfavorable results control systems, among others, of a type poorly adapted for the simultaneous control of oscillations not strictly harmonically related to each other.

Another object is the provision of a controllable air-column instrument operating electronically.

Another object is the provision of a mouth-reed instrument operating electronically.

Still another object is the provision, in a mouth-reed instrument, of efficient translating means not interfering with the normal vibration of the reed. I

Still another object is the provision of translating means readily adjustable in and removable from the mouthpiece of the instrument Still another object is the suppression of the actuation of the translating means by extraneous vibrations.

Yet another object is the suppression of acoustic feed-back to the reed of the instrument.

Yet another object is the suppression of acoustic'feed-back to the air-column of the instrument.

It is another object to provide improved control means particularly useful in the instruments above discussed.

It is particularly an object to provide improved means for introducing formants into the oscilla- I companying drawings, of which:

Figure 1 is a View, with a portion in elevation but principally diagrammatic, of an electronic instrument according to my invention;

Figure 2 is a much enlarged cross-sectional view of the mouthpiece with translating means, and immediately adjacent portions, of the instrument of Figure 1;

Figure 2a is a view similar to Figure 2 but illustrating a modification thereof in respect of the translating means;

Figure 3 is a plan view of the extremity of the mouthpiece of Figure 2 or 2a, with the reed and translating means removed;

Figure 4 is a cross-sectional view of a modified combination of mouthpiece and translating means;

Figure 5 is a plan view of the extremity of the mouthpiece of Figure 4, with the reed and translating means removed;

Figure 5 is a cross-sectional view taken along the line 66 of Figure 4;

Figure 7 is a view similar to Figure 4 but illustrating an additional feature of my invention; and

Figure 8 is a view, partly sectional but principally diagrammatic, of a modified electronic instrument embodying my invention.

Particular mention may be made of the formant and amplitude distorting circuits. Formant circuits in electronic musical instruments have been heretofore employed; as is understood, they function to introduce into each successive fundamental cycle 'of the oscillations passed through them a train of damped oscillations, which train is reinitiated with each new fundamental cyclethe train in the previous cycle having either been substantially entirely damped out or being terminated by the initiation of the new train. The frequency or frequencies of these damped oscillations are normally higher than the fundamental frequency of the oscillations passed through the circuit, but have no necessary harmonic relationship to those fun-' damental oscillations; nevertheless, since their effect on the oscillations is a strictly recurring one with each fundamentaloscillation cycle, the composite output oscillations from theformant circuit may still be resolved wholly into a series ofharmonically related components and thus still remain a fit musical tone. Formant circuits operate electrically in the same manner as various peculiarities in the configuration of, and various resonance cavities in, the air columns of acoustic instruments. .In my preferred electronic instrument I employ a mouth-reed or other air column instrument in which these peculiarities of configuration and resonance cavities, etc., are of course fixed; nevertheless, by the use of formant circuits, I am able to produce the effect of varying these characteristics at will. Therefore in this instrument I obtain a unique and special benefit from the employment of the formant circuits. It is also believed that the tendencies toward abrupt discontinuities in the tone and translated electrical output from the mouthreed, which are probably largely responsible for its characteristic pungency of tone, are particularly well suited for the efllcient excitation of a. formant circuit. And of course it is also to be noted that the usually restricted fundamental pitch range of the mouth-reed or other air column instrument naturally conforms itself to the requirements of the formant circuit for effective operation- -that the fundamental oscillation frequency be below the fixed formant frequency or frequencies and yet not too many octaves therebelow.

As to the amplitude distorting circuits, for example having a non-linear response-stimulus characteristic, these have been elsewhere proposed with instruments having a plurality of mechanical vibrators; but to their use the objection has attached that upon simultaneous vibration of a plurality of the vibrators (at least other than vibrators exactly integrally related to each other in frequency) extremely unpleasant beat frequencies have been produced. This objection has not been by any means circumvented by any prescription of careful use of the multivibrator instrument to avoid simultaneous vibration of a plurality of vibrators, since unavoidable occasional failures of due care, and the frequent tendencies to glissando playing with slight overlapping of vibrations of different vibrators, bring in the unpleasant effects to an ample extent to render the system musically worthless. But the single reed of the mouth-reed instrument, or a single vibrator aptly associated with the aircolumn instrument broadly, is incapable of significant simultaneous vibration at inharmonically related frequencies; the closest possible approaches to overlapping tones may be achieved with an automatic safeguard against actually overstepping the boundary. This renders these instruments uniquely adapted for use with the distorting circuit. And by the use of these distorting circuits 2. single instrument may be extended in its pitch range, and special tonal effects of simultaneous playing of a tone and its octave for example, may readily be achieved.

From a quite general view-point the electronic instrument of the type described, but provided only with transmission-frequency (or tone) control, comprises an air column whose vibration at any instant may be resolved substantially wholly into a series of harmonically related components, a mechanical vibrator responsive with the air column, an electric circuit responsive to the vibrator, and means in the circuit for modifying its response to the vibrator. On the other hand as i; this may for example be any form of known acoustic instrument of this type, but has been i1- lustrated by way of example as a. clarinet. It is provided with a suitable form of pick-up, or mechanico-electric translating device, typical ones being illustrated detailedly in later figures and being hereinbelow detailed described. In Figure l the output leads from the pick-up are designated as 2, and will be seen leading to the amplifier 3. The amplifier may be provided with the volume control schematicall: indicated as I, and with a tone control indicated as 5; the tone control. may be of any known variety-such, purely 'by way of example, as has been illustrated in the circuit I8-l9 of Figure 2 of U. S. Patent No. 1,929,032 to myself and Charles '1. Jacobs, issued October 3, 1933.

