Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2412496 A
Publication typeGrant
Publication dateDec 10, 1946
Filing dateJun 30, 1945
Priority dateJun 30, 1945
Publication numberUS 2412496 A, US 2412496A, US-A-2412496, US2412496 A, US2412496A
InventorsDimmick Glenn L
Original AssigneeRca Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Color selective reflector
US 2412496 A
Abstract  available in
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

uuu. u. l v v Dec. l0, 1946. G, L, D|MM|K 2,412,496

-r/ COLOR SELEGTIVE REFLECTOR f 6 Filed June 50, 1945 2 Sheets-Sheet l gyn fa- XH /M aw wai/Y IN VEN TOR. w25/sw .D//v/v/CA www.

T'OPNIY J A. M

QUINDI! UU Dec. 10, 1946. G, D|MM1CK 2,412,496

` COLOR SELECTIVE REFLECTOR Filed June 30, 1945 2 Sheets-Sheet 2 ATTORNEY Patented Dec. 10, 1946 COLOR SELECTIVE REFLECTOR Glenn L. Dmmick, Indianapolis, Ind., assignor to Radio Corporation of America, a corporation of Delaware Application June 30, 1945, Serial No. 602,461

8 Claims.

1 This invention relates to color selective reectors of the type which bear transparent, substantially non-absorbent interference lms.

It has been previously proposed to provide color-selective reflectors which include multilayer interference films, alternate layers being of material of high and low index of refraction, respectively. In reflectors of this type, each layer has a thickness of one-quarter of the wavelength of light of a predetermined color; the low index layers tend to reduce reflection from the surface bearing the lm, while the high index layers increase reflection. The reflector as a whole is thus given selective characteristics, that is to say, it transmits a. substantial proportion of light of one color, while reflecting a. substantial proportion of light of another color.

Reectors of the character described are, however, extremely sensitive to the angle which the incident beam makes with the interference lm. Thus, as may be seen by reference to Figure 2B of the annexed drawings, a reector of this type will transmit 89 percent of light of 5000 Angstrom units when the incident beam is normal to the lm but only 27 percent of light of that color when the incident beam is at an angle-of 45 of the lm.

Another disadvantage of reectors of the type indicated is that they have a peaked characteristic, as may again be seen by reference to Figure 2B. In many applications of selective reflectors (for example in the monitoring device described in my Patent No. 2,314,392) it is desirable that the reflector shall have a high transmission value over a band extending from 4000 Angstroms to 5000 Angstroms, but it is practically impossible to obtain such a wide band characteristic with lms all the layers of which are a quarter of a wave thick.

It is an o bject of the invention to provide an improved multi-layer color selective reector and particularly a reflector which is less subject to variation in color with angle and which may be given a wider band-pass characteristic than similar reflectors of the prior art.

A particular object is the provision of an improved blue-transmitting yellow-reflecting selective reector.

These objects are achieved by the use of an interference nlm consisting of alternate half-Wave high index and quarter-wave low index layers. In my copending application (RCV-8883) for a Dichroic reflector, Serial No. 436,998, filed March 31, 1942, and assigned to the same assignee as the instant application, there is described an interference film comprising a pair of half-wave high-index layers separated by a quarter-wave low-index layer. The advantages of this construction are not limited to a three layer lm nor are they limited to the particular materials employed.

The invention may be better understood from a consideration of the following description of two embodiments thereof when read in conjunction with the annexed drawings in which:

Figure 1A is a greatly enlarged sectional View' of a selective reflector bearing a six-layer lm, according to the invention,

Figure 1B is a graph showing the transmission characteristics of the reflector of Fig. 1A,

Figure 1C is a chart showing the manner of construction of the'device of Fig. 1A,

Figure 2A is a greatly enlarged sectional view of a selective reflector according to the prior art, of the same materials and in all other respects similar to the reflector of Fig. 1A except that the high index layers are each a quarter-wave instead of half-wave thick,

Figure 2B is a graph showing the transmission characteristics of the reflector of Fig. 2A,

Figure 2C is a chart showing the manner of construction of the device of Fig. 2A,

Figure 3A is a greatly enlarged sectional view of a selective reflector bearing a seven-layer lm according to the invention,

Figure 3B is a graph showing the transmission characteristics of the reflector of Fig. 3A, and

Figure 3C is a chart showlng'the manner of construction of the device of Fig. 3A.

The reflector shown in Fig. 1A is one designed to reflect a substantial proportion of light from the yellow portion of the visible spectrum and to transmit a substantial proportion of light from the blue portion of the spectrum. It includes a support I0 which may be of glass or other transparent 'material and which may be assumed for purposes of illustration to have an index of refraction of the order of 1.5.

A surface II of the support bears a transparent interference film composed of six successively superimposed layers designated, respectively, by the reference numerals I2, I3, I4, I5, I6 and I7. The first, third and fth of these layers each have an effective optical thickness of one quarter of the Wave length of light to be transmitted by the device. These three layers may be of cryolite which has an index of approximately 1.3 and are sometimes referred to in this specification and in` the accompanying claims as low index layers.

wavelength of light to be transmitted by the device, and may be of zinc sulfide which has an index of refraction of about 2.1. The three layers last mentioned are referred to in this application as high index layers.

