Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS2265389 A
Publication typeGrant
Publication dateDec 9, 1941
Filing dateFeb 7, 1939
Priority dateFeb 7, 1939
Publication numberUS 2265389 A, US 2265389A, US-A-2265389, US2265389 A, US2265389A
InventorsMelaven Ralph M, Shankland Rodney V
Original AssigneeStandard Oil Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Catalytic cracking process
US 2265389 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Patented Dec- 9, 1941 2,285,389 CATALYTIC CBAQKIN G PROCESS mu n M. Meiaven,

. ShankiamLChicago, 111.,

Oil Company, Chicago, 11]., a Indiana Highland, Ind., and Rodney V.

assignors to Standard corporation of No Drawing. Application February 7, 1939,

Serial No. 255

3 Claims.

This invention relates to the conversion of hydrocarbon oils in the presence of catalysts and particularly to the conversion of heavy hydrocarbon oils, such as gas oil, petroleum residuums, hydrocarbon waxes, etc. into lower boiling hydrocarbons. particularly gasoline. The invention relates more particularly to the preparation of new catalysts for the'conversion of heavy hydrocarbon oils at high temperatures. One of the obiects or the invention is to provide a catalyst which will convert a larger amount of the oil into gasoline before it becomes necessary to regenerate it. Another object of the invention is to provide a catalyst which may be repeatedly regenerated by treatment with an oxygen containing gas for removal of carbonaceous matter without significant loss of catalyst activity. Still another object of the invention is to provide a catalyst of great physical strength which may be employed in granular form without serious disintegration. Other objects will become apparent from the following description.

The catalyst which we employ is prepared in the following manner: A silica gel, so-called, is prepared by adding a solution of soluble silicate, for example, sodium silicate, to an excess of strongminerai acid. such as hydrochloric acid or sulfuric acid. We prefer to use sodium silicate solution containing about 15% to 20% of NaaiSlOsh. In this formula :2 is unity or greater. The acid employed in making the gel may suitably be about 15% to 25% H2804 and an excess of to 5 may suitably be employed. Other 8 i s may be used, such as HCI, HNOs, etc. We have sometimes reversed this procedure, however, and added the acid to the silicate solution which causes immediate precipitation. This method gives a very active catalyst but one of low mechanical strength, requiring peileting if used in fixed bed apparatus.

After adding the silicate solution to the acid, andmixing,itisallowedtostandandsoonthe solution solidifies to a jelly. This is broken up by agitation and washed in running water until possessing a submicroscopic pore structure which provides an enormous amount of pore surface" accessible only to those materials which can' a dried and finally washed until the water gives no further test for acid ion. Also, the gel may be further washed with distilled water after final drying.

The next step in the preparation of our improved catalyst is to subject the gel to the action of a soluble salt of manganese under conditions such that a layer of insoluble manganese compound is deposited on the interior pore surface of the gel. Heretofore, attempts have been made to deposit manganese compounds on silica gel but these attempts have usually not succeeded in accomplishing more than depositing the manganese compound on the external surface of the silica gel grains. Because of the extremely small dimensions of the pores, which are of the order of 5 millimicrons in diameter, these are appar: ently plugged by precipitates and great care must be exercised to prevent the formation of a heavy precipitate. This we avoid by maintaining the gel in a slightly acid condition and the presence of basic precipitating reagents is scrupulously avoided.

Instead of preparing a silica gel, we may also employ precipitated silica which may be prepared according to the following procedure. Commercial' water glass is diluted with an equal volume of distilled water and to this solution is added, with stirring. hydrochloric acid of 5 N concentration until there is present about 20% or acid in excess of that required to neutralize the water glass. Sulfuric acid or other acid may also be used. The precipitated silica is then washed do with hot distilled water until the washings test substantially all the acid and soluble salts are removed. Considerable time is required to per- ,mitallthesaltstodiifusefromthepiecesof jelly and the washing by employing hot water or by ing. gel is then separated and dried at ordinary or slightly elevated temperatures. It now resembles an irregular sand and at this stag'ei is cru hedand'screened to remuveparticles which are too fine for ultimate The gel so prepared is characterized y operation is facilitated digestion and boilfrom the water wastlnsllypelletedand free of chloride. About grams of the moist precipitate is digested for two hours with about 8 liters of 0.1 molar manganese sulfate solution on a steam bath. This treatment causes a hydrolysis of the manganese sulfate accompanied by a deposition of a manganese compound on the surface of the silica which we believe to be an adsorbed layer of active manganese-silica comwashing of water ioreach dried at 210 to 220' I". in

a steam heated drying oven, after which it was ready for use as a catalyst for promoting crack ing of gas oil. It is estimated that the amount of manganese in the dried catalyst was about 0.5 wt. per cent.