To the output of the amplifier 3 have been shown connected a plurality of formant circuits and controls therefor, this portion of the system lying between the lines A-A and B--B. By way of example I have illustrated schematically two such circuits, but it will be understood that no limitation to this particular number is intended. Means are provided for selectively varying the amplitude. of oscillations fed to each of the circuits; typically these means may be a potentiometer 6 equipped with the variable contacts 6a and lib, each operable over the entire potentiometer without interference by the other. The output of the amplifier 3 is immediately connected across the potentiometer; and each of the formant circuits 1a and 1b is connected between one end of the potentiometer and a respective one of Y the contacts 6a and 6b. The formant circuits themselves may be of any known variety; for example they may be of any one of the forms shown and described in U. S. Patent No. 1,933,299 to Oscar Vierling, issued October 31, 1933, or a form shown and described in U. S. Patent No. 2,039,201 to Trautwein. As employed in the instant invention, each circuit is equipped with all controls appropriate to it; for example, assuming the circuit to be of the form shown as [31' in Figure 4 of the mentioned patent to Vierling, the controls may be the variable condenser 286 and variable resistor 284 of that figure. The controls have been indicated schematically as 8. The output of the several formant circuits may be combined, for example by paralleling of their output terminals.

The combined output of the formant circuits may be led into the amplitude-distorting portion of the complete instrument, which is illustrated between the lines BB and C-C of Figure l. I do not intend the showing of this portion to be limltative, as obviously various known forms of amplitude-distorting and frequency-changing circuits may be employed-such for example as that shown in Figure 3 of U. S. Patent No. 1,886,- 687 to Charles T. Jacobs, issued November 8, 1932. This particularly illustrated system, however, comprises a transformer 8 having theprimary 9a to which the formanat circuit output is connected, and the secondaries 9b and 9c. Across the secondary 9b are connected in series two rectiflers ll. each arranged to pass current only in the direction of (or only away from) their Junction.

Output leads llb are provided for this portion of the system, one connected to the junction of the two rectifiers and the other connected to the movable contact l2a of a potentiometer l2 shunting the secondary 9b. For the secondary 9c there are provided output leads H0. The two sets of -output leads are connected to a potentiometer I3, from which the oscillations are transmitted to further portions of the system hereinafter described. The function of the potentiometer I3 is to mix the oscillations from the two sets of output leads llb and He in variable proportions; and as a typical arrangement for performing this function I have shown the output leads Ilb connected from one end of the potentiometer to its movable contact Ila, and the output leads Ho 15 the loudspeaker.

. connected between the other end of the potentiometer and the movable contact, with the leads to further instrument portion connected across the entire potentiometer. In order to avoid shortcircuiting the secondary 90 by a downward adjustment of the movable contact l3a, a resistance I40 may be inserted in one of the outputleads He; and an analagous resistance lib may be inserted in one of the output leads I lb.

Contact I20. of potentiometer l2 being adjusted to the center of that potentiometer, and assuming the rectifiers to be of mutually similar characteristics, no oscillations of the-fundamental frequencies applied to the primary 9a will appear across the leads llb; but there will appear across these leads even multiples of those frequencies, particularly a multiple of 2 times. Under these conditions the leads I lb become a source of oscillations of double frequency, while the leads lie of course remain a source of oscillations of single frequency. By the movable contact l3a; there may be controlled the relative percentages-of these two series of oscillations which are passed on to the further portions of the system and to If the two rectifiers be somewhat unbalanced in their characteristics, this condition may be offset by an appropriate offcenter adjustment of the movable contact l2a, to maintain the operation just outlined. If desired, however, the movable contact Ha may be otherwise displaced from the center of the potentiometer l2, so that the leads llb become a source of oscillations of variously compounded waveformsall of course distorted or altered from the waveform of the oscillations applied to the primary 9a. In turn these variously constituted waveform oscillations may be combined invarying relationships with the first power oscillations from the leads He, by the movable contact I3a. It is to be noted that with the first mentioned manner of operation an adjustment of the contact l3a to its bottommost position will effectively shift the frequency range of the instrument up-i wardly by precisely one octave. From the amplitude-distorting, or frequencymodifying, portion of the instrument the oscillations may pass to the tremolo-introducing system, which has been illustrated between the lines C-C and DD; This has been illustrated as comprising a pentode tube l5, preferably of the variable-mu variety, withmeans for modulating its bias at a low frequency. Thus the leads from earlier circuit portions may be connected one to the control grid of the tube and the other through a resistance-l3 and normal biasing battery or other voltage source I! to the cathode of the tube. Across the resistance l 3 may be connected a low frequency oscillator l8, having the frequency and amplitude controls I 9 and 20. By the voltage drop from the oscillator output occuring across the resistance IS, the bias of the tube l5, and hence the amplification factorof the tube, are modulated toproducethe tremolo; The frequency of the tremolo will of course be adiusted by an adjustment of the frequency of the oscil- 1 later l8, and the depth .or amplitude of the tremolo by an adjustment of the amplitudepfthe oscillator output-by the controls I! and 20 respectively. 4 3

From the output of the tremolo-introducing system the oscillations may pass to a further amplifler 2|, also if desired equipped with volume and tone controls and 23, and therefrom to the loudspeaker 24 for translation into sound.