Cryolite and zinc sulfide are mentioned as examples of suitable materials, it being necessary only that the half Wavelength layers shall have a greater index of refraction than the quarter wavelength layers.

The various layers of the interference iilm may be applied, and their thickness controlled in the manner described in myPatentNo.2,338,234- From the data of Fig. 1C it will be seen that in the production of the embodiment of Fig. 1A, a control beam at an angle of 45 degrees to the surface Il and a filter having maximum transmission at 4350 Angstroms were employed. The angle of 45 degrees is not critical.

Cryolite is evaporated onto the surface under treatment, and the reflection therefrom becomes progressively less until it is about percent of that from the original untreated glass surface. At this point, the reection is a minimum and the layer is a quarter-wave thick. Zinc sulfide is then evaporated on top of the cryolite layer. The reection increases steadily and reaches a maximum of approximately 750 percent of the original reection. At this point the zinc sulfide is a quarter-wave thick, and this is the point at which evaporation of the layer is ordinarily terminated in the prior art. In the present invention, however, the zinc sulfide is further applied, and reiiection now falls to a minimum of about 52 percent, at which the layer is a half-wave thick.

Successive layers of cryolite and zinc sulde are applied in accordance with the directions in the chart (Fig. 1C), each low index being applied to a thickness of a quarter-Wave length and each high index layer to a thickness of a half-wave length.

Transmission curves for the device of Fig. 1A are given in Fig. 1B. These curves were taken with a spectrophotometer from a device built as shown in Fig. 1C. The solid line of Fig. 1B shows the transmission when the incident beam is normal to the lm, and the broken line gives the transmission when the lm is at an angle of 45 degrees to the light path. It will be observed that movement of the incident beam with respect to the film through an angle of 45 degrees shifts the transmission beam fairly constantly by about 140 Angstrom units towards the blue end of the spectrum.

It will also be seen that transmission is maintained substantially constant at the blue end of the spectrum between 4000 and 5000 Angstrom units. The desirability of this characteristic in many applications has already been referred to.

Fig. 2A is a sectionahview of a selective reflector of the prior art, and Fig. 2B gives transmission curves of that reector for comparison with those of Fig. 1B. The device of Fig. 2A is of the same materials and in all other respects similar to that of Fig. 1A except that the high index layers are a quarter-wave instead of halfwave thick, and the device was therefore designed to have maximum reflection at 6000 Angstroms instead of minimum reflection at 4350 Angstroms. Both devices are yellow by reiiection and blue by transmission, but variation of the angle of the incident light shifts the transmission curve of the device of Fig. 2A by as much as 600 Angstrom units. Moreover, this shifting is not near- 1 y as constant as with the reector ofthe present invention. In other words, the reflector oi the invention is only about one-quarter as responsive to Variations in angle as the reflector' of the prior art. It will also be seen that there are wide variations in the transmission of the prior art reflector at the blue end of the spectrum in the region from 4000 to 5000 Angstrom units.

The multi-layer lm of the invention is not limited to the precise six-layer lm shown in Fig. 1A, nor to the materials employed in thatl embodiment, nor to cases where the low index layer is next to the glass. Fig. 3A is a sectional view of a seven-layer lm according to the invention composed of alternate half-wave layers of zinc sulfide and quarter-wave layers of material which is believed to be thorium oxi-uoride, with the high index layer in this case next to the glass. The material of which the quarter-wave low index layers are composed is that described in my copending application for Reduction in reection from glass, Serial No. 470,583, filed December 30, 1942, and assigned to the same assignee as the instant application. This material is believed to be thorium oxi-fluoride with the formula ThOFz, and has an index of refraction (when deposited by evaporation in a high vacuum) of approximately 1.5. The difference between the indices of refraction of thorium oxiiiuoride and of zinc sulde is therefore not quite as great as that between cryolite and zinc sulde; to produce the same variation in transmission (from red to blue) as in the case of the device of Fig. 1A, seven layers are needed instead of the six of the embodiment rst described.

Figs. 3B and 3C give respectively transmission curves and instructions for the production of the device of Fig. 3A. It is apparent from an inspection of the two curves of Fig. 3B that the characteristics before referred to are almost as good in the case of the embodiment of Fig. 3A as in that of Fig. 1A.

There has thus been described a color-selective reflector comprising a transparent support and a multi-layer lm on a surface of the support, the film being composed of alternate half-wave layers of higher index than the support, and quarter-wave layers of lower index than the halfwave layers. The construction is of particular advantage for reflectors required to transmit blue and reflect yellow light, where variation of color with angle, and efciency of transmission at the blue end of the .visible spectrum are factors to be taken into account.

