Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2257177 A
Publication typeGrant
Publication dateSep 30, 1941
Filing dateJul 17, 1937
Priority dateJul 17, 1937
Publication numberUS 2257177 A, US 2257177A, US-A-2257177, US2257177 A, US2257177A
InventorsEric W Luster
Original AssigneeStandard Oil Dev Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Polymerization by means of a high frequency electric discharge
US 2257177 A
Abstract  available in
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Sept. 30, 1941.

2 w. LUSTER POLYMERIZATION BY MEANS OF A HIGH FREQUENCY ELECTRIC DISCHARGE Filed July 17, 1937 :5 Sheets-Sheet 1 p E. w. LUSTER 2,257,171

POLYMERIZATION BY MEANS OF A HIGH FREQUENCY ELECTRIC DISCHARGE Filed July 17, 1937 3 Sheets-Sheet 2 jf- 4 I 59 'fii 80 g 0 u I v I 78 CATHI Y-TIc ZONE p 1941. E. w. LUSTER 2,257,177

POLYMERIZATION BY MEANS OF A HIGH FREQUENCY ELECTRIC DISCHARGE Filed July 17, 1957 3 Sheets-Sheet 3 72020675 MATERIALS OOTLET Patented Sept. 30, H

POLYMERIZATION BY MEANS OF A HIGH FREQUENCY ELECTRIC DISCHARGE Eric W. Luster, Westiield, N. .l., assignor to Standard Oil Development Company, a corporation of Delaware Application July 17, 1937, Serial No. 154,324

3 Claims.

This invention relates to the process of conducting a chemical reaction by means of a high frequency electric discharge. It further relates to the process of conducting chemical reactions at frequencies at which one electrode or no electrodes but a ring coil is employed. It also relates to the process of conducting a chemical reaction of sufficiently high frequencies and low voltages whereby the necessity for an insulating material is dispensed with. It particularly relates to the process of conducting a chemical reaction by means of high frequencies in the range above about 1 megacycle, especially in the range above 600 megacycles. The present invention further relates to the art of subjecting organic material to the effect of a high frequency discharge and particularly to the art of subjecting these materials, especially petroleum hydrocarbons, to the effect of a high frequency electric discharge and preferably to high frequency glow discharges.

The process of subjecting materials to the effect of the electric or glow discharge, commonly known as voltolization, is old. The usual process involves treatment of the material by means of two electrodes spaced relatively close together and at frequencies below 10,000 cycles. This known process of voltolization is not to be confused with the present invention which is concerned with frequencies of the magnitude in which the electrons are apparently withdrawn to the same electrode since the polarity changes before the electrons pass from the zone of influence. It is within the concept of the present invention to have the frequencies of the electric discharge approach electronic frequencies.

I have discovered that if frequencies above 1 megacycle, preferably in the range above 600 megacycles, are used, startling and unexpected advantages result therefrom. At these frequencies I have found; that it is possible to produce dehydrogenation, polymerization or additive or chemical reactions; that these reactions may be secured by means of one electrode, or no electrode if a ring coil be used; that lower voltages may be used, thereby lessening the operating and initial cost of the apparatus in that the strength of the dielectrics may be lessened or completely eliminated; that the operation will be more uniform since a possibility of sparkovers will be considerably lessened resulting in a better quality of product; that a catalytic mass may be made to glow in the electromagnetic field or to actually act as one electrode, thus greatly adding to the efficiency of the operation; that although a vacu- Figure 1 is a diagrammatic side view of a two electrode apparatus.

Figure 2 is a side view of a two electrode apparatus in which the feed components may pass through separate electromagnetic fields before reacting.

Figure 3 is a diagrammatic side view of a one electrode apparatus in which the electrode may be a series of plates used for fractionation or distribution of the materials being treated.

Figure 4 is a side view of an -apparatus in which no electrode is used and in which the electromagnetic field is set up by means of a ring coil. The tower may containsuitable fractionating or distributing plates or a catalyst.

Figure 5 is a side view of an apparatus having two distinct electromagnetic fields, each of which is set up by means of one electrode.

Figure 6 is a side view of an electrodeless apparatus having two distinct electromagnetic fields set up by separate ring coils.