In Figure 2 I have illustrated in much enlarged,cross-sect ional form the mouthpiece end of the instrument I of Figure 1. (Arbitrarily the surface of the mouthpiece against which the reed adapted to fit into the connecting portion 32,

the mouthpiece 33 is provided with the reduced.

diameter extension 33a which is adapted to fit into the connecting portion 32 from the opposite direction, these three portions having been shown drawn apart in Figure 2. The mouthpiece 33 is a generally cylindrical body having the internal air passage 34; its bottom is extended, however, to form a sloping flange 35, and the sides are extended to form with the top of the mouthpiece an aperture 36 communicating with the air passage 34. The top edges 36a of the sides and of the flange extremity and a portion 36b .of the top of the mouthpiece, all bounding the aperture 36, are finished to an integral plane, or almost-plane, surface. The reed 37 is secured over the aperture 38 and surface 360;, the base We of the reed being clamped to the surface 361) by the strap 38, and the reed extending across the aperture in increasing slight spacing from the surface 3641 to terminate in the free end 31b just above the extremity of the flange 35. Thereis accordingly left around the outer portion of the reed a thin air-inlet 39 communicating with the passageway 34 through a space 390. bounded by the flange 35, the sides converging therewith, and the reed itself; the thickness of the air-inlet 39 is of course varied or modulated by the vibration of the reed, which in turn is produced by the apt passage of air through the inlet. In this paragraph it is intended to describe conventional structure.

In picking up or translating into electric oscillations the vibrations of the reed, I have found it important so to introduce 'the pick-up or translating device into the mouthpiece that there will be preserved substantially unobstructed the normal air flow from the inlet 39 through the space 39a--in other words, a substantially free air passage therethrough. This air flow tends to be principally central of the space 39a or in general strongest along a central line such as M-N joining the inlet 39 with the center N of the end 34a of the normal fixed diameter portion of passage- 'the line M-N. Thus in this figure will be seen the thin iron pole-piece 40, for example .02 inch thick and .2 inch wide, surrounded by a coil ll of many turns of fine insulated wire. This coil and pole-piece may be held in place in any convenient manner, such as by wax applied in heated condition and allowed to cool.

It is necessary for the completion of'a' device of this type to provide some means of magnetizing the pole-piece; in Figure 2 I have shown such means in the form of a. permanent magnet 42,

which may be secured in a suitable groove 43 formed therefor in the bottom of the main portion of the mouthpiece 33, the inner end of the pole-piece 40 being suitably bent to lie in contact with the outer end of the magnet 41. -For cooperating with this translating device it is necessary to provide on the reed, which is normally of non-magnetic material, a small armature 44; this is desirably of extremely small thickness and of restricted area, in order that its attachment to the reedin this figure very close to the reed extremity 31b, immediately over the outer end of the pole-piece 4|l-shall negligibly affect the vibrational characteristics of the reed. From thecoil 4| a pair of leads 45 are extended to suitable terminals, such as the terminals 46 inset into and passing through the bottom portion of the mouthpiece, to which the leads 2 hereinabove mentioned may be removably secured, as by the connectors 41.

In Figure 2a I have illustrated an almost identical structure, differing only in that the permanent magnet 42 and groove 43 therefor are omitted, and that in series with one of the leads 2 is provided a battery or other current source 421).

; This simply illustrates an alternative way of magnetizing the pole-piece 40 which has, however, a slight advantage in respect of the weight of the mouthpiece.

In Figures 4, 5 and 6 I show an alternative embodiment of my invention in respect of arrangement of the translating device in the mouthpiece, which'itself may be essentially as before; in this embodiment the translating device lies substantially wholly above the line M-N. The surface 362) is now provided with a central groove 48, of cross-sectional dimension just accommodating a permanent magnet 42; in a short longitudinal section 48a adjacent the aperture 36 this groove is conveniently cut through into communication with the passageway 34. The magnet 42' rests in this groove, preferably extending to about the normal inward boundary of the aperture 36; the base 37a of the reed rests against the two portions of the surface 361) straddling the magnet, and the clamping of the reed base may serve to hold not only the reed but also the magnet in place.

The magnet forms a base to which the other portions of the translating device may be secured. Thus to the bottom of the magnet in the cutthrough groove portion 48a may be glued or cemented the innermost portion of the top of the pole-piece 4ll'-of thin material as in the case of the pole-piece 40 of Figure 2. The polepiece extends outwardly beyond the extremity of the magnet 42', and is surrounded by a relatively flat coil 4 preferably of many turns of fine wire. In turn beyond the coil 4| the pole-piece 4D is curved upwardly as at 40a to terminate in slight spaced relationship to a thin, small armature 44 secured to the bottom of the reed intermediate its free extremity 37b and base 31a. Most thoroughly to secure the pole-piece 4D to the magnet 42', as well as to secure the coil 4| on the polepiece, a coating 49 of cement (such as a celluloseanyl-acetate cement) may be flowed over the coil, into contact with the pole-piece 40 at the coil extremities, into contact with the extremity of magnet 42', and over the inner bottom extremity of the pole-piece into contact with the bottom of the magnet. Leads 45 may connect the coil 4| with terminals (not shown) such as 46 of Figure 2. One especial advantage of the structure illustrated in Figur s 4, 5 and 6 is the ready adjustability such sensitivity to normal.

and removability of the translating device upon loosening of the clamp 38.