When activating the gel with manganese salt. we prefer to maintain the solution slightly acid corresponding to a hydrogen ion concentration of about 2 to 6 pH. The hydrogen ion concentration will usually increase during the activation treatment. For example, in one case a manganese sulfate solution 01. 0.1 molar concentration was adjusted to 8. DH of 3.48. After heating to 190' R, it was still 3.48 pH but after treating with silica gel for one-half hour the pH dropped to 3.11 and after two hours heating with the silica, it remained constant at 3.18.

We prefer to employ this catalyst for the cracking of hydrocarbon oils at temperatures of about 700 to 1050' F., employing contact times of between about A second to minutes preferabiy contact times within the range oi 1 second to 1 minute. Contact timerei'erred to is the time required for one volume oi oil vapor at the condition of experiment to pass one volume of catalyst. We prefer to employ our newcatalyst at relatively low pressures, for example, atmospherie to 50 lbs. per square inch gage. However. somewhat higher pressures, e, g., 100 to 200 lbs. per square inch may be used.

As an example of the use of our manganesesilica catalyst for the cracking of heavy petroleum oils to gasoline. the following data show the results obtained on the cracking oi. midcontinent gas oil of 355 A. P. I. gravity: Cracking temperature.. 927 F. Pressure Atmospheric Volume of feed/volume of catalyst space/hour 1.23 Bbls. of oil charged/ton of catalyst/hour 21.8 Time or contact 8.2 seconds Length of run. 6.03 hours Weight recovery----. 99.2% of oil charged Once through yields:

Dry gas 2.2 weight per cent Gasoline 14.1 volume per cent Recycle stock 82.6 volume per cent Polmds of gas/gal. of easeline 1.10 (18.4 cubic feet) Specific gravity of gas .78 Gasoline characteristics:

End point.. 400 F. Gravity 54.8 A. P. I. Knock rating (from blends) 88.6 C. F. R.-M. Unsaturation. 87.0% Recycle oil:

End point. 698' 1". Gravity 35.4 A. P. I. Unsaturaflon 18.9%

when the silica gel is treated with the manganese salt solution, there occurs a simultaneous adsorption and hydrolysis causing the deposition of a manganese compound on the surface of the silica throughout its entire pore structure. This compound is probably an oxygen compound of manganese such as manganese hydroxide. or more probably, the manganese unites to form a complex compound with the S10: molecules and hydrated S10: molecules on the surface of the gel and within the pores of the grains thereof. It is believed that the molecules of 810: at the surface present unsatisfied valences which form a chemical union with the manganese and its compounds so that the gel treated with manganese salt solution is substantially identical in physical structure with the untreated silica gel excepting that the entire surface. including the immense interior pore surface, is coated with not more than a moncmolecular layer of manganese com- We choose to call this reaction an "adsorbolytic reaction, indicating that the hydrolysis or splitting of the manganese salt is brought about by the adsorption phenomenon. Simmtaneously.

with the formation of acid in the solution, there is deposited within the silica a measurable amount of manganese compound which we have shown by analysis to vary between about 0.1% to 2% of manganese, depending partly on the concentration of manganese salt solution emv played, the hydrogen ion concentration in the so- Th foregoing data show that the manganenlution, and the method of treatment.

Although we prefer to use a manganese salt solution. of about 0.1 molar concentration. this may be varied over a considerable range without greatly aii'ecting the amount oi manganese deposited within the gel. Thus, wemayuseconcentrations from bout 0.02 H to 1.5 bl. if desired. We may increase the amount of manganesehydrolyzedbyvarimismethods. Wemay alsompeatthetreahnentofthegelwithmanganesesolutionofthesameordiiferentconomtmtions, or we may perform the treatment stagewise in a flowing stream. The manganese salt maybemadetoflowthmughaseries of ofthegelinrotationsothatthemost nearlyspentsolutionservestooontactthetresh gel, thus adsorbing the greater amount 01' the manganesefromthesolntlon. 'Ihencidilamay baadiustedbetweenstsges.toreumple,byadd- 'l'heenhancedefiecflvenesofournewcatalyst lngwlflifliemnillanuesolm Howevenitis lsnoteasilyexplained. Webelieve,however,that 15 sometimes desirable to omit this drying step.

The freshly madersilica which has been thoroughly washed may be immediately treated with the manganese solution and then dried. In this case, however, a longer time is required for diffusion of the solution into the larger pieces of the silica.