I claim as my invention:

1. A color selective reiiector having low response to changes in the angle of incident light, said reector comprising a transparent support and a transparent interference film consisting of at least four layers superimposed on a surface of said support, alternate layers of said lm being of a material of higher index of refraction than that of said support and each having an effective optical thickness of one-half the Wavelength of light to be transmitted, the remaining layers of said film Ibeing of a material having an index of refraction at Ileast as low as that of said support, each layer having an effective optical thickness of one-quarter of said wavelength, and the outermost layer of said reector being a one-half wavelength layer of said high index material.

2. A selective reflector accordingA to claim 1 wherein one of 'said low index layers is next adjacent said surface.

3. A selective reflector according to claim 1 UUIII UI l l UV' wherein'one of said high index layers is next adjacent said surface.

4. A selective reector according to claim 1 wherein said support is of glass having an index of refraction of the order of 1.5.

5. A selective reector according to claim 1 wherein said support is of glass having an index of refraction of the order of 1.5 and said low index layers are of cryolite and said high index layers are of zinc sulde.

6. A selective reflector according to claim 1 wherein said support is of glass having an index of refraction of the order of 1.5 and said low index layers are of thorium oxyuoride and said high index layers are of zinc sulde.

7. A selective reector according to clain 1 wherein said support is of glass having an index of refraction of the order of 1.5 and said lm consists of six layers whereof the rst, third and fth are of cryolite and the second, fourth and sixth are of Zinc sulde.

8. A selective reector according to claim 1 wherein said support is of glass having an index of refraction of the order of 1.5 and said lm consists of seven layers whereof the rst, third, fth, and seventh are of zinc sulfide and the second, fourth, and sixth are of thorium oxiuoride.

GLENN L. DIMMICK.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2478385 *Dec 7, 1946Aug 9, 1949Libbey Owens Ford Glass CoMultilayer low light reflecting film
US2519722 *Sep 20, 1946Aug 22, 1950Bausch & LombMetallic mirror and method of making same
US2589930 *Mar 17, 1948Mar 18, 1952Rca CorpColor television light divider
US2624238 *Oct 29, 1949Jan 6, 1953Rca CorpSelectively reflecting interference mirrors
US2660925 *Dec 1, 1949Dec 1, 1953Bausch & LombLight reflector which transmits infrared rays
US2672502 *Oct 19, 1950Mar 16, 1954Rca CorpColor-selective optical system
US2698595 *Mar 29, 1952Jan 4, 1955Libbey Owens Ford Glass CoSignaling mirror
US2700323 *Dec 14, 1949Jan 25, 1955Fish Schurman CorpInfrared transmitting mirror
US2740317 *Aug 13, 1951Apr 3, 1956Technicolor Motion PictureColor selective optical interference coatings
US2761797 *Mar 5, 1951Sep 4, 1956American Optical CorpMethod of producing conductive coating on a surface and the coated article
US2770558 *Dec 13, 1952Nov 13, 1956Libbey Owens Ford Glass CoMethod of producing mirrors
US2852980 *Nov 30, 1954Sep 23, 1958Schroder HubertInfra-red transmitting mirror
US2865245 *Dec 8, 1953Dec 23, 1958Technicolor CorpLight dividing system
US2869010 *Apr 28, 1955Jan 13, 1959Rca CorpInterference type optical filters utilizing calcium fluoride
US2871371 *May 6, 1954Jan 27, 1959Rca CorpWide-band interference light filter
US2873397 *Mar 24, 1955Feb 10, 1959Rca CorpColor filters
US2945413 *Aug 10, 1954Jul 19, 1960Technicolor CorpOptical beam linking systems
US2997389 *Apr 12, 1957Aug 22, 1961Eastman Kodak CoExposure control in color printing
US3225243 *Oct 29, 1962Dec 21, 1965Dauser William CColor lamp with spectral filter around filament
US3279317 *Jun 25, 1962Oct 18, 1966Zeiss Ikon AgOptical filter device with two series of interference layers for transmitting visible light and reflecting heat radiation
US3331941 *Dec 26, 1963Jul 18, 1967Monsanto CoInfrared heater
US3405262 *Oct 3, 1966Oct 8, 1968Textron Electronics IncFilter darkroom light
US3523179 *Mar 27, 1969Aug 4, 1970Monsanto CoSelective transmitter for infrared heaters
US3758185 *Apr 1, 1971Sep 11, 1973Optical Coating Laboratory IncThermal control filter
US4769290 *Jan 6, 1987Sep 6, 1988Santa Barbara Research CenterHigh efficiency reflectors and methods for making them
US4838628 *Jul 3, 1986Jun 13, 1989Leybold Heraeus GmbhProcess and apparatus for production of an optical element
US4854670 *Mar 29, 1988Aug 8, 1989Gte Products CorporationWide angle optical filters
US5371543 *Aug 17, 1993Dec 6, 1994Texas Instruments IncorporatedMonolithic color wheel
US6391400Apr 8, 1998May 21, 2002Thomas A. RussellThermal control films suitable for use in glazing
DE3538996A1 *Nov 2, 1985May 14, 1987Philips PatentverwaltungInterference filter
Classifications
U.S. Classification359/588, 359/589
International ClassificationG02B5/28
Cooperative ClassificationG02B5/288
European ClassificationG02B5/28F3