Figure 2 illustrates another feature which I have found desirable in an instrument of this character. This consists in vibrationally insulative means disposed between the mouthpiece 33 and the connector 32, and between connector 32 and the main body of the instrument 3|. This insulation appears as the soft rubber or other compliant cylinders 5|a and 53a secured around the extending portions 3 la and 33a of instrument body and mouthpiece respectively, and adapted to flt within the connecting portion 32; together with the soft rubber or other compliant annular pieces Nb and 53b secured against the shoulders 3|b and 33b formed between ila and 3| on the one hand, and between 83a and 33 on the other. When the portions 3|a and 33a are inserted into the connecting portion 32 so that the insulating pieces ill) and 531) are in contact with the connecting portion 32, the extremities of the portions 3|a and 33a will lie approximately on the lines shown within the connecting portion as X and Y, and will hence be spaced from one another. It is known to employ cork or like cylinders about the portions Ma and 33a, but these are normally precluded from functioning as even ineflicient vibration insulation by virtue of the usual direct contact between the shoulders 3|b, 33b, and the connecting portion 32.

One advantage of the vibration insulationhaving to do with acoustic feed-back-is hereinafter mentioned. A particular advantage of this insulation, however, lies in the suppression of influence on the reed and translating device-and hence of unwanted translation-of spurious vibrations of the main body of the instrument I by the manipulations themselves oif the mechanical valve system comprising the playing keys lb;

this influence, if uncounteracted, may in certain cases give rise to thumping and other unpleasant noises in the sound output of the complete electronic instrument.

It is well understood that in electronic instruments wherein the vibrations of mechanical vibrators are amplified and translated into sound, some danger exists of sustained oscillation of the system at some frequency or frequencies by virtue of acoustic feed-back from the loudspeaker or equivalent to the vibrators. In a mouth-reed electronic instrument such as I have described the danger of acoustic feed-back to the vibrator is in general relatively small, in view of the small area of the vibrator (reed) and resulting small coupling to the air. Particularly during playing, when the vibratile portion of the reed is substantialy shielded by the players mouth, is this danger almost non-existent. But during rest intervals when the player has the mouthpiece removed from his mouth, in cases where high amplification and nearby loudspeaker are employed, trouble may sometimes be encountered. In Figure 7 I have shown an automatic arrangement for obviating this trouble.

This consists in a switch 60 connected with the translating device and biased to normally reduce (for example to zero) the sensitivity of the latter, but responsive to the lips of the player to restore For example the switch may comprise a small contact member We secured inside the flange 35; a flat spring 800 secured on the outside of the flange 35 and lightly outwardly biased; and a hook member 60b secured to the spring a, passing through the flange, and curving about to be held normally (by the bias of spring 60a) in contact with the member 60c--the member 600 and spring 60a being connected as by leads 60d across the leads 45. Thus normally the switch 60 is closed and shorts out the translating device; but when the player has the mouthpiece in his mouth the pressure of his lip on the spring 60a overcomes'its light bias, opening the switch 60 and assuring normal action of the translating device,

In the figures thus far described the single mechanical vibrator responsive only conformably with the variable frequency air column, and in turn exciting the electric circuit, has been the reed 31 of the instrument I. It is possible in accordance with my invention, however, to employ alternatively or additionally a mechanical vibrator similarly responsive but not forming a part of the basic instrument as conventionally known. This vibrator may be for example the diaphragm of a microphone which, by virtue of positioning and/or other means hereinafter described, is made responsive substantially solely to the vibrations of the air column. Such an arrangement I have illustrated in Figure 8, wherein appears the instrument I (similar for example to instrument I of Figure 1), with the microphone 62 (having diaphragm 6 I) disposed closely in front of the hell or air outlet id of the'instrument so as to be responsive in the prescribed manner.

In this figure I have shown the vibrator or diaphragm 6| employable, if desired, additionally to the vibrator or reed 31, in controllable amplitude and phase relationship thereto. the output leads 63 from the microphone 62 may be connected across the potentiometer 84; the output leads 2 from the translating device associated with the reed 31 (as in earlier figures) may be connected across the potentiometer 65; fixed center-taps 64a and 65a on the two respective potentiometers may be connected together; and to variable contacts 64b and 651) on the two respective potentiometers may be connected leads 2 leading to amplifier 3 and succeeding circuit portions as shown in Figure 1. It will be understood'that by adjustment of the variable contacts 64b and 651) there may be passed to the amplifier 3 and succeeding circuit portions any desired fraction (up to half) of the outputs of the leads 2 on the one hand and of the leads 63 on the other, in either of two phases. Since the harmonic distributions in the vibrations of the reed 31 and of the diaphragm 6| are almost of necessity significantly different, a very material tone quality control may be achieved by adjustment of these variable contacts.

It will of course be understood that in the electronic instrument of Figure 8 the translating device, leads 2 and potentiometer 65 may be omitted (corresponding to a. setting of the variable contact 651) at the center-tap 650:), so that the diaphragm GI becomes the sole mechanical vibrator. And it will further be appreciated that under these conditions the instrument I may assume the form of any air-column instrumenta brass instrument for example-mo longer being necessarily limited to a mouth-reed instrument.

