Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2275167 A
Publication typeGrant
Publication dateMar 3, 1942
Filing dateApr 26, 1939
Priority dateApr 26, 1939
Publication numberUS 2275167 A, US 2275167A, US-A-2275167, US2275167 A, US2275167A
InventorsBierman William
Original AssigneeBierman William
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Electrosurgical instrument
US 2275167 A
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

March 3, 1942. w. BIERMAN ELECTROSURGICAL INSTRUMENT Filed April 26, 1939 To GQQUND OR CURRENT INVENTOR WML/AM B/ERMAN BY ATTORNEY Patented Mar. 3, 1942 UNITED STATES PATENT leprice 9 Claims.

This application relates to surgical devices. More particularly, my invention relates to an improved construction for electro-surgical instruments adapted for the removal of human tissue by means of an electrical current.

One of the objects of my invention is to provide an electro-surgical instrument of the character described which shall be so designed that new growths or diseased tissue in the human body' may be removed with such accuracy that only the desired portion is destroyed while the adjacent healthy tissue is left completely intact.

Another object of my invention is to provide an electro-surgical instrument of the character described in which the volume of the tissue to be destroyed at one time is precisely limited to a predetermined amount.

Still another object of my invention is to provide an electro-surgical instrument of the character described having means for forcing the tissue to assume a polypoid shape, i. e., one in which there is a narrow constricted stem region and an enlarged region above the constricted stem region to facilitate the tissue destruction.

A still further object of my invention is to provide an electro-surgical instrument of the character described which shall comprise relatively few and simple parts, which shall be easy to assemble and relatively inexpensive to manufacture and which, at the same time, shall operate with a high degree of eiciency.

Other objects of this invention will in part be obvious and in part hereinafter pointed out.

The invention accordingly consists in the features of construction, combinations of elements, and arrangement of parts which will be exemplified in the construction hereinafter described, and of which the .scope of application will be indicated in the claims.

In the accompanying drawing, in which is shown one of the various possible embodiments of this invention,

Fig. l is a cross-sectional View of an electrosurgical instrument constructed in accordance with my invention;

. Fig. 2 is an enlarged sectional view of a portion of the device shown in Fig. l.

Fig. 3 is a cross-sectional view taken substantially on the line 3-If of Fig. 2;

Fig. 4 is a View similar to Fig. 2 but showing a modied form of my invention;

Fig. 5 is a wiring `f iiagrmn showing the use of an indicating light in connection. with my invention; and

(Cl. 12S- 363.17)

Fig. 6 is a cross-sectional view taken substantially on the line 5 5 of Fig. l..

As is well known, the surgical technique employed for the removal of human tissue such as, for example, tonsllar tissue, consists in the use of high frequency currents which are applied by means of needle electrodes to the tissue to be removed. "lr's technique is` known as electrosurgery and its use is recognized by the medical profession as having denite advantages over the prior surgical techniques which involved cutting with sharp-edged instruments.

In the type of electro-surgical devices heretofore employed, certain inherent disadvantages were apparent. One such disadvantage was to be found in the fact that it was extremely difficult to localize the destructive action of the electric current. This was `due to the fact that when the needle electrodes were applied to the tissue to be destroyed, any slight movement of the patent ment of high eiciency. The electro-surgical instrument of my invention comprises an elongated main stem ID being of hollow construction for the major portion thereof with the exception of the portion Ita adjacent one end thereof which is of substantially solid construction. Rotatably mounted on a portion of the Amain stem I0 adjacent the opposite end thereof from the end I0a is a hollow bushing ll having an interior chamber Ii.' communicating with theinterior of the main stem lil by means of an aperture I4 in the wall of said main stem. The bushing Il is prevented from lateral displacement by means of a collar I5 which may be integral with the stem Ill, anda collared plug I6 threadedly received in the open end of the stem HJ and abutting the bushing Il as shown.. The bushing Il is open at the bottom end thereof. A portion of the outer wall of said bushing ll adjacent said open end is threaded and is adapted to have threadedly attached thereto a housing I8 containing a chamber I9 communicating with the chamber I2 of the bushing Il, The bushing ll and the housing I8 are preferably made of electrically insulating material such as, for example, Bakelite or the like. Threadedly attached to the housing I8 is a stem 2i) which may also be of Bakelite and which is provided with a longitudinal through opening 2 I. The housing I8 and stem 20 serve as a handle for gripping the instrument. Attached to the bottom end of the stem 2li is a flexible tubing 22 in which the opening 23 therein communicates with the opening 2l. An aperture 2li is provided in the housing I8 which communicates at one end thereof with the stem opening 2I and at the other end thereof with the chamber I9. The solid portion Illa. of the stem is provided with a longitudinal aperture 25 which communicates at one end thereof with the hollow opening of the main stern and at the other end thereof with the surrounding atmosphere through the open end Ib of the stem. The stem or nozzle 20 is adapted to be connected to any suitable source of suction supply (not shown), by any suitable means such as, for example, the flexible tubing 22.

