Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2276772 A
Publication typeGrant
Publication dateMar 17, 1942
Filing dateMar 11, 1938
Priority dateMar 11, 1938
Publication numberUS 2276772 A, US 2276772A, US-A-2276772, US2276772 A, US2276772A
InventorsWilliam A Heap
Original AssigneeFurman Williams, Gene Howe
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Turbine
US 2276772 A
Abstract  available in
Images(6)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

March 17, 1942.

w A. HEAP TURBINE 6 Sheets-Sheet 2 Filed March 11, 1938 n ,1.... ...i .l I.'

March 17, 1942..

w. A. HEP

TURBINE Filed March 1l, 193B March 17,1942. .W.,A. HEAP y 2,276,772`

TURBINE Filed March l1, 1958 6 Sheets-Sheet 4 w fr? E!! (9g-(95 indent?? March 17, 1942. w. A. HEAP 2,276,772

TURBINE Filed March 11, 193e e sheets-sheet S fr f '7i/' fj? March 17, 1942. w. A. HEAP TURBINE Filed March 11, 19:58 e sheets-sheet e .a w l 2 v Y W flEl/norrgy.

Pa'tented Mar. 17, 1942 :UNITED STATES PATENT OFFICE TURBINE William A. Heap, Mulvane, Kans., assignor of onefourth to Furman Williams, Canadian, Tex., and one-fourth to Gene Howe, Amarillo, '.Iex.

Application March 11, 1938, Serial No. 195,223

(C1. 4(so-1s) 1 Claim.

My invention relates to an internal combustion turbine; whether of the Diesel type of internal combustion or of the spark fired 'type of internal combustion, wherein substantially the entire energy resulting from the explosive or eX- pansive action of each gaseous discharge will be converted into power. l

The object of my invention is to provide' an engine of great efliciency, wherein practically the entire kinetic energy or expansive force of each impulse discharged by the respective cylinders will be utilized before the spent impulse is released to atmosphere at substantially atmospheric pressure, with the result that a great economy in fuel consumption is provided'.

The various objects and advantages of my invention will ally be more readily comprehended from the detailed description of the accompany- 3-3 of Figure 1, looking in the direction/of the arrows. l

Figure 4 is a sectional view taken on the line 4-4 of Figure 2, looking in the direction of the arrows.

Figure 5 is a view 'taken on the line 5-5 of Figure 2 looking in the direction of the arrows.

Figure 6 is a vertical sectional view illustrating a modification of the spark red type of internal combustion turbine.

Figure 7 is a sectional view takenpnthe offset li-ne 1-1 of Figure 6.

In Figures 1 to 5, I illustrate an exemplication of my improved turbine employing spark red internal combustion cylinders contemplating the extraneous use of a suitable fuel atomiz- Vwith a number of interengaging annular grooves and ribs 88 arranged on opposite sides of the ports 89 and 90 in the cylinder` head plate 86 and in the stationary plate 81. The close contact between the head plate 86 and the annular plate 81 is maintained by the olf-set or angular ring members 9| and 92; one side or flange of each ring being secured to the annular plate 81, while the other sides or flanges overlap the marginal portions of the headfplate and through I, the medium of the ball-bearings'anti-frictionally hold the head plate 86 in proper relation.

Each cylinder 85' is provided witha similar piston 93 Whose outer end is provided with a pair of ball-bearing holding members 94, 94 and a centrally disposed ball-bearing holding exten,

sion or post 95. The outer ends of the members 94, 94 are spaced apart suflciently to receive`the web portion of a cam member 96 therebetween, with the ends of members 94, 94 extending beneath the transversely disposed cam surface 91, while the anti-friction element or ball 98 contacts the top of the cam surface, with the result that the pistons 93 will follow the contour of thel cam surface.

