Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2695694 A
Publication typeGrant
Publication dateNov 30, 1954
Filing dateNov 3, 1951
Priority dateNov 3, 1951
Publication numberUS 2695694 A, US 2695694A, US-A-2695694, US2695694 A, US2695694A
InventorsSeinfeld Emmy Margaret
Original AssigneeSeinfeld Emmy Margaret
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Diaphragm mechanism for pump clutches
US 2695694 A
Images(3)
Previous page
Next page
Description  (OCR text may contain errors)

5 Sheets-Sheet l INVENTOR. ziww a 411%? BY on mm L. R. SEINFELD DIAPHRAGM MECHANISM FOR PUMP CLUTCHES Nov. 30, 1954 Filed Nov. 5 1951 Nov. 30, 1954 1.. R. SEINFELD DIAPHRAGM MECHANISM FOR PUMP CLUTCHES Fild Nov. 5, 1951 3 Sheets-Sheet 2 INVENTOR. fl/hH k I? BY Nov. 30, 1954 R. SEINFELD 2,695,694

DIAPHRAGM MECHANISM FOR PUMP CLUTCHES Filed Nov. 3, 1951 3 Sheets-Sheet 3 FIG.7

IN VEN TOR.

Rim-hulk J United States Patent 2,695,694 DIAPHRAGM MECHANISM FOR PUMP CLUTCHES Ludwik R. Seinfeld, Berkeley Heights, N J.; Emmy Margaret Seinfeld, administratrix of said Ludwik R. Seinfeld, deceased, assignor toherself Application November 3, 1951 Serial No. 254,775

12 Claims. (Cl. 192-58) The present invention relates to improvements in diaphragm mechanisms and chiefly in those diaphragm mechanisms which are adapted to be used in pumps, compressors, sealed transmission devices and the like. This invention is characterized by the fact that it comprises one tubular diaphragm, the ends of which are stationary, as well as at least 2 gear members separated from each other by said diaphragm.

Such apparatus is inherently reversible, so it may operate as motor, and it is intended, within the scope of this invention, to include such use, but, for the sake of simplicity of description, themechanism forming the subject matter of this invention will hereafter be described and claimed, without limitation as to motor use, as a gurnp or a compressor apparatus or a sealed transmission evice.

One of the objects of the present invention is to provide a diaphragm mechanism which, when adapted to be used in pump or compressor apparatus, will enforce continuous flow of the fluid conveyed.

Another object of the present invention is to maintain the circular shape :of the diaphragm member, in each cross-section thereof throughout a full operating cycle.

An additional object of the present invention is to assure lower and more evenly distributed stresses in the diaphragm member, as compared to diaphragm constructions used in known mechanisms of this type.

A further object of the present invention is to permit heating or cooling of the diaphragm member.

Yet another object of the present invention is to provide a diaphragm mechanism which, when applied to sealed transmission devices, will permit higher operating speeds than known disctype diaphragm-devices.

With the above objects in view the present invention mainly consists of a hydraulic apparatus such as a pump, compressor, or the like, having an outer female member provided with an inner helically threaded surface. Within this female member there is a located a male member having an outer helically threaded surface and arranged extending in longitudinal direction of the female member. The hydraulic apparatus comprises a stationary support means fixedly connected to the female member to maintain the same stationary and supporting said male member for rotation within said female member. Located between these members is a flexible, tubular diaphragm superimposed upon the entire threaded surface of the male member. The threaded surfaces of the :male and female members are so shaped that the diaphragm forms with the female member a spiral sealing line of contact to provide sealed spaces between the diaphragm and female member which move along the length of the latter upon rotation of the .male member. The diaphragm has opposite end portions which are fixedly connected to the stationary supporting means so that the male member rotates with respect to the diaphrgam to laterally reciprocate cross-sections of the latter. Suitable means are provided for lubricating the mutually engaged surfaces of the diaphragm and male member. if desired, the device may be used as a transmission means by hydraulically locking the male and female members to each other, rotatably mounting the female member and providing it with a transmission means.

