Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS2349950 A
Publication typeGrant
Publication dateMay 30, 1944
Filing dateAug 16, 1938
Priority dateAug 18, 1937
Publication numberUS 2349950 A, US 2349950A, US-A-2349950, US2349950 A, US2349950A
InventorsFormhals Anton
Original AssigneeFormhals Anton
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method and apparatus for spinning
US 2349950 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

May 30, 1944. A. FORMHALS 2,349,950

METHOD AND APPARATUS FOR SPINNING Filed Aug. 16, 1938 uqmn 7 07770710 145,


Patented May 30, 1944 METHOD AND APPARATUS FOR SPINNING Anton Formhals, Mainz, Germany; vested in the Alien Property Custodian Application August 16, 1938, Serial No. 225,243!

Germany August 18, 1937 9 Claims. This invention relates to the production of artificial fibers and more particularly it relates tc'the dispersion or shattering of streams of spinning solution into comparatively fine fibers by means of a high potential electrical field oi certain characteristics and collecting said fibers substantially. parallel to each other in the-form of charged in the proximity of the collecting device, thereby tending to fly back into the field toward the solution'i'eeding device. 7 The occurrence 01' this phenomenon may be quite troublesome and will seriously interfere with the continuity'of operation of the process. Stray fibers a continuous fiber band on a. moving collecting device. The dispersion of a stream of spinning solution into fibers by a high electrical potential shall hereinafter, for convenience, be referred to as the "electrical spinning of fibers.

In accordance with previously known apparatus and methods for the electrical spinning of fibers, for example, the apparati and methods disclosed in U. S. Patent 1,975,504 to ,Formhals, U. 8. Patent 705,691 to Morton and U. S. Patent 2,048,-

651 to Norton, number of difficulties have been experienced. Due to the comparatively short distance intervening between the solution feeding devices and the fiber collecting devices it was exceedingly difiicult to sufflciently completely dry out the formed fibers, and as a result the said fibers would tend to stick not only to the collecting devices but also to each other. Furthermore,

, inthe Previous methods the formed fibers would not tend to collect in a compact closely aggregated form. While this was due partly to the fact that the collecting electrodes presented continuous plane or curved surfaces for receivingthe fibers and to the use of serrated devices for feeding which thus fail to attach themselves permanently to the collecting device and tend to fly back into the proximity of the feeding device tend to become attracted and attach themselves to various parts oi the solution feeding mechanism, for instance,

the spinning nozzles. As the fibers accumulate on and around the spinning nozzle they may amass to a su-flicient extent so as to cause serious interference to the free and uninterrupted delivery of spinning solution. In extreme cases they may amass themselves around a spinning nozzle and completely interfere with its satisfactory delivery, thereby necessitating stopping and cleaning of the apparatus.

The above and other di-ficulties have contributed to the failure to heretofore obtain on a smooth continuous manufacturing basis a continuous, compact, coherent fiber band composed of heterogeneous artificial filaments arranged substantially parallel to each other and being capable, without additional textile operation, of being drawn and twisted into threads or yarns of ood quality and strength on standard textile discontinuous quantities of spinning solution into the high potential electrical field, the apparatus would still not collect, the fibers in a compact concentrated fashioneven though continuous streams of spinning solution were fed into the electrical field. Particularly when a plurality of spinning nozzles was used it was found that the streams, and the fibers formed from said streams, would take different courses and paths to the collecting device, thus preventing the formation of a closely packed or aggregated fiber band on the collecting device. In other words, while the paths which the streams and fibers might take between .the feeding and the collecting devices were determined to an approximate degree by the relative] position oi these devices to-each other, it was not possible to predetermine this path precisely and constantly, nor was it possible -to predetermine thepaths of all of the streams and fibers there- 150 from in a perfect nozzles.

A further difliculty of previous apparatus and manner from the different methods was experienced by the bothersome tendency oicertain stray fibers to become electrically machinery In order to overcome the present invention, which is fundamentally new and which permits the use of simple apparatus similar to the type used in the early days of electrical spinning, whenskeins of fiber could not be produced, but only balls of fiber.

