Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2598525 A
Publication typeGrant
Publication dateMay 27, 1952
Filing dateApr 8, 1950
Priority dateApr 8, 1950
Publication numberUS 2598525 A, US 2598525A, US-A-2598525, US2598525 A, US2598525A
InventorsFox Le Roy G
Original AssigneeE & J Mfg Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Automatic positive pressure breathing machine
US 2598525 A
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

May 27, 1952 LE ROY G. FOX

AUTOMATIC POSITIVE PRESSURE BREATHING MACHINE 2 SHEETS-SHEET 1 Filed April 8, 1950 JNVENTOR. 91mm 2 SHEET$SHEET 2 INVENTOR. 07 01- Gabi-W pi H. .U

AUTOMATIC POSITIVE PRESSURE BREATHING MACHINE W N N e M .3 & Q Q n Q Q I m k Q a m 5 m N l I. m u n R W NM... em a May 27, 1952 Filed April 8 1950 Patented May 27, 1952 scroivmr c rosrrrvs PRESSURE BREATHING MACHINE Le Roy G. Fox, Glendale, Calif., assignor to E 83 I Manufacturing 00., Glendale, Calif.,. a corporation of California Application April 8, 1950,,Seriai No; 154;8'4:L

6'Claims. 1

My invention relates to an automatic positive pressure breathing machine, and more specifically to a device to be used as a therapeutic machine, as a resuscita-tor or an oxygenator, and which can be used to supply oxygen to aviators at high-altitudes.

Another object of my invention is to provide a device into which either powdered or liquid medicines can be inserted in: the flow of oxygen given to a patient to force the medicines into his lungs Another object of my invention is to provide a machine which will force drugs carried by oxygen into partially inflated lungs.

Another object of my invention is to provide a device which will automatically adjust to the size oi the patients lungs.

Another object of my invention is to provide a device which will. give a warning signalif the patients throat or lungs are congested.

Q-ther objects and advantages of my inventionwill be apparent from the following description ofthe preferred embodiments thereof.

In the drawings:

Figure- I is a sectional view of my machine with anattachment placed thereon for supplying powdered drugs, showing my device in an exhaling, position;

Figure 2 is a similar sectional View showing the device in the inhaling. position;

Figure 3' is a similar sectional view to Figure 2 showing the device connected to a nebulizer for supplying liquid medicines;

Figure 4' is a perspective View;

Figure 5 is a sectional view of amodification of my invention showing the device in the exhaling position taken on the line 5-5 of Figure 4.

Figure 6 is a sectional view similar to Figure 5 in the inhaling position;

Figure 7' isa sectional view taken on the line T'l' cf'higure 6;

Figure 8' is a sectional View of the powered drug dispenser; and

Figure 9 is a cross section or" a nebulizer.

An automatic positive pressure breathing ma chine constructed in accordance withmy invention has an outer case I forming two chambers, 2 and 3, separated by a diaphragm i. A third chamber 6 in the case L is separated from the chambers 2- and 3 by the partitions? and 8. The chamber 2 has port into which is inserted a tube iii to connect: breathi ng mask Ii. The chamber 2 has port I? to atmosphere, which is opened or closed by a flat: valve 1'3 attached to the plate M on the diaphragm 4'.

Connecting the chambers 6' and 2 is a passage [5 opened or closed by a valve it carried upon a push rod IT. 'fhrouglr'i the partition 8 is a port ['8' which connects the chambers 6 and 3. The push rod I 1 extends through the port l8' and carries a valve [9- thereon to seal the port I8.

A port 253" from the chamber 3 provides aineans iorattaching' a rubber halloon 2T so that oxygen can be driven from the chamber. 3 into the balloon. Port 22 provides an opening. to the at mosphere from the chamber 3' and is closed by a valve 2 attached to a plate 25 onthe diaphragm d. The connecting rod between the valve 24' and the plate 25 has two arms and 28' loosely connected thereto, which extend out- Wardly to the push rod l1 and a post 29'. The arms 27 and 28 are made of resilient spring niaterial so that when. the diaphragm moves: from one position to the" other as shown Figures 1 and 2 they act as" a snap toggle. When the diaphragm 4' is moved from one position to the other the arm- 2"! will raise or" lower the push rod I1, opening or closing, as the case may be, the valves f6 and It: The diaphragm 4 also opens and closes the valves l3 and 24.