Figure 7 is a side view of an apparatus having one electrode and two separate catalytic masses through which the feed materials pass before entering the high frequency electromagnetic zone.

Figure 8 is a side view of a two electrode high frequency apparatus in which a dielectric between the electrodes is not employed.

Referring particularly to Figure 1, in which I designates an atmospheric pressure or evacuated vessel or tower into which either vapor or liquid feed materials may be fed through either feed lines 5 or 6 and withdrawn through either take-off lines I and 8 after passing through the electromagnetic field set up by the electrodes 3 and 4. Tower I may be dielectric or may be suitably insulated from the electrodes. The tower may also act as electrode 4 if adequately insulated from electrode 3. Control valves 9, Ill, II and I2 of the respective feed and take-off lines and a source of high frequency alternating current 2 are shown. The vessel or tower may contain suitable fractionating or distribution plates or be packed with a suitable catalyst. The plates or catalytic mass, if satisfactory, may serve as electrode 3.

In Figure 2, l3 designates an atmospheric pressure or evacuated tower or vessel into which either liquid or vapor feed materials may be fed through either feed lines 20 and 2| and be withdrawn through take-off line 22, after passing through the electromagnetic fields set up by electrodes l4 and I6 and electrodes l5 and I1 respectively. Tower I3 is suitably insulated from the electrodes or may be of dielectric material. Control valves 23, 24 and 25 are shown on the respective feed and take-oil? lines. High frequency alternating current source I9 is also shown. Said type of apparatus may be either in a. vertical or horizontal position and may be vmasses may serve as electrode 3i.

packedoncontain catalytic materials or suitable .fractionating or distributing plates which may act as electrodes I! and I5.

In Figure 3,,3!) represents an atmospheric pressure or 'eiv'agbunes tower or vessel into which either liquid or vapor feed materials may be fed through either feed line 34 or 35 and withdrawn 7 heated, a source of high frequency alternating current, 38, and a ground, 32,. of the electrode circuit are also shown. Coil springs or catalytic The plates of electrode 3I are perforated to secure distribution of the feed materials passing through the tower, but other means of distribution may be used. The apparatus, as for example in Figure 3. might also be operated in a manner by feeding liquid in by means of feed line 34 and introducing a vapor or gas by means of feed lines 35 and 44, thereby allowing the liquid to pass downwardly through the tower contacting the upfiowing gases in the electromagnetic field The r set upby the electrode distributing plates. products made are then removed by means of v take-off lines 35 and 31. The electrode may be a single rod or catalytic mass rather than the plates as shown.

In Figure 4 the atmospheric pressure or evacuated tower or vessel, 50, is fed with either vapor or liquid feed materials by means of either feed lines 52 or 53 and the products removed by means of take-01f lines 54 or 55 after passing through the electromagnetic field setup by means of ring coil II. Tower 50 is of dielectric material if the ring coil is on the outer surface of vessel 50, as shown in Figure 4. The ring coil [I may be placed within tower 5B, in which case the tower may be of dielectric material or suitably insulated from the ring coil II. Tower 50 and ring coil II may represent one tube element of a tube bundle, in which the tubes are in parallel andare similarly wound with the ring coil. Thus it is within the scope of the present invention to employ a multiplicity of tubes having diameters preferably from 1 to 3 inches, each tube having its own ring coil and the treating tower built somewhat like a tubular heat exchanger. Control valves 56, 51, 59 and 59 on the respective feed and take-off lines are shown. A source of high frequency alternating current, BI, and a furnace coil, 5|, in which the feed materials may be preheated are also shown.' The evacuated tower may contain fractionating or distributing plates or a catalytic 'mass or contain a catalvtic mass which may be caused to glow in the electroma netic field.

