Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2414833 A
Publication typeGrant
Publication dateJan 28, 1947
Filing dateMay 9, 1944
Priority dateMay 9, 1944
Publication numberUS 2414833 A, US 2414833A, US-A-2414833, US2414833 A, US2414833A
InventorsOsborne Fay H
Original AssigneeC H Dexter & Sons Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Thermoplastic paper and process of preparing the same
US 2414833 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Juli. 28, 1947. OSBORNE 2,414,833

THERMOPLASTIC PAPER AND PROCESS OF PREPARING THE SAIIB Filed Kay 9, 1944 FAY H. OSBORNE Patented Jan. 2a, 1947 THERMOPLASTIC PAPER AND PROCESS OF PREPARING THE SAME Fay H. Osborne, Windsor Locks, Coma, assignor to C. H. Dexter & Sons, Inc., Windsor Loc Conn., a corporation of Connecticut Application May 9, 1944, Serial No. 534,7 81

4 Claims. 1

The present invention relates to the art of Paper making and is more particularly concerned with the production of a thermoplastic specialty paper finding general utility in the packaging and other arts. In its more specific aspects it concerns a process for preparing a novel filtering paper having thermoplastic, heat-sealing characteristics rendering it particularly useful in the manufacture of tea bags.

In my prior United States Patents Nos. 2,045,095 and 2,045,096 I have disclosed a process and apparatus for the preparation of a light-weight, long fibered, non-hydrated paper which is of uniform texture and thickness throughout and which is extremely porous. This paper, because of the foregoing characteristics and further because of its non-toxicity and freedom from taste and odor, has attained widespread use in the industry as a filtering medium in the preparation of tea bags.

In the manufacture of this porous paper, long, non-hydrated fibers are suspended in an extreme- 1y large proportion of water, and the dilute suspension thus formed is fed onto a transverse moving screen, the water falling freely and rapidly therethrough, leaving the fibers deposited on the screen. The dilute suspension preferably contains about one pound of fiber to twenty-five tons of water; that is, it has a consistency expressed as .002%. Higher consistencies such as .012% may be used, but in any case it will be recognized by those skilled in the art that even in this case the suspension is properly characterized as dilute to distinguish it from ordinary paper making suspensions whose consistency is of an entirely different order, being between .2% and .5%. This highly diluted, non-hydrated stock is supplied to a traveling, upwardly inclined portion of a wire screen. The water flows freely and very rapidly with an avoidance of eddy currents through the screen and through the web of fibers deposited on the screen. The fibers are also deposited evenly on the screen in a web without any rolling or rippling efiects whereby a paper web of any desired length and of uniform and homogeneous texture throughout and free of clots may be had. These results, as clearly pointed out in my prior Patent No. 2,045,095, are not possible with Fourdrinier machines as heretofore made.

The paper produced in accordance with the foregoing procedure has, as has been previously pointed out, found utility as a filtering paper in the manufacture of tea bags. It is made up of extremely long fibers, from 3 to 9 mm. in length, loosely formed into a very low density paper having many interstices or openings between the fibers. These openings permit the rapid passage of liquids therethrough but are so small that they retain very small solid particles. When used for tea bags in the brewing of tea, for instance, the paper permits hot water to enter the ba and extract the tea flavor therefrom, without permitting even the smallest particle of tea to pass from the interior of the bag to the surrounding hot water. This infusion is very rapid and complete within a. very few minutes.

In spite of the advantages enjoyed by this specialty filtering paper in the manufacture of tea bags, the industry for the most part has been forced, prior to the advent of the present invention, to make up these bags by stitching, tying or stapling the paper around the tea. The disadvantages of these operations are obvious. They are cumbersome, necessitate expensive packing apparatus, and incur the additional expense and cost of the thread, staples, etc.

