Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2426318 A
Publication typeGrant
Publication dateAug 26, 1947
Filing dateNov 15, 1945
Priority dateNov 15, 1945
Publication numberUS 2426318 A, US 2426318A, US-A-2426318, US2426318 A, US2426318A
InventorsPaul L Menaul
Original AssigneeStanolind Oil & Gas Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Inhibiting corrosion
US 2426318 A
Abstract  available in
Images(4)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Patented Aug. 26, 1947 llnd Oil and Gas Comp notation of Delaware any, Tulsa, Okla., a cor- No Drawing. Application November 15,1945, Serial No. 628,678

16 Claims. (Cl. 252--8.55)

This invention relates to a method of inhibiting the corrosive action of natural gas and oil containing soluble sulfides. More particularly, the invention relates to means for inhibiting the rapid corrosion of well tubing and/or pump rods which has heretofore occurred in producing wells where the well fiuid contains both brine and hydrogen sulfide.

Crude oil containing soluble sulfides is produced in the major producing areas of the United States, and corrosion of oil field equipment is especially severe in areas where brines are produced with sour crudes. These corrosive sulfide brines include alkali sulfides, alkaline earth metal sulfides, and/or acid sulfides such as hydrogen sulfide. Hydrogen sulfide is very soluble in water and brine, causing the brines to become very corrosive to iron and steel equipment due to the active formation of iron sulfide. Hydrogen sulfide corrosion will take place in both acidic sulfide brines and in alkaline sulfide brines with pH below 9. This range embraces virtually all natural brines, since most sulfide brines are acidic within the range of about pH 4.5 to pH 7, those of pH above 7 being uncommon.

In some areas, the production is so corrosive that, after the tubing has been in use for a relatively shorttime, it has been necessary to pull the tubing once a week to inspect for failure. In one case, it was necessary to replace eleven Joints in one string of tubing within eight months because of leaks; in another, a new string of pump rods began parting after thirty-six days of service. It will be apparent, therefore, that the cost of replacing equipment made useless by corrosion and the cost of labor involved are major factors in the future economic operation of many oil fields producing sour crude and brine.

One object of this invention, therefore, is to provide a means for inhibiting the attack of ferrous metals by sour crudes containing brine. Another object is that of providing a class of ma terials for preventing chemical attack of metals by well fluids which is' efiective in both its liquid and vapor phases. A further object of this invention is to provide an effective inhibitor for use in treating produced well fiuids before they enter the well tubing. Still another object is to provide a protective film on metal surfaces. The above and other objects of my invention will become apparent to those skilled in the art as the description thereof proceeds.

For many years generally ineffective efforts have been made by equipment manufacturers and corrosion experts to develop materials capable of withstanding hydrogen sulfide corrosion of the type to which this invention is directed. Various steel alloy tubings were tried under these corrosive conditions without apparent success, since the additional cost of the alloy did not give a corresponding additional length of service. Likewise, coatings of paint and synthetic rubber have failed to prevent metal corrosion when the equipment was put in field use. Zinc plates have been installed on Dump rods and in treaters as a form of cathodic protection, but this has also failed to prevent damage from sulfide corrosion. Chemical treatment of the well fiuids with sodium hydroxide, tannin, sodium silicate and the like in the attempted neutralization of the hydrogen sulfide has been tried in wells without inhibiting this type of corrosion.

In carrying out the present invention, an inhibiting substance, as, for example, an aldehyde, and preferably formaldehyde, is introduced into the producing well, for example between the casing and tubing. Various methods of introducing the inhibitor may be used, but in each case the inhibitor is supplied to the fluids being produced and is carried upwardly through the tubing.

There are many examples of threshold treatments in which organic agents react to produce traces of new compounds, only a relatively minor proportion of the original agents reacting. This appears to be the case with formaldehyde and hydrogen sulfide in brines since the major portion of the hydrogen sulfide content is unafiected. Without being limited to any theory of operation, it appears that by the slow reaction of formaldehyde with a component of the well fiuids, a new compound is produced whichin some manner inhibits corrosion. Thus the formaldehyde apparently reacts with a portion of the hydrogen sulfide in the presence of the brine to produce a, thin protective film of a reaction product on the exposed metal surfaces. A protective film is thereby maintained on the exposed surface of the well equipment, "and this film apparently acts to prevent the corrosion by the brine and hydrogen sulfide while the normally corrosive fiuids are produced.

