Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2218130 A
Publication typeGrant
Publication dateOct 15, 1940
Filing dateJun 14, 1938
Priority dateJun 14, 1938
Publication numberUS 2218130 A, US 2218130A, US-A-2218130, US2218130 A, US2218130A
InventorsCourt William Frederick
Original AssigneeShell Dev
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Hydraulic disruption of solids
US 2218130 A
Abstract  available in
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

1940' w. F. COURT I HYDRAULIC DISRUP'lI-ON 0F somns Filed June 14, 1938 2 Sheets-Sheet l lnvenforzwilliam F erick Cour? F Z 5g his Arrorneg Patented Oct. 15, 1940 1 William Frederick Court, Webster Groves, 110., as-

signor to Shell Development Company, San Francisco, Calif., a corporation of Delaware Application June 14, 1938, Serial No. 213,607

2 5 Claims.

This invention relates to the hydraulic disruption of solid masses by means of water jets which are directed substantially radially outwardly from a well in the mass, and is particu- 5 larly concerned with an improved nozzle head which is suitable for that purpose. Such a nozzle head is useful in the removal of solids, like coke,

from vessels, but may be employed for other purposes.

In my copending application, Serial No. 191,685,

filed February 21, 1938, of which this is a continuation-in-part, I have described particularly a process for cleaning vessels which contain solids, like carbonaceous material, particularly deposits of coke produced by the carbonization of hydrocarbon oils, such as reaction and coking chambers employed in petroleum cracking plants and the like, and asphaltic material, especially the solid, brittle kind, by means of water jets. Ac-

cording to one embodiment of the process the body of material to be removed, such as coke in a vertical cylindrical coking chamber, is acted upon in three operations:

In the first step, after opening the top and bottom manholes and cooling the coke by means of steam followed by water, the body of coke is cannulated vertically, either by drilling or by means of a vertically, preferably downwardly, directed jet of water, such as, for example, a jet discharged from a spear nozzle with a or one inch diameter orifice, supported by and supplied through a vertical water feed pipe, and discharging water at between 400 and 750 gallons per minute. When water is used, the fine particles of coke displaced are diffused into the body of the coke bed, and the water drains through the coke, discharging through the lower manhole. In this step a vertical hole from one to several inches in diameter is formed through the coke bed at the 40 axis of the chamber. The purpose of this step is to provide a tubular opening or well to permit a water feed pipe, which is suspended and supplied with water at its upper end, and supports the nozzle head employed in the subsequent steps, to be lowered through the body of the coke.

In the second step the opening is reamed to lncrease the size of the initial opening to about 18 to 24 inches in diameter so that the nozzle head employed in the last step may be used without fouling the coke bed. For this purpose the water feed pipe, which after the jetting in the first step is suspended within the coke bed, is lowered to extend through the lower manhole, and a. reaming nozzle head is attached to the lower end in place oi the spear nozzle. The assembly is then raised gradually or step-wise with the water pressure turned on. The reaming nozzle head comprises a rotor, rotatable about the axis of the water feed pipe and is a relatively small radial dimension, having about twice to three times the diameter 5 of the initial hole. It is provided with a plurality of reaction nozzles, which impart a relatively high rotary speed, such as about 1000 revolutions per minute to the head, and with a scraper on top. The nozzles discharge jets of water tending up- 10 wardly which cut an enlarged well into the solid material. The second step is completed when the nozzle head has reached the top of the coke bed. Coke which is cut away or loosened by the' nozzle head drops down through the opening into 16 dump cars located beneath the coke chamber, and water is collected by means of a pair of inclined aprons, which direct it into a trough, from which it flows into a settling basin, for recirculation through the water feed pipe. 20

In the third step (which may be begun befor the completion of the second step), the main body of the coke is disrupted and completely removed from the chamber. The water feed pipe is again lowered to extend beneath the coking 25 chamber, the reaming nozzle head is disconheated, and the main nozzle head is attached in its stead. Alternatively, the main nozzle head may be coupled beneath the reaming nozzle head.