Freshly precipitated silica was added to a 0.1

M solution of manganese sulfate and heated for about 2 hours at 200 F. to permit complete penetration and activation of the silica. The silica was then separated and washed with water until free of sulfuric acid. After drying, the catalyst was ready for use. In place of using the sulfate, we may use other soluble salts of manganese, for example, the chloride and nitrate.

As indicated above, the catalyst may be regenerated after it has become fouled with carbonaceous deposits in the cracking operation. Regeneration is most conveniently accomplished by passing a stream of air and inert gas, for example, steam, through the catalyst bed, care being taken to control the oxygen concentration of the regenerating gas so that the combustion temperature is kept below about 1200 F. and preferably below about 1100 F. Excessive heating above these temperatures causes catalyst deterioration.

After regeneration, the cracking may be continued. The duration of cracking between regeneration periods may be about 5 hours but this depends largely on the nature of the stock being cracked. If the stock cracked is a residual 011 containing asphaltlc matter, the duration of cracking is considerably less before catalyst activity is seriously reduced. Thus, with a typical mldcontinent residual oil of about 22 A. P; I. gravity, the catalyst may be used for a period of about 30 minutes to 2 hours between regenerations. when using gas oil, we have found that in a typical operation thecatalyst activity has decreased about 25% to 50% in a period of 6 hours. In the case of residual oils or very heavy distillate charging stocks, we may initially crack the oil in one catalyst bed and produce intermediate boiling hydrocarbons with very little gasoline. Then we may pass the vapors directly into a second catalyst bed with or without heating to a higher temperature to complete the cracking. The extent or depth of cracking per pass depends chiefly on the freshness of the catalyst, the time of contact, and on the temperature. If desired, the process may be conducted to produce from gas oil about 40% to 55% of gasoline in a single pass and the uncracked products heavier than gasoline may be separated by fractionation and either' recycled in the operation or cracked in a secondary cracking operation. Alternatively, the extent of cracking may be maintained about 20% to 30% and the-uncracked heavy products may be recycled until completely cracked, the only products being gasoline and gas. A conversion rate of about 30% to 40% per pass is preferred. carbonaceous matter produced in the operation is deposited on the catalyst and removed in regeneration.

If desired, we may employ our catalyst in moving bed apparatus in which a portion of the spent catalyst is continuously withdrawn and regenerated externally, fresh and/or regenerated catalyst being supplied continuously to the apparatus. We may also employ our catalyst in finely divided form. For example, the catalyst may be finely divided by grinding and supplied asa slurry in oil to the cracking chamber or coil or introduced as a powder into the vapor stream. In this type of operation, the spent catalyst is settled or filtered from the products and separately regenerated.

We have given certain examples of methods of preparing and using our new catalyst. It is clear that other examples might be given and we do not intend that our invention be specifically restricted to those examples given. Thus, when activating silica with a manganese sulfate solution of 0.1 molar concentration, in one case the hydrogen ion concentration was initially adjusted to 3.18 pH. After heating the solution to 190 F., before contacting with the silica, the pH remained unchanged but on contacting with the silica the pH decreased to 2.97 after an hour and remained there throughout the two-hour period of treatment.

We intend that our invention be limited only by the following claims. 5

We claim:

1. The process of converting heavy hydrocarbon oil into high knock rating gasoline which bon oil to high knock rating gasoline which comprises vaporizing said oil and contacting the vapors at a conversion temperature with a catalyst consisting essentially of silica gel promoted with about 0.1% to 2% of manganese, said catalyst having been prepared by treating silica gel with an acid solution of a soluble manganese salt followed by washing and drying the resulting product.


Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2456268 *Nov 20, 1943Dec 14, 1948Phillips Petroleum CoCatalyst preparation
US2470142 *Nov 20, 1943May 17, 1949Phillips Petroleum CoProduction of catalysts of the silica-alumina type
US3501395 *Nov 28, 1966Mar 17, 1970Mobil Oil CorpManganese carbonate-containing minerals and their use in hydrocarbon conversions
US3509041 *Nov 28, 1966Apr 28, 1970Mobil Oil CorpManganese silicate-containing minerals and their use in hydrocarbon conversions
US4366090 *Mar 24, 1981Dec 28, 1982Commissariat A L'energie AtomiqueProcess for the preparation of adsorbent materials
US4645519 *Dec 30, 1985Feb 24, 1987The United States Of America As Represented By The United States Department Of EnergyComposite desiccant structure
US5051390 *Oct 10, 1989Sep 24, 1991The British Petroleum Company, P.L.C.Forming a metal oxide from a metal solution as a catalyst for conversion of methane to higher hydrocarbons
U.S. Classification208/119, 502/241, 423/326
International ClassificationB01J23/34, B01J23/16
Cooperative ClassificationB01J23/34
European ClassificationB01J23/34