The cam member 96 is in the nature of a ring `with its base immovably secured to the end wall of the .casing 82, and the web of the ring provided with the transversely disposed cam-head or surface which is of an undulating nature as vshown in the fragmentary view, Figure 4.

ing device or-'carburetor for providing the explosive mixture; the mixing chamber or carburetor not being shown. The annular shell or casing 82 is formedfor passage of the shaft 29 therethrough; onefend of the shaft may be provided with a suitable starting motor or other medium (not shown),

'disposed transversely of the disc as shown in As the cylinder carrying disc or wheel 83 is intended to rotate, it is apparent that the pis- `tons 93 of the cylinders will be caused to reciprocate as the pistons ride the undulations of the stationarily held cam member 96. 1

.In slight spaced relation with plate member 81 preferably is another annular plate 99 xedly secured in place; the central portions of plates- 81 and 99 being preferably provided with cut-out portions or openings for free circulation of air throughout the cylinder portion of the casing;

the side wall 82a of the casing beingI provided sions and spaced apart by means of an annular radially arranged groove in the felly of suicient depth to receive the annular ring or stator member 14, which is flxedly secured to the casing and provided with the circumferential series of vanes 16 whose dished sides face in a direction opposite to vanes 12 and 13. Secured to the casing between the rotor 1| and the end wall 82'I of theinch in width, then the vanes or blades 16 of the adjacent stator should be approximately three-quarters of-,an inch; while the bladesor vanes 13 on the discharging side of the statorblades 16 should approximately be one inch in' width; and the width of the blades 11 of the stator on the discharge side of the rotor-blades 13 should approximately be a half inch in-width in order to somewhat back-up the too'rapid passage of the expanding gases passed the blades 13'befo're the expanding action can be completely utilized. i

The pistons 93 of the cylinders are preferably shown provided with small cylindrical extensions or bosses adapted to fit into the ports 89 of the head forming ring 86; the purpose of this construction being to fully expel or scavenge ,the cylinders immediately following the explosion periodi Y At prearranged points, say ninety degrees apart, the stationarily held plate or flat ring 81 is provided with small chambers or pockets |0|, see Figure 2, provided with inlet pipes |02 which connect with a suitable source of carburetted oil or gasoline arranged to positively feed the carburetted gasoline or other suitable atomized oil into the pockets |0|. The pockets |0| are provided with arcuate outlets or slots |03 disposed through the plate 81 toward the head forming ring 86; the slots |03 being arranged to register with the ports 89 during the rotation of the cylinder carrying member 83 and the head plate or ring 86 formed integral with the cylinders.

The stationary member or plate 81, at predetermined points, correlated with the supply pockets |0I, is provided with openings 90 which extend entirely through the plates and arranged in the annular plane of the slots |03 of pockets |0| so as to register with the ports 89 in the cylinder head plate or ring 816 during rotation of the cylinder carrying member or wheel 83; the opposite side -of the stationary plate 81 being shown provided with the enlargements or bosses which encircle the openings 90 and extend into sockets formed in the adjacent stasive ignition of the compressed mixtures in the cylinders will maintain the wires at firing heat and thus obviate 'the necessity of make-and-break spark control.

It is apparent from the construction shown, that as thecylinder carrying member 83 is rotated (initially by any suitable well known means which may have controllable operative connection with shaft 29), the respective pistons 08 will be caused to ride the undulating surface of the cam member or ring 96, and as these undulations are disposed toward the pistons, the latter will be reciprocated in their cylinders and successively provide suction or intake periods and compression and explosion periods. For instance,

in Figure 2, we will assume that the cylinder carrying member 83--which would be located to the inder is being brought into register with slot |03 of the gas supply pocket |0| at the upper right hand of the figure. The' piston of this cylinder is then beginning to ride down on one of the undulations of the cam member, causing the piston to move outwardly on its suction or intake stroke and providing the cylinder with the combustible mixture. This suction or intake period continues until the cylinder reaches the opposite end of the elongated pocket at which -time the piston has reached a valley in the cam and begins to ride up the adjacent rise of the cam and moves through its compression stroke; this phase being indicated at C. 'The cam element 96 immediately adjacent the crests, on the approaching sides,

preferably is shown provided with thev slight lags tons reach these dwells the mixture has been tionary plate 99 which in turn is provided with properly flared ports |058L immediately adjacent the vanes 12 of the rotor 10 (Fig. 4) the aring of said ports being in the direction of rotation of the rotor.