Acoustic feed-back to the reed when employed has been considered above. In the electronic instrument of Figured, however, there may take place under some circumstances acoustic feedback to the diaphragm 6|. And with any of the instruments herein referred to other acoustic feed-backs may sometimes be troublesome. For example, acoustic feed-back may occur to the Thus main body of the instrument-though in the particular case of a mouth-reed instrument employing the vibration insulation illustrated in Figure 2 this feed-back is normally inconsequential. Again, however, acoustic feed-back may occur to the air column itself of the instrument, both through the bell la and through the usual apertures opened by the valves or playing keys of the instrument. To obviate any possibility of sustained oscillation from any of these feedbacks I have shown the main portion of the instrument I of Figure 8 surrounded by acoustic shielding 66.

This may comprise for example a metal or other rigid casing 66a fully surrounding the main portion of the instrument (including the bell la and playing keys 'lb') and the microphone 62 when employed; and a lining 66b of felt or other sound-absorbing material within the casing 66a. In the casing, particularly at and near the extremity associated with the bell la, may be provided a plurality of holes 660; these permit air egress from the enclosure. The lining 66b, covering these holes, by virtue of its porosity does not preclude this egress, but does prevent substantial sound passage in either direction through the holes. The structure therefore not only prevents feed-back to within the enclosure,

, but also vastly reduces the normal acoustic output so that the electrically produced output is not impaired in respect of the various distinctive characteristics imparted to it by the controls.

To preserve the playability of the instrument, the playing keys ib may be effectively extended to without the enclosure in. any suitable manner. Thus in Figure 8 I have illustrated a plurality of plungers 61 passing freely through the casing 66a and lining 66b, having the exterior playing buttons or keys 61a, and having the interior buttons or bushings 611) respectively biased into light contact with the several playing keys lb of the instrument I by the respective expansion springs 61c surrounding the plungers.

In the instrument of Figure 8 I have not show in detail the tremolo-introducing system lying between lines C-C and DD, but instead have indicated this schematically as 28, with appropriate controls 29 and 30 which may for example correspond with the controls 19 and 20 of oscillator l8 of Figure 1. On the other hand, instead of showing purely schematically both the formant circuits 1a and lb of Figure 1, I have shown one of them--'lb-fully developed in a form particularly appropriate for at least one of the formant introducing means in an instrupreferably this control is effected by utilizing,

those oscillations to control one of the series of high frequency oscillations before their beating together. The formant additions are effected,

in' accordance with the instantaneous translated gether. Both series of high frequency oscillations may be rich in their own harmonics, and a series of filters or other means may be employed to control the harmonic distribution of one of the series; then upon the beating together there will be available for formant additions not only oscillations of that frequency which is the difference of fundamental frequencies of the two series, but also, in controlled mutual relationships, oscillations of integralmultiples of that difference frequency. Optionally, and with the employment (as distinguished from the omission) of certain of the illustrated components, the translated oscillations may be made to have an influence on the frequency as well as on the amplitude of the formant additions-e. g., the formant additions may be made either to rise in frequency, or to lower in frequency, or to divide between raised and lowered frequency additions, as the frequencies of the translated oscillations (e. g., from amplifier 3) changes--these changes not, however, disturbing the arbitrary nature of the relationship of formant addition frequency to translated oscillation frequency.

Reference now being had to the formant circult or system lb of Figure 8, there will be seen the two high frequency oscillators H and 12; it is convenient to consider their fundamental frequencies as F1 and F2 respectively. To the output of oscillator H are connected the leads 13 leading for example to the input system of tube 14 (modulator "l5 and filter 15 being optionally inserted in tandem in the leads 13 for purposes hereinafter discussed); tube 14 and its associated circuit represents a non-limitative example of means for controlling the amplitude of the formant additions-and more specifically of the output of oscillator 1iin accordance with instantaneous translated oscillation amplitude.

Thus the leads [3 may be connected, one to the control grid of tube 14, and the other to the cathode of the tube through the resistance 11 and biasing battery or other potential source 18, the tube 14 being biased just or approximately to cutoff in the basence of voltage across resistance 11. To this resistance, however, is connected the secondary 19b of a transformer 19, of which the primary 19a is connected across leads which convey the translated oscillations from input to output of the formant circuit Were the connection of secondary 19b to the resistance 1"! a simple connection, the voltage appearing across the resistance 11 from the transformer would be alternating', the algebraic addition to the negative bias of tube 14 would be alternately positive and negative, and the tube would pass high frequency oscillations from oscillator ll only during half of each translated oscillation cycle in accordance with the instantaneous amplitudes during that half cycle. ,This, as will be apparent, would result in formant additions during those half cycles only. In order that this condition shall not obtain except when desired, I have shown both ends of secondary 18b connected to one end of resistance 11 through respective rectifiers Bio and Slb similarly poled; a potentiometer 82 connected across the secondary; and the movable contact 82a of the potentiometer connected to the other end rectiflers these voltage pulses may be rendered of a direction to decrease the negative bias of tube H, and this tube of course passes high frequency oscillations from oscillator Ii during each pulse, or in both halves of each translated oscillation cycle. But as contact 820 is moved toward either extremity of the potentiometer, the pulse during one half cycle is increased and that during the other half cycle reduced (in the limit to zero) thus the formant additions may be caused to occur uniformly in both half cycles, or predominantly or wholly in either half cyclethe available choice between the two half cycles being a significant one in formant introduction.