A port 36 from the" chamber 6 provides an opening into which a tube 3f frbni an oxygen regulator is inserted to supply oxygen to the chamber 6. y

Inthe use of my device as a simple resuscitator oxygenator or for high altitude oxygen breathing the'm'asli H is placed over the patients face so-that' there isno leakage of air around its perimeter. The oxygen enters the chamber 6 through the port 30} and passes through the chamber 6-; the port [81 into the chamber 3 and the' rubber balloon 2L In this position the dieiphragm is the positionshown in Figure 1', the port 22- is closed h'y the valve 24- and the portl2 is open; Also thevaive: I 6 is"- closed and the oxygen passes directly into the rubber balloo'n 21,

When the pressure the chamber 3 is higher than the pressure the chamber 2' and there'- fore in the patients lungs; the" diaphragm 4' will snap over into the position shownin' Figure 2, closing the valves I- 3= and I9 and: opening the valves I6 and 22. In thisiposition the oxygen flows from the chamber 6 through the passage 15 into the chamber 2 and through the tubel0 into the mash H and into the patientslungs. The amount of pressure and the speed of the passage of this oxygen are regulated by the ordi naryvalve member on the oxygen: bottler \7Vl 1e rt the pressure in the patients. lungs" arrives at the desired maximum, for example, three or four ounces per square inch, the diaphragm 4 will snap to the position shown in Figure 1. After the oxygen in the rubber balloon 2| has escaped through the valve 24 and through the port 22 to the atmosphere the pressure in the patients lungs and therefore in the chamber 2 is at its maximum pressure and the diaphragm 4 will snap to the position shown in Figure 1, closing the valves I6 and 24 and opening the valves I9 and I3, again filling the rubber balloon 2| with oxygen and allowing the patients natural response to exhale out through the mask tube ||l into the chamber 2 and out through the port l2.

It should be noted that none of the valves or working mechanism except the valve |3 is subject to any possible clogging as the patients exhalation never strikes any of the mechanical portions of the breathing machine.

When it is desired to use my invention to administer drugs, the hand valve 32 is opened to permit oxygen to pass from the valve |6 into a tube 33, leading to a special nebulizer 34. The nebuilizer 34 has a body 35 into which a small cup 36 is threaded. In this cup 36 is placed the powdered drug 31. A plunger 38 is slidably positioned in the body 35 and has a port running around its perimeter at 39 to permit the oxygen entering at 40 from the tube 33 to pass on out through the port 4| through the tube 42 into an opening on the mask I.

It should be noted that I have shown in Figures 1 and 2 the tube 42 connected with the mask When my device is used for a simple oxygenator, resuscitator or high altitude breathing machine, there is no opening in the tube l0 for the tube 42.

When the patient is breathing oxygen and it is desired to give him powdered medicine, the plunger 38, which is held in the position shown in Figure 8 by a spring 43 between the top of the body 35 and the flange 44 upon the plunger 38, is forced downwardly by pressure upon its top surface 45 until the bore 46 aligns with the port 40 so that the oxygen passes through the port 46 down the passage 41 into the cup 35 where it picks up the powdered drug 31 and forces the same out through the passage 48 into the tube 42 and thus into the mask I.

An advantage of my invention lies in the fact that no provision is necessary to compensate for size of a patients lungs as a patient with normal lungs will have oxygen forced therein by my device when the balloon 2| is filled and he will exhale until the balloon 2| is empty. However, a patient with small lungs will never exhale sufficiently to completely empty the balloon 2| and the drop in pressure in the chamber 2 will be faster causing the diaphragm 4 to reverse and start oxygen into his lungs before the balloon 2| is empty. This leaves a residue of oxygen in the balloon 2|, which counter-balances the small capacity in the lungs and reverses the diaphragm 4 before an excess of oxygen is forced into the lungs. However, for certain medical precautions I have added an auxiliary control shown in Figures 5 and 6. Mounted on the exterior of the case I is a valve plate 50 rotatably held on the post 5|, which can completely close the outlet 22. As the plate 50 is rotatably positioned upon the post 5| and is held in position to close the port 22 by a spring 52, it can be rotated to open or close the port 22 to any degree from clear open to clear closed to regulate the speed with which 4 the oxygen passes from the rubber balloon 2| to the atmosphere.

