Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2449422 A
Publication typeGrant
Publication dateSep 14, 1948
Filing dateApr 15, 1944
Priority dateApr 15, 1944
Publication numberUS 2449422 A, US 2449422A, US-A-2449422, US2449422 A, US2449422A
InventorsLeslie N Smith
Original AssigneeHarshaw Chem Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Electrodeposition of nickel
US 2449422 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

SeptI 145 1948.

L. N. SMITH ELECTRODEPOSITION OF NICKEL Filed April 15V; 1944 Patented Sept. 14, 1948 ELECTRODEPOSITION F NICKEL Leslie N. Smith, Cleveland Heights, Ohio, assignor to The Harshaw Chemical Company, Elyria, Ohio, a corporation of Ohio Application April 15, 1944, serialfNo. 531,163

' 2 claims. (ci. 20o-49) 1 This invention relates' to electrodeposition of nickel and is also applicable to electrodeposltion of cobalt. More specifically, the invention relates to an improved process for electrodepositing nickel or cobalt by the use of insoluble anodes, es-

pecially in electroplating on sheet steel in long strips.

One object of theL invention is to secure the advantages which are inherent in the use of insolu- Y ble anodes while avoiding to a large extent the disadvantages which' have attended such met-hods heretofore. More specifically,v it is an object of the invention to provide a process whereby the concentration of the electrolyte with respect to nickel or cobalt can be maintained and a very high current density employed, utilizing a high chloride electrolyte and without excessive loss of chlorine. A further object is to provide for Superior eiiectiveness in the solution of the metal whereby it becomes practical to use highly pure metal, such as electro-sheet nickel or other electrolyticallyl deposited forms of nickel or cobalt, or mixtures thereof.

Still further objects'of the invention will be in part apparent and in part pointed out hereinafter in connection with the accompanying drawings,

` wherein Fig. 1 is a diagrammatic elevation of an electroplating tank and dissolving tank and showing schematically the connections between them for circulating liquids and vapors, and Fig. 2 is a transverse section taken through the 'plating tank of Fig. l, centrally thereof,

Referring now to the drawings, the reference character A indicates generally a plating tank, While the reference character B indicates generally a dissolving tank. The plating tank consists of a. receptacle indicated generally by the numeral I0 through which may be led a continuous strip Il of steel or other metal to be plated. This strip of steel may be guided through the tank by means of` roller guides I2 or in any other suitable fashion. Adjacent to the horizontal reach of the steel strip II is an insoluble electrode I3 which may be composed of any conductive material which is not attacked by the solution, such for example as platinum-clad steel. The insoluble'anode I3 will be suitably spaced from the strip to be plated and current will` be passed between the anode and the strip by connecting a. suitable source of current, one terminal to the insoluble anode and the other terminal to the roller guides I2. Adjacent to the side walls of the tank above the level of the plating solution are downwardly opening, channel shaped gas collectors I4 provided with outlet pipes i5 connected Y with nickel chloride or cobalt chloride, or a mix-` to a pump I6, which is adapted to place a suction on the gas collectors to draw in gases bubbling up through the solution along the sides of the tank and eject them through the pipe I1 into the bottom of the dissolving tank B through a suitable distributing outlet I8, which in its simplest form may be merely a continuation of the pipe I1 curved into a spiral in the bottom of the dissolving tank B and provided with small outlet openings in the top thereof.

Connected to the bottom of the plating tank A is a pipe I9 which leads to al pump 20. The pump 2Il withdraws solution from the plating tank A and delivers the same through the pipe 2l to the spray head 22, which can be of construction similar to the outlet I8 just described. The solution is allowed to return from the dissolving tank B through a pipe 23. The dissolving tank B may be vented througha vent pipe 24 in order to dispose of any chlorine and other gases not absorbed. The dissolving tank B may be filled with pieces of nickel or cobalt indicated at 25, only the upper and lower portions ofthe metal pack in the dissolving tank being indicated. Such metal may rest on a suitable perforated plate or screen to prevent the interference of distribution of gas bubbles bythe pieces of nickel or cobalt.

In operation, the dissolving tank is charged ture of the chlorides of nickel and cobalt, or if desired, with a mixture of the sulfates and chlorides of nickel or cobaltor both, the chlorides however accountingior at least one-third of the nickel present. I preferably use chlorides only. The current is connected as above indicated and the strip II is caused to pass through the solution at a speed such as to apply the desired thickness of metal. In this process, chlorine will be evolved and will pass from beneath the insoluble anode I3 upwardly along the sides of the tank. This chlorine will keep the solution oxidized and prevent pitting. Plating under the conditions indicated Valso produces a degree of brightness of deposit beyond that of the normal Watts or gray nickel which are kept wet with solution through the I spray head 22. The chlorine thus has an opportunity to -be absorbed in the solution and react with the metal whereby metal chloride is formed and goesv into solutionA thus enriching the solu#k 3 tion with respect tc metal. By circulating the solution at a suitable rate, the metal concentration can thus be maintained at the desired level. By the useof this process, I am able to dissolve electrolytic nickel and cobalt which are of such purity, for example, nickel electro-sheet, that they are not satisfactory for useas anodes in ordinary plating solutions.A It is, of course, possible and indeed quite easy to dissolve those forms of nickel and cobalt which are easily dissolved, such for example as the regular nickel anodes now in general use.

A suitable solution for the realization of the invention might be termed an all-chloride solution and be of the following composition:

A suitable mixed chloride-*sulfate bath may be composed as follows:

Nich-61120.--- 75-350 grams, suitably 150 grams NiSO4'6H2O 75-350 grams, suitably 150 grams Formic acid 0-15 grams, suitably 6 grams Boric aeld 25-50'g./l., suitably 37.5 g./l. H2O to make" 1000 cc. v pH 1-5, suitably 3 current density. 10o-zooo amps/sq. fn., suitably 1000amps./sq. ft. f Temperatura-.. 1Z0-200 F.

