Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2431058 A
Publication typeGrant
Publication dateNov 18, 1947
Filing dateAug 22, 1942
Priority dateAug 22, 1942
Publication numberUS 2431058 A, US 2431058A, US-A-2431058, US2431058 A, US2431058A
InventorsClarence R Manning
Original AssigneeInternat Business Machiness Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Control mechanism for dispensing apparatus
US 2431058 A
Abstract  available in
Images(8)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Nov. 18, 1947. c. R. MANNING CONTROL MECHANISM FOR DISPENSING APPARATUS 8 Sheets-Sheet 1 Filed Aug. 22, 1942 ATTORNEY Nov. '18, 1947. c. R. MANNING 2,431,058

CONTROL MECHANISM FOR DISPENSING APPARATUS Filed Aug. 22, 1942 v 8 Sheets-Sheet a Flt-3.7.

. F:::: :J INVEN TOR. M E -73? f L v ammal.

Nov. 18, 1947. c. R. MANNING CONTROL MECHANISM FOR DISPENSING APPARATUS Filed Aug. 22. 1942 8 Sheets-Sheet 4 W a a U 5 3 ma am #0 5 m M M M M 4 w 3 w. a v. m g 1 M i i gi E W A A A A T T w T f 3 2 2 3: m a a w m mm m m a w 2 xi x x x m M A r W M w W k 7 W 6 M\ w 7 2 (M H WW /m A 2 x 1 n b H4 "b m YWWL m 0 m 5 8 KW) m w w J w u 2 m y W 5 0 Ru x m C 6 6 F l n i- C f fi/rk v o 5 HMQJ mflw /L 0 f 514? 0n w w m C Nov. 18, 1947. c. R. MANNING 143L058 CONTROL MECHANISM FOR DISPENSING APPARATUS v I Filed Aug. 22, 1942 8 Sheets-Sheet 5 55 84 #2 W224 was ATTORNEY.

NOV. 18, 1947. I c, MANmNG 2,431,058

CONTROL MECHANISM FOR DISPENSING APPARATUS Filed Aug. 22, 1942 8 Sheets-Sheet 6 Z EIVTOR. BY z/rzziw 2 ATTORNEY.

Nov. 18, 1947. c. R. MANNING 5 comaoz, MECHANISM FOR DISPENSING APPARATUS Filed Aug. 22, 1942 a Sheets-Sheet 7 Rag Lrwu

% i NVENTOR ATTORNEY.

Nov. 18, 1947.

C. R. MANNING CONTROL MECHANISM FOR DISPENSING APPARATUS Filed Aug. 22, 1942 8 Sheets-Sheet 8 ATTORNEY.

Patented Nov. 18, 1947 CONTROL MECHANISM FOR DISPENSENG APPARATUS Clarence R. Manning, Vestal, N. Y., assignor to International Business Machines (Jorporation, New York, N. Y., a corporation of New York Application August 22, 1942, Serial No. 455,765

15 Claims.

This invention relates to record controlled mechanism for selectively operating dispensing apparatus and in particular apparatus for dispensing liquids to combine various ingredients in the preparation of formulae.

In carrying out the broad object of the invention, a record card is provided for each formula that it is desired to prepare, and the record card is provided with designations in the form of perforations that by their number and location indicate the ingredients and their quantities required for the related formula. These record cards are sensed singly, and the data contained therein is setup on a relay system which, operating in conjunction with inlet valves and dispensing apparatus, permit the required ingredients in the classified amounts to be withdrawn from supply reservoirs and measured in separate receptacles, where they are separately retained. When all the required ingredients have been drawn oil from the reservoirs, the record card is sensed a second time and a comparison is made between the data on the card and the measured quantities of the selected ingredients. This constitutes a checking or verifying to insure that the proper ingredients in the proper quantities have been drawn oif. If the comparison is satisfactory, valve mechanism on the Various receptacles are controlled topermit the selected ingredients to flow together or discharge into a common receptacle.

It is accordingly among the more particular objects'of the invention to provide the mechanism for carrying out the several steps of record card sensing, control of the dispensing apparatus or selection of ingredients and quantities thereof, the checking of the selected ingredients, and the ultimate discharge thereof into a common receptacle.

Other objects of the invention will be pointed out in the following description and claims and illustrated in the accompanying drawings, which disclose, by way of example, the principle of the invention and the best mode, which has been contemplated, of applying that principle.

In the drawings:

Fig. 1 is a sectional view of the essential elements of the record card feeding and sensing devices.

Fig. 2 is a view looking in the same direction as Fig. 1 showing the drive gearing and clutch controls for the card feeding and sensing mechanism.

Fig. 3 is a detail of a timing commutator.

Fig. 4 is a fragment of a record card showing 2 the manner in which the ingredients and their quantities are designated.

Fig. 5 is a timing chart of certain of the electrical circuit closing devices,

Fig. 6 is a chart showing the arrangement of the circuit diagram figures to indicate the order in which they are to be placed.

Fig. 7 is a diagrammatic representation of a section of the dispenser apparatus.

Figs. 8, 8a, 8b, 8c and 8d taken together and arranged in the order indicated in Fig. 6 constitute a wiring diagram of the dispensing apparatus and the control mechanism sufficient to 11- lustrate and explain the operation of the device. By duplicating Figs. 8a, 8b, 8c and 8d and adding them to the existing figures as indicated in Fig. 6, the circuit will be suitable for a. device of greater capacity.

The record card Referring to Fig. 4, there is shown a form of well known record card 25 as used for statistical purposes which is provided with a number of vertical columns and a number of horizontal rows, the latter of which are numbered in ac cordance with the digits. A perforation in the vertical column represents a value corresponding to the digit related to the horizontal line. Thus, the perforation in column I represents '2 and the perforation in column 2 represents a 5. For recordingfractions, a form of coding is employed wherein for the fraction 4 a 2'perforation is employed, for A: a 5 perforation, and for an 8 perforation, so that with the card as arranged in Fig. 4 the seven different ingredients indicated are indicated by the perforations Whose interpretation is given at the bottom of the figure.

In accordance with the arrangement of the present device, it is required that a zero representing perforation be made in those columns of the various ingredient fields in which there is no significant digit or fraction representing the perforation. Thus, for the card shown in Fig. 4, the formula X requires neither of the ingredients IV or V, so that the two columns of each of these two fields are perforated in the zero position. Also, in the fields designated 2 and l, the zeros are punched as shown.