The phenomenon was studied in the laboratory, and when formaldehyde was added to acidic hydrogen sulfide brines there appeared to be visible signs of chemical reaction. The clear brine became opalescent and a very small amount of insoluble precipitate formed, and the reaction drifted slightly toward neutral. The formaldehyde and hydrogen sulfide reacted, but only a small portion of the dissolved hydrogen sulfide,

since the brine still showed a high content of hydrogen sulfide following the treatment. Chemical reactions are known which involve the combination of formaldehyde with hydrogen sulfide to form mercaptan-like compounds, but when preformed mercaptans, carbon bisulfide. and the like were added to hydrogen sulfide brines they did not act as inhibitors of the hydrogen sulfide corrosion.

Panels of mild steel were immersed in sulfide brine of the North Cowden Field, Ector County, Texas, which showed a corrosion loss of 0.92 pound per square foot per year. Chemical ananlyses of several brine samples from this field showed it to average 40,000 to 60,000 P. P. M. total dissolved solids. A typical analysis showed .the followin Sodium parts per million-- 14,000 Calcium ....do.. 1,600 Magnesi do 500 Sulfat do 3,000 Chlor do 26,000 Bicarbon 110---. 1,000 Sulfide do 1,000 pH value 6 The various samples of brine from this field were found to be acidic, having a range of between about pH 4.5 and about 6.8.- The gas produced contains about 0.5% carbon dioxide and between about and about 8% hydrogen sulfide, which indicates that the brine is nearly saturated with hydrogen sulfide at bottom hole conditions.

Panels of mild steel were cleaned of mill scale and smoothed with the finest grade of emery cloth. These panels were dried and weighed and then suspended in the sulfide brine on glass hooks. After immersion for a known time, the panel was removed from the brine, washed quickly in a 1% hydrochloric acid solution, wiped free of corrosion products with a soft cloth, washed with distilled water, dipped in alcohol, dried rapidly and reweighed. The panels that had been immersed in the formaldehyde-treated brine retained a tarnished-like appearance after being cleaned with dilute hydrochloric acid solution. The weight loss was assumed to be due to hydrogen sulfide corrosion.

In the above laboratory tests, it was established that when formaldehyde was added to the brine in concentrations of 125 P. P. M. and 250 P. P. M., the corrosion loss was found to be 0.15 and 0.11 pound per square foot per year, respectively.

The invention has been used extensively in field tests, and for these tests oil wells where the subsurface equipment had shown severe corrosion conditions were chosen in three different oil fields. Although the laboratory tests indicated excellent inhibition of sulfide corrosion, the field results were even better. Technical grade formaldehyde, sometime referred to as formalin which consists of a 40% aqueous solution of formaldehyde, was injected down the casing at a rate of between about 1 and about 2 quarts per day with the wells being produced through the tubing. These trials were continued over extended periods, after which the pump rods and tubing of several wells in each field were pulled and inspected.

Various methods were tried for injecting formaldehyde lnto the annulus and it was found that a lubricator or drip system was the most satisfactory of any of the methods tried. Thus,

' ever, when the well is subject to being pumped for example, formaldehyde can be stored in a tank or drum of suitable capacity supported at a sufficient height to permit gravity drainage of the formaldehyde into a small measuring container, usually of Z-quart capacity. In the case of wells requiring relatively large amounts of formaldehyde the 55-gallon formaldehyde container may conveniently serve as the storage container, in which case piping connections are made to the bottom end of the drum. When a well produces a small volume of water. quite small treatments of formaldehyde are used, and it is sometimes desirable to dilute the formaldehyde with an equal volume or more of water to facilitate measuring and injecting the chemical. In making the treatment, the measuring container is filled with formaldehyde from the storage drum and then permitted to drain from the measuring container into the annulus between tubing and casing. The batch injection of formaldehyde daily does not adversely affect the efilciency of the treatment, particularly in wells where the fluid level is substantially above the pump suction, and generally offers advantages over continuous injection as regards cost and maintenance of injection equipment. Howoff, continuous introduction of chemical is preferred.