It is thus seen from the above described construction that when thev suction device is ren-- dered effective, air will be drawn from the open end IIlb of the stem I through the aperture 25, the hdllow tubular portion of the stem, the aperture I4, the chambers I2 and It, the aperture 2d and the openings 2| and 23. A pair of washers I3 are interposed between the bushing I I and the collar I5 at one side and between the bushing II and the plug to prevent air leakage.

, At the free end of the main stem there is provided a suction cup 21 which is formed 'by providing a sleeve 28 having the inner wall thereof threaded and adapted to be threadedly received on the externally threaded portion 29 of the solid stern portion Ia. By rotating the sleeve 28, it is possible to adjust the depth of' the suction cup 2l, the purpose of which will be explained as the description proceeds.

Mounted within the main stem is a central electrode 3d having one end Sila thereof connected to a source of current supply in the manner to be described, the other electrode end tb being permanently held in position within an opening in the solid stem portion Ida. A portion 3| of the electrode 3i! adjacent the end del; is externally threaded as shown. Threadedly received on this portion 3| is a central electrode tip $2. This electrode tip 32 (the active electrode) is designed to contactively engage the tissue to be destroyed and may be adjustablv moved in axial direction by merely rotating the same. The electric circuit may be completed as follows: A wire 5b is connected to one terminal of the current source and is in electrical continuity withthe central electrode 3d in a manner to be subsequently described, and terminates as the central electrode tip 32 which, when in contact with tissue to be coagulated, serves as the active electrode. The larger dispersive electrode which is generally applied to any other suitable part of the body is connected to the other terminal of the current source. An alternative circuit may be employed wherein the active electrode remains asl above described but in which the return Vsupply is effected by grounding through the means of a metal collar 36 disposed adjacent the open end I 0b of the stem and attached to a wire 35 which is grounded.

A still further alternative circuit which may loe-'employed is to use the active electrode described above but to effect the return supply I6 on the other side through the metal collar 33 attached to the wire 35 and thence connected to the other terminal of the current source instead of being grounded.

It is thus seen that when the openend I0b of the stern iii is disposed at the point where it is desired to remove the tissue and the current is rendered effective through any of the above described means,'the circuit will be completed by the tissue and the current will effect the destruction of said tissue.

As hereinbefore explained, it is of extreme importance that the only tissue destroyed shall be the diseased tissue which it is desired to destroy and, therefore, once the instrument has been properly located with respect to the tissue to be destroyed, if the source of suction is rendered effective, the said tissue will be drawn into the suction cup 2l yand will thus be held in gripped position with respect to the electrode so that when the current is applied, only that tissue which it is desired to be destroyed will be destroyed and adjacent healthy tissue will not be harmed.

An exact delimitation of the area of tissue being destroyed is caused by the employment of the suction cup 2l around the electrode tip 32, since the pressure exerted on the tissue by the edgeof the cup greatly restricts and substantially stops the flow of blood to and from the area to be destroyed Without affecting blood circulation in the surrounding area not then to be destroyed. This abrupt change in blood circulation causes the region which is destroyed by heat due to coagulation by a high frequency current to be definitely limited, since tissue with an active circulation loses heat much more rapidly than tissue in which the circulation of blood has been substantially out off.

When the suction cup 2l is applied to a pedunculated growth, said growth will be gripped and may be held with its body away from the tissue toi which it is attached to maintain pedunculation and consequent freedom from contact with adjacent tissue during the period in which the high frequency current is applied. By this technique the coagulation occurs in the stem of the pedunculated growth, although said stem spaced from the immediate region which the electrode touches. The destructive action of the current is thus automatically limited to the region where the pedunculated growth is smallest, i. e. at its base where pedicle or stem joins the supporting surface. Hitherto where no suction means had been used in conjunction with a coagulating electrode, it had been necessary to press he electrode against the surface to be destroyed and when this technique waspracticed upon pedunculated growths such growths would be transformed into sessile shapes because of their intimate contact with the tissue from which they arose before coagulation and thus the advantage cf coagulating the said growth at its stem would be lost.