The main nozzle head is nonrotatably connected to the water feed pipe, and is provided with a plurality of upwardly and. with a plurality of downwardly directed nozzles which direct jets of water radially outwardly to disrupt and completely remove the coke from the chamber when 35 the water supply is turned on and the nozzle head 1 is raised into the enlarged well. Some of the nozzles on the main nozzle head are arrangedto impart a rotary motion to the nozzle head, whereby the nozzles assume a plurality of successive 40 orientations, the rate of rotation being usually regulated by means of a brake operating on the water vfeed pipe so as not to exceed 2 to 4 revolutions per minute. If desired, the rotation may be effected by applying an external rotating force on 1 the feed pipe, it being in this case unnecessary to arrange the cutting nozzles to impart a turning moment to the nozzle head.

An object of the present invention is to provide a nozzle head which may be employed to efiect simultaneously the first and second steps of the process as outlined above. While the nozzle head described in the present application is particularly adapted for the removal of carbonaceous material by the process 01' the said parent application, it may be employed for any operation in which it is desired to form an opening through a mass of solid material, either continuous or packed, and irrespective of whether the operation results in the complete removal of solid material from the container. Thus, in the case of containers of relatively small diameters, a single passage of the nozzle head according to the present invention may completely remove the solids; when containers of greater diameters are encountered, a tubular opening is cut therethrough. A further object of the invention is to provide a nozzle head which will cut a hole of a relatively small diameter through a body of solid material,

' by the action of a mechanical cutting tool, either alone, or aided by an axial jet, and which will enlarge the hole by the cutting action of water jets.

While it is preferred, for purposes of convenience in connection particularly with the cleaning of coke chambers, and to simplify the mechanical arrangement for guiding and supporting the water feed pipe, to move the nozzle head down- Wardly in the position shown in the drawings, it should be noted that it is possible to invert it and move it upwardly, or in any other desired direction, depending upon the material being worked upon or the shape of the container. For convenience, the notations above and below, etc., have been used consistently in this specification and claims to describe the device positioned as shown in the drawings, it being understood that these terms are relative, and impose no restriction upon the use of the nozzle head.

With the above and other objects in view, which will become apparent from the following detailed description, the invention resides in the construction and combination of parts described and claimed herein, considered together with the accompanying drawings, in which:

Figure 1 is a" vertical sectional view, partly in elevation, of the nozzle head;

Figure 2 is a bottom plan view of the device shown in Figure 1;

Figure 3 is a schematic vertical sectional view, partly in elevation, illustrating onemethod of using the nozzle head;

Figure 4 is an elevation view, partly in section, of the lower rotating portion of a modified form of the nozzle head;

Figure 5 is a bottom plan view of the device shown in Figure 4;

Figure 6 is an enlarged detail view of the edge of the cutting plate taken on line 6-6 of Figure 1; and

Figure 7' is a longitudinal sectional view of a nozzle suitable for the devices shown in Figures 1 to 4.

Referring to Figures 1, 2, and 3, a supporting pipe I is provided with external drill pipe threads at its upper end, adapted for connection with a vertical water feed pipe 2 (see Figure 3) and with an out-turned flange 3 at its lower end. A

.pair of ball bearing nests, 4', 5, are mounted on the pipe I with their inner races in engagement with the exterior of the pipe I, the inner race of the lower nest 4 resting on the flange 3, and the inner race of the upper nest 5 being spaced therefrom by an inner spacing sleeve 6. A threaded retaining ring I, secured against rotation by a set screw 8, retains the upper inner race in position. An annular head is provided on the upper face of the retaining ring.

The rotor comprises a housing 9 which may he slid downwardly over the bearing nests and over an outer spacing sleeve I II, which separated the outer races of the bearing nests. The housing is provided with a hole II for the introduction of a lubricant, which reaches the bearing nests by way of an annular groove I2 on the outer face of the spacing sleeve III and one or more holes I3 passing through the sleeve. A rotating ring I4, which may be mounted on the pipe I prior to the bearing nests, supports the outer race of the lower bearing nest 4, being itself supported by the flange plate I5, which'is secured to the outturned flange I6 of the housing 9 by means of studs IT. The inner face of the top of the housing 9 is chamfered at I8 to receive the annular bead on the retaining ring to prevent the escape of bearing grease. A gasket l9 may be interposed between the bottom of the housing 9 and the flange plate [5, sealing the rotating ring I4 against the flange plate IS.

The flange plate I5 has a central hole, in which a cup 20, (which may be constructed of a short piece of seamless pipe closed by a welding head) forming a conduit means in communication with the pipe I is secured, as by welding. The upper edge of the cup ll is provided with an annular bead, fitting into a groove 2I in the lower face of the flange 3. The ring I4 is also chamfered as shown. The construction of the ring and the head on the cup prevent the flow of water into the bearing nests, and the escape of hearing grease therefrom. The outer edges of the flange I 6 and the flange plate I5 are similarly chamfered, as shown at I511.