The dispensing apparatus In Fig. 7 is shown the dispensing apparatus which the record card in Fig. 4 is designed to control, In general, it comprises a reservoir or supply hopper generally designated; "I, of which there is one for each possible ingredient. From the reservoir ID the feed line H extends to and has connection with a plurality of what may be termed measuring tubes designated l2 in which the ingredients are segregated and momentarily retained. The connection is through valves I3 which are operated by solenoids designated l4. Energization of solenoid l4 will open valve l3 and permit liquid to flow into the tube l2 until the solenoid is deenergized. Each tube l2 has a connection IS in a common line l6 extending to a receptacle II. In each line there is a valve l8 operated by a solenoid IS. The valve l3 may be termed an intake valve and the valve l8 may be termed a discharge valve, which is open as long as solenoid I9 i energized and closed at all other times. Within each tube 12 is a float to which is secured a stem 2! which carries a contact slider 22 at its upper extremity. This slider makes contact between a group of contact segments 23 on one side and a grou of contact segments 24 On the opposite side. The arrangement of these contacts is such that for any quantity of liquid in the tube, the slider 22 will be in the position to indicate the amount on the contact segments 23 and 24 of which the former indicate whole ounces and the latter quarter ounces.

In the apparatus in which the present invention is used, the tubes l2 are all alike and each has a capacity of 10 ounces so that, where more than 10 ounces are required, a number of tubes (2 is required. Thus, for the ingredient I (Fig. 4) where 25% ounces are required, 5% ounces will be measured in the right hand tube I2, 10 ounces in the next tube and the other 10 ounces in the third tube. The second and third tubes, when utilized, measure only the full 10 ounces and their sliders 22 cooperate with contact segments 23 and 24 located in only the highest or full position of the tube.

As indicated in dotted outline in Fig. '7, a sec ond receptacle S may contain ingredient II which, through similar connections, will flow into another set of tubes l2 which in turn also have connection to the common line l6 for discharge into the common receptacle H, and thus for each of the other ingredients indicated in Fig, 4 there is a reservoir l0 and one, two or three tubes l2 depending on the highest possible quantity of any ingredient required. For example, for ingredient III (Fig. 4), only two columns are set aside which indicates that the greatest possible amount of this ingredient called for would be 9% ounces, in which case a single tube l2 with the graduated segments 23 and 24 would be sufficient, and for this ingredient the second and third 10 ounce measuring tubes would not be required.

Card feeding and sensing mechanism Referring to Fig. l, the record cards 25 are placed in a hopper 25 from the bottom of which they are fed singly by a picker 2'! to a. pair of feed rolls 28 which advance it to a second pair of feed rolls 29, and then to a third pair of rolls 30 from which the card drops into a pocket 3!. Between the rolls 28 and 29 is a row of sensing brushes designated SB which sense the rows of Perforated positions in the order 9, 8, '7, etc. as the card passes the brushes, With the brush SB making contact through the hole in the card with a common contact roller 32, Similarly, as the card later passes a second set of so-called checking brushes CB, contact is made by these brushes through the perforations with a contact roller 33.

At each brush station is provided the usual card levers which close their respective card lever contacts designated CLI and CL2. At the hopper 28 there is also a so-called magazine card lever designated 34 which maintains a pair of contacts ML closed as long as there are cards in the suppl hopper. In the operation of the machine there is what may be termed the starting position. During a cycle of operations now to follow, the card is advanced past the brushes SB to the corresponding position with respect to the brushes CB, and during such transmit the perforated data is sensed by the brushes SB, The cards wait in this position while the several tubes l2 receive the proper quantities as will be explained and, when all have done so, the first card is advanced past the brushes CB into the hopper 3|. During the passage of the card, its perforations are again read and a comparison is made with the tubes l2 to determine whether the proper amounts are in fact in the tubes.

While the first card is passing the brushes SB, the second card is brought from the magazine up to the brushes SB and waits in this position until the first card has passed the brushes CB. If the comparing is correct, the metering tubes used for that particular formula are allowed to empty. While they are emptied the second card passes the brushes SB and the storage relays are set up for that card. In this way no time is lost for the setup of each card. As a second card passes the brushes SB, the third card moves from the magazine up to these brushes, so that after the first card has been sensed by the brushes CB, following which the tubes I2 are evacuated, the device is in readiness to repeat the operations sensing the next following card.

In Fig. 2 is shown the driving mechanism for the card feed rollers and picker mechanism, wherein a shaft 35 is in constant rotation, being driven from any suitable source of power, such as an electric motor. Shaft 35 carries a gear 38 driving a gear 31 which in turn drives a gear 38 loosely mounted on a shaft 39. Integral with gear 38 is a clutch driving element 40 in whose plane lies a clutch dog 4i secured to a clutch arm 42 fixed on shaft'39. Energization of magnet SM will release dog 4i for engagement with driving element 40, so that shaft 39 will rotate and the gear 43 thereon will drive the gear 44 which is secured to the upper roller 28 which in turn has pinion connection with the lower gear, so that the two rollers 28 rotate together. The shaft 39 (Fig. 1) has an eccentric cam operating an eccentric strap 45 which rocks a rod 46 upon which is the arm 47 which through teeth on its upper extremity reciprocates the picker knife 21. Through the connections traced, it will be seen that, when magnet SM is energized, shaft 39 makes a revolution during which the picker 2! and pair of feed rolls 28 are operated. The gear 31 through the gear 4! drives a gear 48 on the end of the upper roller 30 which also has pinion connection with the lower roller 30, so that these two rollers are in constant motion. The gear 49 drives the gear 50 and a clutch driving element 5| to which a gear 52 may be coupled for rotation through a clutch dog 53 upon energization of a magnet CM.

When coupling is so effected, the gear 52 drives a gear 54 on the shaft of the intermediate roller 39 so that, when magnet CM is energized, the rollers 29 rotate. As will be explained in connection with the circuit diagram, the magnetCM-is energized whenever the magnet SM is energized. As

' letter.

seen from Fig. 1, it is necessary to rotate both rollers 28 and 29 to advance the card past brushes SB; To advance the card past the brushes CB, it is only necessary to rotate the rollers 29 by energing magnet CM, rollers 30 being in constant motion.

On a shaft 55 driven from the constantly running gear 38 are a number of the contact operating cams controlling contacts which in the circuit diagram are prefixed CR, Also on shaft 39 are contact operating cams which control contacts prefixed S, and these operate only when the clutch magnet SM is operated and a card is passing the brushes SB. Likewise, a shaft 56 is provided and driven from the gear 52, upon which shaft are cams for operating contacts prefixed CH which accordingly operate only when magnet CM has been energized and while the card is passing the brushes CB. On the constantly running shaft 55 there is a number of commutator devices termed femitters, of which one is shown in Fig. 3 comprising a brush 51 which has connection with a ring as show-n, and which also makes contact in succession with segments designated 58 which are numbered 9 to zero and which are contacted by the brush 5'! at the time the correspondingly numbered positions on the record cards are sensed by thebrushes SB or CB. The timing of the various contact devices is shown in Fig. 5 wherein one cycle or revolution of the shafts 39, 55 and 58 is indicated.