In Fi ure 5 the atmospheric pressure or evacuated tower or vessel Il may be fed with either liquid or vapor and may be introduced by means of either feed lines 12 or 13. The respective feed materials pass first through the electro-magnetic zone set up by electrodes I6 and I1 and then contact each other in the catalytic zone I5. The resultant product is withdrawn through take-oil line I4. Tower III may be suitably insulated from the electrodes or may be of dielectric material. Control valves BII, 8| and 82 on the respec i e sure or evacuated toweror-vessel into which materials 'are'fed by means of either feed lines 9I or 92. The feed materials may be either liquid :or vapor, and pass through separate electromagnetic fields set up by separate ring coils 94 and 95 respectively, before contacting each other. The product materials are withdrawn through take-01f line 93.. Tower 99 is of dielectric material if the ring coil be placed on the outer surface. If the ring coil be placed within tower 90, the tower may be of dielectric material or may be suitably insulated from the ring coils. Tower may be of a small diameter and represent one tube element of a tube bundle. The apparatus would then be somewhat similar to a tubular heat exchanger. Cooling or heating means could be circulated on the outside surface of the tubes. Control valves 35, 97 and 98 on the respective feed and take-off lines and a source of high frequency alternating current, 99, are shown.

In Figure 7, IIII represents an atmospheric pressure or evacuated tower into which either liquid or vapor materials may be fed through feed lines III or H2. The feed materials first pass through separate catalytic masses H3 and Ill before coming into contact with each other in the electromagnetic field set up by the single electrode H5. The products may be withdrawn by means of take-off lines H6, H1 or II8. Tower III) may be of dielectric material or be suitably insulated from the electrode. Control valves III, I2II, I2I, I22 and I23 on the respective feed and take-off lines, a source of high frequency alternating current, I24, and the ground connection, I25, of the electrode circuit, are indicated.

In Figure 8, I30 represents an atmospheric pressure or evacuated vessel. Feed materials may be fed through feed line I33, controlled by valve I34, and sprayed between the electrodes I3I and I32 by means of nozzle I35. The electrodes I3I and I32 may dip into a liquid level maintained by liquid level controller I36. The treated materials may be withdrawn through take-ofi line I31 or re-cycled by means of line I38. Control valves I39, I40 and III on the respective lines are shown. This apparatus may be so modified that nozzle I35 will feed upwardly through the electromagnetic field, thereby allowing the treatment of gases or vapors. The tower or vessel may be of any suitable material or composition and may be dielectric or may be suitably insulated.

The invention consists in conducting a chemical reaction by holding or passing materials through an electromagnetic field produced bya high frequency alternating current in various ways, some examples of which have been given. The chemical reaction may be conducted with organic or inorganic materials under wide conditions of temperature and pressure. Organic material, as for example substances from the classes of aliphatic, aromatic or cyclic hydrocarbons, alcohols, aldehydes, ketones, acids, esters and the like may be used as well as halogen, nitrogen. sulfur or other substitution products and derivatives thereof. Preferably, materials selected as feed stocks are petroleum hydrocarbons. The above materials may be treated for the purpose of producing dehydrogenation, polymerization, additive compounds or chemical reaction.

The apparatus consists essentially of an atmospheric pressure or evacuated tube or chamber, or equivalent thereof, located in an electromagnetic field of either one or two electrodes, or in the electromagnetic field of a ring coil connected to a high frequency alternating current source. The tube or chamber may be at atmospheric pressure or may be evacuated to a pressure of about .001 mm. or lower absolute. It is preferable, however, to operate in avessel evacuated to a pressure of about to 100 mm. of mercury, pref erably evacuated to below about 510 mm. particularly at a pressure of about 20 mm. of merciu'y. At. these preferred operating ranges optimum results are secured in regard to current, density and resulting chemical reaction.

The high frequency alternating current is preferably secured by means of a vacuum tube high frequency generator circuit suitably connected to said electrodes or ring coil. However, any other method of securing high frequencies would be satisfactory.

The electromagnetic field may be produced by means of two electrodes connected to a source of high frequency current and the material being treated may be passed in various ways through the field between said electrodes, as shown in Figures 1 and 2. However, the preferred method is to have one electrode, or no electrode but a ring coil, producing the electromagnetic field, as shown in Figures 3, 4, and 5. When using one electrode, one end of the electrode circuit is grounded. The frequencies with which this application is concerned are those above 1 megacycle, and particularly those frequencies above 600 megacycles. A very desirable method of this invention is to use one electrode or a ring coil at the very high frequencies, thus producing a glow discharge. The evacuated tube or chamber may contain catalytic materials which may be caused to glow in the electromagnetic field set up by a ring coil, as in Figure 4. Certain catalytic materials may act as the electrode in the atmospheric pressure or evacuated tube or chamber.