Four cutting plates or blades 22 are welded to the lower face of the flange plate I5 and to the cup 20. These plates are approximately in the shape of sectors of a circle, as shown, extending radially beyond the flange plate I5. The outer edges 23 are shaped as cutting edges, bevelled to approximately 15 (see Figures 2 and 6) and are hardened. They may, for example, be made of stellite alloy and ground.

A spear nozzle 24 with a smooth, gradually tapering bore 25 is threadedly mounted at the bottom of the cup 28, and is shaped to direct a substantially confined jet of water downwardly. It is preferably, but not necessarily, located coaxially with the axes of the pipe I, and preferably located entirely above the lower edge of the cutting blades, so as to be protected thereby.

Four curved conduits 26 are mounted in communication with the interior of cup 20, as shown in Figure 2, shaped to supply water to stub nozzles 21, mounted in the blades 22, disposed to discharge substantially confined jets of water horizontally, in a direction perpendicular to the face of the blades. These nozzles 21 may be con structed as shown in Figure 7, with a smooth, gradually tapering bore 28. While the nozzles 21 have been shown to be mounted to discharge horizontal streams, tangential with respect to the axis of the nozzle head, so as to impart the maximum turning force to the rotor, some or all of them may be inclined downwardly, as shown in Figures 4 and 5, or even upwardly. It is desirable to locate the nozzles 21 and conduits 26 wholly within and above the cup-shaped surface of revolution described by the cutting edges upon the rotation of the rotor, whereby the nozzles and conduits are protected against impact with coke.

A plurality of conical tips 29, constructed of heat treated tool steel, and provided'with threaded shanks 30, are mounted on the flange Iii, to

prevent coke which may become loosened and cut'into the outer edge of the flange plate l l and the flange I6. These indentations are bevelled at the trailing edges 3Ia so as to permit water to rise through the indentation when the rotor is in operation.

Operation (Figure 3) Although the nozzle head may be used for other purposes, its use will be described in connection with the cleaning of a coke or reaction chamber. Referring to Figure 3, 32 represents a vertical cylindrical coke chamber of the usual cracking installation which may, for example, be 40 feet in height and feet in diameter. 33 represents a .body of coke which has been deposited therein. To cannulate the coke bed and ream the opening (these operations corresponding to the first two steps of the process described above), after the removal of the top and bottom manhole covers and at least partially cooling the coke, the noz zle head is attached to the water feed pipe 2, suitably supported from the top, and lowered into the chamber from a point above the coke chamber, full water pressure being turned on when the nozzles 21 have entered the chamber.

The water discharging from the spear nozzle 24 pierces a hole 34 several feet ahead of the cutter blades. The reaction of the water discharging through the nozzles 27 causes the rotor to revolve at a high speed, such as, 1000 revolutions per minute. The nozzle head is gradually lowered bringing the cutting edges 23 of the cutting plates 22 into engagement with the coke, whereby they will cut a tubular opening through the coke. At the level of the nozzles 21 this opening will be enlarged as shown at 35 by the cutting action of the tangential water jets.

The diameter of the opening formed by the action of the tangential water jets will usually be from 1 to 2 /2 times the diametric distance between the upper portions of the cutting edges 23. The assembly is gradually lowered until the nozzle head extends through the'bottom manhole 38. During the downward passage of the nozzle head the fine particles of coke and the water are diffused through the coke bed, the water discharging through the-lower manhole as. The action of the jet from the nozzle 24' provides a substantial area for the seepage of water into the coke bed in view of the fact that the bottom of the hole 3t will be several feet below the cutters 22. If the rate of water flow into the coke bed below the nozzle head is insuflicient, the excess water andRat times, coke will flow upwards around the flange plate l5 and through the indentation 3| entering the body of the coke at points above the nozzle head. At-times small quantities of the disintegrated coke will build up above the nozzle head but these quantities were found to be insufiicient'to retard the speed of rotation appreciably and to interfere with the cutting operation.