Circuit diagram The complete operation of the machine will now be described in connection with the circuit diagram and the various operations will be explained in the order in which they take place. To facilitate the understanding of the various electrical devices, the relay magnets, of which a number are employed, have been designated with the letter R followed by a numeral. The contacts controlled by the relay magnets are designated with the same reference followed by a lower case Thus, RI may designate a magnet, and Rla, Rib designate contacts controlled thereby.

In most instances, the contacts controlled by the magnets are shown adjacent thereto. In several cases, where for the sake of simplicity of the wiring connections the contacts have not been drawn adjacent the controlling magnets, the magnets are shown in dotted outline adjacent the contacts which together with the manner of designating the same will serve to make the relationship clear.

Preliminary operations.-'-With cards placed in the feed magazine, the run-in key is depressed to close contacts 59 (Fig. 8). This completes a circuit at the time constantly running contacts CRI close, which is traceable from negative side of line 60, through contacts CRI, wire BI, contacts 59, relay contacts Rib, wire 62, relay magnet R2, and cardreading clutch magnet SM parallel therewith to positive side of line 65. Relay magnet/R2 closes its contacts R211 to provide a holding circuit from line 66 to normally closed contacts S2, contacts R2a, magnets R2 and SM to line 65. The contacts S2 open during the cycle of operations initiated by magnet SM to break the holding circuit and enable declutching 0f the card feeding mechanism at the end of the revolution, during which a card was advanced from the hop per up to the sensing brushes SB.

It is pointed out that at the very start the clutch magnet CM is also energized and the intermediate feed rollers 29 rotated, but such op.

6 erati'on at this time has no effect. The circuit for energizing magnet CM at this time is traceable from negative side of line 60, in series through a chain of normally closed contacts R311, contacts R40, a relay magnet R5, to line 65. As soon as current is put on the lines 60 and 65, the magnet R5 becomes energized and closes its con.- tacts R5a. Thus, a circuit. is completed from line 60, contacts CRI, contacts R5a, normally closed contacts R4d, magnet CM to line 65. Parallel with magnet CM is a relay magnet R6 which closes its contacts RGa to provide a holding circuit for itself and magnet CM through contacts CHI. The magnet R6 also closes a pair of contacts R61) to set up a circuit from line 60, through contacts RBo, relay magnet R4, to line 65. Macnet R4 in turn opens its contacts R40 so that magnet R5 becomes deenergized and at the same time closes its contacts Rta to establish a holding circuit from line 65, magnet R4, contacts Rla, and the chain of contacts R3a to line 60.

Reading the first card by brushes SB.-The run-in key is now operated a second time, closing contacts 59 as before, the clutch magnet SM is energized to advance the card past the brushes SB. As explained above, it is also necessary to operate the clutch magnet CM in order to advance a card up to the brushes CB, so that with the closure of contacts R2b a circuit is also completed to energize the magnet CM. 'It may be noted from the circuits traced that, whenever-the magnet SM is energized together with itsparallel relay R2, the magnets CM and R6 are also necessarily energized through parallel circuits Controlled by the contacts R2b.

Entering the card reading.-As the card passes the brushes SB, it closes the card lever contacts CLI to complete a circuit from line 60, contacts CL, CR1, relay magnet RI to line 65. The magnet RI closes its contacts RM to provide a holding circuit for the relay magnet which is. maintained energized as long as the card continues to pass the brushes SB. Magnet RI closesa pair of contacts RIc which supply current to the contact roll of the brushes SB through the following circuit: line 60, circuit breaker contacts CRI I, CRI2, which make and break the circuit for each hole position in the card, contacts S3, RIc, wire 66, to the contact roller 32. From the contact roll 32 the circuit proceeds through the perforations in the record card, the time of completion of the circuit depending upon the differential location of the perforation.

Entering the fractional amount.Considering the circuits completed through the column of the card containing a "fractional designation which would be either zero, 2, 5, or 8, the circuitcontinues from contact roller 32, brush SB sensing the fractional column, a connection indicated at 6'! (Fig. 8) which extends to Fig. 8a, to a wire 68, thence through one of the contacts Rla, RQa, RIZa, or Rifia, depending upon the value of the perforation, thence through one of the wires 59,

through a winding of one of three magnets RI'I,"

RI 8 0r RIB, wire Ill, to positive side of line 65. The contacts R'Ia, R9a, Rl2a, RI5a are closed by their respective magnets, shown below them in Fig. So, at the times in the cycle corresponding to the value of the perforations 0, 2, 5, and 8. These magnets are connected to contact segments 58 which are traversed by the brush 5! (see Fig.

3) in such manner that the row of magnets R16,

RI 5, etc. to R1 are energized in succession as the perforation receiving positions 9, 8, 7, etc. are sensed.

The energizing circuit is traceable from positive side of line 65, wire H, in parallel through the magnets Rl'l, RIG, segments 58, brush 51, common conductor 12, wire 13, cam contacts 54, circuit breaker contacts CRI3, GR in parallel, cam contacts CH4 to negative side of line 60. It is to be recalled that during this cycle both the sensing and checking clutch magnets have been energized, so that both the CH, S and CR cam contacts are in operation, so that during the period the card is passing the brushes SB, both contacts S4 and C4 are closed. Each of the magnets Rll, RH! and RIS close a pair of contacts suifixed a to provide a holding circuit for the magnets traceable from line 65, wire 10, the upper winding of the magnets, its 0. contacts, wire 14, and cam contacts SI to line 60.

From examination of the coding for the fractional /4 ounce representation in Fig. 4 and from the connections through the relay magnet contacts R111, R912, Rl2a and Rl5a, when a 2 perforation representing A; ounce is sensed, magnets R18 and RH are energized. When a 5 perforation representing a /2 ounce is sensed, the magnet R19 alone is energized; when an 8 hole representing n ounce is sensed, magnet Rl8 alone is energized, and when a zero perforation indicating no ounce is sensed, the magnet RI! is energized, and the setting thereof will be retained until contacts Si open just prior to the sensing of the next card by the brushes SB.