One of the most important objects of the present invention is to provide for the production of a filtering paper of the general type described in my prior patents, while at the same time obviating the necessity of stitching, tying and stapling in subsequent tea bag manufacture. This is accomplished in accordance with the invention by rendering paper of this character thermoplastic in nature so that when the edge of one sheet is superposed upon the edge of another sheet, and

both edges submitted to heat and pressure, they,

are effectively sealed one to the other. Such a good bond results that the edges will not separate when immersed in boiling water for a considerable period of time.

Another object isto produce papers of the foregoing character in which the porosity is equal to and in some cases greater than that possessed by the paper described in my U. S. Patent No. 2,045,- 096 but still possessing the advantages of being thermoplastic and heat-sealing.

In the accompanying drawing there is shown, more or less diagrammatically, and for illustrative purposes only, an improved machine on which the step of forming the thermoplastic web may into a save-all I and returned to the system through pipe 8. In Fig. 1 these fibers, which are non-thermoplastic and which form the so-called "base of the novel paper are represented by fine lines 9. The sheet of paper is not completely formed until it reaches the point which is the point of contact, of the level of the fiber suspension in the head box with the moving wire screen. From the point III the paper passes on to be couched and dried in the usual paper making procedure.

So far the description of the paper making process has followed quite closely the process set forth in my prior Patent No. 2,045,095. Now, in accordance with the present invention, there is introduced at a point II, just under the level of the fiber suspension in the head box, another very dilute water suspension of low melting point, thermoplastic, synthetic fibers, such as so-called Vinyon fibers, which are made up of a copolymer of vinyl acetate and vinyl chloride. The synthetic fibers in this suspension are indicated by the reference number II, the suspension being fed into the head box at a point, II by means of an inclined trough It provided with baliles (not shown), if necessary. The outlet of trough 13 extends completely across the head box. The consistency of the thermoplastic fiber suspension is approximately the same as the consistency of the non-thermoplastic fiber suspension.

The point of introduction of the dilute suspension of the thermoplastic synthetic fiber into the head box is a very critical feature of the present invention. It will be noted that the point of introduction I I is so situated that due to speed of flow of both suspensions, the commingled fibers fiow away from and are first deposited on the screen at'a point considerably removed from the point H where the non-thermoplastic fibers first come in contact with the paper making wire screen I. In other words, the thermoplastic fibers, being fed into the head box at the point I l, intermingle with the non-thermoplastic fibers 9 therein and the mixture of both fibers begins to be deposited on the mat of non-thermoplastic fibers on the screen at about the point l5. Be-

tween the points It and IE it will be understood that the non-thermoplastic fibers Shave had a chance to be somewhat matted but they still have a very low consistency. As a matter of fact, the mat being formed between the points I4 and I5, still contains about 99% water. On the other hand. this mat leaving point I! is of sufiicient consistency to allow the fiber mix formed by the confluence of non-thermoplastic and thermoplastic fibers to fiow uniformly onto the upper surface of said mat, between points [5 and I0, and also through the surface to an extent sufiicent to bond them to the non-thermoplastic mat. It is very necessary that not only shall the web of non-thermoplastic fiber be of very low consistency to afford bonding between the two types of fibers but that the thermoplastic fibers be prevented from so completely permeating the nonthermoplastic fiber web that the thermoplastic fibers be allowed to reach the under side of the sheet as it is being formed. There must be some intermingling of the two types of fiber however, because if the thermoplastic fibers as such were on the upper surface of the sheet, i. e., if the latter were deposited for the first time at the point Ill just as the sheet leaves the suspension level, they would fall away from the sheet upon d ying.

At, the point III, which is the point on'the suspension level in the head box as it contacts the upwardly inclined, continuously moving wire screen, the sheet of paper is completely formed. Here, the top of the sheet has some non-thermoplastic fibers and some thermoplastic fibers, with the latter greatly predominating. Also, at this point, the bottom of the sheet is made up entirely of non-thermoplastic fibers.