It is also noted from the above described construction that the amount of tissue to be destroyed at one time may be precisely regulated the relative distance between the open ends of the sleeve 28 and the end of the solid stem portion Illa. A nut 31 is provided which is threadedly received on the stem portion Illa for locking the sleeve 28 in any desired position ln accordance with my invention, I have so designed the instrument that the electric current will not be rendered effective until the suction means has rst been rendered effective to draw the tissue Within the suction cup 21. By such construction I am able to avoid the possibility of coagulating any tissue which it is not desired to destroy. The means by which this is accomvplished will now be described. A poppet valve 40 is provided which serves as a closure for the chamber l2. The poppet valve 40 is attached to a` stem 4| by any suitable attaching means such as the nuts 42. A portion of the stem is slidably received in an opening 43 in the housing I8, the said opening 43 communicating with an enlarged opening 44 which, in turn, communicates with the opening 2| of the nozzle 20. The poppet valve 40 is normally kept in closed position by means of a coil compression spring 45. The stem 4| is of electrically conductive material and is interconnected to the central electrode 3i! by means of a conductor wire 46 passing through the aperture I4 in the wall of the stem H). At the lower end ofthe housing |8 and disposed in the path of movement of the stem 4| is a thin flat spring 48 of electrically conductive material which is attachedly held in such position by means of a screw 49 passing through the spring 48 and contactively engaging a metallicv sleeve embedded in the material of the housing I8, the said screw 49 and sleeve being also of electrically conductive material. A conductor wire 50 leading to the source of current supply has one bared end 50a thereof frictionally received in an electrically conductive sleeve embedded in the housing |8 and designed to contactvely engage the first named sleeve holding the screw 49. It is thus seen that when the stem 4| is caused to slidably move downwardly against the action of the spring 45, the free end of stem 4| contactively engages the spring 48 to complete an electric circuit between the central electrode 30 and the conductor wire 50 thrcugh the spring 48 and screw 49. The only manner .in which the stem 4| may be caused to move downwardly to make the circuit just described is by rendering the suction means through the flexible tube 22 effective. This will cause the poppet valve to open in the manner hereinbefore described.

The valve 4|) will open and remain open for a short time to complete the electric circuit which energizes the electrode 32. It will be noted that in order to practice my invention the valve 40 need not be maintained open for more than a few seconds as within this period coagulation is fully completed.

It is thus seen from the above described construction that the current cannot be rendered effective until the suction means has first been rendered effective, thereby preventing the coagulating of any tissue until the same has been drawn into the suction cup 21. A tubular member 55 is provided having one end 55a thereof opening to the surrounding atmosphere and the other end thereof communicating with the opening 2| in the nozzle 20. Said member 55 may be forced into the bore provided in the stern 2c after the latter has been screwed upon the housing IB. Also, if desired, the tube 55 may be cut off flush with the stern 20. By means of this tubular member 55, it is possible to start the vacuum pump in operation Without causing the downward movement of the stem 4| and consequently without rendering the electric circuit effective. In operating the instrument, the vacuum pump may rst be started in operation,

which will draw air from the surrounding atmosphere through the tubular member and down through the openings 2| and 23. When the instrument is properly positioned with respect to the tissue to be destroyed, the end 55a of the tubular member 55 exposed to the surrounding atmosphere may be covered in any suitable manner such as, for example, by placing a finger of the operator thereover in which case the air will be drawn from the chamber I9 through the opening 24 to cause the poppet valve 40 to withdraw from its normal closed position and at the same time to supply suction to the suction cup 2 to draw the tissue therein. Simultaneously with the above operation, the circuit of the electric current is rendered eiective to destroy the tissue within the suction cup through contacting of the stem 4| and member 48.

While in the drawing I have illustrated a method of suction control by means of the nger, it is understood that a similar control may be employed for operation by foot.

The portion of the stem IU adjacent the suction cup end may be angularly bent in any desired manner so that areas of tissue diicult of access may be reached with facility. Also the rotatable mounting of the bushing and the attached nozzle 25 facilitates this action. A

Means are provided to limit the amount of relative rotational movement between the bushing il with the nozzle 2|) and the stem I0 to prevent strain and possible breaking of the wires 35 or 46 due to twisting. As shown in Fig. 6 of the drawing, the collar |5 is provided with a projecting lug |5a which is adapted to abut a pin lib fixed to the bushing after a predetermined amount of relative rotation.

The shape of the suction cup may take any desirable form .such as, for example, that shown in Figs. 1 and 2 or, if desired, the suction cup 21 may be pear-shaped as shown in Fig. 4 of the drawing. In this shape of suction cup, when theL tissue is drawn up into the space within the cup, it takes the form of a pedunculated mass, i. e., a mass having an enlarged portion attached to a constricted portion or stem. When the current is applied at the expanded end through the electrode tip 32, the generated current becomes concentrated at the oonstricted end, thereby causing coagulation of only a very small area relative to the amount of tissue removed. By such construction of the suction cup, the possibility of primary or reactionary hemorrhage is minimized and for the same reason, the resulting scar tissue is relatively small.

In accordance with my invention the stem |0 may be constructed of a material which will possess suilicient resilience so as to permit of manually reforming the shape thereof to more readily gain access to otherwise inaccessiblev parts.

It is also noted that the active electrode tip 32 may be of any other desired shape from that shown, such as, for example, one having a sharp needle point.

v If desired, in connection with my electro-surgical instrument, a pilot or indicating light may he provided which may be connected as shown in 5 of the drawing. The pilot light 5|) will thus be rendered effective when the circuit is closed by means of the stem 4|, to dim the iight 60.