It is known that tubular diaphragms can be used to pump members. Thepumpingaction has been achieved in the past by rotating an .cccentricrcircular member inside the diaphragm, said diaphragm .being .held in the pump body by flanges andcooperating with said pump body by at least one rib molded integrally to said diaphragm. Another known method for achieving pumping action is to collapse the tubular diaphragm progressively by applying outside pressure and releasing said pressure to complete one pumping cycle.

In both cases the result is an intermittent flow, and in both cases considerable stresses are created in the diaphragm members, at the rib and flanges in the first case and at the periphery of the diaphragm in the second case.

In a preferred form of construction, the present invention features a tubular diaphragm with circular crosssections, the central part of the diaphragm being cylindrical while the adjoining parts have conical shapes not necessarily identical. Said diaphragm consists, at least partly of an elastic material such as india rubber, synthetic plastics, or combinations thereof.

The dimensions of said tubular diaphragm are such that part of its length surrounds the total length of a rotatable, male, helical gearing member, while being arranged within a female helical gearing member as well as within the stationary mechanism casing. The ends of said diaphragm are secured tightly to members of said mechanism casing, which is provided with inlet and outlet conduits for the lluid to be conveyed.

The helical gearing members are of a type described in U. S. Patent No. 1,892,217; however their direct cooperation is prevented by said tubular diaphragm.

When the new mechanism is adapted to be used in fluid devices, the fluid is contained in closed spaces formed between sealing lines of contact between said female gearing member and said tubular diaphragm. Each individual cross-section of said diaphragm is moved back and forth within corresponding cross-sections of said female gearing members by said rotatable male gearing member and in such a way that the fluid to be conveyed is displaced in a continuously spiralling path around the axis of the mechanism.

The diaphragm movement described eliminates wiping action between the curved faces of the members conveying said fluid and therefore reduces wearconsiderably, as compared with known fluid devices provided with helical gearing members and especially if the fluid conveyed is contaminated with solids.

Depending on whether the pitches and pitch diameters of the female helical gear and of the deformed diaphragm are individually constant or not, the apparatus will be suitable for economical use with incompressible or compressible fluids respectively.

Depending on whether the female helical gear is supported rotatably or not, the apparatus will. be suitable for use as a sealed transmission device or not.

Having thus declared the objects and some of the features of the present invention, further advantages of this invention, as well as the actual working of the mechanism,

.. will be set forth more in detail in the following'description.

In the accompanying drawings, which are. given solely by way of example,

Fig. i is a longitudinal section of an apparatus, i. e. pump, for use with incompressible fluids, provided with a stationary, female, helical gearing member cooperating with a tubular diaphragm, which is actuated by a rotatable, male, helical gearing member according to the invention;

Fig. '2 is a longitudinal sectionof an assembly of mechanism members comprising a stationary, female, helical gearing member cooperating with a tubular diaphragm, which is actuated by a rotatable male helical gearing member, said assembly being adapted for alternate insertion into apparatus shown in Fig. 1, but for use with compressible fluids;

Fig. 3 is a longitudinal section of an assembly of a female helical gearing member supported ro tatably in a casing member, adapted for alternate insertion into apparatus shown in Fig. 1, but for use asa sealed transmission device;

Fig. 4 is a typical longitudinal section of the preferred shape of an undeformed tubular diaphragm;

Fig. 5 is a typical cross-section of a female gearing member taken along line X-X of Fig. 1 in the direction of the arrows;

Fig. 6 is a typical cross-section of a male gearing member showing a preferred shape of a lubricating groove and taken along line X-X' of Fig. l in the direction of the arrows;

Fig. 7 is a longitudinal section through a rotatable female gearing member provided with integral gearing according to the inventionyand Fig. 8 is a longitudinal section of a flexible assembly of tubular members according to the invention.

In the form of construction shown in Fig. l, the apparatus comprises stationary casing members 10 and 11 provided with conduits 12 and 13, respectively, for the fluid to be conveyed. Members 10 and 11 are bolted to each other by bolts 20. Bearing bracket 15 is bolted to casing member 11 by bolts 21.