In the modifications illustrated in Figures 4 and 5, the pipe I, housing 9, and the bearing and lubrication arrangements are the same as illustrated in Figure 1. The lowerportion of the rotor comprises the flange plate I5 with indentations 3!, 31a, supporting a cup 20, cutting plates 22', with cutting edges 23', all as in Figure 1. Instead of a spear nozzle, the modified assembly comprises a star shaped drill 31, provided with a plurality, such as 5, cutting edges. The shank 38 of the drill is welded to a square plate having a central hole housing the shank II. The plate 39 is secured to the cutting plates 22' by welding as shown in Figure 5. V

The curved conduits 26' are in communication with the cup 20' and with the nozzles 21', mounted in the cutting plates 22', the only difierence between this construction and that previously described being that the axes of the nozzles 21' are inclined downwardly at an angle of about 30 below the horizontal. This arrangement causes the water jets from the tangential nozzle 21' to cut the hole in advance of the upper portions of the cutting plates 22", thereby reducing the load placed upon the latter.

The nozzle head of Figures 4 and 5 may be employed in the manner described above.

The sizes of the nozzles and rates of discharge may be varied. with the size of the installation and the particular purpose to be effected. By way of example, it may be-stated that for cutting a tubular opening through a coke chamber of the type and size described above, the diametric distance between the upper outer portions of the cutting plates'22 or 22' may be 12% inches; the diameter of the orifice of the spear nozzle 24 may be inch; and that of the tangential nozzles 21 and 21' may be 1''; inch, although, for the installation described, spear nozzle orifices of from about to inch diameters, and tangential nozzles of from A to inch diameter may usually be employed. Suflioient water pressure is applied tothe water feed pipe 2 to cause the total rate of discharge to be between about 400 and 900 gallons per minute.

Such rates ofdischarge will cause the water jets to have velocities of between about 100 and 500 feet per second, preferably above 250 feet per second. It is desirable to employ orifices having smooth bores so that the jets will not substantially break up or spread prior to impact, whereby erosion is minimized and cutting of the jet is materially increased.

While I have given particular dimensions suitable for a particular installation, it is understood that this invention is not limited thereto, but

may be employed in connection with other rates of water fiow and sizes of orifices without departing from the spirit and scope of the invention.

I claim as' my invention:

1. In a nozzle head for cutting into a body of solid material, the combination of a vertical conduit adapted for connection with a source of liquid under pressure, a rotor rotatably mounted on said conduit, one or more cutters having cutting edges extending beneath the conduit and radially outwards from the axis thereof, reaction nozzle means on said rotor in flow communication with said conduit arranged to impart a turning motion to said rotor, and a substantially downwardly directed spear nozzle located entirely above the lower edge of the cutter, disposed to cut a well into said solid material beneath said cutting edge, wherebyv the downwardly directed nozzle is protected by said cutter.

2. In a nozzle head for cutting into abcdy of solid material, the combination of a .vertical conduit adapted for connection with a source of liquid under pressure, a rotor rotatably mounted on said conduit, a conduit means on said rotor in flow communication with said conduit, 2. plurality of cutting blades on said rotor extending substantially radially outwardly and beneath said conduit member having cutting edges facing outwardly and downwardly, a plurality of reaction nozzles supported by said cutting blades, arranged to impart a turning motion to said rotor, means for supplying liquid from said conduit means to said reaction nozzles, the reaction nozzles and the means for supplying liquid thereto lying within and above the surface of revolution described by the cutting edges upon the rotation of the rotor, and means for cutting a well into said 'solid material beneath said cutting edges.

3. In a nozzle head for cutting into a body of solid material, the combination of a vertical conduit adapted for connection with a source -of liquid under pressure, a rotor rotatably mounted on said conduit, a conduit means on said rotor in flow communication with said conduit, a plurality of cutting blades on said rotor extending substantially radially outwardly and beneath said conduit member having cutting edges facing outwardly and downwardly, a plurality of reaction nozzles supported by said cutting blades, arranged to impart a turning motion to said rotor, means for supplying liquid from said conduit means to said reaction nozzles, and a substantially downwardly directed spear nozzle in communication with said conduit means arranged to cut a well into said solid material beneath said cutting edge, said reaction nozzles, said means for supplying liquid thereto, and said spear nozzle all lying within and above the surface of revolution described by the cutting edges upon the rotation of the rotor.

solid material, the combination of a vertical conduit means adapted for connection with a source of liquid under pressure, a rotor rotatably mounted on said conduit, a plurality of cutting blades on said rotor extending beneath the conduit and substantially radially outwards from the axis thereof, a plurality of reaction nozzles supported by said cutting blades and means for supplying liquid from said conduit means to said reaction nozzles.

