Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2317166 A
Publication typeGrant
Publication dateApr 20, 1943
Filing dateAug 15, 1939
Priority dateAug 15, 1939
Publication numberUS 2317166 A, US 2317166A, US-A-2317166, US2317166 A, US2317166A
InventorsVictor R Abrams
Original AssigneeVictor R Abrams
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Pumping device
US 2317166 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

April 20, 1943. v. R. ABRAMS PUMPING DEVICE Filed Aug. 15, 1939 70 CURRENT DEV/C56 INVENTOR m 19. LAW

Houi. o-

ATTORNEY Patented Apr. 20, 1943 UNITED STATE S PATENT OFFICE PUMPING DEVICE Victor B. Abrams, Maplewood, N. J.

Application August 15, 1939, Serial No. 290,195

12 Claims. '(Cl. 103-1) This invention relates to pumping devices and has particular reference to fuel injecting devices for use in internal combustion engines.

Fuel injectors of the type now commonly used in connection with Diesel type of engines are complicated, mechanically actuated devices, which because of the precision required in preparing the parts, are extremely expensive to manufacture and also to maintain in operating condition within the close tolerances required in order to assure smooth operation and equalized injection of the fuel into the cylinders.

The principal object of this invention is to provide devices for pumping or delivering increments of the fluid by means of magneto-striction.

Another object of the invention is to provide pumping devices which are actuated electrically and do not have relatively movable parts which require close machining or adjustment to obtain proper operation of the devices.

A further object of the invention is to provide pumping devices which are extremely simple and include no parts which can get out of order through operation or continued use.

The invention in its most general aspects includes a reservoir or chamber including a magneto-strictive element which causes the chamber to contract and expand in response to variation in a magnetic field in which the magneto-strictive element is disposed, thereby causing the chamber to act as a pump.

The phenomenon of magneto-strictlon is the property of such metals as nickel, iron, cobalt and their alloys to change their physical dimensions with changes in their degree of magnetization.

This phenomenon, as indicated above, is utilized in the present invention to produce a pumping operation by alternately magnetizing and demagnetizing or varying the magnetization of a reservoir which is adapted to receive a fluid and thus varying the capacity of a chamber, whereby a flow of the fluid into and out of the chamber takes place.

The volume and rate of fiow of the liquid pumped by the device is controlled by the size of the chamber and variations in the degree of magnetization of the chamber, temperature and elasticity of the walls and the fibre stress set up in the magneto-strictive material of the chamber, all of which are controllable within close limits to cause accurate delivery of the liquid. Devices of this type are characterized by extreme simplicity, absence of moving parts which might wear or get out of order, and ease of control in the pumping action.

For a better understanding of the present invention, reference may be had to the accompanying drawing in which:

Figure 1 illustrates diagrammatically a typical form of pumping mechanism and control therefor used as a fuel injector for an internal combustion engine of the Diesel type;

Figure 2 is a view in section of a modified form of pump embodying the invention;

Figure 3 is a diagrammatic illustration of a control device for preventing surging in pumps embodying the present invention;

Figure 4 is a view in section of a still further form of pumping device;

Figure 5 is a view in vertical section of another form of pumping device; and

Figure 6 is a view in section of a modified form of the device.

In the form of the invention disclosed in Figure 1,' the pumping mechanism embodying the present invention consists of a tubular element l0 having a curved upper end which receives and is joined to a similar smaller element H to form a reservoir or chamber I! which is annular in cross-section and of hemispherical shape at its upper end. The elements l0 and II may be joined at their lower ends by welding or in any other desired way. The chamber l2 communicates through a conduit l3 and intake check valve l3 with rotary pump ll which supplies fuel under pressure to the reservoir l2. An outlet conduit l5 communicating with the chamber I2 is connected with the cylinder or combustion chamber ii of the engine ll. A loaded valve [8 is provided at the inner end of the conduit l5 and forms a. fuel injecting nozzle for delivering the fuel to the combustion chamber iii of the cylinder.