Prior to these field tests, well Number 1 has shown severe corrosion with perforations of the tubing and corrosion of the pump, rods, balls, and seats. New tubing and rods were run in this well just prior to the test, and injection of formaldehyde down the casing was begun and continued for five months, after which the rods, pump, and tubing were pulled for inspection. The examination of the tubing showed no evidence of corrosion on the outside as far down as the upper perforations in the tail pipe below the pump. The interior of the tubing examined at the joints showed no evidence of corrosion; neither were the threads affected. The pump, balls and seats were found in good condition. It appears that the outside of the tubing was protected as far as the top perforations below the pump and the inside of the tubing and the pump rods were protected as the well was. produced. As the inhibitor did not fall below the top perforations, the lower part of the tail pipe was not protected and suffered severe c'orrosion. In fact, the perforated tail pipe below the pump was found to be corroded paper thin in extensive areas. This well produced an average of 30 barrels of sulfide brine per day and had received quarts of formaldehyde during the five months test at a cost for formaldehyde of $12.00. Previously, it had been necessary to replace the balls and seats frequently and sections of the 2000-foot tubing after a years service. Furthermore, it had been necessary to pull the tubing periodically to determine whether or not replacement was yet necessary.

Well Number 2 was subject to frequent rod breaks, there having been 33 rod breaks in the seventeen months preceding the test. Likewise, there had been severe ball and seat corrosion. The well produces 45 barrels of water per day. Just prior to the test, 500 feet of new rods were run in at between the 1100 and 1600 feet level, the section where the most frequent rod breaks had occurred. The injection of formaldehyde down the casing was then begun and continued for five months. At the end of the test, these rods were pulled, and when the 500-foot section of new rods, the ball, seat, and pump were inspected for evidence of corrosion no evidence of corrosion could be detected. The monthly cost of protection during the test was only a small fraction of the monthly cost of the thirty-three pulling jobs and replacements during the seventeen months preceding the test.

A third well producing barrels of water per day had prior to the use of the inhibitor required frequent pulling and the well had not operated longer than eight weeks between pulling jobs when balls and seats and joints of tubing and rods were replaced. During the five months test one quart of formaldehyde was injected daily through a half-inch tube extending to the fluid level in the annulus between the tubing and easing. Asa part of the test, inexpensive "lin pipe had been run for tubing and used pump rods installed.

During the test the well did not require pulling and, in addition, a troublesome emulsion production had been overcome. The rods and pump were pulled at the end of the test, but they did not show any active corrosion.

These foregoing examples ofier conclusive evidence that the injection of an aldehyde inhibits sulfide corrosion of subsurface equipment of oil wells and that there is great economic advantage in the treatment.

. More than 10 P. P. M, of aldehyde: preferably more than about 50 P. P. M. of aldehyde based upon the brine produced, is ordinarily required for protection. Ordinarily not more than 100 P, P. M. will be required. Typically about one quart of U. S. P. formaldehyde (formalin) per 100 barrels of water produced gives adequate inhibitions. Further beneficial results are obtained in some cases by employing larger proportions initiall and decreasing with time the proportion of inhibitor used in subsequent'treatments.

It is contemplated also that the treatment may be applied to crude and product pipe lines, refining equipment, and storage tanks where attack can be expected. The sour hydrocarbons in pipe lines and storage tanks usually carry only a small percentage of water and a proportionally small amount of inhibitor may be effective. In the case of storage tanks, the inhibitor may b introduced into the vapor space and, in general, a, vaporizable material should be used, In some instances it may be beneficial to apply the chemical agent to the surface in a carrier-coating.