5. In a nozzle head for cutting into a body of solid material, the combination of a vertical conduit adapted for connection with a source of liquid under pressure, a rotor rotatably mounted on said conduit, a. plurality of cutting blades on said rotor extending beneath the conduit and substantially radially outwards from the axis thereof, a plurality of reaction nozzles supported by said cutting blades and arranged and disposed to discharge liquid jets substantially outwardly and downwardly, means for supplying liquid from said conduit means to said reaction nozzles and means for cutting a well into said solid material beneath said cutting blades.

WILLIAM FREDERICK COURT.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2710419 *Jun 13, 1951Jun 14, 1955Whitlow Lyman BCleaning device for tubes
US2767416 *Apr 2, 1954Oct 23, 1956Snyder Theodore JCombination self-propelled pipe cleaner and spray
US3226258 *Sep 25, 1963Dec 28, 1965C H Heist Ohio CorpMethod for removing incrustations
US3324957 *Sep 24, 1963Jun 13, 1967Gulf Research Development CoHydraulic jet method of drilling a well through hard formations
US3467211 *Apr 19, 1967Sep 16, 1969Gulf Research Development CoDrill bit for hydraulic jet drilling of wells
US3525112 *Aug 29, 1968Aug 25, 1970Myers & Bro Co F ERotary root cutting head
US3576222 *Apr 1, 1969Apr 27, 1971Gulf Research Development CoHydraulic jet drill bit
US3786875 *Feb 26, 1969Jan 22, 1974Grenobloise Etude ApplUnderwater rotatable tool equipment
US3934659 *Apr 15, 1975Jan 27, 1976Mikhail Ivanovich TsiferovApparatus for drilling holes in earth surface
US3972781 *Aug 26, 1974Aug 3, 1976Koppers Company, Inc.Scraper for the lid and lid seat of a coke oven ascension pipe
US4031971 *Oct 8, 1976Jun 28, 1977Continental Oil CompanyJet nozzle drilling assembly
US4042047 *Nov 11, 1976Aug 16, 1977Ingersoll-Rand CompanyRaise boring head having fluid traversing means
US4106577 *Jun 20, 1977Aug 15, 1978The Curators Of The University Of MissouriHydromechanical drilling device
US4175626 *Sep 15, 1978Nov 27, 1979Harold TummelFluid-jet drill
US4254717 *Dec 14, 1978Mar 10, 1981Miller James FGardening implement for irrigation
US4271556 *Jun 8, 1979Jun 9, 1981Farrell Jr Eugene CPipe cleaning apparatus
US4793740 *Nov 28, 1986Dec 27, 1988Foundation ConstructorsDrilling system
US4923021 *Dec 30, 1988May 8, 1990Conoco Inc.Combination bit for coking oven
US4958962 *Jun 28, 1989Sep 25, 1990Halliburton CompanyMethods of modifying the structural integrity of subterranean earth situs
US5363927 *Sep 27, 1993Nov 15, 1994Frank Robert CApparatus and method for hydraulic drilling
US5396964 *Oct 1, 1992Mar 14, 1995Halliburton CompanyApparatus and method for processing soil in a subterranean earth situs
US5588171 *Mar 24, 1995Dec 31, 1996Pettibone CorporationDrain line cleaning apparatus
US5803187 *Aug 23, 1996Sep 8, 1998Javins; Brooks H.Rotary-percussion drill apparatus and method
US5879057 *Nov 12, 1996Mar 9, 1999Amvest CorporationHorizontal remote mining system, and method
US6364418Nov 13, 1998Apr 2, 2002Amvest Systems, Inc.Cutting heads for horizontal remote mining system
US6390211Jun 21, 1999May 21, 2002Baker Hughes IncorporatedVariable orientation nozzles for earth boring drill bits, drill bits so equipped, and methods of orienting
US7198119Dec 14, 2005Apr 3, 2007Hall David RHydraulic drill bit assembly
US7225886Dec 22, 2005Jun 5, 2007Hall David RDrill bit assembly with an indenting member
US7258179Jun 2, 2006Aug 21, 2007Hall David RRotary bit with an indenting member
US7270196Nov 21, 2005Sep 18, 2007Hall David RDrill bit assembly