The wall member ID which forms with member II the chamber [2 may be made of any suitable magneto-strlctive material which contracts upon being subjected to a magnetic field, such as, for example, a nickel-iron alloy, pure nickel, cobalt or a cobalt-iron alloy. The inner wall ll may be made of, for example, a non-ferrous metal which will not contract when subjected to magnetization, or the inner member may be formed of a magneto-strictive material which expands when magnetized. With any of these 7 constructions, when the inner and outer walls I0 and H are placed in a magnetic field that varies in intensity, the volume of the chamber l2 decreases and the fuel in the chamber i2 is forced outwardly through the conduit [5 and into the combustion chamber I6. A suitable check valve I3 is located in the conduit l3 between the chamber l2 and the pump M to prevent back pressure created by the contraction of the chamber l2 from forcing the fuel back into the source of supply, thuspositively forcing the fuel into the combustion chamber of the engine l1. i

In order to magnetize the wall elements l0 and l I a coil may be wound on the outside of the member [0 and a coil wound on the interior of the member [I These relative positions of the coils with respect to the members may be varied of course. For example, the outer wall may expand under magneto-strictive stresses, providing the intake stroke, and the delivery stroke is effected when the magnetic field collapses. These coils are connected to a suitablesource of electrical energy l9, across a condenser [9 which can be charged and discharged to cause energizationof the coils2l and 22 and to a commutator or timing device 20, which intermittently energizes and deenergizes thecoils 2| and 22. The intensity of the magnetization may be varied by means of a rheostat 23 which can be adjusted manually as by means of a throttle or automatically by a governor, as may be desired, in order to compensate for variations in the amount of the fuel required to vary or maintain the speed and load of the engine 11. Also, a thermostat may be used to compensate for the effect of variations of temperature on magneto-'striction.

In operatiomas the timing device 20 operates, magnetic fields are set up and broken by the coils 2| and 22, and in response to the variations in magnetization the chamber I2 is increased or reduced in size, thereby varying the volume of fluid that can be contained in the reservoir i2, and injecting fuel into the combustion chamber [6 of the engine l1.

With a ferro-magnetic alloy containing approximately 30% nickel forming the material of the inner or expanding chamber, the volume within the wall member I0 for a 4 cylinder 100 horse power, 2 cycle Diesel engine operating at 1,000 R. P. M. may be of about 120 cubic inches capacity per cylinder. For a 6 cylinder, 100 horse power, 4 cycle automobile gasoline engine at 3400 R. P. M., the capacity of the chamber would be about 60 cubic inches per cylinder. These dimensions should not be construed as meaning that the chamber l2 must contain this quantity of fuel. but that the over-all dimensions of the space within the confining wall II should be of about these magnitudes.

In Figure 2 is disclosed another form of pumping device utilizing the phenomenon of magnetostriction which consists of a capsule-like housing or chamber 24, preferably formed of nonmagneto-strictive material, within which is sup- I ported a body of solid metal 25. The body 25 preferably is made of magneto-strictive material, such as, for example, a ferro-magnetic alloy containing 29% nickel and 70% iron, so that its volume will vary in response to variations in the strength of a magnetic field. Wound around the exterior of the chamber 24 is a solenoid coil 26, by means of which the body 25 may be caused to contract and expand in response to variations in the field strength of the solenoid 26. Inlet and outlet conduits 21 and 28 are also provided which communicate with the chamber 29 formed between the members 24 and 25, and may be provided with any desired type of valve which is capable of being actuated in response to variations in the volume of the chamber 29.