The output circuit of tube 14 is connected to the modulator schematically shown as N, to which is also connected the output circuit of the oscillator '12. In this output circuit are connected a plurality of adjustable filter systems 85, preferably tuned to the fundamental and several harmonic frequencies of oscillator I2, by which the several partial components of the output of oscillator 12 may be controlled. Purely by way of example each system 85 may comprise a simple shunt circuit of series inductance 85a, capacity 85b, and variable resistance 85c.

Considering the frequencies of the oscillations applied to modulator 84, these will be seen to be F1, 2F1, 3F1, etc., from oscillatorfli, and F2, 2Fz, 3F2, etc., from oscillator 12. The lower frequency components of the output of the modulator will accordingly be (Fl-F2), 2(F1-F2), 3(F1Fz), etc., or (Fa-F1), 2(F2--F1), 3(Fz-F1), etc., according to whether F1 or F: be greater. The instantaneous amplitudes of all of these will follow that of the F1, 2F1, 3F1 series as established by tube 14; the relative amplitudes will depend among other things on the relative amplitudes of the components of frequencies F1, 2F:, 31%. etc., as established by the adjustments of the several filter systems.

The output of modulator 84 may be connected to a low-pass filter 86 to remove components higher than the difference frequencies Just discussed; and across the output of the filter 86 may be connected a potentiometer 81, provided with the variable contact 81a. Accordingly a variable section 8117 of the potentiometer, between one end and the variable contact Ila, becomes a source regulable in respect of amplitude, of formant additions already qualitatively regulated in various manners as above described. The formant additions from the section 812: may be combined with the simple translated oscillations in any convenient manner, as by serial insertion of this section 812) in one of the leads 80.

To prevent feed-back from the potentiometer section 81b and the transformer 190, should this tend in any particular case to occur, there may be inserted between those components in the leads 80 any suitable one-way device, such as a stage of amplification 88. The output of the formant system lb, comprising the leads B0 to the right of potentiometer'section 81b, may be combined in any convenient manneras in Figure 1 for 'examplewith the output of formant system la, and led to succeeding circuit portions as in that figure.

I have mentioned above that optionally in accordancewith my invention the translated oscillations, for example by their frequency, may be made to have an influence on the frequency of the formant additions--an action with which some unique and pleasing eflects may be obtained. This I accomplish for example by beatindividual features of the illustrated formant ing together oscillations from the high frequency oscillator H and translated oscillations, and preferably also by selecting for transmission certain bands of the beaten-together oscillations. In carrying out this procedure I insert, in the leads 13 from oscillator II to tube 14, the modulator l5 and filter 16, also applying the translated oscillations to the modulator as by leads 89 connected thereto from leads 8!].

Letting Fa represent the fundamental frequency of the translated oscillations and Fl: any or all harmonic frequencies thereof, the output of modulator 15 will contain components, among others,

of frequency Fa, Fb, 2Fa, 2F'b, (Fl-Fb), (F1-Fs),'

F1, (Fl+Fa), (F1+Fb) and 2F1. The filter 15 may be provided with lowand high-frequency cutoff controls 16a and 16b, respectively; and by their use the transmission of the above frequencies may be limited for example to (F1Fb) and (Fl--Fa), or to (Fl.+Fa) and (Fi-l-Fb). Upon beating with F2 in modulator 84, the first of these above groups would provide formant additions of frequencies (Fl-F2Fa) and (Pi-F2- Fb), assuming F1 greater than F2; and the second of the above groups would provide formant additions of frequencies (F2 F1Fl1) and (F2 FlFb), assuming F2 greater than F1in either case the formant additions being reduced in frequency as the frequencies of the translated oscillations rose. Conversely the second above group would provide formant additions of frequencies (Fl--F2+Fa) and (F1-Fa+Fs), assuming F1 greater than F2; and the first above group would provide formant additions of (Fz-Fr-f-F) and (Fz-Fi+Fbl, assuming F2 greater than Fl-' in either of which cases the formant additions would be increased in frequency as the frequencies of the translated oscillations increased.

The limitations mentioned in the foregoing paragraph are of course not the only ones which can be effected by the filter I5; its cut-off controls may be adjusted to pass the frequency F1 along with either of the mentioned groups, to include the fixed formant additions of the difference of F1 and F2 as before; or to pass F1 along with both the mentioned groups, to result in formant additions of frequencies both lowering and rising with translated oscillation frequency increase. Also, particularly readily with adjustments which pass (Fi-l-Fa) and (F1+Fb)', the filter 16 may be made to pass also 2F1, 3P1, etc. for the production of the additional fixed formants 2(F1-F2), 3(F1Fz), etc., or 2(F2-F1), 3(F2F1), etc., as above explained. course to be understood that by Fe in a broad sense is meant to be denoted the frequencies of .more than one harmonic of the translated oscillations--for example Fm, Fn, Fp, etc.-so that mathematically each expression above involving Fb may be replaced by several in which Fb is replaced respectively by Fm, Fn, Fp, etc.).

It is of course to be understood that the various system 11) are not intended to be limitative, as for producing many of the actions which I have described alternative means will be recognized as available.

And as to each aspect of my invention, I do not intend that it shall be limited by the details of the embodiments illustrated and specifically described; for a particular example, there is intended no limitation of broader aspects to a magnetic translating device. Rather I intend in the following claims to claim my invention broadly, limited only by the state of the art.