Entering the units order digit amount-Com sidering now the sensing of the units order column, the circuit from the contact roller 32 extends through the perforations in the related column to the brush SB and thence through the wire (Fig. 8), to the common wire 16, asindicated in Fig. 8a. The wire 16 is connected to contacts Rlb to Hi 61) which, as already explained, flows in succession under control of the emitter brush 51. These contacts Rlb to Rlib are connected through wires generally designated H to the 4 relay magnets R20, R2l, R22, and R23 to energize them in combination for the ten digits sensed. For example, assuming a perforation in the 1 position of the card column, then at the 1 time in the cycle the contacts R8?) are closed. The circuit from the sensing brush extends through connection 15, wire 15, the 2 contacts RBb, to relay magnets R22 and R23 in parallel, and thence through wire 18 to line 65. These contacts close their a contacts to provide a holding circuit through the cam contacts SI in the same manner as the fraction receiving magnets Rl'l to RIS.

Tracing of the circuits for the various digits would show that sensing of a zero in the units order column will energize magnet R20, a 1 will energize magnets R22 and R23, a 2 will energize magnets 2| and R23, a 3 will energize magnets R2! and R22, 4 will energize magnets R20 and R23, 5 will energize magnets R20 and R22, 6 will energize magnets R20 and R2l, '7 will energize magnet 23, and 8 will energize magnet R22 and 9 will energize magnet R2l.

Entering the tens order digit am0unt.From the brush SB sensing the tens order column, a connection IS (Fig. 8a) extends (Fig. 80) to a wire 80, contacts R24a, R25a and R2611, wire 8|, to relay magnets R21, R28, wire 82, to line 65. The magnets R24, R25 and R26 are energized in succession through an emitter having segments 58 and brush 51, and common conductor 12 in the same manner as the magnets R1 to RIG, the timing being such that the magnets are energized at 553 the zero, 1 and 2 times. ()nly three magnets are provided as in the present machine, the tens column is only utilized in the zero, 1 and 2 hole positions. Again, as for the fractions and the units digits, a combination setting is eiTected on the relay magnets R2! and R28 such that, when a zero hole is sensed, magnet R28 alone is energized; when a 1 hole is sensed, magnet R21 is energized. and when a 2 hole is sensed, both magnets R21 and R28 are energized. Each will close its a contacts to set up a holding circuit through cam contacts Sla whose timing is the same as the contacts SI. Thus, after the card has passed the brushes 83, a relay setting will have been made in accordance with the values sensed.

For example, for ingredient I of Fig. 4, the value 25 /4 ounces will have resulted in energizetion of the following relay magnets: R21 and R20 for the tens digit 2, R20 and R22 for the units digit 5, and R53 and RIB for the fraction V4. At the end of a cycle, the machine comes to rest, the card in readiness to pass the checking brushes CB.

Measuring the liquid quantities The operator now presses the start key, concurrently closing a plurality of contacts (Figs. 8b and 8d), of which there is one for each tube l2. This will initiate the feeding of the ingredient to the tubes which are to receive the same and feeding will continue until the amount therein reaches the proper level, at which time certain connections will be established under control of the contact slider 22, the contact segments 23 and 24 of the tube. and circuit connections partially set up by the aloredescribed amount representing relays to terminate the measuring operation. Specifically, for the tube shown in Fig. 82), when this tube has received 5% ounces in accordance with the example shown in Fig. 4, the required quantity will have been measured. Upon closure of contacts 83 (Fig. 8b), a circuit is completed from negative side of line 60, a start relay magnet R28, contacts 83. wire 34 (Fig. 8a), contacts R2ib, R221), or R232), if one of these is closed, wire ll (Fig. 8b), contacts R3lla of a stop relay magnet R30, wire 86, to positive side of line 65.

A circuit ma also be completed upon closure of contacts 83 traceable from line 60 (Fig. 81)), magnet R29, contacts 83, wire 84 (Fig. 8a), downwardly through a wire 8'7, contacts Rllb, a wire 88. contacts R202), if these are closed, wire 8! (Fig. 81)), contacts MM and wire 86 to line SI. Analysis of the circuits just traced will show that relay magnet R28 is energized, ii a significant digit is set up for the units order or if a zero is set up for the units order, and the zero is not set up in the fractional order. If a zero is set up in both the units digit and the fraction order. the relay magnet R29 is not energized and the related tube remains inactive.

Magnet R29 closes its contacts 12.29:: to provide a holding circuit from line 60, magnet R20, contacts R29c, stop relay contacts R300, wire 00, to line 65. It also closes contacts R29!) to complete a circuit from line 65, wire 85, contacts R29b, relay magnet R3i, a contact segment 23a, slider 22, contact segment 22a, wire 89, to line 50. The slider 22 makes electrical connection between contact segments 23a and 24a only when the float in the tube is in its empty indicating position, so that unless the tube is empty, the circuit just traced cannot be completed. Magnet RSI closes its contacts R3 1 a to provide a holding circuit from line 60, contacts R3la, magnet RII, contact R2912, which are held closed, wire 85, to line 65. The magnet also closes its contacts R3lb, completing a circuit from line 65, wire 86, intake valve solenoid M, stop relay contacts R30b, contacts R3lb; to line 60.

As a result, the intake valve I3 (Fig. 7) is Open and ingredient I commences to flow into the tube l2. This flow will continue until magnet R30 is energized to break the contact R301). The manner in which this is done will now be explained.

When the float has raised contact slider 22 to the ounce level for the example chosen, it makes electrical contact between the 5 segment 24 and the A; segment 23 opposite and at such time a circuit is completed which is traceable as follows: from line 65 (Fig. 8b), wire 86, stop relay magnet R30, wire 90 (Fig. 8a), normal y closed contacts R32a, Wire 9|, upper contacts R23c, lower contacts R22c now closed, upper contacts R2lc, lower contacts R200, now closed, a pair of contacts R33a, to the 5 wire of a group of wires designated 92 (Fig. 8b), the 5 segment 24, slider 22, the 2; ounce segment 23 to wire 93 (Fig. 8a) lower contact RlBc now closed (due to ,4; ounce entry), lower contacts -Rlllc also closed, upper normally closed contacts R321), to line 60. Thus, when the slider reaches the level corresponding to the setting of the combined units and fraction value, a circuit is completed through stop relay magnet R30 which opens its contacts R301) to deenergize the intake solenoid l4, so'that the intake valve automatically closes. It will, of course, be understood that similar circuits are completed through other like settings and valves at times depending on when the slider reaches the desired slide.