In Figure 3 I disclose a nebulizer for liquid medicines which can be used in place of the nebulizer 34. The one disclosed in the drawings is a standard nebulizer for use in the other types of machines and although I have shown it in the drawings, it is well known in the art and needs no description here.

In the modifications shown in Figures 5 and 6, the only changes in the operation of the diaphragm 4 is to place a spring 53 to act as a positive snapover on the toggle.

One of the advantages of my invention is that whenever the patients throat is congested so that oxygen cannot be forced therein the diaphragm and toggle will snap back and forth rapidly at all times, thus giving a warning buzz to the user that a congestion exists which prevents the oxygen from entering the patients lungs. Upon such warning the mask H can be removed and an aspirator used to clear the throat before the mask is reapplied.

While I have described the preferred embodiments of my invention, I do not wish to be limited to any of the details herein set forth except as described in the following claims.

I claim:

1. In a breathing machine, a case forming three chambers, one of said chambers connected to a supply of oxygen under pressure, said chamber having ports connecting with the other two chambers, said ports being alternately opened or closed by valves connected by a push rod whereby one valve is open when the other is closed, the other two chambers being divided by a diaphragm, both of said chambers having outlet ports equipped with valves to close said ports, said valves being connected to be operated by said diaphragm so that one of said valves is open when the other is closed, means connecting said diaphragm and said push rod to move said push rod and open the valve from the first chamber to the chamber whose outlet port is closed, ports to connect one of said diaphragm-separated chambers with a breathing mask and the other chamber with an expansible balloon.

2. In a breathing machine, a case, partitions in said case to define a chamber, a diaphragm between one of said partitions and the exterior wall of said case to define two diaphragm-separated chambers, said first named chamber having a connection to a source of oxygen under pressure, said chamber having ports connecting with the other two chambers, said ports being alternately opened or closed by valves connected by a push rod whereby one valve is open when the other is closed, both of said diaphragm-separated chambers having outlet ports equipped with valves to close said ports, said valves being connected to be operated by said diaphragm so that one of said valves is open when the other is closed, means connecting said diaphragm and said push rod to move said push rod and open the valve from the first chamber to the chamber whose outlet port is closed, ports to connect one of said diaphragm-separated chambers with a breathing mask and the other chamber with an expansible balloon.

3. In a breathing machine, a case divided into two chambers by partitions, one of said chambers having a connection to a supply of oxygen and the other chamber divided by a pressure responsive diaphragm, outlet ports in the last mentioned chamber on both sides of said diaphragm,

valves for said ports connected by push rods to opposite sides of said diaphragm, valves connected by a push rod to deliver oxygen from said first mentioned chamber to both sides of said diaphragm when the outlet valve on the responsive side of said diaphragm is closed, said valves being connected to be operated by said diaphragm, and ports on each side of said diaphragm adapted to connect a breathing mask and an expansible member.

4. In a breathing machine, a case divided into two chambers by partitions, one of said chambers having a connection to a supply of oxygen and the other chamber divided by a pressure responsive diaphragm, outlet ports in the last mentioned chamber on both sides of said diaphragm, valves for said ports connected by push rods to opposite sides of said diaphragm, valves connected by a push rod to deliver oxygen from said first mentioned chamber to both sides of said diaphragm when the outlet valve on the responsive side of said diaphragm is closed, said valves being connected to be operated by said dia phragm, and ports on each side of said diaphragm adapted to connect a breathing mask and an expansible member, a breathing mask connected to one of said ports and an expansible member attached to the other.