The foregoing description has been with particular reference to the use of formaldehyde which is only one example of the class of materials which come within this invention. The invention, however, contemplates generally the use of any inhibitor which has the characteristic aldehyde structure where R represents any hydrocarbon radical, or

- materials producing aldehydes under conditions producing well, for example,

select the chemical agent having the desired properties under the particular conditions of the treatment. In some instances the materials form lower boiling azeotropes with the produced well fluids which aid in the distribution of the chemical treating agent throughout the well. Specifically, tests show that under conditions in which formaldehyde is an effective inhibitor, acetaldehyde in an equimolecular concentration is 80% as effective in combatting the attack of hydrogen sulfide. Benzaldehyde, on the other hand, was found to be only about as effective as formaldehyde.

It is contemplated that the aldehydes may exist in polymerized form such as paraformaldehyde, the inhibiting power of these polymerized aldehydes depending chiefly upon their solubility in the brine. The inclusion of a small proportion of methanol with the formaldehyde stabilizes it against polymerization and maintains the lnhibiting efiect of formaldehyde.

This application is a continuation-in-part of my copending application Serial Number 570,800, filed December 30, 1944. e

The preferred embodiments of my invention described herein are for the purpose of illustration only and are not intended to limit the scope points that make it possible to of the invention defined by the appended claims, since it is apparent that the principles of my invention may be applied generally by those skilled in the art in view of the foregoing description.

I claim:

1. In the art of inhibiting corrosive attack on metals, the step which comprises mixing with a fluid containing a sulfide and normally having a corrosive action upon metals, a small proportion of an organic compound at least partially soluble in said fiuid and containing the characteristic aldehyde group, CHO.

2. In the art of inhibiting corrosive attack on metals, the step which comprises mixing with a fluid containing hydrogen sulfide and normally having a corrosive action upon metals, a small proportion of an organic compound at least partially soluble in said fluid and containing the characteristic aldehyde group, -CH0.

3; In the art of inhibiting corrosive attack on metals, the step which comprises mixing with a sulfide-containing fluid normally having a corrosive action upon metals, a small proportion of an aliphatic aldehyde containing not more than four carbon atoms to the molecule.

4. In the art of inhibiting corrosive attack on metals, the step which comprises mixing with a hydrocarbon fluid containing a sulfide and normally having a corrosive action upon metals, a small proportion of formaldehyde.

5. In the art of inhibiting corrosive attack on ferrous metals, the step which comprises mixing a small proportion of an aldehyde in a liquid containing a sulfide and normally having a corrosive action upon said metals, said aldehyde being at least partially solublein said liquid.

6. In the art of inhibiting corrosive attack on ferrous metals, the step which comprises mixing a small proportion of an aliphatic aldehyde in a liquid containing a sulfide and normally having a corrosive action upon said metals, said aldehyde being at least partially soluble in said liquid.

7. In the art of inhibiting the corrosion of ferrous metal by a liquid comprising hydrogen sulfide and water, the step which comprises commingling with said liquid a small proportion of an organic compound containing an aldehyde group capable of reacting with hydrogen sulfide.

8. The method of inhibiting the normal tendency of a sulfide-containing mixture of aqueous and non-aqueous fluids to attack ferrous metals which comprises the step of adding to said mixture a small proportion of an organic compound containing the characteristic aldehyde group, -CHO, said organic compound being at least partially soluble in said mixture.

9. The method of inhibiting the normal tendency of sulfide-containing aqueous liquids to attack ferrous metals which comprises the step of adding to said liquids a small proportion of a water-soluble aldehyde.

10. The method of inhibiting corrosion of ferrous metals by naturally occurring fluids containing water and a water-soluble sulfide which comprises dispersing in said fluids a small proportion of a water-soluble organic compound containing the characteristic aldehyde group, -CHO.

11. The method of treating sulfide-containing well fluids to inhibit the tendency of such well fluids to cause corrosion of metals in the presence of water which comprises the step of dispersing in the well fluids within a well a small proportion of an organic compound containing the characteristic aldehyde group, CHO, and which is at least partially water-soluble.