In tracing the circuit, it was mentioned that it extended through contacts R33a (Fig. 8a) A number of contacts R33a is shown, and during the period that the intake valve functions, these contactsare all closed. Their closure is effected in the following manner: The controlling magnets -R33 are shown in the lower part of Fig. 8a, and

each constitute a magnet core with two separate windings thereon wound so that energization of either winding will operate the related contacts. Normally, the upper winding of each magnet R33 is energized so that the contacts R330 are closed. This circuit can be traced from line 60, contacts CHIa, R320, all of the upper windings of the magnets R33' in parallel to line 6-5. For the two so-called 10 ounc tubes, which togetherare to measure the ounces tobe measured for the example chosen, start circuit for the intake valve solenoid is completed in a similar manner to that already explained. These circuits will be briefly. traced in connection with Figs. 8c and 8d, where similar parts will be identified by the same reference characters. In Fig. 8d closure of the upper contacts will complete a circuit through the start relay magnet R29; from line 60', the magnet R29; contacts 83, wire 9'4 (Fig. 8c), contacts R21?) (now closed), wire 95 (Fig. 8d), stop relay contacts R30a, to line 65. Concurrently, the lower start relay magnet R29 is energized through a circuit traceable from line 60, magnet R29, contacts 83, wire 95 (Fig. 8c), contacts R210, R281) (both closed), wire 91' (Fig. 811), contacts R3011 to line 65 as before.

Inspection will show that, if the tens digit, setting is 1', only the upper relay magnet R29 (Fig. 8a) is energized and, if the setting is 2, then both relay magnets R29 are energized, while if the segment is zero, neither is energized. As before", contacts R29a close to provide a holding circuit and time of its related intake valve solenoid I4 which,

when energized, is held through the stop relay contacts R30b and the liquid will flow into the tube until the stop relay R30 is energized.

The stop circuit is traceable as followsfor the upper tube of Fig. 8d: from line 65, wire 86, magnet R30, Wire 98 (Fig. 8c) normally closed upper.

contacts R320, wire 99, closedcontacts R21d, wire I00 (Fig. 8d), contact segment 24b, slider 22 in the 10 ounce registering position, contact 23b, wire l0! (Fig. 8c) upper normally closed contacts R32e, to line 60. Thus, when the slider reaches the full capacity indicating position, relay magnet R30 is energized and the intake valve solenoid RM is deenergized. In a. somewhat similar manner the stop relay magnet circuit for th lower tube in Fig. 8d is traceable from line 65, wire 86, relay magnet R30, wire I02 (Fig. 8c), normally closed upper relay contacts R32d, wire I03, contacts R2 lc, R280, wire I03 (Fig. 8d) contacts 241), slider 22, segment 23b, wire 104 (Fig. upper normally closed contacts R32f, to line 60. Thus, also for the two tubes which receive 10 ounce portions of the total quantity, the intake valve cannot, be operated unless the tube is initially empty and the intake valve is closed when the position of the tube slider corresponds tothe settingon the relay system.

In parallel with each of the intake valve sole- I noids l4 (Figs. 8d and Se) is arelay magnet R3, each of which, when energized, opens a pair of contacts R3a (Fig. 8).

, As explained at the outset, the contacts R311 normally establish a circuit through relay magnet R4 and its contacts Rla, this circuitfbeing set up through the initial operation of the check clutch CM. When any solenoid is energized, it opens its contacts R3a, so that the holding circuit for relay magnet R4 is broken, permitting its contacts RM and Rdc to again close, while the liquid is entering the tubes. As each tube receives its required amount, its related contacts R311 close and, when all are closed indicating all the intake valves have shut, a circuit is completed from line 60 (Fig. 8) to the contacts R3a in series, contacts R40, relay magnet R5 to line 65. Magnet R4" closes its contacts Rla, so that at the appropriate time in the cycle when cam contacts CRI close, a circuit is completed from line 60, contacts CRl, contacts R5a, Rdd, magnets RB and CM in parallel to line.65. Magnet R0 as" before closes its contacts R61) to energize relay magnet R4 and R32 (Fig. 8a) is energized so that the several related contacts are shifted from the positions shown in the circuit diagram. Also, asthe card is passing the brushes, the card lever contacts GL2 (Fig. 8) close to energize t he relay magnet R34 which closes its contacts R34a, through which current is supplied to the checking brush contact roller, through a. circuit traceable from line 60 (Fig. 8)., contacts CRII, CHI2, contacts CH2, contacts 34a, wire I05 to the contact roller 33.

As the fractional order of the card traverses the brush CB, the circuit continues through the brush CD the connection I06 (Fig. 8a), wire I01, lower contacts RISd (now closed), lower contacts RIBd now closed, wire I08, 3. pair of con-, tacts R33b related to the 2 magnet R33, thence through relay magnet R35, to line 65. Magnet R35 closes its contacts R35a to provide a holding circuit from line 65, lower winding of magnet R35, contacts R35a, contacts SIb, to line 60.

The completion of this circuit is an indication that the perforations sensed by the checking brushes CB correspond to a relay setting obtained from the first set of brushes SB. Closure of the contacts R33b in the circuit just traced is brought about through emitter comprising segments 58 wired to the second winding of each of the magnets R33, 2. brush 5'! in the common conductor I2. The brush contacts the segments 58 in succession as the correspondingly numbered card positions are at the sensing brush CB, so that at the time the 2 position is sensed, the 2 magnet R33 is energized and its contacts R33?) are closed. The circuit through the magnet R33 is traceable from line 60 (Fig. 8a), contacts CH4, CRI3, CRI4, a wire I09, common strip 12, brush ST, segment 58 in the 2 position, lower winding of magnet R33 to line 65.

Checking for the units order.-As the column of the card containing the units digit of the amount traverses the brushes CB, a circuit is traceable through the perforation representing the digit 5 (for the example chosen) as follows: line 60 (Fig. 8), contacts CRI I, CRI2, CH2, R34a, wire I05, checking contact roller 33, brush CB, connecting wire I I (Fig. 8a) lower contacts R322) now closed, lower contacts RISc now closed, lower contacts RI8c now closed, wire 93 (Fig. 8b segment 23, slider 22, and segment 24 set at the 5 wire 92 (Fig. 8a) the 5 contacts R33a which are closed at the time the 5 perforation in the card column is closed. lower contacts R200, upper contacts R2Ic, lower contacts R220, upper contacts R230, wire SI, lower contacts R3211, relay magnet R36, to line 65. Magnet R36 closes its contacts R36a which provide a holding circuit traceable from line 60, contacts R36a. wire 9|, lower contacts R32a, magnet R36, to line 65.

It is to be noted that the checking circuit traced through the 5 perforation required the measuring slider 22 of the tube to be at the proper fractional position in addition to being at the proper digital position, and that the checking of the proper fractional position was indirectly checked through the previously traced checking circuit in which the fractional perforation was compared with the fractional relay setting. Thus, the 2 checking relays R35 and R36 together ascertain whether the quantity of liquid called for by the perforations is present in the related tube.