Member 11 encloses the stationary, female, double helically threaded gearing member 16, which is held in place by easing member 10, Tubular diaphragm 17, disposed within said members 10 and 11, as well as on part of its length within said member 16, envelopes closely, on the central part of its length, the rotatable, male, single helically threaded gearing member 18, and, on each side ofmember 18, a flexible member, i. e. a spring or bellows or the like, both of said flexible members, 26-and 27, respectively, preventing collapse of diaphragm 18 under external pressure. Members 26 and 27 may have a cylindrical shape but have preferably a truncated, generally conical shape, their outer diameters increasing from the ends adjoining member 18 to the ends adjoining members 14 and 15, respectively. Lowest stresses in diaphragm 17 will be obtained if the difference between the end diameters of each individual member 26 and 27 is equal to one-half the reciprocating movement of each cross-section of said male gearing member 18. Members 26 and 27 are deflected back and forth transversely to the axis of the apparatus at the same angularity as move the adjoining ends of member 18, respectively, by which members 26 and 27 are preferably but not necessarily supported. The reciprocating lateral movements of diaphragm 17 as well as the amplitude of the lateral movements of its supporting members 26 and 27 decrease from full stroke at the ends of member 18 to zero movement at the ends where diaphragm 17 is clamped tightly between stationary casing members .11 and 15 on one side and 10 and 14 on the other side.

Member 14 can be connected to member 10 by various means, a preferred way being by means of flange 30 and bolts 31 and 32. Jack-screws 33 are provided to position said flange 30 correctly irrespective of variations in the length of diaphragm 17 due to manufacturing tolerances.

Male gearing member 18 is shown longer than the female gearing member 16 to permit increase of its diameter on the high pressure end of the mechanism to balance the axial thrust exerted by the fluid on diaphragm 17 and transmitted to. member 18, approximate axial balance being achieved when the area of the largest crosssection 39 of member 18 is approximately equal to the area of the cross-section 38 of member 16 (Fig. 5) less the cross-sectional area of the wall of diaphragm 17 at said cross-section 39.

Axial balance of the rotatable member can of course also be achieved by doubling the number of helical gears on both sides of said diaphragm member and by providing said gear members with right and left hand threads respectively to oppose each other, however this construction is rather expensive.

Rotatable shaft 25 is supported in bearing bracket 15 and drives floating shaft 24 by means of universal joint members 40, 41 and 42. Said shaft 24 carries gear coupling 43, which cooperates with gear coupling mempermit circulation of coolant around gearing memberv 16. Conduits 47 and 48, provided in end plate 14 and bearing bracket 15, respectively, permit circulation of 4 lubricant 27 to maintain diaphragm 17 within the temperature range best suited for its material. 1

Members 16 and 18 arereplaceable by members 16a and 18a, respectively, as shown in Fig. 2, to permit efficient operation of the mechanism, shown in Fig. 1, and described above, with compressible fluids. Members 16a and 18a have n+1 and n helical threads, respectively, but said threads have uniformly and proportionately decreasing pitches.

Members 11 and 16 are further replaceable by members 11b and 16b, respectively. Said member 16b is sup ported rotatably in said member 11b to permit operation of the mechanism, shown in Fig. 1, and described above, as a sealed transmission device. Key 49 inserted in said member 16b establishes a driving relationship between member 16b and any desired element of machinery, i. e. gears, impellers, or the like, mounted on member 16b and rotating therewith in casing 11b.

Regulating valve 36 connected to conduit 12 controls the rate of flow of the fluid conveyed.

Fig. 7 shows member provided with gears 50 suitable to be substituted for member 16b, according to the invention.

Fig. 8 shows a flexible assembly 27b of tubular members which may be substituted for elements 26 or 27 of Fig. 1.

The operation of the mechanism shown in Fig. l is as follows:

Rotatable shaft 25 is in driving relationship with gearing member 18 by means of floating shaft 24 and coupling members 40, 41, 42 and 43, 44. Member 18 deforms diaphragm 17 in such a way that closed spaces are formed between continuous spiral seal lines established between gearing member 16 and diaphragm 17. When member 18 is rotated, said spaces, wherein the fluid is contained, are displaced spirally around the axis of the mechanism so as to communicate alternately with conduits 12 and 13 provided in casing members 10 and 11, respectively, to assure continuous fiow of the fluid to be conveyed.