It is to be noted that my invention may be satisfactorily practiced with a high frequency current using a biterminal or uniterminal technique. The metal collar may either be connected to the ground which will further assist in exact delimitation of tissue to be destroyed, or the metal collar itself may be connected directly to the other terminal of the current source.

It will thus be seen that there is provided a device in which the several objects of this invention are achieved, and which is well adapted to meet the conditions of practical use.

As various possible embodiments might be made of the above invention, and as various changes might be made in the embodiments above set forth, it is to be understood that all matter herein set forth or shown in the accompanying drawing is to be interpreted as illustrative and not in a limiting sense.

Having thus described my invention, I claim as new and desire to secure by Letters Patent:

l. An electro-surgical instrument for removing human tissue, comprising a hollow stem of insulating material open at one end and adapted to be connected to a vacuum device for creating a suction at said open end to draw in and hold said tissue, said open end being adapted to be stoppered by said drawn-in tissue, an electrode in said stem having a portion thereof disposed adjacent said open end so as to intimately contact said drawn-in tissue, means for connecting said electrode to a source of current supply, and means for preventing the effective energization of said electrode without first rendering said vacuum device effective for drawing in said tissue.

2. An electro-surgical instrument for removing human tissue, comprising a hollow stem of insulating material open at one end and adapted to be connected to a vacuum device for creating a suction at said open end to draw in and hold said tissue, said open end being adapted to be stoppered by said drawn-in tissue, an'electrodei in said stem having a portion thereof disposed adjacent said open end so as to intimately contact said drawn-in tissue, means for connecting said electrode to a source of current supply, and means for normally rendering ineffective the suction action for drawing in said tissue while said vacuum device is in operation.

3. An electro-surgical instrument for removing human tissue, comprising a hollow stem of insulating material open at one end and adapted to be connected to a Vacuum device for creating a suction at said open end to draw in and hold said tissue, an electrode in said stem having a portion thereof disposed adjacent said open end so as to intimately contact said drawn-in tissue, means for connecting said electrode to a source of current supply, and means for limiting the amount of tissue to be suctionally drawn into said open end, said last named means comprising a sleeve mounted on said stem adjacent the open end thereof, said sleeve being movable axially to project beyond the said open end of said stem to form a suction cup area.

4. An electro-surgical instrument for removing human tissue, comprising a hollow stem of insulating material open at one end and adapted to be connected to a vacuum device for creating a suction at said open end to draw in and hold said tissue, an electrode in said stem having a portion thereof disposed adjacent said open end so as to intimately contact said drawn-in tissue, means for connecting said electrode to a source of current supply, and means for limiting the amount of tissue to be suctionally drawn into said open end, said last named means comprising a' sleeve mounted on said stem adjacent the open end thereof, said sleeve vbeing movable axially to project beyond the said open end of said stem to form a suction cup area, said projecting portion of said sleeve terminating in a constricted opening to cause said drawn-in tissue to assume a shape having an enlarged outermost portion adjacent to a constricted portion.

5. An electro-surgical instrument for removing human tissue, comprising a hollow stem of insulating material open at one end and adapted to be connected to a Vacuum device for creating a suction at said open end to draw in and hold said tissue, said open end being adapted to be stoppered by said drawn-in tissue, an electrode in said stem having a portion thereof disposed adjacent said open end so as to intimately contact said drawn-in tissue, means for connecting said electrode to a source of current supply, and meansfor preventing the energization of said electrode without first rendering said vacuum device effective for drawing in said tissue, said last named means comprising an insulated handle member attached to said stem, said handle member having an air passageway connected to said vacuum device and communicating with the interior of said hollow stern, and a valve member normally interrupting the passage of air through said passageway.

6. An electro-surgical instrument for removing human tissue, comprising a hollow stem of insulating material open at one end and adapted to be connected to a vacuum device for creating a suction at said open end to draw in and hold said tissue, said open end being adapted to be stoppered by said drawn-in tissue, an electrode in said stem having a portion thereof disposed adjacent said open end so as to intimately contact said drawn-in tissue, means for connecting said electrode to a source of current supply, and means for preventing the energization of said electrode without first rendering said vacuum device effective for drawing in said tissue, said last named means comprising an insulated handle member attached to said stem, said handle member having an air passageway connected to said vacuum device and communicating with the interior of said hollow stem, and a valve member normally interrupting the passage of air through said passageway, said valve member being so disposed that the effective operation of said suction device will cause it to be moved to open position.

7. An electro-surgical instrument for removing human tissue, comprising a hollow stem of insulating material open at one end and adapted to be connected to a vacuum device for creating a suction at said open end to draw in and hold said tissue, said open end being adapted to be stoppered by said drawn-in tissue, an electrode in said stem having a portion thereof disposed jacent said open end so as to intimately contact said drawn-in tissue, means for connecting said electrode to a source of current supply, means for preventing the energization of said electrode with out rst rendering said vacuum device effective for drawing in said tissue, said last named means comprising an insulated handle member attached to said stem, said handle member having an air passageway connected to said vacuum device and communicating with the interior of said hollow stem, a valve member normally interrupting the passage of air through said passageway, said valve being so disposed that the effective operation of said suction device will cause it to be moved to open position, and means for completing an elec tric circuit between said electrode and said source of current supply upon such movement of said valve.