In Figure 4 a similar type of device is disclosed which includes a capsule-like reservoir or hollow member 30 made of magneto-strictive material, about which is wound an electromagnetic coil 3|. This device differs from the device disclosed in Figure 2 in that no center element is provided, and accordingly the body may be filled completely with liquid such as, for example, fuel, and contraction andjexpansion of the body 30 will cause liquid to be drawn in through the inlet conduit 32 and forced outwardly through the outlet or discharge conduit 33. I

A still further form of the invention is disclosed in Figure 5, this device being actuated in response to differential expansion and contraction of a frame member anda magneto-strictive rod. As illustrated in Figure 5, the device includes a frame member 34 provided with magnetic. windings 35 and 36 which cause the side members thereof to increase and decrease in length in accordance with the variation in the magnetic field. Rigidly supported in the base of the frame 34 is a rod 3'! formed of magnetostrictive material which varies in length oppositely to the increase or decrease in length of the frame 34. A magnetic field in which the rod is disposed is provided by means of an electromagnetic winding 38 around the rod 31. Thus, for example, when the electro-magnetic windings 35, 36 and 38 are energized, the rod may contract in length and the frame 34 increase in length, thereby causing a relative movement between the upper end of the rod 37 and the upper end of the frame 34. In order to utilize these changes in length for pumping operation, the upper end of the rod 3'! is fixedly connected to a diaphragm 39 which is retained between the upper end of the frame 34 and a dome 40, which forms with the diaphragm a chamber 4| for receiving liquid. Inlet and outlet conduits 42 and 43 communicate with the chamber 4|. In operation, upon varying the magnetic field, the diaphragm 39 willbe moved upwardlyand downwardly and thereby the volume of thechamber 4i will be varied. By proper selection of inlet and outlet valves, the expansion and contraction of the chamber can be utilized to pump or inject fluids.

Devices of the type described above have substantially instantaneous response to the variation in the magnetic fields. Accordingly, in order to prevent shock or surging during operation, it may be desirable to provide some means whereby the strength of the magnetic field may be varied gradually. A typical form of device for producing this effect is disclosed in Figure 3. This device includes a rotary commutator brush or Eircuit and the electrical energy supplied to the coils of the pumping device is increased. This gradual increase in current results in a gradual change in volume of the pumping device, and

thus avoids shock or surging during the pumping operation. Surging or shock in the pump can also be {reduced by means of the form of pumping device disclosed in Figure 6. In this form of the device.

chamber 52 that upon energization of the coil 55 within the capsule 54 expansion of the element 54 will take place. This type of construction has the advantage in that the pressure on opposite sides of the magneto-strictive element 54 may be equalized in order to obtain the maximum amount of expansion and contraction of this member. Accordingly, if the pressure on the interior of the magneto-strictive member 54 is substantially balanced against the operating pressure on the exterior of the member 54 within the chamber 52, full magneto-strictive expansion and contraction can be obtained.

Furthermore, the walls of the member 54 may give slightly in order to prevent the surging or shock which'occurs when the member 54 expands rapidly. This construction, of course, may be varied by forming the outer member of magnetostrictive material, as shown in Figure 2, in order to cause contraction or expansion of the outer member 55, or the action of the inner and outer members may be coordinated in other relationships to provide the desired result. With this construction the gas pressure within the inner capsule 54 will tend to actas a shock absorber for the pumping operation.

The elastic deformation due to pressure on the forms of devices described above may be varied by regulating the pressure with which the liquid is delivered to the magneto-strictive pumping chamber. For example, in the form of the invention disclosed in Figure 1, if 1,000 lbs. pressure per square inch is required to operate the valve I8 and inject the fuel into the combustion chamber Hi, the pump I4 may be operated at 900 lbs. pressure per square inch, thus requiring only an additional 100 lbs. pressure per square inch or elastic deformation. The use of high operating pressures has the advantage of avoiding vapor lock by dissolving vapors or gases in the liquid being pumped and thereby permitting the use of volatile fuels in engines even when operating at high altitudes and temperatures, In turn, the solution of such vapors or gases prevents inaccuracies in metering the fuel.

While the invention has been described with reference to a number of different forms of the invention, it should be understood that there may be other variations of these forms of the invention, and that the type of magneto-strictive material may be varied. Also the application of the invention to other fields than those described above will be readily apparent. Therefore, the forms of the invention described should be considered as illustrative only and not as limiting the scope of the following claims.