The feed material may be either in the vapor or liquid state, and may be treated in the various was as shown in the drawings. The flow may be either up or down, with either liquid or vapor. A stream may enter at each end taking off the product from the center zone, as shown in Figures 2 and 5. A catalyst may be used to activate the material and maybe used in various modifications as, for instance, the catalyst may activate each of the two components before, during or after the feed materials are subjected to the effect of the electric discharge prior to blending for reaction. As previously mentioned, certain catalytic masses may serve as electrodes. Vapor or liquid feed materials may be treated separately in respective electromagnetic fields, thereafter contacting each other. as for example as shown in Figure 6. Suitable mixing or distributing plates or means may be employed. Catalysts may also be employed at anv stage of the process. Feed materials may be introduced in either a liquid or vapor state and contact respective catalytic masses, thereafter contacting each other in an electromagnetic field set up by one electrode, as shown, for example, in Figure 7. Liquid feed material may flow downwardly through the tower, contacting the uptlowing gases, and the respective products removed by means of lines H6 and 1. If the feed materials are both in the vapor state, the resuiting product may be removed, for instance, by

line I I8. Distributing plates, or contacting masses may be employed.

Materials may be treated on a chemical reaction conducted in an electromagnetic field set up by means of two electrodes in which a dielectric material is not employed. as for example as shown in Figure 8. The design may vary widely, as also the distance between the electrodes and the area of the electrodes. The electrodes may be of the plate, multiple plate or cylindrical design. Vapor or liquid may be fed either downwardly, upwardly or horizontally.

By conducting chemical reactions and treating organic substances in this manner, many advantages and improvements are obtained. At these high frequencies relatively low voltage may be used. Thus this simplifies and lessens the cost of the mechanical construction of the equipment used in treating materials with electric discharge. The possibility of sparkover is considerably .les sened and a finer control of the operation can be maintained, resulting in higher grade.products with one electrode or a ring coil. When an electromagnetic field is produced by means of one eectrode or a ring coil or a catalytic mass acting as one electrode, the cost of the equipment is considerably lessened and the problem 'of securing satisfactory operation is materially decreased. The advantages over the present type of plate electrode are tremendous in that greater throughputs and yields can be obtained, thereby putting the process on a sounder commercial basis.

This invention is not to be limited by any specific examples or descriptions but only by the following claims in which it is desired to claim all novelty insofar as the prior art permits.

I claim:

1. A process of polymerizing petroleum hydrocarbons which comprises subjecting said hydrocarbons in liquid state at a pressure in the range of 0.001 to mm. of mercury absolute to the action of a high frequency glow discharge produced by means of a single electrical conducting electrode carrying an alternating electric current having a frequency above 1 megacycle, and maintaining the glow discharge under a pressure sufliciently low and with a sufliciently high frequency to sustain said glow discharge from said electrode independently of discharges from any other conducting electrode until said hydrocarbons are substantially polymerized.

2. A process as described in claim 1, in which said glow discharge has a frequency above 600 megacycles and oscillates directly to and from and in contact with said conducting electrode by which it is produced.

3. A process of polymerizing petroleum hydrocarbons which comprises subjecting said hydrocarbons in liquid state at pressures from 10 to 40 mm. of mercury absolute to the action of a high frequency electrodeless glow discharge, and maintaining said glow discharge under sufficiently low pressure and with sufllciently high frequency above 1 megacycle so that the glow discharge is sustained until said hydrocarbons are substantially polymerized.