The movement of diaphragm'17 will be laterally reciprocating in all individual cross-sections thereof so as to displace the fluid contained in the spaces between members 16 and 17 without rubbing, wiping or rolling action between said diaphragm member 17 and the curved contours 37 of cooperating cross-sections 38 of member 16.

Solid particles suspended in the fluid cannot scratch the surfaces of the helical gearing members because said solids, if not swept out by the spiralling fluid, would become embedded in the diaphragm until reversal of the lateral diaphragm movement would expose said solids to the flushing action of the fluid conveyed.

Due to ample lubrication provided for all movable members arranged within said diaphragm member 17, friction between and wear of said movable members will be nominal.

Operation of a mechanism of the type shown in Fig. 1 fitted with gearing members shown in Fig. -2 is essentially the same as the operation described above, differing from it only by the fact that the volumes of said closed spaces formed between continuous seal lines, established between members 17 and 16a, shrink gradually while said spaces are displaced spirally around the axis of the mechanism, thus compressing the fluid conveyed.

Mechanism of the type shownin Fig. 1 fitted with a rotatable female gearing member 16b or 16c and casing member 11b can be operated as a fluid coupling if flow of the fluid contained in the closed spaces formed between continuous seal lines, established between members 17 and 16b or 16c, is prevented; However, such a mechanism can also be operated as stepless fluid speed reduction device if the volume of fluid conveyed through said mechanism can be controlled by outside means, i. e. throttling valve 36, connected to one of the conduits provided in the mechanism casing.

It is obvious that a mechanism of the kind described in some of its modifications and claimed as new will produce continuous flow if adapted for use as a pump or compressor apparatus, while all known diaphragm mechanisms provided with one diaphragm only produce intermittent flow. i

It is further evident that the diaphragm is well supported over its wholelength and is exposed only to very gentle deformations inasmuch as the shape of each crosssection of said,diaphragm remains unchanged throughout a full operating cycle and due to the fact that the deflection of the diaphragm produced by the lateral reciprocating movement of members 26 and 27 is very slight and changes gradually, which all tends to keep stresses in said diaphragm below the stress level observed in diaphragms used in known comparable mechanisms under equivalent operating conditions. Internal lubrication and circulation of the lubricant to maintain the tubular diaphragm within a Iproper temperature range is an additional feature not found in known mechanisms of this type.

It will be understood that each of the elements described above, or two or more together, may also find a useful application in other types of hydraulic apparatus differing from the types described above.

ile the invention has been illustrated and described as embodied in hydraulic apparatus having a stationary flexible diaphragm mounted therein, it is not intended to be limited to the details shown, since various modifications and structural changes may be made without departing in any way from the spirit of the present invention.

Without further analysis, the foregoing will sofully reveal the gist of the present invention that others can by applying current knowledge readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of this invention and, therefore, such adaptations should and are intended to be comprehended within the meaning and range of equivalence of the following claims.

, What is claimed as new and desired to be secured by Letters Patent is:

1. In a hydraulic apparatus, in combination, an outer female member having an inner helically threaded surface; an inner male member having an outer helically threaded surface and being arranged within said outer female member extending in longitudinal direction thereof; stationary supporting means fixedly connected to said female member to maintain the same stationary and supporting said male member for rotation with respect to said female member; and a non-rotatable, flexible, tubular diaphragm mounted between said members, contacting the inner surface of said female member, and being superimposed on the entire threaded surface of said male member without being in any way fixed to said male and female members, said threaded surfaces of said members being shaped so that the outer surface of said diaphragm forms with the threaded surface of said female member spiral sealing lines of contact forming sealed spaces, between said diaphragm and said female member, which move along the lengthof the latter uponrotati'on of said male member, said flexible diaphragm having opposite end portions fixedly connected to said stationary supporting means so that when said male member rotates with respect to said diaphragm cross-sections of the latter are laterally reciprocated.