5. In a breathing machine, a case divided into two chambers by partitions, one of said chambers having a connection to a supply of oxygen and the other chamber divided by a pressure responsive diaphragm, outlet ports in the last mentioned chamber on both sides of said diaphragm, valves for said ports connected by push rods to opposite sides of said diaphragm, valves connected by a push rod to deliver oxygen from said first mentioned chamber to both sides of said diaphragm when the outlet valve on the responsive side of said diaphragm is closed, said valves being connected to be operated by said diaphragm, ports on each side of said diaphragm adapted to connect a breathing mask and an expansible member, a breathing mask connected to one of said ports and an expansible member attached to the other, a port to connect a nebulizer to the port connecting said first chamber and said second chamber on the side of said diaphragm to which said breathing mask is connected, and a nebulizer connected between said port and said mask.

6. In a breathing machine, a case divided into two chambers by partitions, one of said chambers having a connection to a supply of oxygen and the other chamber divided by a pressure responsive diaphragm, outlet ports in the last mentioned chamber on both sides of said diaphragm, valves for said ports connected by push rods to opposite sides of said diaphragm, valves connected by a push rod to deliver oxygen from said first mentioned chamber to both sides of said diaphragm when the outlet valve on the responsive side of said diaphragm is closed, said valves being connected to be operated by said diaphragm, ports on each side of said diaphragm adapted to connect a breathing mask and an expansible member, a breathing mask connected to one of said ports and an expansible member attached to the other, a port to connect a nebulizer to the port connecting said first chamber and said second chamber on the side of said diaphragm to which said breathing mask is connected, and a nebulizer connected between said port and said mask, said nebulizer comprising a body having an inlet and an outlet, a plunger valve, a cup adapted to contain a drug, said plunger valve normally directly connecting said inlet and said outlet, but movable to port oxygen from said inlet into said cup and then to said outlet, and hence to said breathing mask.

LE ROY G. FOX.

No references cited.