What I claim is:`

l. A plating process adapted foliutilization of diillcultly soluble masses of electrolytic nickel metal in electrodeposition of nickel comprising the steps of electrodepositing nickel from a body of'acid nickel electrolyte containing nickel chloride whereby chlorine is evolved and the nickel chloride concentration of said electrolyte tends to be reduced and adding nickel chloride to said electrolyte to counteract the tendency to reduced concentration thereof by passing chlorine so evolved and electrolyte from said body of electrolyte containing nickel chloride equivalent to from 75 to 350 grams per liter of NiClz-GI-lzO into simultaneous contact with masses of diili-v cultly soluble electrolytic nickel whereby to `dissolve nickel from such masses as nickel chloride and returning such electrolyte with its resulting increased nickel chloride content to said body of electrolyte.

2. A plating process adapted for utilization of diilicultly soluble masses of electrolytic nickel metal in electrodeposition of nickel comprising the steps of electrodepositing nickel from a body of acid nickel electrolyte containing nickel chloride by passing current through said electrolyte from an insoluble anode to a cathode whereby chlorine is evolved and the `nickel chloride concentration of said electrolyte tends to be reduced and adding nickel chloride to said electrolyte to counteract the tendency to reduced concentration thereof by passing chlorine so evolved'and electrolyte from said body of 'electrolyte containing nickel chloride equivalent to from 75 to 350 grams per liter of NiClz-6HaO- into simultaneous contact with masses of diillcultly soluble electrolytic nickel whereby to dissolve nickel from such masses as nickel chloride and returningU such' electrolyte with its resulting increased nickel chloride content to said body of electrolyte.`

LESLIE N. SMITH.'

REFERENCES CITED I The following references are of record inthe le of this patent:

UNITED STATES PATENTS Great Britain 1920 Number Name Date 714,861 Browne Dec. 2; 1902 1,137,874 McCaskell May 4,1915 1,065,090 Werth June 17, l1913 1,386,094 Dow Aug. 2, 1921 1,456,615 Belcher et al. May 29, 1923 1,516,122 Scarles Nov. 18, 1924. 1,608,706 Madsen Nov. 30, 1926 1,900,534 Wilkins Mar. 7, 1933 Y 2,128,548 White Aug. 30,1938 2,200,987 Hubbell et al. May 14, 1940 2,393,516 Burns Jan. 22, 1946 FOREIGN PATENTS Number Country Date 22,355 Great Britain 1896 154,471

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US714861 *Jan 27, 1899Dec 2, 1902Canadian Copper CompanyProcess of electrolytic separation of copper and nickel.
US1065090 *Sep 4, 1912Jun 17, 1913Federico WerthApparatus for uniformly coating strips of metal, wire, and the like under continuous action.
US1137874 *Jun 2, 1914May 4, 1915Jasper A MccaskellProcess of leaching ores.
US1386094 *Sep 3, 1918Aug 2, 1921Dow Chemical CoElectrolytic apparatus
US1456615 *Jun 7, 1922May 29, 1923Charles Page PerinPurifying solutions of iron and recovering metals from such solutions
US1516122 *Mar 1, 1922Nov 18, 1924California Wire Cloth CompanyGalvanizing apparatus
US1608706 *Apr 26, 1919Nov 30, 1926Madsenell CorpElectrodeposition of metals
US1900534 *Aug 21, 1928Mar 7, 1933Ind Dev CorpElectrolytic apparatus
US2128548 *Jul 23, 1937Aug 30, 1938White Clarence BProcess for recovery of metals from scrap and metallurgical residues
US2200987 *Dec 1, 1937May 14, 1940Hubbell John PElectrogalvanizing process
US2393516 *Aug 19, 1943Jan 22, 1946Indiana Steel & Wire CompanyProcess for electroplating
GB154471A * Title not available
GB189622355A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2541721 *Apr 22, 1948Feb 13, 1951Int Nickel CoProcess for replenishing nickel plating electrolyte
US2579636 *Aug 27, 1948Dec 25, 1951Weisberg LouisElectrodeposition of nickel
US3128868 *Aug 1, 1960Apr 14, 1964 Magnetic
US3245886 *Jul 29, 1963Apr 12, 1966Dehydag GmbhElectroplating process and self-regulating electroplating baths therefor
US3257294 *Aug 3, 1962Jun 21, 1966Dehydag GmbhAcid metal electroplating process and baths
US3488264 *Sep 27, 1968Jan 6, 1970Kewanee Oil CoHigh speed electrodeposition of nickel
US4045304 *May 5, 1976Aug 30, 1977Electroplating Engineers Of Japan, Ltd.High speed nickel plating method using insoluble anode
US4159926 *Nov 30, 1977Jul 3, 1979Bnf Metals Technology CentreNickel plating
US4181580 *Nov 23, 1977Jan 1, 1980Nippon Steel CorporationProcess for electro-tin plating
US4324623 *Jan 7, 1981Apr 13, 1982Koito Seisakusho Co. Ltd.Method and apparatus for replenishing an electroplating bath with metal to be deposited
US7846316 *May 25, 2006Dec 7, 2010Enthone Inc.Method for supplying a plating composition with deposition metal ion during a plating operation
US20060266654 *May 25, 2006Nov 30, 2006Enthone Inc.Method for supplying a plating composition with deposition metal ion during a plating operation
Classifications
U.S. Classification205/101, 204/DIG.130, 204/234, 205/269
International ClassificationC25D21/18
Cooperative ClassificationY10S204/13, C25D21/18
European ClassificationC25D21/18