In order that the process and apparatus of th present invention be more readily understood, reference is made to the drawing, in which:

Fig. 1 represents a diagrammatic showing of the phenomenon underlying the theorymf the invention; l

Fi 2 denotes; in diagrammatic perspective, an

, alternative system for carrying out the invention;

Fig. 3 shows a further l ernative system and 4' shows, in part section, a shielding housing which may be employed with either of the systems shown in Figs. 2 and 3.

The physical phenomenon on which the new process is basedis shown in Fig. l. The nozzle l0, preferably negatively charged, delivers a fiber-forming material which, as .a result of the force of gravity, tends to fall down vertically. Between the nozzle l0 and the counter-electrode aforesaid difiiculties, a method is employed, in accordance with the I tangled ball.

ll, preferably positively charged, there is a high difference of-potential, i'. e., a high tension field exists between them, which causes the formation of the fibers. Under the conditions previously employed in the prior art fibers formed from the fiber-forming liquid, after they had left the nozzle were attracted by the counter-electrodes around which they collected in the form of a This invention consists essentially in the discovery that by producing a suitably high field intensity on the counter-electrodes relative to the electrode fixed at the point where the liquid is discharged it is possible, shortly beforethe fibers reach the counter-electrode. to.

reverse the attracting power of this counter-electrode into a repelling power, so that the fibers donot collect on the counter-electrodes. In order to produce this reverse effect it is only necessary to produce on the counter-electrode a field intensity of such magnitude as will cause the desired reverse effect. This is accomplished by producing high differences of potential and using a counter-electrode which presents a particularly sharp surface.

The reversal effect upon which the present invention is based cannot yet be explained entirely satisfactorily from a scientific point of When the single fiber leaves the nozzle l0, as shown in Fig. 1, it is under the influence of gravity which are first attracted and then repelled by the counter-electrode from the range of the electric field, and in such a way that they form a moving support for other fibers reaching them from the point where the liquid is discharged before their charge has been reversed by the counter-electrode.

In the apparatus for the practical operation of this process which is shown in Figs. 2 and 3, a large number of nozzles is provided and on different sides of each nozzle there are two counterelectrodes each of the same polarity, arranged in such a way as to attract to opposite sides the fibers which are formed from the liquid leaving and also under the influence of the attraction of the electrode ll, since this electrode is of opposite polarity. The fiber therefore moves towards the sharp tip of the electrode II, where there is the greatest field intensity. From the. tip of the electrode ifl ions move towards th fibers l2. This phenomenon is well known in physics as 'electric wind" or ion wind" (cf. for example R. W. Pohl, Elektrizitfitslehrefi Berlin 1931, p. 175). The so-called ion wind" is characterised by the fact that on the one hand charge-carriers move in a given direction, and that on the other hand molecules of gas .are carried along with these charge-carriers, so that a directed stream of gas is' produced. Th s stream of gas endeavors to repel the fibers I2 from the electrode l I. At the same time, the charge-carriers emanating from the electrode l l neutralise the charge on the fibers l2. and then charge the fibers with thesame polarity as that of the electrode H. The mechanical repulsion effect of the ion wind" is thus strengthened by theelectrical repulsion oi the fibers I! from the electrode ll. Under the influence oi the purely mechanical action bf the ion wind,and as a. result of the alteration in thecharge of the fibers '2, the latter cannot collect upon the electrode ll; they approach to within a certain distance the fibers 12 were drawn out of the range of the A moving bandelectric field on a fiat surface. of fibers could thus be formed, opposite to the row of electrodes "1, and as the fibers formingv this band have received an opposite charge from the electrodes II, this band of fibers would be 01 conductors I0 and is are arranged below the row the nozzles. There is such a high field intensity on the counter-electrodes that the fibers cannot collect on them. Instead of consisting of separate tips, both the counter-electrodes of all the nozzles are formed of conductors so fine that there is-a point repulsion effect along them, this tank I! under the influence of the pressure which is produced by compressed gas in vessel II. The pressure is preferably about 2 atm. Insulated of nozzles and parallel to it, on either side of it.

The revolving device 20, which guides the fibers and which may, for instance, be in the form of a drum, is arranged in such a way that its direction of revolution is in accordance with the direction of the row of nozzles and that of the conductors II and IS.

A high difference of potential is produced between the nozzles W and the conductors I8 and I9. An example of a successful difference of potential is about 50 kv. The potential of the nozzles ll to earth is preferably about 55 kv. and that of the conductors I I and I! to earth is about 5 kv. Conductors l8 and I! are of extremely thin wires of metal preferably of the piano wire type.

