Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2709577 A
Publication typeGrant
Publication dateMay 31, 1955
Filing dateJul 28, 1951
Priority dateJul 28, 1951
Publication numberUS 2709577 A, US 2709577A, US-A-2709577, US2709577 A, US2709577A
InventorsHenry L Pohndorf, George L Hammon
Original AssigneeNat Welding Equipment Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Oxygen therapy humidifier
US 2709577 A
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

W 31, 1955 H. L. POHNDORF ET AL 2,709,577

OXYGEN THERAPY HUMIDIFIER Filed July 28, 1951 INVENTORR/ GEORGE L HAM/H0 lE/WPY L. POI/NDORF w vim ATTORNEY 2,709,577 oxvonn THERAPY HUMIDIFIER Henry L. Pohndorf, El Cerrito, and George L. Hammon,

Oakland, Calif., assignors to National Welding Equip- ;nent (10., San Francisco, Calif., a corporation of Callornia Application July 28, 1951, Serial No. 239,136 i Claims. (Cl. 26I--2) This invention relates to an improved humidifier.

One important use of humidifiers is in connection with oxygen treatment for hospital patients. Commercial tanks of oxygen normally maintain the gas under extremely high pressures and with no contained moisture. When the pressure of the humidity, and if administered that way to the patient, it will tend to dry out the lung tissues. Prolonged breathing of dry oxygen can be quite harmful; so it has become accepted practice to humidity the oxygen before the patient breathes it.

It is often desirable to saturate the oxygen, that is, to wet the gas to a humidity of approximately 100%. This makes it possible to produce gas of any desired humidity by mixing a known amount of the saturated gas (100% humidity) with a known amount of the dry gas humidity). One trouble with humidifiers which have heretofore been used has been that they were not able to wet the dry gas to 100% humidity. Most of these prior art humidifiers have been mere bubb1ersi. e., they operated by bubbling the dry gas through a jar of water. Only the oxygen near the surface of the bubble came in contact with the water, and the balance of the oxygen inside the bubble remained relatively dry.

Another problem with bubblers has been that their efiiciency decreased with increase in the pressure of the gas. The higher the pressure of the gas introduced into the humidifier, the larger the bubbles, and the larger the bubbles, the less gas that comes in contact with the water so the gas that goes out the outlet is less humid than desired.

Another fault with humidifiers of the bubbler type has been that the gas often carried over small droplets of water which were never evaporated. It is believed that such droplets, when carried into the lungs, sometimes induced pneumonia and aggravated the disease which the treatment was intended to cure.

Still another disadvantage of the humidifiers that have heretofore been in use is that they have required almost constant watching. The jars held a relatively small amount of water, and only a small proportion of this small amount was available for humidification. When the water level dropped, the bubbles traveled a shorter distance through the water, less gas came into contact with the water, and the humidity of the outgoing gas dropped. Also when the water level dropped only a short distance, it would fall below the gas inlet of the bubbler; so there was no humidification. This meant that the nurse had to watch the water level closely and had to add water frequently.

A more serious problem was the fact that many of such humidifiers were dangerous. The humidified oxygen has usually been conducted away from the jar by a flexible rubber hose, and this is usually the most desirable way to do it. However, when such a hose became kinked, or was stepped on, or otherwise collapsed, two dangers were present: First, the patient would not get enough oxygen to breathe so that he might suffocate. Second, the

gas is reduced, the gas remains at zero iftates Patent 0 pressure of the gas would build up inside the jar, so that it was not uncommon for the jar to explode and scatter broken glass.

All these problems, and several others which will become apparent from this description, have been solved by the present invention. It provides a humidifier which will produce substantially humid oxygen, free from droplets of water. It can be used with jars of relatively large volume and makes use of substantially all the water in the jar; so the humidifier does not require frequent attention. Moreover, its efficiency will not drop as the water level drops, and the humidity will remain substantially constant so long as there is any water in the jar. Further, a unique warning system is provided that sends out an audible signal when the gas pressure in the jar reaches a predetermined amount so that the nurse is called automatically and the patient is given more oxygen to breathe. At the same time, a relief valve permits escape of excess gas and thereby prevents explosions from occurring.