12. The method of inhibiting corrosion of ferrous metals by well fluids containing .a watersoluble sulfur compound and water which comprises supplying to the well fluids within a producing well a small proportion of a water-soluble aldehyde.

13. In the art of inhibiting the attack of ferrous metals by liquids comprising a corrosive sulfide and water, the step which comprises mixing with said liquids formaldehyde in amount of the order of about 50 to about 100 parts of formaldehyde per million parts of water in said liquids.

14. The method of inhibiting corrosive attack of ferrous metals within a well bore by well fluids containing hydrocarbons and sulfide brine which comprises dispersing in the fluids within a well bore water-soluble aliphatic aldehyde to the extent of at least ten parts of aldehyde per million parts of said brine produced with said well fluids.

15. The method of inhibiting corrosive attack of ferrous metals within a well by well fluids containing hydrocarbons, brine and hydrogen sulfide which comprises dispersing in said fluids within the well a small amount of formaldehyde.

16. In the art of inhibiting the corrosion of metals by a fluid containing a sulfide, the step which comprises admixing with said fluid a small proportion of an aldehyde-liberating substance, the liberated aldehyde being at least partially soluble in said fluid.

PAUL L. MENAUL.

REFERENCES CITED The following references are of record in the file of this patent:

UNITED STATES PATENTS Smith Sept. 5, 1944

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1151255 *Nov 18, 1913Aug 24, 1915Pyrene Mfg CoMethod of rendering corrosive fluids non-corrosive.
US1470225 *Jan 17, 1921Oct 9, 1923Holmes Harry NRemoval of scale and rust from iron and steel
US1809041 *Feb 3, 1930Jun 9, 1931Swann Res IncInhibitor
US1829705 *Mar 12, 1925Oct 27, 1931Empire Oil & Refining CompanyPrevention of corrosion in oil wells
US1873084 *Jul 19, 1928Aug 23, 1932Empire Oil And Refining CompanMethod of preventing corrosion in oil wells
US1877504 *Jun 30, 1932Sep 13, 1932Dow Chemical CoTreatment of deep wells
US2019599 *Feb 6, 1932Nov 5, 1935Westinghouse Lamp CoProcess for producing clad metals
US2297666 *Mar 9, 1940Sep 29, 1942Shell DevInternal corrosion prevention in conduits
US2355599 *Jan 23, 1941Aug 8, 1944Du PontAcid metal treating baths
US2357559 *Aug 24, 1942Sep 5, 1944Odessa Chemical And EquipmentMethod of sweetening sour gas and preventing corrosion of oil producing wells
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2496354 *Sep 11, 1947Feb 7, 1950Cities Service Oil CoMethod of inhibiting hydrogen sulfide corrosion of metals
US2496594 *Sep 11, 1947Feb 7, 1950Cities Service Oil CoFormaldehyde corrosion inhibitor compositions
US2496595 *Sep 30, 1948Feb 7, 1950Cities Service Oil CoFormaldehyde corrosion inhibitor compositions
US2496596 *Jun 11, 1949Feb 7, 1950Cities Service Oil CoFormaldehyde corrosion inhibitor compositions
US2514508 *Apr 5, 1947Jul 11, 1950Standard Oil Dev CoCorrosion prevention
US2571739 *Oct 28, 1949Oct 16, 1951Pure Oil CoPrevention of corrosion of structural metals by hydrogen sulfide, air, and water
US2596273 *May 10, 1949May 13, 1952Cities Service Oil CoMethod of inhibiting hydrogen sulfide corrosion of metals
US2596425 *May 10, 1949May 13, 1952Cities Service Oil CoMethod of inhibiting hydrogen sulfide corrosion of metals
US2602779 *May 10, 1949Jul 8, 1952Cities Service Oil CoMethod of inhibiting hydrogen sulfide corrosion of metals