2. In a hydraulic apparatus, in combination, an outer female member having an inner helically threaded surface; an inner male member having an outer helically threaded surface and being arranged within said outer female member extending in longitudinal direction thereof; stationary supporting means fixedly connected to said female member to maintain the same stationary and supporting said male member for rotation with respect to said female member; and a non-rotatable, flexible, tubular diaphragm mounted between said members, contacting the innersurface of said female member, and being superimposed on the entire threaded surface of said male member without being in any way fixed to said male and female members, said threaded surfaces of said members being shaped so that the outer surface of said diaphragm forms with the threaded surface of said female member spiral sealing lines of contact forming sealed spaces, between said diaphragm and said female member, which move along the length of the latter upon rotation of said male member, said flexible diaphragm having opposite end portions fixedly connected to said stationary supporting means so that when said male member rotates with respect to said diaphragm cross sections of the latter are laterally reciprocated and said diaphragm being made of an elastic material.

3. In a hydraulic apparatus, in combination, an outer female member having an inner helically threaded surface; an inner male member having an outer helically threaded surface and being arranged within said outer female member extending in longitudinal direction thereof,

said male "member being formed with an axially extending conduit and with a plurality of spaced openings connecting said conduit with the outer surface of said .male member; stationary supporting means fixedly connected to said female member to maintain the same stationary and supporting said male member for rotation with respect to said female member, said supporting means being formed with an inlet passage and an outlet passage which respectively communicate with said conduit; and a non-rotatable flexible, tubular diaphragm mounted between said members, contacting the inner surface of said female member, and being superimposed on the entire threaded surface of said male member without being in any way fixed to said male and female members, said threaded surfaces of said members being shaped so that the outer surface of said diaphragm forms with the threaded surface of said female member spiral sealing lines of contact forming sealed spaces, between said diaphragm and said female member, which move along the length of the latter upon rotation of said male member, said flexible diaphragm having opposite end portions fixedly connected to said stationary supporting means so that when said male member rotates with respect to said diaphragm cross sections of the latter are laterally reciprocated, said conduit and openings of said male member permitting a lubricant to spread between said male member and diaphragm and said inlet and outlet passages permitting a lubricant to circulate through said conduit.

4. In a hydraulic apparatus, in combination, an outer female member having an inner helically threaded surface; an inner male member having an outer helically threaded surface and being arranged within said outer female member extending in longitudinal direction thereof, said male member being formed with an axially extending conduit with a plurality of spaced openings connecting said conduit with the outer surface of said male member; and with a plurality of wedge-shaped grooves located on said outer surface of said male member and communicating with said openings, respectively; stationary supporting means fixedly connected to said female member to maintain the same stationary and supporting said male member for roration with respect to said female member; and a nonrotatable, flexible tubular diaphragm mounted between said members, contacting the inner surface of said female member, and being superimposed on the entire threaded surface of said male member without being in any way fixed tosaid male and female members, said threaded surfaces of said members being shaped so that the outer surface of said diaphragm forms with the threaded surface of said female member spiral sealing lines of contactv forming sealed spaces, between said diaphragm and said female member, which move along the length of the latter upon rotation of said male member, said flexible diaphragm having opposite end portions fixedly connected to said stationary supporting means so that when said male member rotates with respect tolsaid diaphragm cross sections of the latter are laterally reciprocated and said conduit and openings'of said male member permitting-a lubricant to be introduced between said male member and diaphragm.

5. a hydraulic apparatus, in combination, an outer female member having an inner helically threaded surface; an inner male member having an outer helically threaded surface and being arranged within said outer female member extending in longitudinal direction thereof, said inner male member being longer'than said female memberand havingopposite end portions respectively extending beyond said female member; stationary support ing means fixedly connected to said female member to maintain the same stationary and supporting said male member for rotation with respect to said female member; a non-rotatable, flexible, tubular diaphragm mounted between said members, contacting the inner surface of said female member, and being superimposed on the entire threaded surface of said male member without being in any way fixed to said male and female members, said threaded surfaces of said members being shaped so that the outer surface of said diaphragm forms with the threaded surface of said female member spiral sealing lines of contact forming sealed spaces, between said diaphragm and said female member, which move along the length of the latter upon rotation of said male member, said flexible diaphragm having opposite end portions fixedly connected to said stationary supporting means so that when said male member rotates with respect to said diaphragm cioss sections of the latter are laterally reciprocated and said diaphragm being longer than said male member and having opposite end portions respectively extendingbeyond said male member; and a pair of resilient supports respectively mounted on said opposite ends of said male member and being located within said opposite end portions of said diaphragm to support the latter.