At first the liquid flows from the nozzles ll in fine streams, falling vertically towards the earth. At the moment when the diiference of potential is produced between the nozzles l4 and the wires "and I9, fibers begin to be formed, and streams of fiber are produced, flowing in principle in the direction shown in Fig. 2. Since two wires -l8 and I 9 are present, two streams of fiber are formed, flowing first towards the wire II or I! respectively, then fiowing away from these wires and finally falling towards'the ground. The ends of the fiber which reach the ground are raised, for instance by means of a rod made of some insulating material, and placed on the revolving drum 2., which then draws them continuously out of the electric field. This forms a belt of moving fibers which is of the same polarity as the counter-electrodes I8 and I9. This belt of fibers forms a moving support for other fibers which have just been formed 1 2,349,950 but which have not yet been repelled and had their charge reversed by the wires.

With the processes of the prior art, the distance between the point where the liquid leaves thenozzle and the fiber su'pport always had to be comparatively small. There was therefore always the danger that when the fibers reached the support they would not be dry enough, and that they would stick. This danger does not exist in the process of the present invention. The devic 2. which guides the fibers can .be placed far enough from the row of nozzles for the fibers to be completely dry when they reach it.

In order to facilitate the conveyance of the fibers to the drum-2|, a blast apparatus 2| may be providedto,-'blow them towards this drum.

The blast apparatus also helps to prevent the undesirable accumulation of fibers on the electrodes "and ii.

The apparatus shown in Fig. 3 is the same in principle as that shownin Fig. 2, except that the apparatus is curved in shape instead of being modelled on straight lines.

but approximately concentric with this curve.

Both of the electrodes corresponding to each nozzle could be in the form of separate points.

Actually, in the apparatus illustrated in Fig. 3 all the'counter-electrodes corresponding to the nozzles are in the form of conductors 25 and 2|, curving in the same shape as the tube bearing the nozzlesi. e. in this example circular in form. The connection to the annular electrode 25 is surrounded by an insulator 21, to

prevent sparking between or the nozzles 22.

I After the fibers have passed between the two annular electrodes 25 and 26 which are below the nozzles 22, they are drawn through the device 2|, stretched in another apparatus and then spun.

it and the tube 23 n the device 28 for guiding or drawing off the fibers is formed a tube-shaped fibrous structure, which is very easy to spin.

In thetypes of apparatus illustrated in Figs. 2 and 3 it is desirable to use as many nozzles as possible and to have them as close together as possible. There is a critical distance, however, determined by experimentation for different sized systems. and the nozzles should not be closer together than this. If they are closertogether, the repulsion effect exercised on each other by the fibers formed by various nozzles will become so pronounced that the fibersjwill not be distributed uniformly over the two counter-electrodes 25 and 26, and part of the nozzles 22 will be supplying only one counter-electrode 25, while another part of the nozzles'is' supplying only the other counter-electrode 28.

Fig. 4 shows a further modification of the inwires being of polarity opposite to said nozzles,

systems shown in Figs. 2 and a. constitute the let electrodes and are preferably negatively charged. A thin wire or knife edge 3| appropriately supported by insulators 32 constitutes the counter-electrode which is preferably positively charged. The formation of fibers a is the same as in the systems previously described. An air jet 34 may be employed to facilitate the continuous movement of the fibers from the point of formation to the collecting device 35.

The whole system, including jet electrodes, counter-electrodes, and air blast are Preferably enclosed within a housing 38 in order to facilitate recovery of the solvent. Part of the solvent'may be. condensed and recovered at the bottomof the apparatus while some may be swept by the air current through the air outlet 31, the solvent from this source being condensed in suitable apparatus and used again in the process. 7 What I claim as my invention is:

1. Apparatus for preparing fiber from a fiber forming liquid which comprises a plurality of nozzles disposed along a straight line and forming one pole of a high potential field, two very thin wires fixed and disposed below and extending substantially parallel to said nozzles, said and means for continuously removing fibers formed between the wires and below the nozzles.