Non-Patent Citations
Reference
1 *None
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2695609 *Jan 28, 1952Nov 30, 1954Garrett CorpBreathing apparatus
US2814290 *Apr 25, 1952Nov 26, 1957Bendix Aviat CorpRespiratory apparatus
US2814291 *Apr 25, 1952Nov 26, 1957Bendix Aviat CorpRespiratory apparatus
US2870763 *Mar 15, 1957Jan 27, 1959Stanton Philip LPressure breathing therapy apparatus
US3068856 *Feb 14, 1958Dec 18, 1962Bird Forrest MFluid control device
US3083707 *Feb 13, 1956Apr 2, 1963Henry W SeelerDevice for treatment of pulmonary diseases
US3088455 *Nov 16, 1959May 7, 1963British Oxygen Co LtdApparatus for controlling or assisting respiration
US3105488 *Sep 17, 1959Oct 1, 1963Richards Albert MRespiratory devices
US3189027 *Nov 29, 1962Jun 15, 1965Bartlett Jr Roscoe GAnti-suffocant apparatus for oxygen supply systems
US3280832 *Nov 18, 1963Oct 25, 1966Retec IncCycling valve
US3301255 *Oct 18, 1963Jan 31, 1967Thompson Harris AMethod and apparatus for application of nebulized medication in positive pressure respiratory equipment
US4572175 *Jul 20, 1983Feb 25, 1986Flynn Stephen DMulti-mode demand valve
US4722326 *Jan 13, 1986Feb 2, 1988Ruderian Max JVibratory therapeutic device
US4879996 *Jan 13, 1987Nov 14, 1989Harwood Jr Van NClosed circuit breathing apparatus
US5161524 *Aug 2, 1991Nov 10, 1992Glaxo Inc.Dosage inhalator with air flow velocity regulating means
US5458135 *Jul 8, 1992Oct 17, 1995Inhale Therapeutic SystemsMethod and device for delivering aerosolized medicaments
US5540221 *Nov 17, 1994Jul 30, 1996Respironics, Inc.Resuscitator
US5775320 *Dec 22, 1995Jul 7, 1998Inhale Therapeutic SystemsMethod and device for delivering aerosolized medicaments
US5780014 *Mar 13, 1996Jul 14, 1998Inhale Therapeutic SystemsMethod and apparatus for pulmonary administration of dry powder alpha 1-antitrypsin
US5993783 *Jul 13, 1998Nov 30, 1999Inhale Therapeutic SystemsAerosols
US5997848 *Mar 21, 1997Dec 7, 1999Inhale Therapeutic SystemsMethods and compositions for pulmonary delivery of insulin
US6051256 *May 8, 1996Apr 18, 2000Inhale Therapeutic SystemsDispersible macromolecule compositions and methods for their preparation and use
US6138668 *Nov 26, 1997Oct 31, 2000Inhale Therpeutic SystemsMethod and device for delivering aerosolized medicaments
US6423344Feb 4, 2000Jul 23, 2002Inhale Therapeutic SystemsDispersion of dry powders, atomizing, drying and accumulation of particles
US6509006Oct 26, 1999Jan 21, 2003Inhale Therapeutic Systems, Inc.Readily and reliably dispersible dry powder biocompatible particles of alpha-1-antitrypsin
US6543448May 30, 2000Apr 8, 2003Inhale Therapeutic Systems, Inc.Apparatus and methods for dispersing dry powder medicaments
US6546929Jun 4, 2001Apr 15, 2003Inhale Therapeutic Systems, Inc.Dry powder dispersing apparatus and methods for their use
US6582728Apr 14, 1995Jun 24, 2003Inhale Therapeutic Systems, Inc.On carrier of human serum albumin, carbohydrate, amino acid, polypeptide, buffer and/or salts; drug delivery to lungs
US6592904Nov 9, 2001Jul 15, 2003Inhale Therapeutic Systems, Inc.Atomizing liquid solutions of the macromolecules, drying the droplets, and collecting the particles; process control; especially for proteins, a nucleic acids, and a high molecular weight polysaccharides.
US6681767May 1, 2000Jan 27, 2004Nektar TherapeuticsMethod and device for delivering aerosolized medicaments
US6685967Jun 17, 1996Feb 3, 2004Nektar TherapeuticsSpray dried powder
US6737045May 7, 2002May 18, 2004Nektar TherapeuticsMethods and compositions for the pulmonary delivery insulin
US6797258Feb 8, 2002Sep 28, 2004Nektar TherapeuticsCompositions and methods for the pulmonary delivery of aerosolized macromolecules
US6901929Dec 19, 2002Jun 7, 2005Nektar TherapeuticsAerosolization; comprises pressurization cylinders; drug delivery
US6921527Jan 31, 2003Jul 26, 2005Nektar TherapeuticsDispersable dry powder; controlling moisture concentration, particle size; in situ drug delivery
US7097827Sep 13, 2002Aug 29, 2006Inhale Therapeutic Systems, Inc.Devices, compositions and methods for the pulmonary delivery of aerosolized medicaments
US7138141Mar 31, 2003Nov 21, 2006Nektar TherapeuticsAtomizing proteins, nucleic acids, or polysaccharides to form microstructure drops used as inhalants; drug delivery
US7422013Mar 9, 2005Sep 9, 2008Nektar TherapeuticsDry powder dispersing apparatus and methods for their use
US7521069Jul 1, 2003Apr 21, 2009Novartis AgMethods and compositions for pulmonary delivery of insulin
US8161969Mar 21, 2008Apr 24, 2012Novartis AgDry powder dispersing apparatus and methods for their use
US8173168Sep 28, 2006May 8, 2012Novartis Pharma AgDispersible macromolecule compositions and methods for their preparation and use
US8273330Apr 24, 2003Sep 25, 2012Nektar TherapeuticsParticulate materials
US8337895Jul 29, 2009Dec 25, 2012Novartis AgSpray drying process control of drying kinetics
CN1318104C *Sep 15, 1995May 30, 2007耐科塔医药公司Material feeding pipe assembly
DE1106928B *Mar 9, 1954May 18, 1961Conitech LtdDruckventil fuer Geraete zur kuenstlichen Beatmung
WO2006009607A2 *Jun 3, 2005Jan 26, 2006Ts General Hospital The GeneraMethods and devices for assisting drug delivery to the lungs
Classifications
U.S. Classification128/203.15, 128/205.13, 128/204.27
International ClassificationA61M16/00
Cooperative ClassificationA61M16/00
European ClassificationA61M16/00