I claim:

1. A pumping device comprising a casing forming a chamber, means forming an inlet and an outlet for said chamber, valves in said inlet and said outlet permitting fluid to iiowinto and out of said chamber through said inlet and said outlet, means formed of magneto-strictive material for varying the capacity of said chamber, and a member adapted to be energized to create a varying magnetic field through said means formed of magneto-strictive material to cause said means to expand and contract to vary the capacity of said chamber.

2. A pumping device comprising a casing forming a chamber, magneto-strictive means for varying the capacity of said chamber, means for creating a varying electro-magnetic field about said magneto-strictive means to cause the latter to expand and contract, inlet valve means for introducing fluid into said chamber and outlet valve means for allowing said fluid to escape from said chamber, whereby upon variation in the electromagnetic field, fluid will be introduced into and ejected from said chamber.

3. A pumping device comprising a casing of non-magn eto-strictive material, a member formed of magneto-strictive material disposed within said casing and defining therewith "'a chamber, means forming an inlet and an outlet for said chamber, inlet valve means permitting fluid to flow into said chamber, outlet valve means permitting fluid to fiowout of said chamber, means for creating an electro-magnetic field about said member, and means for varying the intensity of said field to cause said member to expand and contract.

4. A pumping device comprising a casing, is member within said casing and defining therewith a chamber, means forming an inlet and an outlet for said chamber, at least part of one of said casing and member being formed of magnetostrictive material, means for creating an electromagnetic field about said part, valves in said inlet and said outlet permitting fluid to flow into said chamber through said inlet and out of said chamber through said outlet in one direction and means for varying the stren th of said field to cause said part to expand and contract and vary the capacity of said chamber.

5. A pumping device comprising a chamber, a diaphragm forming one side of sa d chamber. means forming an inlet and an outlet for said chamber, a magneto-strictive member having a fixed end and another end connected to said diaphragm, means for creating an electromagnetic field about said member, valves in said inlet and said outlet permitting fluid to flow into said chamber through said inlet and out of said chamber through said outlet in one direction and means for varying said magnetic field to cause said member to expand and contract, displace said diaphragm and vary the capacity of said chamber.

6. In a fuel pump for an internal combustion engine, the combination of a reservoir, magnetostrictive means-for varying the volume of said reservoir, means for creating an electromagnetic field about said magneto-strictive means, and timing means cooperating with said engine for varying the strength of said field to cause said magneto-strictive means to expand and contract to vary the capacity of said reservoir to force fuel to said engines.

7. The device set forth in claim 6 comprising means for controlling the variation of the strength of the field and the variation in capacity of said reservoir.

8. The device set forth in claim 6, in which the magneto-strictive means comprises a casing forming the reservoir.

hollow member filled with gas under high pressure within said casing and defining therewith a chamber, means forming an inlet and an outlet for said chamber, at least part of one of said casing and member being formed of magnetostrictive material, means for creating an electromagnetic field about said part and means for varying the strength of said field to cause the chamber to expand and contract.