(It is of I I claim:

1. In combination in a musical instrument: a single air column vibratable selectively at a plurality of pitches but whose vibration at any instant may be resolved substantially wholly into a series of harmonically related components, a mechanical vibrator arranged for vibration only conformably with said air column, an electric circuit responsive to said vibrator, and nonlinear means included in said circuit for altering qualitatively the response thereof to said vibrator.

2. In combination in a musical instrument: a single air column vibratable selectively at a plurality of pitches but whose vibration at any.

instant may be resolved substantially wholly into a series of harmonically related components, a mechanical vibrator arranged for vibration only conformably with said air column, an electric circuit responsive to said vibrator, and means included in said circuit for introducing into the response of said circuit characteristics of other and different air columns.

3. In combination in a musical instrument: a single air column vibratable selectively at a plurality of pitches but whose vibration at any instant may be resolved substantially wholly into a series of harmonically related components, a mechanical vibrator arranged for vibration only conformably with said air column, an electric circuit responsive to said vibrator, and formant introducing means included in said circuit.

4. In combination in a musical instrument: a single air column vibratable selectively at a plurality of pitches but whose vibration at any instant may be resolved substantially wholly into a series of harmonically related components, a mechanical vibrator arranged for vibration only conformably with said air column, an electric circuit responsive to said vibrator, and amplitude stant may be resolved substantially wholly into a series of harmonically related components, a mechanical vibrator arranged for vibration only conformably with said air column, an electric circuit responsive to said vibrator, and frequency changing means included in said circuit.

6. In combination in a musical instrument: a single reed vibratable selectively at a plurality of frequencies but whose vibration at any instant may be resolved substantially wholly into a series of harmonically related components, an electric circuit having its input excited only conformably with the vibration of said reed whereby to limit its input excitation at any instant substantially wholly to a plurality of harmonically related frequencies, and non-linear transmissionfrequency control means included in said circuit.

7. In combination in a musical instrument: a single reed vibratable selectively at a plurality of frequencies but whose vibration at any instant may be resolved substantially wholly into a series of harmonically related components, an electric circuit having its input excited only conformably with the vibration of said reed whereby to. limit its input excitation at any instant substantially vibration of said reed, and a mechanico-electric of harmonically related components, an electric circuit haviig its input excited only conformably with the vibration of said reed whereby to limit its input excitation at any instant substantially wholly to a plurality of harmonically related frequencies, and amplitude distorting means included in said circuit.

9. In combination in a musical instrument: a single reed vibratable selectively at a plurality of frequencies but whose vibration at any instant may be resolved substantially wholly into a series of harmonically related components, an electric circuit having its input excited only conformably with the vibration of said reed whereby to limit its input excitation at any instant substantially wholly to a plurality of harmonically related frequencies, and frequency changingrneans included in said circuit.

10. In combination in a musical instrument: a mouthpiece having an air outlet, a reed secured on said mouthpiece and forming therewith an air inlet adapted for modulation concurrent with translating device within said mouthpiece and responsive to said reed vibration.

11. The combination as claimed in claim 10, wherein said translating device is so disposed in said mouthpiece as to provide substantially free passage of air from said inlet to said outlet.

12. The combination as claimed in claim 10, wherein said translating device is disposed substantially wholly'on one side of a central line from said inlet to said outlet.

13. In a mouth-reed instrument including a mouthpiece and a reed secured thereto: a small armature carried by said reed, and mechanicoelectric translating means, responsive to said armature and secured to said mouthpiece.

14. In a mouth-reed instrument including a mouthpiece, a reed. and a clamp securing said reed against a surface of said mouthpiece: a mechanico-electric translating device responsive to said reed, saidmouthpiece surface being provided with a groove and saidtranslating device having a portion disposed within said groove to be secured therein by said clamp.

15. In a musical instrument including a mouthpiece portion and a main portion comprising an air column and playing keys: mechanico-electric :translating apparatus associated with said mouthpiece portion, and vibration insulation interposed between said two respective portions.

18.'In combination with an instrument having a mouthpiece portion and a 'main portion comprising a vibratable air column and playing keys connected with said air column to vary the pitch of its vibration: mechanico-electro-acoustfc translating means for producing sound in acing oscillations of multiples of their frequencies, transmitting means responsive to all said oscillations, and a single adjustable means for simultaneously varying the response of said transmitting means to said first and second mentioned oscillations 111- respectively opposite senses.

1-9. In a musical instrument including a source of oscillations of musically related frequencies: two sources of oscillations of dliferent high frequencies, means for producing beats between said high frequency oscillations, and formant introducing means for said first mentioned oscillations comprising means for combining therewith said beats.

20. In a musical instrument including a source of oscillations of musically related frequencies: two sources of oscillations. of different high frequencies, at least one of said sources being controllable to vary the frequency of its oscillations, means for producing beats between said high frequency oscillations, and formant introducing means for said first mentioned oscillations comprising means for combining therewith said beats.

21. In a musical instrument including a source of oscillations of musically related frequencies: two sources of oscillations of different high frequencies, means for producing beats between said high frequency oscillations, means for controlling the amplitude of said beats in accordance with instantaneous amplitudes of said first mentioned oscillations, and means for combining said controlled beats with said first mentioned oscillations.

22. In a musical instrument including a source of oscillations of musically related frequencies: means for introducing formant oscillations into said first mentioned oscillations, and means associated with said formant-introducing means-for controlling its action selectively with respect to diflerent portions of each cycle of said first mentioned oscillations.