ERIC W. LUSTER.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2432934 *Feb 7, 1944Dec 16, 1947Filtrol CorpMethod and apparatus for catalytic reactions
US2463569 *Nov 17, 1943Mar 8, 1949Raytheon Mfg CoApparatus for treating gaseous media
US2468173 *Apr 29, 1943Apr 26, 1949 cotton
US2485479 *Oct 8, 1948Oct 18, 1949Koppers Co IncElectrochemical production of nitrogen oxide
US2485481 *Jun 17, 1949Oct 18, 1949Koppers Co IncElectrochemical production of nitrogen oxide
US2522082 *Feb 3, 1945Sep 12, 1950Orlan M ArnoldMethod of bonding
US2541697 *Oct 3, 1946Feb 13, 1951Socony Vacuum Oil Co IncElectronic reactor
US2550089 *Aug 31, 1946Apr 24, 1951Socony Vacuum Oil Co IncElectrochemical conversion of hydrocarbons
US2567106 *Sep 6, 1946Sep 4, 1951The Commonwealth Engineering Company of OhioMethod of treating oils
US2582903 *Aug 8, 1947Jan 15, 1952AktienDevice for producing chemical reac
US2620172 *Mar 18, 1949Dec 2, 1952Selectronic CorpDispersion method and apparatus
US2632729 *Jul 2, 1949Mar 24, 1953Rohm & HaasPolymerization by glow-discharge electrolysis
US2664394 *Nov 26, 1948Dec 29, 1953Phillips Petroleum CoElectrochemical conversion of hydrocarbons
US2676145 *Sep 1, 1949Apr 20, 1954Socony Vacuum Oil Co IncGaseous polymerization by electrical discharge
US2684329 *Jul 7, 1951Jul 20, 1954L L H CompanyMethod and apparatus for promoting chemical reaction
US2724689 *Dec 2, 1949Nov 22, 1955Russell P DunmireHydrogenation of unsaturated fatty oils
US2726204 *Apr 14, 1949Dec 6, 1955Monsanto ChemicalsPolymerization process
US2945797 *May 9, 1957Jul 19, 1960Saint GobainManufacture of metals of high purity
US2952598 *Jul 15, 1958Sep 13, 1960Cie De St GobainPreparation of metallic carbides
US2952599 *Jul 15, 1958Sep 13, 1960Cie De St GobainPreparation of metallic nitrides
US3049488 *Jan 11, 1960Aug 14, 1962Ici LtdMethod of conducting gaseous chemical reactions
US3256168 *Jun 21, 1963Jun 14, 1966New England Inst For Medical RProcess for changing charges of matter
US3330746 *Apr 2, 1964Jul 11, 1967Inoue KiyoshiElectrolytic synthesis of metallic halides
US3446718 *Sep 25, 1964May 27, 1969Inoue KChemical synthesis
US3663394 *Jun 1, 1970May 16, 1972Dow Chemical CoProcess for the vapor phase rearrangement of hydrocarbons utilizing microwave energy
US4015133 *Feb 10, 1976Mar 29, 1977Harry FerrariMethod of producing string of polyamide and stringed rackets and stringed musical instruments with such strings
US4072769 *Dec 7, 1972Feb 7, 1978Eastman Kodak CompanyReactive gas
US4212719 *Aug 18, 1978Jul 15, 1980The Regents Of The University Of CaliforniaMethod of plasma initiated polymerization
US4279723 *May 31, 1979Jul 21, 1981The Regents Of The University Of CaliforniaPolymerization of inorganic element-containing monomers using plasma
US4493855 *Dec 23, 1982Jan 15, 1985International Business Machines CorporationDeposition of organosilicon barrier, heat treatment, deposition photoresist, ion etching, and dissolving first polymer
US4562091 *Dec 18, 1984Dec 31, 1985International Business Machines CorporationUse of plasma polymerized orgaosilicon films in fabrication of lift-off masks
US5824203 *Feb 4, 1994Oct 20, 1998Sgi InternationalMethod and means for changing characteristics of substances
US6113746 *Nov 26, 1997Sep 5, 2000University Of FloridaMethods for altering the magnetic properties of materials and the materials produced by these methods
US6469605Jun 1, 2001Oct 22, 2002University Of FloridaMethods for altering the magnetic properties of materials and the materials produced by these methods
USB313029 *Dec 7, 1972Jan 28, 1975 Title not available
USRE30555 *Nov 8, 1979Mar 24, 1981 Method of producing string of polyamide and stringed rackets with such string
WO2012103663A1Jan 30, 2012Aug 9, 2012Universidad De ChileIn situ polymerisation process for obtaining an electro-optical apparatus, said polymer and electro-optical apparatus; and uses thereof
Classifications
U.S. Classification204/168, 34/255, 228/110.1, 422/186.3, 204/156
International ClassificationC08F2/52, C08F10/00
Cooperative ClassificationC08F10/00
European ClassificationC08F10/00