In the dried and finished sheet the fibers are arrangedin a manner illustrated in Fig. 2 of the drawing. In this figure the thermoplastic fibers are represented as thick fibers by the reference numeral I8 whereas the non-thermoplastic fibers are represented as thin fibers by the reference numeral II. It will be understood that this is for-illustrative purposes only and that actually the two types of fibers may be of the same or different thickness. It will be observed that the top of the sheet contains fibers which are predominantly thermoplastic although some nonthermoplastic fibers may be present. The bottom of the sheet is, and must be, composed entirely of non-thermoplastic fibers for reasons which will -be pointed out more fully hereinafter. As seen in Fig. 2, further, the center of the sheet will be made up of a mixture of the two fibers. The intensity of the thermoplastic fiber is the greatest at the top of the sheet, becoming gradually less and less from top to bottom, and becoming completely exhausted before the bottom is reached. In this way the thermoplastic fibers are very well bound into the sheet but are not permitted in any way to be present in the under surface thereof.

If it is desirable to lock the thermoplastic fibers into the sheet of paper somewhat stronger than can be accomplished by the use of thermoplastic fibers alone then there can be mixed with the thermoplastic fiber suspension some extremely highly beaten hard fiber such as caroa; manila hemp. or the like, which will take a hard beating action and hydrate to a point where it shows no freeness on the Schopper Freeness test. This very highly beaten fiber which I call flock, and which is described in my pending application Serial No. 470.637, is a very strong binding agent and employed in strengths as low as 2% will bond synthetic fibers so they will have as high bursting, tear, and tensile strength as natural fibers.

Since packaging machines using the heat-sealing principle usually have heated jaws operated under pressure, it is important that the thermoplastic material be kept out of contact with the hot jaws, otherwise the material would stick to the jaws and pull the seal apart and also gum up the jaws. This invention overcomes this difilculty by producing a thermoplastic sheet one surface of which is entirely non-thermoplastic, thus permitting the surface used next to the jaws to be free from thermoplastic material when the thermoplastic surfaces are placed face to face prior to heat sealing.

In making thermoplastic filtering paper for tea bag use it has been found that a very strong pound per ream of 480 sheets 24 x 36 inches fin-- ished thermoplastic tea bag paper, approximately 6.8 pounds per ream of non-thermoplastic fiber and approximately 1.7 pounds per ream of thermoplastic fiber should be used. When employing Vinyon fibers in these proportions the resulting paper will give a very strong seal at 280 to 300 F. For many uses, as low as 1.3 pounds per ream of Vinyon fiber will be suflicient to make a strong seal.

Although throughout the foregoing description Vinyon has been indicated as the desired synthetic thermoplastic fiber, because of its nontoxicity and low fusing temperature of 260 to 300 F., it is to be understood that other thermoplastic fibers may be used. Cellulose acetate fibers, for instance, may be employed but because of its relatively high fusing temperature (about 500 F.) it is desirable. when using this fiber, to lower the fusing temperature to about 400-450 F. by employing a plasticized fiber. Any suitable plasticizer, such as dimethyl phthalate, will serve the purpose of lowering the fusing point.

The Vinyon fibers employed in the present invention may be spun to different deniers and cut to different lengths. Deniers of from 1.2 to 15.0 and lengths of from inch to inch have been employed. Preferably the fiber should be from 3 to 15 denier since a fiber under 3 denier disperses rather difiicultly and fiber distribution is not particularly even. Also, a Vinyon fiber length of inch to inch is preferred, since fibers longer than A; inch are difiicult to disperse and fibers shorter than 1 inch do not lock into the sheet as well as longer fibers.

In some cases it has been found that Vinyon fiber has an afiinity for air, and,in the presence of air bubbles, the fibers'will collect the bubbles to such an extent that there may be a tendency for the fibers to rise to the top of the suspension. This is undesirable because, as pointed out, Vinyon fibers entirely on the surface of the sheet have little or no anchorage to the base with the result that they tend to drop off the sheet in subsequent operations.