The structure which has solved these problems, and which has many other advantages that will be taken up in connection with the illustrative description, includes a sealed jar having an outlet and an inlet with a fixed orifice. The orifice opens into, or near to, a venturi chamber. The passage of oxygen through the venturi sucks water into the chamber through a long, flexible tube which may extend as long as necessary, up to the atmospheric limit for sucking water. Inside the venturi chamber, the Water is apparently broken up into millions of tiny droplets which are then introduced into the oxy gen stream. This stream issues against a novel baffle that breaks up the bubbles and aids their evaporation and prevents the stream from striking directly against the surface of the water. This keeps the oxygen free of any unabsorbed water or residual droplets. Moreover, the bathe, in combination with a somewhat labyrinthine pathway which the humidified gas must travel in its way to the outlet serves to shake out all of the few such droplets that might remain in the gas. Gas is prevented from building up to high pressures by a safety relief valve that is provided in the cover to the jar. When the pressure reaches a value somewhat above normal but still well within the limits of safe operation, a reed in the relief valve sounds a musical tone to give audible warning that the pressure is excessive.

Further features of the invention will be understood from a detailed description and illustration of one form of the device that embodies the principles of the invention, but the scope of the invention is not intended to be limited thereby except as provided by the appended claims.

In the drawings:

Fig. l is a view in elevation showing an oxygen tank, a regulator, gauges, and a humidifier connected thereto.

Fig. 2 is a View in elevation and in section of a humidifier embodying the principles of this invention.

Fig. 3 is a view on a reduced scale of a portion of the humidifier adjacent the venturi chamber, looking from the left side in Fig. 2.

Fig. 4 is a view in section of a portion of the safety valve, looking at right angles to Fig. 2 along the line 4-4.

Fig. 5 is a view in section looking up from the bottom of Fig. 4, along the line 5-5.

Fig. 6 is a view in section of the venturi and baffle of a modified form of the invention.

Fig. 7 is a View taken along the line 7-7 of Fig. 6.

Fig. 1 shows an assembly employing a humidifier em bodying the principles of this invention. The dry gas is usually supplied at high pressure from a cylinder 10 filled with oxygen, and its pressure is reduced by a regulator 11. A gauge 12 may indicate the pressure of the gas as it issues from the regulator 11, while a flow measuring device 13 may indicate the volume of the gas being humidified, usually expressed in liters per minute. A humidifier 15 that embodies the present invention may be located adjacent the flow measuring device '13.

The humidifier 15 appears in greater detail in Fig. 2. It includes a housing 16 with an inlet 17 for the dry gas and an outlet 13 for the humidified gas. The housing 16 comprises a jar 20 and a cover 21. The jar 20 will usually be made of glass or other transparent material so that the water level and the operation of the vaporizer can be watched. Preferably the jar is of the mason-type, having a flat shoulder 22 at the lower end of a threaded neck 23. A rubber gasket 24 rests on the shoulder 22 and effects a seal between the jar 20 and the lower lip 25 of the cover 21. in this manner there is no dependence on the top edge 26 of the jar to effect a seal.

The cover 21 supports the working parts of the humidifier 15. A central tapped hole 27 in its upper surface holds a threaded inlet fitting 28 in the upper end of which is the humidifier inlet 17. A filter screen 29 may fit in the inlet 17 to remove any foreign matter from the incoming gas.

A central bore 3t extends through the cover 21 from the lower end of the hole 27, the bore 36 being flared out at its lower end to provide a socket 31 for a purpose to be explained. An interiorly-threaded annular rim 32 depends from the lower surface of the cover 21, concentric with the socket 31. From a point inside this rim 32 a passageway 33 is bored through the cover 21 to the outlet 18.

A hollow cylindrical sleeve or muffler tube 35 is threaded into the rim 32. The sleeve 35 has perforations 36 through which the humidified gas passes on its way to the outlet passageway 33, as shown by the direction of the arrows.