Checking the amount in the tens digit.As the tens digit column passes the brushes CB, 2. circuit is traceable as before to the common contact roller 33 (Fig. 8) from which it passes to the 2 perforation (for the example in Fig. 4), thence through connection III (Fig, 80), contacts R3'Ia in the 2 position which are closed at the 2 time in the cycle by magnet R31 which is energized in parallel with the 2 magnet R33, through a similar commutator and brush structure 51, 58, '12. From contacts R37a the circuit branches 9 1W 12 contact R32e and lower contacts R32! both closed at this time, wires IIlI, I04 in parallel (Fig, 8d), thence in parallel through the contactors 23b, 22b and 24b in both of the 10 ounce tubes, Wires I00, I03 in parallel (Fig. contact R21d, wire 99, lower contacts R320, relay magnet R38, to line 65. The circuit from wire I03 follows a parallel path to contacts R280, R2'Ie, wire I03, lower contact R32d, relay magnet R38, to line 65. Contacts R38a, R39a close to provide a holding circuit through the lower contacts R320 and R32d.

Thus, if both 10 ounce tubes contained the proper quantity when the 2 hole is sensed, both relay magnets R38 and R39 will be energized. Accordingly, for ingredient I employing three tubes, four checking relays R35, R36, R38 and R39 associated therewith are energized to indicate that the quantity called for by the perforations is contained in the tubes. As will be explained later, it is necessary for these four magnets to be energized in order that the machine may continue its operation, and provision is made so that, where any tube contained no measured quantity, its related checking relay must nevertheless be energized. This can be explained by assuming, for example, that no amount of ingredient I is called for, in which case the three related columns in Fig. 4 will be perforated in their zero positions.

Checking the fractional column for zero quantity.Tracing the circuit at the zero checking time, a circuit is traceable from the wire I06 (Fig. 8a), wire I0'I, upper contacts Rl9d, upper contacts RI8e, contacts RIIc, zero contacts R3312 closed at the zero time, relay magnet R35 to line 65.

Checking the units digit column for zero quantity.-At the same time upon closure of cam contacts CH5 (Fig. 8a) (timed to close at zero) a circuit is traceable from line 60, card lever relay con-' tacts R340 now closed, contacts CH5, contacts R2311, R2212, R2Id, R20d closed for a zero setting of the units and digit relays, wire II3, contacts Rl9e, RI8g, RlIe, wire II4, wire 9i, lower contacts R32a, magnet R36, to line 65. In this manner at zero time a test is made to determine that the relays are set at zero and, since as previousl explained the intake valve of the tube cannot be operated unless the relays are set at a significant value, the checking of the relays at this time for zero setting is an indication that the related tube has not been operated and does not contain a significant quantity.

Checking the tens digit column for zero quantitg.In the same manner a circuit is traceable from line 60 (Fig. 80), through checking card lever contacts R34d, contacts CI-I5a timed the same as contacts CH5, upper contacts R211, lower contacts R28cl (closed for zero settinghwire 99, lower contacts R32c, relay R38 to line 65. A parallel circuit is also traceable from the contacts R2 If, to contacts R2'Ig, lower contacts R28e, wire I03, lower contacts R32d, relay magnet R39, wire 82, to line 65. Thus, with several relays set to represent a zero quantity for the ingredient, the four checking relays are energized as explained.

Discharging the measured quantities Contacts R351), R361), R38b, R39b are closed when their respective checking relay magnets are energized. In series with these four contacts are shown four others generally designated R40b which are controlled by relay magnets generally designated R40 which in turn are controlled by circuit connections for a set of tubes handling another ingredient, for example, ingredient II. Where more ingredients are involved, additional checking contacts are included in series so that, when all ingredients or quantities have been checked, a circuit is completed through the series contacts when cam contacts CH3 close at the time indicated in Fig. 5, which is traceable from line 60, through contacts CH3 (Fig. 8) in series through the checking relay contacts, relay magnet RM, to line 65.

Magnet RM closes its contacts RMb completing a circuit from line 65, contacts Rdib, wire H (Figs. 8a, 8b), thence in parallel through all discharge valve solenoids 19 to line 60. This causes all the valves to open and the measured quantities in the various tubes l2 see Fig. 7) pass through the lines l5, IE to the common receptacle H, where the ingredients are combined. Contacts R41 (1 (Fig. 8) are closed to provide a holding circuit from line 65, magnet R4l, contacts Rlia, contacts R41), which are closed at this time, to line 60. Closure of contacts Rlb is due to the energization of relay magnet R4 which, as previously explained, is held energized through the contacts R3a which are closed as long as intake valve solenoids [4 (Fig. 8) are not energized.

Reading the next following card The first card sensed continues through the last pair of feedrollers into the discharge hopper and, near the end of the cycle, the cam contacts CR! (Fig. 8) close, completing a circuit from line 60, contacts CRI, contacts R48a, contacts R Hc, magnet R2, and the read clutch magnet SM in parallel to line 65. This initiates a cycle of operations during which the second card passes the reading brushes SB, and the S contacts operate, all of which contacts SI, Sla (Figs. 8a and 80) open to drop the holding circuits for the quantity rela magnets, so that a new setting may be made thereon as the card passes the sensing brushes. Contacts Slb (Fig. 8a) open to drop the holding circuit for the relay R35. Near the end of the passage of the first card past the sensing brushes, the contacts CH4 open to deenergize the relay magnet R32, and its several contacts shift to break the holding circuits for the checking relay magnets R38. R39, and R36.

At the end of the cycle during which the second card passes the brushes SB, the card feed mechanism comes to rest, and at this time the receptacle I! Fig. '7) may be removed and replaced by another. Also, during this reading cycle at the 2 time relay magnet R8 becomes energized at the 1 time (Fig. 8a) and closes its contacts R80 (Fig. 8), thereby momentarily energizing relay magnet R42, througha circuit from line 65, relay magnet R42, contacts R80, wire I I6 contacts Rdb to line 60. Magnet R42 closes its con- .tacts R42b, establishing a holding circuit for the magnet. After the card feeding mechanism has come to rest, the operator repeats the operation of closing the start contacts 83 (Figs. 8b, 8d) so that one or more of the contacts R3a (Fig. 8) open, which breaks the holding circuit to the discharge valve solenoids and also for the magnet R42. The purpose of the latter is to prevent repeat operation of the reading clutch after the first.