In close proximity to the ports 90, so as to also register with the ports 89 of the cylinder head plate' 86, I provide suitable hot points |06. These hot points preferably consist of platinum wires insulatedly mounted in the plate 81, as for example shown in Figures 2 and 4, with the outer ends of the wires connected in a suitable circuit of current supply; platinum wires being preferably employed because the succesfully compressed and the cylinder-port 89 has registered with the ring point or wire indicated at |06 and is also beginning to register with va discharge port 90, thus allowing the impulse to expand its energy through the vanes of the rotor. The cam surface continues upward past the dwells to the crests, thus inducing the pistons to complete their inward or exhaust strokes and causing the bosses |00 to force the gases out of the ports 89 in the cylinder head.

The shaft 29 may be adapted to drive the cylinder carrying member or wheel 83 through the medium of a suitable gear reduction' as illustrated for example by' the pinion |08, keyed on the shaft 29 and meshing with gear |09 rotatably secured on the wall of the casing and provided with a pinion ||0 which meshes with a gear keyed on the hub of the cylinder carrying member or wheel 83. It will be understood, of course, that. any suitable means may be provided whereby the cylinder carrying wheel may be rotated at a speed lcommensurate with the speed of rotation of the turbine rotor 10 and its shaft 29.

In Figures 6 and 7, I illustrate a modification of the hot point type of combustion cylinder turbine, namely with the internal combustion cylinders arranged radially and their outlets disposed in a radial direction toward the cylindrical wall of the casing ||2. The casing is shown provided with the turbine driven shaft 29 to which the rotor member 10 is keyed; the felly of the rotor member as in the previous constructions being of sufficient dimensions to permit it to be provided with the two circumferential series of blades or vanes 12 and 13 spaced apart by a deep circumferential groove into which the stator element 14 extends with its vanes 16 in circumferential alignment with the vanes 12 and 13; while the nal discharge side of the rotor extends in l flush or substantially face-to-face contact with the lastA stator element 15 also provided with a j series of blades or vanes 11; with the opposing The expanding impulses are ist discharged 'by the elongated throats II8 of the ducts IIB, onto thevanes 12 of vthe rotor 10, thence onto the stator blades 16, which discharge the partially expanded gases onto the vanes or blades 13 of the rotor; the too rapid passage of the gases through the rotor being prevented by the action of the stator blades 11; the spent gases being discharged from the stator 15 through suitable openings in the casing I I2.

After initial rotation of the cylinder carrying member II3 by some suitable mechanism, the

are adapted to come into register with ducts IIB arranged in enlarged portions of the casing as vshown in Figure 6.A The ducts II6 are arranged at predetermined points on the casing, for example ninety degrees apart, as disclosed in Figure 7; and these ducts IIS in turn continue into the stationary wall or plate II1 where they terminate'fin elongated throats or orifices as shown at IIB (as shown in Figure 6) disposed adjacent the vanes or blades 12 of the rotor member 10; the elongated orifice II8 being shown in the nature of a groove in the stationary wall or plate The cylinders II4 are each provided.with a. piston 93, similar to the pistons shown in Figure 1 and designed to perform the function heretofore described.

Immovably mounted in the casing, as for example secured to the rigidly held wall II1, is

an annularv cam member IIS provided at its perimeter with the transversely disposed cam surface 91 which is engaged bythe jaw portions at the outer ends of each piston through the medium of suitable anti-friction elements or balls which are preferably yieldingly pressed against the caml surface by light springs mounted in recesses as indicated at |20. The cam surface 91', as in the previously described constructions, is made undulating in order to induce the desired reciprocations of the pistons a's is apparent from the disclosure made in Figure '7.