The'humidification is done in a vaporizer assembly 37 that is threaded into the lower end of the sleeve 35. The assembly 37 comprises a lower member 38 into which an upper member 39 is threaded. The dry gas from the inlet fitting 28 is conducted to the vaporizer 37 by means of a tube 41 held between the socket 31 and a socket 42 in the upper member 35. An O-ring 43 seals the reduced upper end of the tube 41 at the socket 31 and another O-ring 44 seals the reduced lower end of the tube 41 in the socket 42. This type of fitting makes it easy to disassemble the pieces to sterilize them.

The dry oxygen issues from the upper vaporizer member 39 through a relatively long, narrow, and restricted orifice 45, of a size compatible with the flow measuring device 13. The importance of relating the size of the orifice 45 to the fiow measuring device 13 will be explained later.

The orifice 45 extends deep into a substantially annular chamber 46 that is formed in the lower vaporizer member 38. The orifice 45 is spaced a short distance from a wider nozzle 47 that leads out from the chamber 46 through the lower wall of the member 33. This combination of orifice 45, chamber 46, and nozzle 47, forms a venturi whose sucking action is used to draw water up into the chamber 46, where it is broken up into very small particles and is then mixed with the gas.

The water may be drawn inthrough a flexible tube 50 secured around the projecting lower end of a metal tube 51 which is joined to the chamber 46 by a passageway 52. The proper length of the flexible tube 50 depends on the height of the jar 20, so that it may vary from a few inches to several feet. However, because of its flexibility, a relatively long piece of tubing 50 may be used inside relatively short jars, so that a single tube 50 may be used for several ditferent sizes of jars 20.

At the lower end of the tube 50 there may be secured an intake fitting 53, preferably of ball shape so that it'may lie in the lowest rim of the jar 20 and suck up water so long as there is water in the jar. To prevent the introduction of foreign particles, the fitting 53 may be provided with a-filter 54 adjacent the narrow passageway 55.

The water and oxygen mixed in the chamber 46 are ejected from the nozzle 47 against a stream divcrter member or baffie 6b. This may comprise a cusp-shaped metallic member 61 supported below the assembly 37 by the metal tube 51 and a solid standard 62. The stream is spread outwardly by the cusp 61, which breaks up its concentration into thin sheet form, prevents the water surface from rippling, and also breaks up any stray water droplets, any remaining free droplets dripping down the member 6i and off it into the water below. The cusp shape efiects a very even distribution of the humidified stream of gas, at the same time causing the stream to turn outwardly and upwardly without striking the water below.

From the battle 68 the humidified oxygen follows a labyrinthine path to the outlet, going from the jar interior through the holes 36 and the passageway 33 to the outlet 18.

A novel pressure-relief valve is also provided, for the prevention of excessive pressures within the jar 20 and for giving an audible warning when the outlet of gas from the normal outlet is blocked and the pressure builds up. For this purpose a recess 66 is provided in the upper surface of the cover 21, and openings 67 and 68 extend all the way through the cover. The upper portion of the recess 66 is a generally vertical cylindrical wall 71, while the lower portion 72 slopes inwardly to a flat web 73 that forms the bottom of the recess 66 and is perforated at its center by the opening 67 and bordering it by the openings 68.

The moving part of the valve 70 comprises a disc 74 that fits in the recess 66 and has a rubber O-ring 75 around its periphery, preferably on the lower side so as to seat against the sloping wall 73. When seated, the disc 74 closes the path to gas entering through any of the openings 68.

A stem 76 depends from the disc 74 down through the central opening 67, a nut '77 being threaded on its lower end. A spring 73%, held in tension between the nut 77 and the web 73, normally retains the disc 74 in its lower position, where it prevents leakage of gas. When the pressure of the gas inside the jar 20 exceeds the tension of the spring 78, the spring 73 is compressed, the disc 74 is lifted, and gas passes between the rubber ring 75 and the walls of the recess 66.