If this trouble is encountered it may be obviated or avoided in two ways:

1) A wetting agent may be added directly to the suspension of Vinyon fibers and water. Any number of wetting agents may be used but they must either be non-toxic initially or capable of being neutralized or washed out later to produce a finished paper which is non-toxic, odorless and tasteless. Some of the common wetting agents, such as Tergitol (sodium sulphate derivative of 3,9-diethy1tridecanol-6) have been used successfully.

(2) The Vinyon fibers may be soaked in a mild sodium hydroxide solution for several hours before using. The concentration of sodium hydroxide to water should be approximately 1% per cent. After the Vinyon fibers are se into the sheet the alkali may be washed out or neu tralized in subsequent operations.

The non-thermoplastic fibers may be any of the well-known paper-making fibers but it is very important that they be extremely long, unbeaten and non-hydrated, such as the fibers described in my U. S. Patent No. 2,045,096. They may be either natural fibers such as manila hemp, caroa,

6 jute or Indian hemp, or they may be synthetic fibers, such as viscose fibers.

As many changes could be made in the above process and many apparently widely different embodiments of this invention could be made without departing from the scope thereof, it is intended that all matter contained in the above description or shown in the accompanying drawmg shall be interpreted as illustrative and not in a limiting sense.

It is also to be understood that the language used in the following claims is intended to cover all of the generic and specific features of the invention herein described and all statements of the scope of the invention which, as a matter of language, might be said to fall therebetween.

What is claimed is:

1. A thermoplastic, highly porous, long-fibered,

extremely thin and light-weight specialty waterfiltering medium in the laid paper useful as a manufacture of tea bags, which comprises a sheet composed of a mixture of thermoplastic and long, unbeaten, and non-hydrated non-thermoplastic fibers, the top of the sheet having thermoplastic fibers predominant, the latter being thoroughly anchored to and extending down into the nonthermoplastic fibers but not to the bottom of the sheet, the bottom being composed entirely of,

non-thermoplastic felted fibers.

2. A thermoplastic, highly porous, long-fibered, extremley thin and light-weight specialty waterlaid paper useful as a filtering medium in the manufacture of tea bags, which comprises a sheet composed of a mixture of fibers of a copolymer of vinyl acetate and vinyl chloride and long, unbeaten, and non-hydrated neutral cellulosic fibers, the top of the sheet having fibers of a copolymer of vinyl acetate and vinyl chloride fibers predominant, the latter being thoroughly anchored to and extending down into the cellulosic fibers but not to the bottom of the sheet, the bottom being composed entirely of cellulosic felted fibers.

3. A process-for the prepartion of thermoplastic, highly porous, long-fibered, extremely thin and light-weight specialty paper, useful as a filtering medium in the manufacture of tea bags,

- which comprises continuously advancing an exconsistency suspension of said fibers,

tremely dilute water suspension of long nonthermoplastic fibers towards a continuously trav eling, inclined wire screen to create, in advance of the screen, a phase of an extremely thin and low the speed of the suspension feed and the speed of the screen travel being such that said suspension is in a state of formation and is non-set, continuously and forcibly feeding directly into said phase of suspended long fibers over the screen and at a point immediately following the point where said phase starts depositing its fibers on the screen, an extremely dilute suspension of thermoplastic fibers to form a second phase of a dilute suspension of a mixture of both fibers having a predominance of the thermoplastic fibers in the upper part of this second phase and gradually diminishing to zero at the bottom of this phase, allowing said dilute suspension of the mixed fibers in this second phase to drain continuously on the screen to form a third phase comprising a web having a predominance of the thermoplmic fibers on the upper surface and locked into and extending down through the non-thermoplastic fibers, gradually diminishing to zero at the bottom surface of the web, and then drying said web to form a thermoplastic paper having the foregoing characteristics.