2. In a process for preparing fibers from fiber forming liquid wherein a current of said liquid is subjected to a high potential electric field causing fiber formation between an electrode disposed at the point at which the liquid-is given off and a fixed counter-electrode remote therefrom and of opposite polarity, the improvement which comprises generating at the counter-electrode a field intensity of such magnitude that' the fiber attracting effect of said counter-electrode, attained by the fibers immediately in front of the counter-electrode, is reversed into a 'repellant effect, so that the fibers are prevented from depositingon said counter-electrode and continuously removing said repelled fibers from said high potential electric field.

3. The process of claim 2 wherein-the repelled .fiber formed between the electrodes are utilized as auxiliary electrodes for the deposition of subsequently formed fibers. v

4. The process'as' in claim.2 wherein charged fibers repelled by said counter electrode are positioned on a collector surface, and function as .auxiliary electrodes'to attract additionally repelled fibers from' the field of high potential, and wherein an inert gas is blown through said high potential field to facilitate the removal and colvention employing, in this instance, but a single wire rather than the two wires shown in Figs. 2

and 3. The fiber forming material enters the apparatus through a conduit 29 and is fed to a series. of males 3|. These nozzles, as in the lection of repelled fibers.

5. A process for preparing fibers from a fiber forming liquid which comprises ejecting a stream of said liquid into a field ofhigh potential from a zone of one polarity toward a zone of opposing polarity to form fibers having a given electric charge. establishing an ionic .draft in the said latter zone adapted to repel said formed fibers and a reversal of their electric charge, and continuously removing the said formed and repelled fibers from the field of high potential. V v

6. A process for preparing fibers from a fiber forming liquid which comprises ejecting a plurality of streams of said liquid into a field of high potential from a zone of one P y toward a zone of opposing polarity to form fibers having a given electric charge, establishing an ionic draft in said latter zone adapted to repel said formed fibers and by a. reversal of their electric charge, and continuously removing the said formed and repelled fibers from the field of high potential.

7. A process for preparing fibers from a fiber forming liquid which comprises ejecting a pin-- rality of streams of said liquid into a field of high potential from a zone of one polarity toward an extended zone of continuity and opposing polarity to form fibers having a 'given electric charge, establishing an ionic draft in the said latter zone adapted to repel said formed fibers and by a reversal of their electric chargegand continuously removing the said formed andre pelledi fibers from the field of high potential.

8. The method of producing artificial fibers from nber forming liquid of the character of acetyl cellulose which comprises passing a stream of said liquid, from a, source positioned at one trodes and withdrawn from the high potential field, are positioned as a support for later formed fibers, thereby functioning as an auxiliary electrode to continuously withdraw newly formed repelled fibers from the electric high potential field.


Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3218681 *Mar 21, 1962Nov 23, 1965Du PontMagnetic levitation support of running lengths
US3655305 *Jan 26, 1970Apr 11, 1972Du PontElectrostatic repelling cylinders for filament flyback control
US6604925Jun 7, 1999Aug 12, 2003Nicast Ltd.Device for forming a filtering material
US7134857 *Apr 8, 2004Nov 14, 2006Research Triangle InstituteElectrospinning of fibers using a rotatable spray head
US7297305Apr 8, 2004Nov 20, 2007Research Triangle InstituteElectrospinning in a controlled gaseous environment
US7592277May 17, 2005Sep 22, 2009Research Triangle InstituteNanofiber mats and production methods thereof
US7762801Apr 8, 2004Jul 27, 2010Research Triangle InstituteElectrospray/electrospinning apparatus and method
US8052407Nov 6, 2007Nov 8, 2011Research Triangle InstituteElectrospinning in a controlled gaseous environment
US8088324Jun 29, 2010Jan 3, 2012Research Triangle InstituteElectrospray/electrospinning apparatus and method
US8142501Apr 21, 2009Mar 27, 2012The Board Of Regents Of The University Of Texas SystemArtificial ligaments and tendons comprising multifilaments and nanofibers and methods for making
US8518319Mar 19, 2010Aug 27, 2013Nanostatics CorporationProcess of making fibers by electric-field-driven spinning using low-conductivity fluid formulations
US8522520Oct 23, 2007Sep 3, 2013Stellenbosch UniversityYarn and a process for manufacture thereof
US8632721Sep 23, 2011Jan 21, 2014Research Triangle InstituteElectrospinning in a controlled gaseous environment
US8683798Jan 13, 2011Apr 1, 2014Syracuse UniversityStimuli-responsive product
US8968626 *Jan 31, 2012Mar 3, 2015Arsenal Medical, Inc.Electrospinning process for manufacture of multi-layered structures
US8980159Mar 27, 2012Mar 17, 2015Board Of Regents, The University Of Texas SystemMethods for making artificial ligaments and tendons
US9359694Aug 13, 2015Jun 7, 2016University of Central OklahomaMethod and apparatus for controlled alignment and deposition of branched electrospun fiber
US9428847May 28, 2011Aug 30, 2016Nanostatics CorporationApparatus, methods, and fluid compositions for electrostatically-driven solvent ejection or particle formation
US9533469Dec 22, 2009Jan 3, 2017Syracuse UniversitySelf-healing product
US9623352Jul 29, 2011Apr 18, 2017Emd Millipore CorporationMethod for retrovirus removal
US9750829Mar 19, 2010Sep 5, 2017Emd Millipore CorporationRemoval of microorganisms from fluid samples using nanofiber filtration media
US9809906Mar 23, 2017Nov 7, 2017University of Central OklahomaMethod and apparatus to coat a metal implant with electrospun nanofiber matrix
US20030213218 *Jun 18, 2003Nov 20, 2003Alexander DubsonFiltering material and device and method of its manufacture
US20050224998 *Apr 8, 2004Oct 13, 2005Research Triangle InsituteElectrospray/electrospinning apparatus and method
US20050224999 *Apr 8, 2004Oct 13, 2005Research Triangle InstituteElectrospinning in a controlled gaseous environment
US20060228435 *Apr 8, 2004Oct 12, 2006Research Triangle InsituteElectrospinning of fibers using a rotatable spray head
US20060264140 *May 17, 2005Nov 23, 2006Research Triangle InstituteNanofiber Mats and production methods thereof
US20070148365 *Dec 28, 2005Jun 28, 2007Knox David EProcess and apparatus for coating paper
US20080063741 *Nov 6, 2007Mar 13, 2008Research Triangle InsituteElectrospinning in a controlled gaseous environment
US20090224437 *Sep 27, 2006Sep 10, 2009Mitsuhiro FukuokaElectrostatic spray apparatus and method of electrostatic spray
US20090306775 *Apr 21, 2009Dec 10, 2009Javier Macossay-TorresArtificial ligaments and tendons comprising multifilaments and nanofibers and methods for making
US20100028674 *Jul 31, 2008Feb 4, 2010Fredrick O OchandaNanofibers And Methods For Making The Same
US20100239861 *Mar 19, 2010Sep 23, 2010Scott Ashley SFluid formulations for electric-field-driven spinning of fibers
US20110003159 *Dec 22, 2009Jan 6, 2011Patrick MatherSelf-healing product
US20110031638 *Jun 29, 2010Feb 10, 2011Research Triangle InstituteElectrospray/electrospinning apparatus and method
US20110173971 *Jan 13, 2011Jul 21, 2011Syracuse UniversityStimuli-responsive product
US20120193836 *Jan 31, 2012Aug 2, 2012Arsenal Medical, Inc.Electrospinning Process for Manufacture of Multi-Layered Structures
EP2505149A1Mar 30, 2012Oct 3, 2012Codman & Shurtleff, Inc.Modifiable occlusion device
EP2777543A1Mar 11, 2014Sep 17, 2014DePuy Synthes Products, LLCMethod of fabricating modifiable occlusion device
EP2777544A2Mar 12, 2014Sep 17, 2014DePuy Synthes Products, LLCImproved modifiable occlusion device
WO1998025709A1 *Dec 9, 1997Jun 18, 1998Nicast Ltd.Device for manufacture of composite filtering material and method of its manufacture
WO2000074877A1 *Jun 6, 2000Dec 14, 2000Nicast Ltd.Filtering material and device and method of its manufacture
WO2005100654A3 *Apr 1, 2005Jun 8, 2006Res Triangle InstElectrospinning of fibers using a rotatable spray head
U.S. Classification264/10, 425/6, 425/174.4
International ClassificationD01D5/04
Cooperative ClassificationD01D5/0092
European ClassificationD01D5/00E4E