8. An electro-surgical instrument for removing human tissue, comprising a hollow stem of insulating material open at one end and adapted to be connected to a vacuum device for creating a suction at said open and to draw in and hold said tissue, said open end being adapted to be stoppered by said drawn-in tissue, an electrode in said stem having a portion thereof disposed adjacent said open end so as to intimately contact said drawn-in tissue, means for connecting said electrode to a source of current supply, means for preventing the energization of said electrode without first rendering said vacuum device effective for drawing in said tissue, said last named means comprising an insulated handle member attached to said stem, said handle member having an air passageway connected to said vacuum device and communicating with the interior of said hollow stem, a valve member normally interrupting the passage of air through said passageway, said valve being so disposed that the eiective operation of said suction device will cause it to be moved to open position, and means for completing an electric circuit between said electrode and said source of current supply upon such movement of said valve, said hollow stem material being manually bendable whereby to cause the same to assume shape designed to facilitate access to otherwise inaccessible tissue parts. v

9. An electro-surgical instrument for removing human tissue by coagulation, comprising a hollow stem of insulating material open at one end and adapted to be connected to a Vacuum device for creating a suction at said open end to draw in and hold said tissue, an electrode in said stem having a tip member so disposed with respect to said open end that the said suctionally drawn-in tissue will be brought into intimate contact with said tip member, said tip member being axially movable with respect to said electrode, and means for connecting said electrode to a source of current supply, said hollow stem material being manually bendable whereby to cause the same to assume a shape designed to facilitate access to otherwise inaccessible tissue parts.