It will be apparent that, if the several checking relay magnets are not energized, the circuit to the discharge valve solenoid is not completed and operations are suspended, serving as an indication that there has been a disagreement which may be due to a number of mechanical 14 causes in the machine and as a. warning to the operator to inspect the apparatus. In Fig. 8b there is provided a pair of reset kcy contacts II! which the operator may depress to directly energize the discharge valve solenoids l9 tdclear the tubes and the card may then be again run through the machine with the operations repeated. There is thus provided an automatic operating record controlled dispensing apparatus, in which the selected quantities are separately measured and checked before beingcombined in a common receptacle and, if for any reason the quantities called for and the quantities selected are not in accord, operations are suspended before the ingredients are combined, so that where they are ultimately combined, there is an assurance they are combined in proper selected proportion.

While there have been shown and described and pointed out the fundamental novel features of the invention as applied to a single modification, it will be understood that various omissions and substitutions and changes in the form and details of the device illustrated and in its operation may be made by those skilled in the art without departing from the spirit of the invention. It is the intention therefore to be limited only as indicated by the scope of the following claims.

What is claimed is:

1. In a dispensing apparatus having a plurality of supply hoppers containing different substances, a plurality of intermediate stations, each for receiving one of said substances from the supply hoppers, a discharge station for receiving the substances from the intermediate stations, means for controlling the movement of the substances between the supply hoppers and the intermediate stations and means for controlling the movement of the substances between the intermediate stations and the discharge station, in combination with means for sensing a record card for designations representing quantities of a plurality of substances, means controlled by said sensing means for causing the first named controlling means to effect movement of the designated quantities of said designated plurality of substances into the related intermediate stations, a second means for sensing said record. means controlled thereby for checking the selected quantities of substances for conformity with the record designations, and means controlled thereby when conformity is found for causing operation of said second named controlling means to cause movement of the selected substances to said discharge station.

2. In an apparatus of the class described, a dispensing system having a plurality of compartments, a stack of record cards each bearing'desig-i nations representing commodities to be dispensed. w

a pair of record sensing stations past which the cards are fed in turn, means for feeding a card past the first sensing station. means controlled by said first sensing station for controlling the operation of the dispensing apparatus to dispense commodities into the compartments in accordance with the designations on the card, means effective when all selected commodities have been dispensed for causing the card to feed past the second sensing station, means controlled by said second sensing station for checking the commodities in the compartments for agreement with the designations on the card, and means controlled by said checking means for discharging the commodities from said compartments only when they are correct.

3. In a dispensing apparatus having a supply hopper containing a substance, an intermediate station for receiving said substance from the supply hopper, a discharge station for receiving the substance from the intermediate station, means for controlling the movement of the substance between the supply hopper and the intermediate station and means for controlling the movement of the substance between the intermediate station and the discharge station, in combination with means for sensing a record card for designations representing quantities of substance, means controlled by said sensing means for causin the first named controlling mean to efiect movement of the designated quantity of said substance into the intermediate station, a second means for sensing said record card, means controlled by said second sensing means for checking the selected quantity of substance for conformity with the record designations, and means controlled by said checking means when conformity is found for causing operation of said second named controlling means to cause movement of the selected substance to said discharge station.

4. In a dispensing apparatus, a supply hopper, a measuring hopper, a discharge hopper, means settable in accordance with any one of a plurality of amounts, devices controlled by said settable means for selecting and feeding the set amount from the supply hopper to the measuring hopper, said measuring hopper being arranged to retain the amount fed thereto for a time interval, further devices controlled by said settable means and operative during the retention of the measured amount for verifying the selected amount, means controlled by said measuring means for initiating and effecting an operation of said further devices, and means controlled by said verifying means, only when the amount selected is correct, for causing the selected amount to be discharged to the discharge hopper.

5. In a dispensing apparatus, a fluid reservoir, a meaasuring tube, a device settable in accordance with an amount of fluid, mechanism controlled thereby for causing the represented amount of fluid to flow from the reservoir to said measuring tube, said tube being arranged to retain the fluid therein, separate automatically operating mechanism operative after entry of the selected amount into said tube and during retention thereof for verifying the correctness thereof, means controlled by said first named mechanism for initiatin and effecting an operation of said verifying mechanism, a discharge container, and means controlled by said verifying mechanism for causing the fluid in the tube to be discharged into said container only when the quantity thereof is correct.

6. In a dispensing apparatus, a fluid reservoir, a measuring tube, a device settable to correspond to any one of a number of selected levels of the tube, means for causing fluid to flow from the reservoir into the tube, means controlled by said device when the fluid in the tube reaches said selected level for terminating said flow, separate mechanism operative after termination of said flow for thereafter checking the level of the fluid in the tube with the settable device, means controlled by said terminating means for initiating and effectin an operation of said checking mechanism, and means controlled thereby when in agreement for causing discharge of the fluid from the tube.

7. In an apparatus of the class described, selectively operable dispensing mechanism, devices settable in accordance with commodities and quantities to be dispensed, mechanism controlled thereby for actuating said dispensing mechanism toseparately and concurrently convey each represented commodity in the required quantity to a checking station, separate means for each commodity for ascertaining when the conveying op eration for the related commodity is'terminated, devices controlled jointly by all the ascertaining mean and automatically operative upon termination of conveying of all commodities for checking the commodities and their quantity at said station with said settable devices, means for conveying the selected commodities to a delivery point, and means controlled by said checking devices for rendering said conveying means efl'ective only upon ascertaining that all of the selected commodities and their quantities are correct.

8. In an apparatus of the class described, selectively operable dispensing mechanism, a record containing designations representing commodities and variable quantities thereof, mechanism controlled by said record for actuating said dispensing mechanism to separately and concurrently convey each represented commodity in the required quantity to a checking station, separate means for each commodity for ascertaining when the conveying operation for the related commodity is terminated, devices controlled jointly by all the ascertaining means and automatically operative upon termination of conveying for checking the conveyed commodities and their quantity with the record, means for conveying the selected commodities to a delivery point, and means controlled by said checking devices for rendering said conveying means effective only upon ascertaining that all of the selected commodities and their quantities are correct.

9. In a mechanical dispensing system provided with selective control apparatus for selectively operating the dispensing system to concurrently deliver different wanted commodities to a check ing station, said quantities being retained thereat, preset devices adjusted to represent the wanted commodities, means for ascertaining when delivery of all commodities is completed, mechanism controlled by said preset devices and said ascertaining means when all commodities are delivered for automatically checking the commodities at said checking station, and delivery means controlled thereby and operative to delivery the commodities from the checking station to a destination point only when all the commodities dispensed are correct.