A hollow cap fill has at its lower end a rubber O-ring 81 that fits in a groove 82 in the recess 66. All the gas escaping past the disc valve 74 goes up through the cap 80. Just below the caps upper end is a plate 83, having a small outlet opening 84 and a generally rectangular opening 85. A reed 86 lies across the opening 85, one end being secured to the plate 33 so that its other end can vibrate freely in the opening 35.

An opening 87 through the top of the cap permits escape of the gas after it has passed through the openings 84 and 85. The top of the plate 83, which shows through the opening 87, may be colored red to discourage tampering. However, there is a further safety feature that comes into play if anyone should tape over the opening 87 or otherwise obstruct it. The O ring 81 connection is air tight, but if the escape opening 87 is blocked, excess pressure will eject the entire cap by lifting it and its 0 ring 81 out of the recess 32.

In operation, the gas enters at the inlet 17, goes through the tubes 28 and 41 to the vaporizer assembly 37 and issues from the orifice 45 into the chamber 46. The venturi sucks water in through the ball inlet 53 via the tubes 55) and 51 into the chamber 46. There the water is broken up into infinitesimal portions and mixed with the dry gas to produce gas having up to humidity. The humidified gas issues from the nozzle 47 and its stream is then spread by the cusp 61, which breaks up any droplets and prevents any disturbance of the surface of the water. The gas then goes up into the interior of the jar 20 above the ballle 63, passes through the holes 36 in the sleeve or muffler tube 35, into the passageway 33, and goes to the outlet 1%.

An advantage of this device is that the gas will hu midify with equal eificiency, no matter what the water level is, and the gas will be humidified so long as there is water in the jar 29. The water level can always be observed through the transparent jar 20 and water added when it is needed.

The safety valve 70 operates only from the gas pressure inside the jar 20. Then, when the gas pressure exceeds the tension of the spring 78, the disc 74 is raised and gas enters the cap 80. It passes through the plate openings 3 's and 85 out the cap opening 8'/, sounding the warning reed 85 as it does so. If someone carelessly tapes over the opening 87, the whole cap 80 will be ejected, and the gas will still escape.

It is worth noting that the structure of the humidifier makes possible the use of either of two types of fiow measuring devices and makes it possible to use them on the dry gas before humidification. One such device is usually termed a fiow gauge. In reality it is a pressure gauge that is used in conjunction with an orifice of known size, the gauge being calibrated to read in terms of the quantity per unit time (e. g. liters per minute) of gas which the pressure would cause to flow through the orifice. A flow gauge may be used with the present invention, because the humidifier 15 is of the jet type, and its orifice 45 can be standardized, and the gauge calibrated to it.

The second type of flow measuring device that is in common use is usually termed a flow meter and is illustrated by the floating ball type of meter. There, gas flows from bottom to top through a vertical tube with conical walls that widen gradually toward the upper end. In its flow the gas lifts a light ball to a height that depends on the rate of flow. The ball will drop when there is no fiow, even though the pressure of the gas increases. Consequently the flow meter is more accurate than the flow gauge. For example, if the orifice became stopped up, flow would stop, and pressure would build up; the flow gauge would then falsely indicate an increase in flow, whereas the flow meter would correctly indicate a cessation of flow.

Flow meters have heretofore been used only at atmospheric pressures, or at least where the outlet end is at atmospheric pressure. With humidifiers this has two principal disadvantages. Wet gas fogs the tube and makes it difiicult to read, and if water has collected on and around the ball, it weighs it down and makes it stick to the walls, so the reading is inaccurate. With this invention, the flow meter can be placed on the input side of the humidifier, where the gas is dry, and where these ditliculties are prevented. This is possible, because the orifice 45 is standardized, making it possible to calibrate the tube for operation under the flow valves cor responding to the orifice. Also, the warning reed 86 in dicates when the outlet tube from the humidifier is clogged. When the warning system is silent, gas is flowing out from the humidifier at substantially the same rate it is flowing in.

In Figs. 6 and 7 a modified form of the invention is shown. Here the gas stream entering the vaporizer assembly 140 flows through two orifices 145 of identical size. This enables the use of the same flow meter or flow gauge to indicate a stream of twice as much gas, either by new calibration or by a corrected reading of the 01d scale. The gas mixes with the water vapor in the venturi chamber 146 and flows out through two noz zles 147. The baffie includes a knife-edge cusp memher 161 (instead of the point-cusp member 61) so as to take care of both nozzles 147. Otherwise, operation is identical with the form described in Figs. l-4.