WILLIAM BIERMAN.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3336916 *Oct 30, 1963Aug 22, 1967Edlich Richard FElectrocautery process
US3494363 *Apr 1, 1969Feb 10, 1970Technical Resources IncControl for devices used in surgery
US3901242 *May 30, 1974Aug 26, 1975Storz Endoskop GmbhElectric surgical instrument
US3902494 *Apr 30, 1974Sep 2, 1975ScheererSuction surgical instrument
US3906955 *May 6, 1974Sep 23, 1975Richard R RobertsSurgical cauterizing tool having suction means
US3920021 *May 15, 1974Nov 18, 1975Siegfried HiltebrandtCoagulating devices
US3970088 *Apr 24, 1975Jul 20, 1976Valleylab, Inc.Electrosurgical devices having sesquipolar electrode structures incorporated therein
US3987795 *Aug 28, 1974Oct 26, 1976Valleylab, Inc.Electrosurgical devices having sesquipolar electrode structures incorporated therein
US4033351 *Sep 14, 1976Jul 5, 1977Siemens AktiengesellschaftBipolar cutting electrode for high-frequency surgery
US4043342 *Feb 26, 1976Aug 23, 1977Valleylab, Inc.Electrosurgical devices having sesquipolar electrode structures incorporated therein
US4190051 *Jun 6, 1978Feb 26, 1980Iglesias Jose JLithotrite for electrohydraulic cystolithotripsy
US4301802 *Mar 17, 1980Nov 24, 1981Stanley PolerCauterizing tool for ophthalmological surgery
US4311143 *Oct 9, 1979Jan 19, 1982Olympus Optical Co., Ltd.Apparatus for resecting tissue inside the body cavity utilizing high-frequency currents
US4476862 *Sep 30, 1982Oct 16, 1984Pao David S CMethod of scleral marking
US4532924 *Apr 30, 1982Aug 6, 1985American Hospital Supply CorporationFor use in the treatment of tissue
US4562838 *Jan 23, 1981Jan 7, 1986Walker William SElectrosurgery instrument
US4606331 *Sep 3, 1985Aug 19, 1986Monghan Medical CorporationElectrode for fiber optic scopes
US4674499 *Jan 10, 1985Jun 23, 1987Pao David S CCoaxial bipolar probe
US4719914 *Dec 24, 1986Jan 19, 1988Johnson Gerald WElectrosurgical instrument
US4765331 *Feb 10, 1987Aug 23, 1988Circon CorporationElectrosurgical device with treatment arc of less than 360 degrees
US4805616 *Nov 20, 1986Feb 21, 1989Pao David S CBipolar probes for ophthalmic surgery and methods of performing anterior capsulotomy
US4949734 *Aug 25, 1988Aug 21, 1990Gerald BernsteinShield for electrosurgical device
US5071419 *Apr 30, 1990Dec 10, 1991Everest Medical CorporationPercutaneous laparoscopic cholecystectomy instrument
US5122138 *Nov 28, 1990Jun 16, 1992Manwaring Kim HTissue vaporizing accessory and method for an endoscope
US5160334 *Apr 30, 1991Nov 3, 1992Utah Medical Products, Inc.Electrosurgical generator and suction apparatus
US5171311 *Sep 23, 1991Dec 15, 1992Everest Medical CorporationPercutaneous laparoscopic cholecystectomy instrument
US5192267 *Mar 28, 1991Mar 9, 1993Nadiv ShapiraVortex smoke remover for electrosurgical devices
US5197963 *Dec 2, 1991Mar 30, 1993Everest Medical CorporationElectrosurgical instrument with extendable sheath for irrigation and aspiration
US5234428 *Jun 11, 1991Aug 10, 1993Kaufman David IDisposable electrocautery/cutting instrument with integral continuous smoke evacuation
US5242442 *Sep 18, 1991Sep 7, 1993Hirschfeld Jack JSmoke aspirating electrosurgical device
US5246440 *Sep 13, 1990Sep 21, 1993Noord Andrew J VanElectrosurgical knife
US5318565 *Nov 12, 1992Jun 7, 1994Daniel B. KuriloffSuction cautery dissector
US5409484 *Sep 24, 1990Apr 25, 1995Erlich; FrederickCautery with smoke removal apparatus
US5578030 *Nov 4, 1994Nov 26, 1996Levin; John M.Biopsy needle with cauterization feature
US5800431 *Oct 11, 1996Sep 1, 1998Brown; Robert H.Electrosurgical tool with suction and cautery
US6102885 *Aug 7, 1997Aug 15, 2000Bass; Lawrence S.Device for suction-assisted lipectomy and method of using same
US6149646 *Feb 2, 1999Nov 21, 2000Linvatec CorporationMonopolar tissue ablator
US6190381 *Jan 21, 1998Feb 20, 2001Arthrocare CorporationMethods for tissue resection, ablation and aspiration
US6238391 *Jun 11, 1999May 29, 2001Arthrocare CorporationSystems for tissue resection, ablation and aspiration
US6258088Aug 12, 1999Jul 10, 2001Robert H. Brown, M. D., Inc.Switch for electrosurgical tool for performing cutting, coagulation, and suctioning
US6296638 *Nov 20, 1998Oct 2, 2001Arthrocare CorporationSystems for tissue ablation and aspiration
US6358273Apr 9, 1999Mar 19, 2002Oratec Inventions, Inc.Soft tissue heating apparatus with independent, cooperative heating sources
US6379350Oct 5, 1999Apr 30, 2002Oratec Interventions, Inc.Surgical instrument for ablation and aspiration
US6391028May 16, 2000May 21, 2002Oratec Interventions, Inc.Probe with distally orientated concave curve for arthroscopic surgery
US6461357Jun 25, 1999Oct 8, 2002Oratec Interventions, Inc.Electrode for electrosurgical ablation of tissue
US6544248Oct 8, 1999Apr 8, 2003Starion Instruments CorporationDevice for suction-assisted lipectomy and method of using same