US7328755Dec 6, 2006Feb 12, 2008Hall David RHydraulic drill bit assembly
US7337858Mar 24, 2006Mar 4, 2008Hall David RDrill bit assembly adapted to provide power downhole
US7392857Jan 3, 2007Jul 1, 2008Hall David RApparatus and method for vibrating a drill bit
US7398837Mar 24, 2006Jul 15, 2008Hall David RDrill bit assembly with a logging device
US7419016Mar 1, 2007Sep 2, 2008Hall David RBi-center drill bit
US7419018Nov 1, 2006Sep 2, 2008Hall David RCam assembly in a downhole component
US7424922Mar 15, 2007Sep 16, 2008Hall David RRotary valve for a jack hammer
US7426968Apr 6, 2006Sep 23, 2008Hall David RDrill bit assembly with a probe
US7484576Feb 12, 2007Feb 3, 2009Hall David RJack element in communication with an electric motor and or generator
US7497279Jan 29, 2007Mar 3, 2009Hall David RJack element adapted to rotate independent of a drill bit
US7527110Oct 13, 2006May 5, 2009Hall David RPercussive drill bit
US7533737Feb 12, 2007May 19, 2009Hall David RJet arrangement for a downhole drill bit
US7559379Jul 14, 2009Hall David RDownhole steering
US7571780Sep 25, 2006Aug 11, 2009Hall David RJack element for a drill bit
US7591327Mar 30, 2007Sep 22, 2009Hall David RDrilling at a resonant frequency
US7600586Oct 13, 2009Hall David RSystem for steering a drill string
US7617886Nov 17, 2009Hall David RFluid-actuated hammer bit
US7641002Jan 5, 2010Hall David RDrill bit
US7650941 *Nov 5, 2007Jan 26, 2010Baker Hughes IncorporatedEqualizing injection tool
US7694756Oct 12, 2007Apr 13, 2010Hall David RIndenting member for a drill bit
US7762353Jul 27, 2010Schlumberger Technology CorporationDownhole valve mechanism
US7866416Jan 11, 2011Schlumberger Technology CorporationClutch for a jack element
US7900720Mar 8, 2011Schlumberger Technology CorporationDownhole drive shaft connection
US7954401Jun 7, 2011Schlumberger Technology CorporationMethod of assembling a drill bit with a jack element
US7967082Jun 28, 2011Schlumberger Technology CorporationDownhole mechanism
US7967083Jun 28, 2011Schlumberger Technology CorporationSensor for determining a position of a jack element
US8011457Sep 6, 2011Schlumberger Technology CorporationDownhole hammer assembly
US8020471Feb 27, 2009Sep 20, 2011Schlumberger Technology CorporationMethod for manufacturing a drill bit
US8047309 *Nov 1, 2011Baker Hughes IncorporatedPassive and active up-drill features on fixed cutter earth-boring tools and related systems and methods
US8122980Jun 22, 2007Feb 28, 2012Schlumberger Technology CorporationRotary drag bit with pointed cutting elements
US8130117Jun 8, 2007Mar 6, 2012Schlumberger Technology CorporationDrill bit with an electrically isolated transmitter
US8191651Mar 31, 2011Jun 5, 2012Hall David RSensor on a formation engaging member of a drill bit
US8201892Dec 10, 2007Jun 19, 2012Hall David RHolder assembly
US8205688Jun 24, 2009Jun 26, 2012Hall David RLead the bit rotary steerable system
US8215420Jul 10, 2012Schlumberger Technology CorporationThermally stable pointed diamond with increased impact resistance
US8225883Jul 24, 2012Schlumberger Technology CorporationDownhole percussive tool with alternating pressure differentials
US8240404Aug 14, 2012Hall David RRoof bolt bit
US8267196Sep 18, 2012Schlumberger Technology CorporationFlow guide actuation
US8281882May 29, 2009Oct 9, 2012Schlumberger Technology CorporationJack element for a drill bit
US8292372Oct 23, 2012Hall David RRetention for holder shank
US8297375Oct 30, 2012Schlumberger Technology CorporationDownhole turbine
US8297378Oct 30, 2012Schlumberger Technology CorporationTurbine driven hammer that oscillates at a constant frequency