We claim:

1. A humidifier for gas under pressure, including in combination: a container body adapted to be partially filled with water; a cover adapted to seal said container, said cover having a vertical inlet for dry gas and a radial horizontal outletfor humidified gas connected to a conduit through said cover leading from a cover opening inside said container near said vertical inlet; a hollow mufiler tube depending from said cover and surrounding both said vertical inlet and said cover opening, said muffier tube having radial perforations spaced downwardly a substantial distance from said cover; a vaporizer as sembly supported below said perforations by said mufiier tube, said assembly including a housing defining a venturi chamber having orifice means for dry gas, an inlet opening for water, and nozzle means in line with said orifice means through which a mixture of gas and water issues; an imperforate tube connecting said orifice means with said dry gas inlet means; a tube for water leading from the lower part of said container body to said water inlet opening; and a cusp'shaped baffie depending from said muflier tube below and in line with said nozzle means, above the water level, whereby the dry gas draws water into said venturi chamber, issues as a stream of wet gas from said nozzle means, is deflected by said bafiie out into the space between said container walls, said muffier tube, said cover, and the water, is forced by the presusre in said container through said perforations into said mufiler tube and thence to said cover opening and said outlet, said bafiie and the subsequent labyrinthine path of the wet gas serving to shake out suspended droplets of water from the humidified gas.

2. The humidifier of claim 1 in which said orifice means comprises a plurality of orifices and said nozzle means comprises a corresponding plurality of nozzles, each in line with one said orifice.

3. The humidifier of claim 1 in which the orifice means comprises a single orifice, the nozzle means a single nozzle, and the baffie means a cusp-shaped cone-like member axially aligned with said nozzle and orifice.

4. The humidifier of claim 1 in which the orifice means comprises a plurality of aligned orifices, the nozzle means a corresponding plurality of similarly aligned nozzles; and said bafiie means a member having a relatively sharp upper edge aligned with said nozzles, a cusped surface curving downwardly and outwardly from said edge.

References Cited in the file of this patent UNITED STATES PATENTS 1,222,421 Lambert Apr. 10, 1917 1,625,419 McCaa Apr. 19, 1927 1,810,131 Daily June 16, 1931 2,049,158 Eckert July 28, 1936 2,054,850 Deming Sept. 22, 1936 2,129,482 Severin Sept. 6, 1938 2,230,201 Hermann Jan. 28, 1941 2,428,277 Heidbrink Sept. 30, 1947 2,437,526 Heidbrink et a1. Mar. 9, 1948 2,565,691 Ketelsen Aug. 28, 1951 2,588,312 Walker Mar. 4, 19'"