US6544260Dec 31, 1999Apr 8, 2003Oratec Interventions, Inc.Method for treating tissue in arthroscopic environment using precooling and apparatus for same
US6645203Jan 2, 2001Nov 11, 2003Oratec Interventions, Inc.Surgical instrument with off-axis electrode
US6695839Feb 8, 2001Feb 24, 2004Oratec Interventions, Inc.Method and apparatus for treatment of disrupted articular cartilage
US6918903Apr 8, 2003Jul 19, 2005Starion Instrument CorporationDevice for suction-assisted lipectomy and method of using same
US6939346Jun 28, 2002Sep 6, 2005Oratec Interventions, Inc.Method and apparatus for controlling a temperature-controlled probe
US6949098 *Jul 1, 2004Sep 27, 2005Medtronic, Inc.Pen-type electrosurgical instrument
US6997941Mar 17, 2003Feb 14, 2006Oratec Interventions, Inc.Method and apparatus for treating annular fissures in intervertebral discs
US7165552Sep 18, 2003Jan 23, 2007Cierra, Inc.Methods and apparatus for treatment of patent foramen ovale
US7186251Feb 25, 2004Mar 6, 2007Cierra, Inc.Energy based devices and methods for treatment of patent foramen ovale
US7192428 *Mar 20, 2003Mar 20, 2007Arthrocare CorporationSystems for epidermal tissue ablation
US7226447Jun 23, 2004Jun 5, 2007Smith & Nephew, Inc.Electrosurgical generator
US7267683Nov 14, 2003Sep 11, 2007Oratec Interventions, Inc.Method for treating intervertebral discs
US7282061Nov 14, 2003Oct 16, 2007Oratec Interventions, Inc.Method of treating intervertebral disc
US7293562Jun 21, 2004Nov 13, 2007Cierra, Inc.Energy based devices and methods for treatment of anatomic tissue defects
US7311701Jan 23, 2004Dec 25, 2007Cierra, Inc.Methods and apparatus for non-invasively treating atrial fibrillation using high intensity focused ultrasound
US7364579 *Jan 23, 2007Apr 29, 2008Medtronic, Inc.Fluid-assisted electrosurgical device
US7367975Sep 27, 2004May 6, 2008Cierra, Inc.Energy based devices and methods for treatment of anatomic tissue defects
US7400930Nov 14, 2003Jul 15, 2008Oratec Interventions, Inc.Method for treating intervertebral discs
US7422588Dec 7, 2006Sep 9, 2008Medtronic, Inc.Pen-type electrosurgical instrument
US7429260Dec 19, 2006Sep 30, 2008Arthrocare CorporationSystems and methods for electrosurgical tissue contraction within the spine
US7435247Jun 27, 2002Oct 14, 2008Arthrocare CorporationSystems and methods for electrosurgical tissue treatment
US7445618Jan 24, 2007Nov 4, 2008Arthrocare CorporationMethods for tissue ablation using pulsed energy
US7462176Jul 18, 2005Dec 9, 2008Starion Instruments CorporationDevice for suction-assisted lipectomy and method of using same
US7468059Feb 9, 2007Dec 23, 2008Arthrocare CorporationSystem and method for epidermal tissue ablation
US7507236Apr 6, 2007Mar 24, 2009Arthrocare CorporationSystem and method for electrosurgical cutting and ablation
US7537595Dec 21, 2007May 26, 2009Tissuelink Medical, Inc.Fluid-assisted medical devices, systems and methods
US7604635Aug 9, 2004Oct 20, 2009Salient Surgical Technologies, Inc.Fluid-assisted medical devices, systems and methods
US7637924Feb 7, 2005Dec 29, 2009Terumo Kabushiki KaishaMethods and apparatus for treatment of patent foramen ovale
US7645277Dec 22, 2005Jan 12, 2010Salient Surgical Technologies, Inc.Fluid-assisted medical device
US7647123Oct 31, 2007Jan 12, 2010Oratec Interventions, Inc.Method for treating intervertebral discs
US7651494Jan 29, 2003Jan 26, 2010Salient Surgical Technologies, Inc.Fluid-assisted medical device
US7655003Jun 22, 2005Feb 2, 2010Smith & Nephew, Inc.Electrosurgical power control
US7727232Feb 4, 2005Jun 1, 2010Salient Surgical Technologies, Inc.Fluid-assisted medical devices and methods
US7758537Apr 16, 1999Jul 20, 2010Arthrocare CorporationSystems and methods for electrosurgical removal of the stratum corneum
US7794460Aug 11, 2008Sep 14, 2010Medtronic, Inc.Method of ablating tissue
US7794474Mar 21, 2002Sep 14, 2010The Trustees Of Columbia University In The City Of New YorkEndovascular flexible stapling device
US7811282Nov 14, 2005Oct 12, 2010Salient Surgical Technologies, Inc.Fluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof
US7815634Dec 22, 2003Oct 19, 2010Salient Surgical Technologies, Inc.Fluid delivery system and controller for electrosurgical devices
US7819863Nov 17, 2008Oct 26, 2010Arthrocare CorporationSystem and method for electrosurgical cutting and ablation
US7914527Aug 17, 2006Mar 29, 2011Terumo Kabushiki KaishaEnergy based devices and methods for treatment of patent foramen ovale
US7922716Feb 2, 2005Apr 12, 2011Terumo Kabushiki KaishaEnergy based devices and methods for treatment of anatomic tissue defects
US7951148Feb 6, 2004May 31, 2011Salient Surgical Technologies, Inc.Electrosurgical device having a tissue reduction sensor
US7972330Dec 20, 2006Jul 5, 2011Terumo Kabushiki KaishaMethods and apparatus for closing a layered tissue defect
US7998140Mar 30, 2004Aug 16, 2011Salient Surgical Technologies, Inc.Fluid-assisted medical devices, systems and methods
US8012153Jul 16, 2004Sep 6, 2011Arthrocare CorporationRotary electrosurgical apparatus and methods thereof