4. A process for the preparation of thermoplastic, highly porous, long-fibered, extremely thin and light-weight specialty paper, useful a a 111- tering medium in the manufacture of tea base. which comprises continuously advancing an extremely dilute water suspension of long, natural, cellulosic fibers towards a continuously traveling, inclined wire screen to create, in advance of the screen a phase of an extremely thin and low consistency suspension of said fibers, the speed of the suspension feed and the speed of the screen travel being such that said suspension is in a state of formation and is non-set. continuously and forcibly feeding directly into said phase of suspended long fibers over the screen and at a point immediately following the point where said polymer of vinyl acetate and vinyl chloride to form a second phase of a dilute suspension of a mixture of both fibers having a predominanc of the fibers of a copolymer of vinyl acetate and vinyl chloride in the upper part of this second phase and, gradually diminishing to zero at the bottom at this phase, allowing said dilute suspension of the mixed fibers in this second phase to drain continuously on the screen to form a third phase comprising a web having a predominance of the Vinyon fibers on the upper surface and locked into and extending down through the cellulosic fibers, gradually diminishing to zero at the bottom surface of the web, and then drying said web to form a thermoplastic paper having the foregoing characteristics.

FAY H. osnomm.

Non-Patent Citations
Reference
1 *None
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2475241 *Feb 1, 1945Jul 5, 1949Hermanson William AHeat sealed bag
US2554639 *Nov 1, 1948May 29, 1951Crown Cork & Seal CoClosures
US2558634 *Feb 9, 1949Jun 26, 1951Du PontPaper impregnating or saturating composition
US2626214 *Jun 14, 1949Jan 20, 1953C H Dexter & Sons IncPaper from long synthetic fibers and partially water soluble sodium carboxymethylcellulose and method
US2647297 *Jul 10, 1948Aug 4, 1953American Viscose CorpCockled fibrous product of the nonwoven fabric type and method of making it
US2647816 *Jul 10, 1948Aug 4, 1953American Viscose CorpMethod of making a wound package and after-treating the same
US2676099 *Sep 25, 1948Apr 20, 1954Farnam Co F DProcess of coating fibers with gas agitation
US2698972 *Aug 19, 1952Jan 11, 1955Keeler Lawrence MMethod of assembling textile fibers hydraulically
US2721139 *Aug 27, 1952Oct 18, 1955Hurlbut Paper CompanyPaper manufacture
US2734095 *Sep 20, 1952Feb 7, 1956 Plate separator for storage batteries
US2772603 *Sep 12, 1950Dec 4, 1956Owens Corning Fiberglass CorpFibrous structures and methods for manufacturing same
US2789935 *Oct 7, 1954Apr 23, 1957Ohio Commw Eng CoMethod of producing paper made with nylon scrap and apparatus
US2810644 *Feb 9, 1950Oct 22, 1957American Viscose CorpPaper products and method of making the same
US2810645 *Feb 9, 1950Oct 22, 1957American Viscose CorpMethod of making textile webs
US2817596 *Mar 29, 1955Dec 24, 1957Olin MathiesonPerforated paper
US2852795 *May 3, 1955Sep 23, 1958Hermanson Gerald IPorous paper powder puff package
US2880112 *Jan 11, 1956Mar 31, 1959Chicopee Mfg CorpTextile-like fabric and method
US2880113 *Jan 11, 1956Mar 31, 1959Chicopee Mfg CorpDurable nonwoven fabric and method
US2887429 *May 27, 1957May 19, 1959Eastman Kodak CoMethod of preparing webs from cellulose esters
US2913365 *Dec 1, 1954Nov 17, 1959C H Dexter & Sons IncFibrous webs and method and apparatus for making same