6. In a hydraulic apparatus, in combination, an outer female member having an inner helically threaded surface; an inner male member having an outer helically threaded surface and being arranged within said outer female member extending in longitudinal direction thereof, said inner male member being longer than said female member and having opposite end portions respectively extending beyond said female member; stationary supporting means fixedly connected to said female member to maintain the same stationary and supporting said male member for rotation with respect to said female member; a nonrotatable, flexible, tubular diaphragm mounted between said members, contacting the inner surface of said female member, and being superimposed on the entire threaded surface of said male member without being in any way fixed to said male and female members, said threaded surfaces of said members being shaped so that the outer surface of said diaphragm forms with the threaded surface of said female member spiral sealing lines of contact forming sealed spaces, between said diaphragm and said female member, which move along the length of the latter upon rotation of said male member, said flexible diaphragm having opposite end portions fixedly connected to said stationary supporting means so that when said male member rotates with respect to said diaphragm cross sections of the latter are laterally reciprocated and said diaphragm being longer than said male member and having opposite end portions respectively extending beyond said male member; and a pair of resilient supports respectively mounted on said opposite ends of said male member and being located within said opposite end portions of said diaphragm to support the latter, said resilient supports each being substantially conical and having its smallest end located adjacent said male member.

7. Hydraulic apparatus, comprising in combination, an outer female member having an inner helically threaded surface; an inner male member having an outer helically threaded surface and being arranged within said outer female member and extending in longitudinal direction thereof; stationary supporting means supporting said female member for rotation about its axis; a non-rotatable,

flexible, tubular diaphragm mounted between said members and being superimposed upon the entire threaded surface of said male member, said threaded surfaces of said members being shaped so that the outer surface of said diaphragm forms a plurality of scaled spaces between said diaphragm and said female member; fluid control means associated with said members for preventing the flow of fluid between the same so as. to hydraulically lock said male member to said female member for rotation therewith; and mounting means located on said female member for mounting a transmission member thereon.

8. Hydraulic apparatus, comprising in combination, an outer female member having an inner helically threaded surface; an inner male member having an outer helically threaded surface and being arranged within said outer female member and extending in longitudinal direction thereof; stationary supporting means supporting said female member for rotation about its axis; a non-rotatable, flexible, tubular diaphragm mounted between said members and being superimposed upon the entire threaded surface of said male member, said threaded surfaces of said members being shaped so that the outer surface of said diaphragm forms a plurality of sealed spaces between said diaphragm and said female member; fluid control means associated with said members for preventing the flow of fluid between the same so as to hydraulically lock said male member to said female member for rotation therewith; and gear means mounted on said female member for rotation therewith.

9. In a hydraulic apparatus, in combination, an elongated outer female member having an inner helically threaded surface; an elongated inner male member having an outer helically threaded surface, being located within said female member and extending in the longitudinal direction thereof; support means carrying said members and supporting at least one of said members for rotation; and an elongated flexible tubular diaphragm located about said male member between the latter and said female member without being in any way fixed to said members, said diaphragm being fixed at opposite ends to said support means and having inner and outer surfaces one of which 18 located next to and closely conforms to the helically threaded surface of said one of said members and the other of which contacts the helically threaded surface of the other of said members to form spiral sealing lines of contact providing sealed spaces between said diaphragm and said other member, which move along the length of the latter when said one member rotates with respect to said other member.

10. In a hydraulic apparatus as defined in claim 9, said diaphragm being made of an elastic material.

11. In a hydraulic apparatus as defined in claim 9, said male member being formed with an axial bore and with a plurality of spaced openings passing through said male member and connecting said bore with the outer surface of said male member to permit a lubricant to pass through said bore and openings so as to be located between said male member and diaphragm.

12. In a hydraulic apparatus as defined in claim 11, said male member being formed on the outer surface thereof with a plurality of wedge-shaped grooves respectively communicating with said openings.