US8021362Dec 20, 2006Sep 20, 2011Terumo Kabushiki KaishaMethods and apparatus for closing a layered tissue defect
US8038669Oct 12, 2005Oct 18, 2011Terumo Kabushiki KaishaEnergy based devices and methods for treatment of patent foramen ovale
US8038670Dec 22, 2005Oct 18, 2011Salient Surgical Technologies, Inc.Fluid-assisted medical devices, systems and methods
US8038671Aug 15, 2006Oct 18, 2011Terumo Kabushiki KaishaEnergy based devices and methods for treatment of patent foramen ovale
US8038672Jun 21, 2006Oct 18, 2011Terumo Kabushiki KaishaEnergy based devices and methods for treatment of patent foramen ovale
US8038673Jun 21, 2006Oct 18, 2011Terumo Kabushiki KaishaEnergy based devices and methods for treatment of patent foramen ovale
US8048070Feb 11, 2003Nov 1, 2011Salient Surgical Technologies, Inc.Fluid-assisted medical devices, systems and methods
US8048110Jun 24, 2008Nov 1, 2011The Trustees Of Columbia University In The City Of New YorkEndovascular flexible stapling device
US8052675Jan 21, 2010Nov 8, 2011Smith & Nephew, Inc.Electrosurgical power control
US8052678Jan 11, 2007Nov 8, 2011Terumo Kabushiki KaishaEnergy based devices and methods for treatment of patent foramen ovale
US8057469Aug 15, 2006Nov 15, 2011Terumo Kabushiki KaishaMethods and apparatus for treatment of patent foramen ovale
US8057470Aug 30, 2007Nov 15, 2011Conmed CorporationIntegrated smoke evacuation electrosurgical pencil and method
US8066701Jun 21, 2006Nov 29, 2011Terumo Kabushiki KaishaEnergy based devices and methods for treatment of patent foramen ovale
US8070747Jun 21, 2006Dec 6, 2011Terumo Kabushiki KaishaEnergy based devices and methods for treatment of patent foramen ovale
US8075554Jun 21, 2006Dec 13, 2011Terumo Kabushiki KaishaEnergy based devices and methods for treatment of patent foramen ovale
US8075557Oct 30, 2007Dec 13, 2011Salient Surgical Technologies, Inc.Fluid-assisted medical devices and methods
US8109274Apr 11, 2006Feb 7, 2012Terumo Kabushiki KaishaMethods and electrode apparatus to achieve a closure of a layered tissue defect
US8133221Jun 29, 2007Mar 13, 2012Terumo Kabushiki KaishaEnergy based devices and methods for treatment of anatomic tissue defects
US8167905Jun 17, 2008May 1, 2012The Trustees Of Columbia University In The City Of New YorkEndovascular flexible stapling device
US8187312Oct 15, 2007May 29, 2012Neurotherm, Inc.Method for treating intervertebral disc
US8226697Oct 15, 2007Jul 24, 2012Neurotherm, Inc.Method for treating intervertebral disc
US8317786Sep 25, 2009Nov 27, 2012AthroCare CorporationSystem, method and apparatus for electrosurgical instrument with movable suction sheath
US8323279Sep 25, 2009Dec 4, 2012Arthocare CorporationSystem, method and apparatus for electrosurgical instrument with movable fluid delivery sheath
US8348934Sep 23, 2011Jan 8, 2013Smith & Nephew, Inc.Electrosurgical power control
US8355799Dec 12, 2008Jan 15, 2013Arthrocare CorporationSystems and methods for limiting joint temperature
US8361068Oct 12, 2010Jan 29, 2013Medtronic Advanced Energy LlcFluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof
US8465485Sep 16, 2011Jun 18, 2013Terumo Kabushiki KaishaEnergy based devices and methods for treatment of patent foramen ovale
US8475455Oct 28, 2003Jul 2, 2013Medtronic Advanced Energy LlcFluid-assisted electrosurgical scissors and methods
US8512337Aug 20, 2004Aug 20, 2013Medtronic, Inc.Method and system for treatment of atrial tachyarrhythmias
US8603082Dec 5, 2012Dec 10, 2013Smith & Nephew, Inc.Electrosurgical power control
US8663216Oct 1, 2007Mar 4, 2014Paul O. DavisonInstrument for electrosurgical tissue treatment
US8696659Apr 30, 2010Apr 15, 2014Arthrocare CorporationElectrosurgical system and method having enhanced temperature measurement
US8747400Aug 13, 2008Jun 10, 2014Arthrocare CorporationSystems and methods for screen electrode securement
EP0070309A1 *Jan 25, 1982Jan 26, 1983William S WalkerElectrosurgery instrument.
EP0545540A1 *Oct 29, 1992Jun 9, 1993Everest Medical CorporationElectrosurgical instrument with extendable sheath for irrigation and aspiration
WO1981003271A1 *Oct 28, 1980Nov 26, 1981American Hospital Supply CorpA multipolar electrosurgical device
WO1981003272A1 *May 4, 1981Nov 26, 1981American Hospital Supply CorpA multipolar electrosurgical device
WO1982002488A1 *Jan 25, 1982Aug 5, 1982William S WalkerElectrosurgery instrument
WO1992019168A1 *Mar 18, 1992Oct 31, 1992Utah Medical Products IncElectrosurgical generator and suction apparatus
WO1997041787A1 *Mar 6, 1997Nov 13, 1997Somnus Medical Tech IncAblation apparatus and system for removal of soft palate tissue
Classifications
U.S. Classification606/42, 606/49, 606/50
International ClassificationA61B18/14, A61B18/00, A61M1/08, A61M1/00, A61B17/30
Cooperative ClassificationA61M1/0047, A61B2018/00934, A61B2018/00291, A61B18/1402, A61M1/08, A61B2017/306
European ClassificationA61B18/14B