US8307919Jan 11, 2011Nov 13, 2012Schlumberger Technology CorporationClutch for a jack element
US8316964Jun 11, 2007Nov 27, 2012Schlumberger Technology CorporationDrill bit transducer device
US8322796Dec 4, 2012Schlumberger Technology CorporationSeal with contact element for pick shield
US8333254Oct 1, 2010Dec 18, 2012Hall David RSteering mechanism with a ring disposed about an outer diameter of a drill bit and method for drilling
US8342266Mar 15, 2011Jan 1, 2013Hall David RTimed steering nozzle on a downhole drill bit
US8342611Dec 8, 2010Jan 1, 2013Schlumberger Technology CorporationSpring loaded pick
US8360174Jan 29, 2013Schlumberger Technology CorporationLead the bit rotary steerable tool
US8408336May 28, 2009Apr 2, 2013Schlumberger Technology CorporationFlow guide actuation
US8418784Apr 16, 2013David R. HallCentral cutting region of a drilling head assembly
US8434573Aug 6, 2009May 7, 2013Schlumberger Technology CorporationDegradation assembly
US8449040Oct 30, 2007May 28, 2013David R. HallShank for an attack tool
US8499857Nov 23, 2009Aug 6, 2013Schlumberger Technology CorporationDownhole jack assembly sensor
US8512549 *Oct 22, 2010Aug 20, 2013Kazem GanjiPetroleum coking process and apparatus
US8522897Sep 11, 2009Sep 3, 2013Schlumberger Technology CorporationLead the bit rotary steerable tool
US8540037Apr 30, 2008Sep 24, 2013Schlumberger Technology CorporationLayered polycrystalline diamond
US8550190Sep 30, 2010Oct 8, 2013David R. HallInner bit disposed within an outer bit
US8567532Nov 16, 2009Oct 29, 2013Schlumberger Technology CorporationCutting element attached to downhole fixed bladed bit at a positive rake angle
US8573331Oct 29, 2010Nov 5, 2013David R. HallRoof mining drill bit
US8590644Sep 26, 2007Nov 26, 2013Schlumberger Technology CorporationDownhole drill bit
US8596381Mar 31, 2011Dec 3, 2013David R. HallSensor on a formation engaging member of a drill bit
US8616305Nov 16, 2009Dec 31, 2013Schlumberger Technology CorporationFixed bladed bit that shifts weight between an indenter and cutting elements
US8622155Jul 27, 2007Jan 7, 2014Schlumberger Technology CorporationPointed diamond working ends on a shear bit
US8701799Apr 29, 2009Apr 22, 2014Schlumberger Technology CorporationDrill bit cutter pocket restitution
US8714285Nov 16, 2009May 6, 2014Schlumberger Technology CorporationMethod for drilling with a fixed bladed bit
US8820440Nov 30, 2010Sep 2, 2014David R. HallDrill bit steering assembly
US8839888Apr 23, 2010Sep 23, 2014Schlumberger Technology CorporationTracking shearing cutters on a fixed bladed drill bit with pointed cutting elements
US8931854Sep 6, 2013Jan 13, 2015Schlumberger Technology CorporationLayered polycrystalline diamond
US8950517Jun 27, 2010Feb 10, 2015Schlumberger Technology CorporationDrill bit with a retained jack element
US9051795Nov 25, 2013Jun 9, 2015Schlumberger Technology CorporationDownhole drill bit
US9068410Jun 26, 2009Jun 30, 2015Schlumberger Technology CorporationDense diamond body
US9316061Aug 11, 2011Apr 19, 2016David R. HallHigh impact resistant degradation element
US20070114061 *Apr 6, 2006May 24, 2007Hall David RDrill Bit Assembly with a Probe
US20070114062 *Mar 24, 2006May 24, 2007Hall David RDrill Bit Assembly with a Logging Device
US20070114065 *Nov 21, 2005May 24, 2007Hall David RDrill Bit Assembly
US20070114066 *Mar 24, 2006May 24, 2007Hall David RA Drill Bit Assembly Adapted to Provide Power Downhole
US20070114067 *Dec 22, 2005May 24, 2007Hall David RDrill Bit Assembly with an Indenting Member
US20070114071 *Jun 2, 2006May 24, 2007Hall David RRotary Bit with an Indenting Member