At points adjacent the ducts IIB the'casing is provided with fuel introducing inlets or conduits I I68L leading from suitable extraneous fuel atomizing device or Carburettor (not shown) the pistons 93 being reciprocated in their cylinders, by the cam surfaces 91, and successively providing suction or intake periods (for admission of fuel through inlet conduit I IB) and compression and'explosion periods whereby the exploded gases are discharged through ducts IIB as previously described; and the casing, coincident with the ducts II6 is provided with hot points preferably of platinum wire as heretofore described and shown in Figure 2 or suitable spark producing plugs |06, except that these "hot points are arranged in the cylindrical casing I I2. The firing of the compressed'gases occurs as the ports IIS of the cylinders reach the ducts II6, at which time the pistons have reached the slight lags or "dwells" |01 In the cam surface; the further travelto the adjacent crest in the lcam surface causes the extension or boss |00 on the inner end of the piston to scavengethe cylinder.

member II3 will be rotated and the cylinders made to move through an orbit through the me- A dium of a suitable gear reduction between the turbine driven shaft 29 and the member II3,

4which may be similar to that disclosed in Fig ure 1 and hence need not be further described.

Several forms of the impulse generating portion of the turbine have been shown `as embodiments of the invention adapted for use in the .manner illustrated without' regard to the many uses to which my invention may be applied and these exemplications have been describedy in terms used for purposes o f description and not as terms of limitation, as structural modifications are possible and may be made without, however,

departing from the spirit of my invention as de-` fined by the appended claim.

What I claim is:

A turbine of the character described comprising an annular casing with an annular immovable wall whereby the casing is divided into twov compartments, the immovable wall being provided with ports arranged in a circumferential row and in predetermined spaced relation, certain of the ports being circumferentially elongated and constituting fuel supply ports while the alternate ports constitute ,discharge ports arranged adjacent the respective supply ports; ignition points mounted in said immovable wail adjacent and in advance of each` discharge port; an annular member rotatably mounted in one compartment of the casing substantially parallel with said immovable wall; a plurality of internal combustion cylinders secured to said annular member in circumferentially spaced relation with their ported ends arranged in gas-sealing relation with said immovable wall and adapted to successively register with the ports thereim' pistons reciprocatingly mounted in the cylinders and provided with jaws on their outer ends; a iixedly secured annular member mounted in the compartment of said rotatable annular member provided with an undulating cam surface arranged first mentioned annular member whereby the cylinders are moved through an annular path at a predetermined speed correlated with the speed of rotation of the rotor means.

WILLIAMA-HEAP.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2647363 *Oct 28, 1948Aug 4, 1953Stott John LawrenceCombined internal-combustion engine and turbine
US2776649 *May 13, 1953Jan 8, 1957Fenske Merrell RTwo cycle fuel injection, opposed piston, thrust plate internal combustion engine
US2949100 *Sep 26, 1958Aug 16, 1960Petersen Axel LRotary engine
US2994188 *Jan 21, 1959Aug 1, 1961Carol O Neal SandlinCombination piston and turbine engine
US3731661 *Dec 27, 1971May 8, 1973T HatfieldRotary engine apparatus
US3807370 *Dec 29, 1972Apr 30, 1974Baugh ARotary engine
US4056930 *Apr 9, 1976Nov 8, 1977Sherman Henry BInternal combustion turbine
US4157079 *Mar 11, 1977Jun 5, 1979Kristiansen Haakon HInternal combustion engine and operating cycle
US4213427 *Jun 16, 1978Jul 22, 1980Alfonso Di StefanoRotary engine
US7210429Jan 8, 2003May 1, 2007Douglas Marshall JohnsRotating positive displacement engine
US7677210Dec 14, 2006Mar 16, 2010Chasin Lawrence CRotating barrel type internal combustion engine
DE2719398A1 *Apr 30, 1977Nov 2, 1978John Sherwood SpragueZweitaktverbrennungsmotor
Classifications
U.S. Classification60/624, 74/56, 123/43.0AA
International ClassificationF02C5/06, F02B57/00
Cooperative ClassificationF02B57/00, F02C5/06
European ClassificationF02B57/00, F02C5/06