23. In a musical instrument including a source of oscillations of musically related frequencies: means for introducing, into said first mentioned oscillations, formant oscillations comprising a plurality of harmonically related components; and means associated with said formant-introducing means for selectively regulating the relative amplitudes of said formant oscillation components.

24. In a musical instrument including a source of oscillations of musically related frequencies: means for introducing formant oscillations into said first mentioned oscillations, and means responsive to'said first mentioned oscillations for varying the frequency of said formant oscillations.

25. The combination claimed in claim 16, wherein said translating means includes a microphone disposed within said shielding.

26. In a. musical instrument having a mouthpiece and a reed secured to said mouthpiece: mechanico-electric translating means associated with andresponslve to said reed, and means responsive to lip pressure on the mouthpiece for varying the sensitivity of said translating means.

27. In combination in a musical instrument: a mouthpiece having an air outlet. a reed secured air inlet adapted for modulation concurrent with the vibration of said reed, and me'chanico-elec tric translating means carried by said mouthpiece and responsive to said reed vibration.

TBENJAMIN F. MIESSNER.

V on said mouthpiece and forming therewith an I

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2485021 *May 1, 1946Oct 18, 1949H N White CompanyTuning device for wind musical instruments
US2494390 *Jul 7, 1947Jan 10, 1950Johnson AlfredElectrical pickup
US2574591 *Oct 5, 1948Nov 13, 1951Rudd William WMute structure for musical instruments
US2881650 *Jul 24, 1956Apr 14, 1959Wurlitzer CoElectronic piano amplifier
US2984140 *May 14, 1958May 16, 1961Barron GeorgeElectrical amplification to woodwind musical instruments
US3026758 *Jun 30, 1958Mar 27, 1962Gibbs Mfg & Res CorpTremolo producing means for an electrical musical instrument
US3240859 *Jul 11, 1962Mar 15, 1966Rowe Horace NElectronic tremolo unit
US3429976 *May 11, 1966Feb 25, 1969Electro VoiceElectrical woodwind musical instrument having electronically produced sounds for accompaniment
US3558795 *Apr 26, 1968Jan 26, 1971Lester M BarcusReed mouthpiece for musical instrument with piezoelectric transducer
US3571480 *Jul 5, 1967Mar 16, 1971Warwick Electronics IncFeedback loop for musical instruments
US3767833 *Oct 5, 1971Oct 23, 1973Computone IncElectronic musical instrument
US3938419 *May 20, 1974Feb 17, 1976David De RosaElectronic musical instrument
US4203338 *Jun 4, 1979May 20, 1980Pat VidasTrumpet and synthesizer apparatus capable of polyphonic operation
US4635525 *May 30, 1984Jan 13, 1987Pete ValentinoJoining together parts of musical instruments
US4915008 *Oct 11, 1988Apr 10, 1990Casio Computer Co., Ltd.Air flow response type electronic musical instrument
US5010801 *May 16, 1989Apr 30, 1991Casio Computer Co., Ltd.Electronic musical instrument with a tone parameter control function
US5014586 *Jun 9, 1989May 14, 1991Casio Computer Co., Ltd.Chord setting apparatus and electronic wind instrument using the same
US5069106 *Jun 12, 1989Dec 3, 1991Casio Computer Co., Ltd.Electronic musical instrument with musical tone parameter switching function
US5069107 *Feb 6, 1990Dec 3, 1991Casio Computer Co., Ltd.Electronic musical instrument in which a musical tone is controlled in accordance with a digital signal
US5578776 *Aug 8, 1995Nov 26, 1996Valtchev; Konstantin L.Clarinet mouthpiece grasping rig
US5728957 *Jun 20, 1996Mar 17, 1998Valtchev; Konstantin L.Clarinet ligature and mouthpiece grasping ring
US7470852 *Jul 20, 2006Dec 30, 2008Yamaha CorporationTone generator control apparatus and program for electronic wind instrument
US7723605 *Mar 27, 2007May 25, 2010Bruce GremoFlute controller driven dynamic synthesis system
US7772482Dec 19, 2006Aug 10, 2010Yamaha CorporationElectronic musical instrument and computer-readable recording medium
DE902340C *May 14, 1949Jan 21, 1954Siegfried MagerMusikinstrument mit elektrischem Tonerzeuger
DE971513C *Mar 5, 1955Feb 5, 1959H Peiker FaAufnahmevorrichtung fuer elektroakustische Wandler zwecks Anbringung an eine Mundharmonika und andere vom Mund geblasene Instrumente
DE1285852B *Apr 12, 1967Dec 19, 1968Arbiter Electronics LtdPiezoelektrischer Tonabnehmer fuer Musikinstrumente
DE1285853B *Nov 11, 1966Dec 19, 1968Mueller Bbn Gmbh FaWandleranordnung zur Umformung von Luftschall in elektrische Schwingungen bei Holzblasinstrumenten
EP1801779A1 *Dec 20, 2006Jun 27, 2007Yamaha CorporationElectronic musical instrument and computer-readable recording medium
Classifications
U.S. Classification84/723, 84/283, 984/366, 84/737, 84/729, 84/383.00A, 84/382
International ClassificationG10H3/16
Cooperative ClassificationG10H2230/241, G10H3/16
European ClassificationG10H3/16