VICTOR R. ABRAMS.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2558329 *Nov 13, 1946Jun 26, 1951Airkem IncControlled power operated diffuser
US2714186 *Sep 12, 1952Jul 26, 1955Sorensen & Company IncVariable frequency magnetostrictive transducer
US2716943 *Jan 16, 1953Sep 6, 1955Vandenberg Leonard VLiquid metal high pressure pump
US2721100 *Nov 13, 1951Oct 18, 1955Jr Albert G BodineHigh frequency injector valve
US2818514 *Oct 2, 1952Dec 31, 1957Bell Telephone Labor IncStressed ferrite cores
US2822482 *Jan 17, 1955Feb 4, 1958Harris Transducer CorpVariable-position transducer
US2842067 *Oct 3, 1955Jul 8, 1958Stevens Ronald JohnPumps for fluids, more especially liquids
US2865291 *May 23, 1952Dec 23, 1958Albert Watt DudleyPumps for liquid current-conducting material
US2898858 *Mar 20, 1957Aug 11, 1959John C FisherLiquid pump
US2928409 *Jan 31, 1955Mar 15, 1960Textron IncNon-magnetic electro hydraulic transfer valve
US3107630 *Sep 8, 1959Oct 22, 1963Textron IncNon-magnetic electro-hydraulic pump
US3122628 *Jan 31, 1963Feb 25, 1964Kiyoshi InoneElectrical discharge grinding apparatus with automatic electrode reshaping provision
US3150592 *Aug 17, 1962Sep 29, 1964Stec Charles LPiezoelectric pump
US3168830 *Mar 25, 1963Feb 9, 1965Int Resistance CoPressure transducer
US3194162 *Nov 15, 1962Jul 13, 1965Clevite CorpPiezoelectric fuel injector
US3215078 *Aug 31, 1964Nov 2, 1965Stec Charles LControlled volume piezoelectric pumps
US3270672 *Dec 23, 1963Sep 6, 1966Union Oil CoPump apparatus
US3370538 *Feb 11, 1966Feb 27, 1968E W Hines And AssociatesFluid pumps energized by magnetostrictive action
US3406670 *Mar 10, 1966Oct 22, 1968Hines & Ass E WMagnetostrictively actuated fuel system for engines
US3439199 *May 23, 1966Apr 15, 1969Arne ToveMagnetostrictive unit
US3520641 *Nov 13, 1968Jul 14, 1970Acf Ind IncPiezoelectric pump
US3598506 *Apr 23, 1969Aug 10, 1971Physics Int CoElectrostrictive actuator
US3642171 *May 28, 1969Feb 15, 1972Chemie Filter Gmbh VerfahrenApparatus for introducing additives into liquids
US3924974 *Mar 29, 1974Dec 9, 1975Rca CorpFluid ejection or control device
US4018547 *Aug 28, 1975Apr 19, 1977Rogen Neil EPumping by wire elongation
US4245227 *Nov 13, 1979Jan 13, 1981International Business Machines CorporationInk jet head having an outer wall of ink cavity of piezoelectric material
US4697989 *Oct 11, 1984Oct 6, 1987Gena PerlovElectrodynamic peristaltic fluid transfer device and method
US4917579 *Jun 23, 1988Apr 17, 1990Kaileg AbTransporter pump
DE1037765B *Oct 17, 1956Aug 28, 1958Roberto MeliVorrichtung zur Verbesserung der Eigenschaften von fluessigen Kraftstoffen fuer Verbrennungskraftmaschinen
DE1126041B *Jan 4, 1957Mar 22, 1962Bronzavia SaVierpol mit einem Biegeschwingungen ausfuehrenden magnetostriktiven Schwinger
DE4036648B4 *Nov 16, 1990Jul 7, 2005Kropp, EllenVorrichtung zur Beeinflussung von Flüssigkeiten durch Magnetfelder
DE4204435A1 *Feb 14, 1992Aug 19, 1993Daimler Benz AgFuel injection pump for IC engine - has magnetostrictive drive with electronic control as well as separate pump for each cylinder
DE4335871A1 *Oct 21, 1993Apr 27, 1995Hartmut Dipl Ing SchulteVerfahren und Vorrichtung zur Verbrauchsminderung von fließfähigen fossilen Brennstoffen
DE102012018029A1Sep 13, 2012Mar 13, 2014Thomas Magnete GmbhDevice for tempering working area, has compressor unit, which is connected upstream of heating section and downstream of cooling section, and expansion unit, which is connected downstream of heating section and upstream of cooling section
WO1988010371A1 *Jun 23, 1988Dec 29, 1988Kaileg AbA transporter
Classifications
U.S. Classification417/322, 318/118, 310/26, 310/30, 318/130
International ClassificationF04B43/04, F02M59/14, F04B17/00
Cooperative ClassificationF02M59/14, F04B43/04, F02M2700/1323, F04B17/00
European ClassificationF02M59/14, F04B43/04, F04B17/00