10. In an apparatus of the class described, a commodity supply source, a device settable in accordance with selected commodities in variable quantities, a checking station, mechanism controlled by said settable device for conveying the selected commodities in the selected quantities to the checking station, devices at the station for maintaining the different commodities separate from one another, means for ascertaining when delivery of all commodities is completed, means controlled by the settable devices and said ascertaining means when all commodities are delivered for checking the commodities at the checking station for correctness of selection and correctness of quantity, and means controlled by the checking means for discharging the commodities to a common receiver only when all the commodities are correct.

11. In an apparatus of the class described. a

plurality of commodity supply sources, a checking station having a separate compartment for each possible commodity, control mechanism for dispensing selected commodities and conveying the same to the related compartments, means for discharging the commodities from said compartments to a common container, means settable in accordance with which compartments are to receive commodities and which are not, mechanism at said checking station cooperating with said settable means for ascertainin the presence of selected commodities in their respective compart-' ments and the absence of commodities in the remaining compartments, and means controlled thereby for rendering said discharging means effective only when the relation is in accordance with the setting.

12. In a fluid dispensing system, a fluid reservoir, a receiving compartment, a fluid level indicator associated with said compartment, a device settable in accordance with a selected quantity of fluid, means controlled by said settable device only when it is set to represent a significant quantity for initiating the flow of fluid into the compartment, means controlled by said indicator when the quantity of fluid equals the set quantity for terminating the-flow, further means effective a predetermined period after termination of the flowfor checking the quantity of fluid in the compartment with the settable quantity through said indicator, means controlled by said terminating means for initiating and effecting an operation of said checking means, and means controlled by said checking means for discharging the fiuid from the compartment.

13. In a dispensing system, a supply source, a receiving compartment, a quantity indicator associat-ed with said compartment to indicate the quantity of a commodity therein, a device settable in accordance with a selected quantity of a commodity, means controlled jointly by said settable device when it is set to represent a significant quantity and by said indicator when it is set to represent a predetermined quantity, for initiating the transfer of the commodity into the compartment, means controlled by said indicator when the quantity entered equals the set quantity for terminating the transfer, further means eifective after termination of said transfer for checking the quantity of the commodity in the compartment with the settable quantity through said indicator, and means controlled by said checking means for discharging the commodity from the compartment.

14. In a dispensing system, a supply source, an intermediate destination, a final destination, a first conveying means between the supply source and said intermediate destination, a second conveying means between the intermediate and final destinations, a control device for each conveying means, devices settable in accordance with a desired quantity of the commodity, means for operating the control device of the first conveying means to cause conveyance of a quantity of commodity to the intermediate destination, means at said intermediate destination responsive to the presence of commodity thereat, stopping means jointly controlled by said responsive means and said settable devices for operating the control device of the first conveying means to interrupt conveyance of commodity, checking means jointly controlled by said responsive means and said settable devices for operating the control device of the second conveying means only when the quantity of commodity at said intermediate destination agrees with the quantity set up, and means controlled by said stopping means for initiating and effecting an operation of said checking means.

15. In a dispensing apparatus having a supply hopper containing a substance, an intermediate station for receiving said substance from the supply hopper, and means for controlling the movement of the substance between the supply hopper and the intermediate station in combination with means settable to represent a quantity of substance to be moved from the supply hopper to said intermediate station, means at the station to indicate the quantity of substance at the station, means for testing said settable means to ascertain whether it is set to represent a significant quantity,. further means for testing said indicating means at the station, means jointly controlled by both said testing means for rendering the said controlling means effective to initiate movement of substance to the station only when the settable means represents a significant quantity and the station contains no substance, and means controlled by the settable means for subsequently disabling said controlling means when the quantity set up has been moved to said station.

CLARENCE R. MANNING.

REFERENCES CITED The following references are of record in the file of this patent:

UNITED STATES PATENTS Date

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US781828 *May 24, 1904Feb 7, 1905Adolf OhmanCoin-controlled apparatus for delivery of liquids.
US1699562 *Jul 8, 1924Jan 22, 1929Courtioux Jean PierreMeasuring and delivering apparatus for liquids
US1846852 *Feb 28, 1929Feb 23, 1932Dubreuil GastonLiquid measuring apparatus
US1999439 *Feb 10, 1932Apr 30, 1935Prosperity Co IncLiquid or water level control
GB433241A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2571655 *Dec 13, 1947Oct 16, 1951Gen Motors CorpApparatus for mixing rubber compounds and the like
US2785836 *Feb 27, 1953Mar 19, 1957L M Leathers SonsLiquid dispenser
US2868491 *Nov 1, 1955Jan 13, 1959Fairbanks Morse & CoBatch weigher
US2923438 *Jun 9, 1958Feb 2, 1960Martin Senour CompanyAutomatic paint manufacturing machine
US2934102 *Jun 6, 1958Apr 26, 1960Walter O MartinLoading and unloading system for liquids
US2938701 *Apr 21, 1954May 31, 1960Fairbanks Morse & CoBatch weighing automatic weighing systems
US3101801 *Jan 11, 1960Aug 27, 1963Paul C MillerMaterials proportioning device
US3138754 *Jun 9, 1958Jun 23, 1964Howe Richardson Scale CoPrinted circuit formula card systems and their components
US3156312 *Feb 8, 1957Nov 10, 1964Heltzel Steel Form And Iron CoApparatus for automatically discharging and weighing pre-selected plural materials
US3173504 *Sep 13, 1955Mar 16, 1965Fairbanks Morse IncCard operated batcher
US3173505 *Nov 1, 1955Mar 16, 1965Fairbanks Morse IncElectrical batching system
US3174504 *Sep 14, 1959Mar 23, 1965Brown John ConstrApparatus for controlling flow of material
US3203591 *Mar 27, 1962Aug 31, 1965Magnetic Controls CoBatch weighing control unit
US3233973 *Mar 29, 1962Feb 8, 1966Fuller CoApparatus and method for processing material
US3247916 *May 3, 1965Apr 26, 1966Chilton John MoorhouseAutomatic weighing apparatus
US3670923 *May 4, 1970Jun 20, 1972Roland J Hawes JrControl system for multiple ingredient dispensing apparatus
US4265858 *Mar 31, 1976May 5, 1981Nordson CorporationMetering and mixing apparatus for multiple component
DE1139725B *Nov 2, 1957Nov 15, 1962Siemens AgSelbsttaetige Steuereinrichtung fuer Anlagen zur Herstellung von Mischungen, insbesondere fuer die Kraftfutterherstellung
Classifications
U.S. Classification222/52, 194/213, 222/129, 422/106, 177/DIG.300, 235/419, 177/70, 222/2, 177/68
Cooperative ClassificationY10S177/03