US2605223 *May 26, 1950Jul 29, 1952Gulf Oil CorpChemical treatment of wells for the prevention of corrosion
US2642139 *Apr 26, 1946Jun 16, 1953Stanolind Oil & Gas CoApparatus for treating wells
US2643227 *Feb 21, 1950Jun 23, 1953Cities Service Oil CoMethod of inhibiting corrosion of metals
US2643978 *Feb 24, 1951Jun 30, 1953Cities Service Res & Dev CoMethod of inhibiting corrosion of metals
US2646400 *Feb 24, 1951Jul 21, 1953Cities Service Res & Dev CoMethod of inhibiting corrosion of metals
US2658036 *Jul 19, 1950Nov 3, 1953Texas Acidizers IncComposition for preventing deposition and corrosion in oil well equipment
US2882226 *Feb 23, 1954Apr 14, 1959Sinclair Refining CoCorrosion prevention method and composition
US2882227 *Feb 23, 1954Apr 14, 1959Sinclair Refining CoCorrosion prevention method and composition
US3042609 *Oct 9, 1959Jul 3, 1962Petrolite CorpPrevention of corrosion in systems containing a corrosive aqueous medium
US4680127 *Dec 13, 1985Jul 14, 1987Betz Laboratories, Inc.Method of scavenging hydrogen sulfide
US4888121 *Apr 5, 1988Dec 19, 1989Halliburton CompanyCompositions and method for controlling precipitation when acidizing sour wells
US4949790 *Mar 7, 1989Aug 21, 1990Halliburton CompanyCompositions and method for controlling precipitation when acidizing sour wells
US5284576 *Mar 12, 1993Feb 8, 1994Petrolite CorporationMethod of scavenging hydrogen sulfide from hydrocarbons
US6024866 *Oct 19, 1993Feb 15, 2000Baker-Hughes IncorporatedMethod of scavenging hydrogen sulfide from hydrocarbons
US6399547 *Feb 24, 2000Jun 4, 2002Schlumberger Technology CorporationWell treatment fluids comprising mixed aldehydes
US6666975Oct 4, 2002Dec 23, 2003Ge Betz, Inc.Method of reducing hydrogen sulfide odor emissions from an aqueous medium
US8018563Apr 18, 2008Sep 13, 2011Cambrios Technologies CorporationComposite transparent conductors and methods of forming the same
US8018568Feb 24, 2010Sep 13, 2011Cambrios Technologies CorporationNanowire-based transparent conductors and applications thereof
US8049333Aug 14, 2006Nov 1, 2011Cambrios Technologies CorporationTransparent conductors comprising metal nanowires
US8094247Oct 12, 2007Jan 10, 2012Cambrios Technologies CorporationNanowire-based transparent conductors and applications thereof
US8174667Aug 16, 2011May 8, 2012Cambrios Technologies CorporationNanowire-based transparent conductors and applications thereof
US8618531Dec 15, 2010Dec 31, 2013Cambrios Technologies CorporationTransparent conductors comprising metal nanowires
US8760606Oct 15, 2010Jun 24, 2014Cambrios Technologies CorporationNanowire-based transparent conductors and applications thereof
US8865027Apr 4, 2008Oct 21, 2014Cambrios Technologies CorporationNanowires-based transparent conductors
EP1624089A1Jul 8, 2005Feb 8, 2006General Electric CompanyMethod of preventing hydrogen sulfide odor generation in an aqueous medium
EP1962349A2 *Aug 14, 2006Aug 27, 2008Cambrios Technologies CorporationNanowires-based transparent conductors
WO2007022226A2 *Aug 14, 2006Feb 22, 2007Cambrios Technologies CorpNanowires-based transparent conductors
WO2013041654A1Sep 21, 2012Mar 28, 2013Lonza Inc.Process and composition for the removal of hydrogen sulfide from industrial process fluids
WO2014031537A2Aug 19, 2013Feb 27, 2014Lonza, Inc.Method of scavenging hydrogen sulfide and/or sulfhydryl compounds
Classifications
U.S. Classification507/268, 507/939, 166/310, 422/13, 507/932, 422/12
International ClassificationC23F11/12, C10L1/185
Cooperative ClassificationY10S507/932, C23F11/122, Y10S507/939, C10L1/1857
European ClassificationC10L1/185C, C23F11/12A