References Cited in the file of this patent Germany June 15, 19 39

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1914600 *Aug 6, 1931Jun 20, 1933Westinghouse Air Brake CoFlexible gasket
US2028407 *Mar 24, 1933Jan 21, 1936Louis Moineau Rene JosephGear mechanism
US2088042 *Aug 3, 1931Jul 27, 1937Abercrombie Pump CompanyPumping member
US2188702 *Sep 9, 1937Jan 30, 1940Franz BurghauserPump or motor
US2311580 *Dec 13, 1941Feb 16, 1943Silverstone Samuel NFluid drive
US2505136 *Jun 18, 1946Apr 25, 1950Robbins & MyersInternal helical gear pump
US2512764 *Nov 5, 1946Jun 27, 1950Robbins & MyersHelical gear shallow well pump
US2527673 *Feb 28, 1947Oct 31, 1950Robbins & MyersInternal helical gear pump
US2621605 *Oct 12, 1945Dec 16, 1952Clayton Mark & CompanyPump
USRE21374 *Apr 18, 1935Feb 27, 1940 Gear mechanism
DE637586C *Dec 8, 1934Jun 15, 1939Matthias RehseDoppeltwirkende ventillose Membranpumpe, insbesondere Tiefbrunnenpumpe
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2826151 *Dec 16, 1954Mar 11, 1958Mccray Arthur WFlexible fluid seal pump
US2826152 *Aug 30, 1955Mar 11, 1958Robbins & MyersHelical gear pump with bellows stator
US2844237 *Jul 7, 1955Jul 22, 1958Morse William LTorque control
US2874643 *Oct 15, 1957Feb 24, 1959Robbins & MyersHelical gear pump with stator compression
US2915979 *Nov 23, 1956Dec 8, 1959Robbins & MyersGrit and corrosion seal for universal joints in pumps having eccentrically moving rotors
US3014623 *Jan 29, 1958Dec 26, 1961Borg WarnerMotor and pump mounting means
US3097609 *Oct 23, 1959Jul 16, 1963Fmc CorpRag guard for positive displacement pumps
US3216768 *Jul 23, 1963Nov 9, 1965Soeding EugenPump construction
US3340814 *Jan 3, 1967Sep 12, 1967Oskar SeidlProtection devices for the drive connection of an eccentric worm pump
US3381781 *Aug 30, 1965May 7, 1968Donald V. Summerville Jr.Liquid impact rotary brake
US3539279 *Sep 23, 1968Nov 10, 1970H A Rider & SonsTubular pump
US3771901 *Mar 10, 1972Nov 13, 1973Alfa Laval AbRotary pump
US3938915 *Jul 18, 1974Feb 17, 1976Atlas Copco AktiebolagScrew rotor machine with hollow thread rotor enclosing a screw cam rotor
US3941520 *Jul 18, 1974Mar 2, 1976Atlas Copco AktiebolagMethod and device for injection of liquid
US4187061 *Apr 27, 1978Feb 5, 1980Christensen, Inc.Rotary helical fluid motor with deformable sleeve for deep drilling tool
US4219316 *Jun 5, 1978Aug 26, 1980Feng Chung LCurved spiral pump
US5657682 *Jan 30, 1996Aug 19, 1997Paul ThomasHose piston for transporting external objects along a flexible hose
US5846064 *Sep 1, 1995Dec 8, 1998Metameric LimitedPeristaltic pump
US6102681 *Oct 15, 1997Aug 15, 2000Aps TechnologyStator especially adapted for use in a helicoidal pump/motor
DE4413818A1 *Apr 20, 1994Oct 26, 1995Artemis Kautschuk KunststoffEccentric worm gear pump
DE19727209A1 *Jun 4, 1997Dec 10, 1998Grundfos AsExzenterschneckenpumpe
EP0882891A1Jun 3, 1998Dec 9, 1998Grundfos A/SMoineau pump
Classifications
U.S. Classification418/48, 418/153, 418/149, 92/90, 406/96, 406/194, 192/20, 418/91
International ClassificationF03C7/00, F04C2/107, F04C5/00
Cooperative ClassificationF04C2/1076, F04C5/00, F03C7/00
European ClassificationF04C2/107B4, F04C5/00, F03C7/00