US20070119630 *Jan 29, 2007May 31, 2007Hall David RJack Element Adapted to Rotate Independent of a Drill Bit
US20070125580 *Feb 12, 2007Jun 7, 2007Hall David RJet Arrangement for a Downhole Drill Bit
US20070221406 *Sep 25, 2006Sep 27, 2007Hall David RJack Element for a Drill Bit
US20070221408 *Mar 30, 2007Sep 27, 2007Hall David RDrilling at a Resonant Frequency
US20070221412 *Mar 15, 2007Sep 27, 2007Hall David RRotary Valve for a Jack Hammer
US20070229304 *Jun 8, 2007Oct 4, 2007Hall David RDrill Bit with an Electrically Isolated Transmitter
US20070272443 *Aug 10, 2007Nov 29, 2007Hall David RDownhole Steering
US20080087473 *Oct 13, 2006Apr 17, 2008Hall David RPercussive Drill Bit
US20080156536 *Jan 3, 2007Jul 3, 2008Hall David RApparatus and Method for Vibrating a Drill Bit
US20080173482 *Mar 28, 2008Jul 24, 2008Hall David RDrill Bit
US20080251297 *Jun 5, 2008Oct 16, 2008Overstreet James LPassive and active up-drill features on fixed cutter earth-boring tools and related methods
US20080296015 *Jun 4, 2007Dec 4, 2008Hall David RClutch for a Jack Element
US20080302572 *Jul 23, 2008Dec 11, 2008Hall David RDrill Bit Porting System
US20080314647 *Jun 22, 2007Dec 25, 2008Hall David RRotary Drag Bit with Pointed Cutting Elements
US20090057016 *Oct 31, 2008Mar 5, 2009Hall David RDownhole Turbine
US20090114388 *Nov 5, 2007May 7, 2009Baker Hughes IncorporatedEqualizing Injection Tool
US20090158897 *Feb 27, 2009Jun 25, 2009Hall David RJack Element with a Stop-off
US20090183919 *Jul 23, 2009Hall David RDownhole Percussive Tool with Alternating Pressure Differentials
US20090183920 *Jul 23, 2009Hall David RDownhole Percussive Tool with Alternating Pressure Differentials
US20100059289 *Mar 11, 2010Hall David RCutting Element with Low Metal Concentration
US20100089648 *Nov 16, 2009Apr 15, 2010Hall David RFixed Bladed Bit that Shifts Weight between an Indenter and Cutting Elements
US20100276506 *Nov 4, 2010Pattom Matthew JNozzles for a fluid jet decoking tool
US20100326740 *Jun 26, 2009Dec 30, 2010Hall David RBonded Assembly Having Low Residual Stress
US20110042150 *Oct 29, 2010Feb 24, 2011Hall David RRoof Mining Drill Bit
US20110048811 *Jun 27, 2010Mar 3, 2011Schlumberger Technology CorporationDrill bit with a retained jack element
US20110180324 *Jul 28, 2011Hall David RSensor on a Formation Engaging Member of a Drill Bit
US20110180325 *Jul 28, 2011Hall David RSensor on a Formation Engaging Member of a Drill Bit
USD620510Jul 27, 2010Schlumberger Technology CorporationDrill bit
USD674422Jan 15, 2013Hall David RDrill bit with a pointed cutting element and a shearing cutting element
USD678368Mar 19, 2013David R. HallDrill bit with a pointed cutting element
CN102459513A *May 4, 2010May 16, 2012福斯管理公司Improved nozzles for a fluid jet decoking tool
DE1292602B *Sep 22, 1964Apr 17, 1969Gulf Research Development CoHydraulischer Strahldrehbohrkopf fuer harte Gesteinsformationen
DE3141855A1 *Oct 22, 1981Jun 3, 1982Woma Maasberg Co Gmbh WNozzle head for attaching to a high-pressure water line
DE3506621A1 *Feb 26, 1985Aug 28, 1986Hermann Dipl Ing RosenPig for dewaxing crude oil pipes
WO1998007951A1Aug 25, 1997Feb 26, 1998Javins Brooks HRotary-percussion drill apparatus and method
WO2010129529A1 *May 4, 2010Nov 11, 2010Flowserve Management CompanyImproved nozzles for a fluid jet decoking tool
Classifications
U.S. Classification15/104.12, 202/241, 175/435, 175/92, 175/393, 175/401, 175/385, 175/424
International ClassificationC10B33/00, B08B9/032, E21B10/00
Cooperative ClassificationE21B10/003, C10B33/006, F16L2101/12
European ClassificationC10B33/00C, E21B10/00C