US2928765 *Feb 11, 1957Mar 15, 1960C H Dexter & Sons IncAir filter paper and method of making same
US2981985 *Apr 28, 1958May 2, 1961Commw Scient Ind Res OrgApparatus for forming a substantially uniform layer of textile fibres
US2987122 *Oct 12, 1955Jun 6, 1961Diamond National CorpApparatus for producing multi-ply paperboard products
US2999786 *Aug 9, 1957Sep 12, 1961Thilmany Pulp & Paper CompanyMachine glazed paper
US3073735 *Apr 18, 1955Jan 15, 1963American Viscose CorpMethod for producing filters
US3123210 *Aug 10, 1961Mar 3, 1964 Package and seal
US3123518 *Dec 5, 1960Mar 3, 1964 Dryer
US3154495 *Aug 10, 1961Oct 27, 1964Olin MathiesonCalcium hypochlorite article and process
US3158532 *Dec 6, 1960Nov 24, 1964Pall CorpTapered pore filter elements
US3366533 *Mar 18, 1965Jan 30, 1968Stevens Paper Mills IncMethod of forming a unitary dielectric paper and paper thereof
US3386231 *Dec 23, 1966Jun 4, 1968American Air Filter CoPocket-type filter
US4289580 *Nov 13, 1979Sep 15, 1981The Dexter CorporationHeat seal fibrous web and method of its manufacture
US4392861 *Oct 14, 1980Jul 12, 1983Johnson & Johnson Baby Products CompanyTwo-ply fibrous facing material
US4425126Oct 14, 1980Jan 10, 1984Johnson & Johnson Baby Products CompanyFibrous material and method of making the same using thermoplastic synthetic wood pulp fibers
US5173154 *Sep 16, 1991Dec 22, 1992Unicon Papier Und Kanststoffhandel Sgesellschaft MbhHeat sealable tea bag paper and process of producing same
US5647951 *May 7, 1996Jul 15, 1997Bayer; JohnMulti-purpose weed suppressant and plant growth enhancement device
US6846382Feb 4, 1998Jan 25, 2005Ahlstrom Windsor Locks, LlcNonwoven web material for infusion packaging and method of making same
US7125470 *Nov 13, 2002Oct 24, 2006National Institute For Strategic Technology Acquisitions And CommercializationUnitary stratified composite
US7763295Aug 31, 2007Jul 27, 2010Carl Freudenberg KgBrewing bag and use thereof
US20080014328 *Jul 17, 2006Jan 17, 2008Richard Edward GillenwaterCoffee filled packet
US20080081090 *Aug 31, 2007Apr 3, 2008Carl Freudenberg KgBrewing bag and use thereof
US20090087514 *Dec 3, 2007Apr 2, 2009Timothy BreedenWaterless coffee pouch
DE2147321A1 *Sep 22, 1971Mar 30, 1972Dexter CorpTitle not available
DE102006041772A1 *Sep 4, 2006Mar 20, 2008Carl Freudenberg KgAufgussbeutel und Verwendung desselben
DE102006041772B4 *Sep 4, 2006Jul 1, 2010Carl Freudenberg KgAufgussbeutel und Verwendung desselben
EP0118221A2 *Feb 6, 1984Sep 12, 1984The Dexter CorporationNonwoven fibrous backing for vinyl wallcover
EP0118221A3 *Feb 6, 1984Oct 7, 1987The Dexter CorporationNonwoven fibrous backing for vinyl wallcover
EP1027499A1Oct 29, 1998Aug 16, 2000Dexter CorporationHeat seal infusion web material and method of manufacture
EP1027499B2Oct 29, 1998Dec 3, 2014Ahlstrom Nonwovens LLCHeat seal infusion web material and method of manufacture
EP1266997A1 *Feb 1, 2001Dec 18, 2002Mitsui Chemicals, Inc.Heat-seal paper having air permeability
EP1266997A4 *Feb 1, 2001May 7, 2003Mitsui Chemicals IncHeat-seal paper having air permeability
EP2077353A1Oct 29, 1998Jul 8, 2009Ahlstrom Windsor Locks LLCHeat seal infusion web material
WO1981001429A1 *Aug 6, 1980May 28, 1981Dexter CorpHeat seal fibrous web and method of its manufacture
WO2008040635A1 *Sep 18, 2007Apr 10, 2008Dresden Papier GmbhWallpaper substrate and method for the production thereof
Classifications
U.S. Classification162/129, 162/157.4, 162/315, 162/157.5, 162/188, 162/168.1, 426/84, 206/.5, 162/146
International ClassificationD21F11/00, D21F11/04
Cooperative ClassificationD21F11/04
European ClassificationD21F11/04