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1222421 *Jun 10, 1915Apr 10, 1917David LambertApparatus for administering anesthetics.
US1625419 *Aug 12, 1922Apr 19, 1927Mine Safety Appliances CoBreathing apparatus
US1810131 *May 25, 1929Jun 16, 1931American Ozone CompanyDevice for mixing gases and liquids
US2049158 *Jan 2, 1935Jul 28, 1936Wirtschaftsbedarf M B H GesValve for steam cookers
US2054850 *Apr 27, 1935Sep 22, 1936Air ReductionGas pressure regulating and signaling means
US2129482 *Nov 30, 1934Sep 6, 1938Venn Severin Machine CoAutomatic control
US2230201 *Mar 16, 1940Jan 28, 1941Four Power CompanyHose coupling
US2428277 *Aug 25, 1944Sep 30, 1947Air ReductionHumidifier for oxygen gas
US2437526 *Oct 5, 1944Mar 9, 1948Air ReductionMeans for humidifying oxygen
US2565691 *Nov 29, 1948Aug 28, 1951Air Appliances IncMethod and apparatus for supplying a liquid to a fluid pressure medium under flow
US2588312 *Aug 31, 1949Mar 4, 1952Standard Oil Dev CoFoam distributor nozzle
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2840417 *Feb 12, 1957Jun 24, 1958Gordon Armstrong Company IncNebulizing apparatus
US2882026 *Aug 31, 1955Apr 14, 1959Chemetron CorpNebulizer
US2910956 *Feb 18, 1957Nov 3, 1959Scully Signal CoWhistle for signaling device for use in filling tanks
US2917386 *Sep 9, 1955Dec 15, 1959Aeroprojects IncHomogenizing method and apparatus
US3009542 *Dec 29, 1958Nov 21, 1961Int Basic Economy CorpLiquid mist generating device
US3249553 *Jan 28, 1963May 3, 1966Samuel B SteinbergSmoke generator
US3282266 *Aug 2, 1962Nov 1, 1966Jr John M WalkerMethod and apparatus for humidifying inhalation mixtures
US3353536 *Apr 13, 1965Nov 21, 1967Forrest M BirdNebulizer
US3512718 *Mar 6, 1968May 19, 1970Stile Craft Mfg IncNebulizer spray unit
US3515676 *Sep 18, 1967Jun 2, 1970Eaton Yale & TowneOil fog generating device
US3667463 *Nov 14, 1969Jun 6, 1972David L BarnesMethod and apparatus for treatment of respiratory disease
US3677527 *Apr 15, 1970Jul 18, 1972Aga AbHumidification equipment for gases
US3724454 *Feb 4, 1971Apr 3, 1973Bendix CorpHumidifier - nebulizer
US3744722 *Dec 29, 1970Jul 10, 1973Cavitron CorpNebulizer
US3791108 *Mar 16, 1972Feb 12, 1974Bischoff GasreinigungFlow-accelerating nozzle for gas scrubber
US3806102 *Jun 20, 1972Apr 23, 1974Arirco IncMedical humidifier
US3814091 *Jan 17, 1972Jun 4, 1974M HenkinAnesthesia rebreathing apparatus
US3852385 *Dec 6, 1972Dec 3, 1974Med Pak CorpGas humidification apparatus
US3903216 *Jun 4, 1973Sep 2, 1975Respiratory CareInhalation therapy apparatus
US3926280 *Jun 21, 1974Dec 16, 1975Parker Hannifin CorpAirline lubricator
US3940064 *Feb 10, 1975Feb 24, 1976Kentaro TakaokaAtomizing equipments for anesthetic liquid compounds
US4011288 *Mar 14, 1975Mar 8, 1977Baxter Travenol Laboratories, Inc.Disposable humidifier assembly
US4116387 *May 11, 1976Sep 26, 1978Eastfield CorporationMist generator
US4134940 *Oct 25, 1977Jan 16, 1979Aerwey Laboratories, Inc.Humidifier adapter with audio relief valve
US4149556 *Sep 26, 1978Apr 17, 1979Respiratory Care, Inc.Tubular connector having audible relief valve
US4192836 *Oct 13, 1978Mar 11, 1980Dragerwerk AktiengesellschaftRespiratory gas humidifier
US4299355 *Jan 3, 1980Nov 10, 1981Haekkinen TaistoApparatus for atomizing medicaments
US4566452 *Aug 17, 1984Jan 28, 1986American Hospital Supply CorporationNebulizer
US4921640 *May 8, 1989May 1, 1990Wu Tsann KuenVenturi-tube bubble-forming container
US4940051 *Dec 21, 1984Jul 10, 1990Huhtamki OyInhalation device
US5114076 *Jun 27, 1991May 19, 1992Taiyo Yuden Co., Ltd.Atomizer for forming a thin film
US5249740 *Nov 25, 1991Oct 5, 1993Assoc. De Gestion De L'ecole Francaise De Papeterie Et D'imprimerieMethod for regulating the conditioning of a gas and gas conditioning device
US5287847 *Jul 24, 1992Feb 22, 1994Vortran Medical Technology, Inc.Device for generating medicinal aerosols
US20120018910 *Jul 26, 2010Jan 26, 2012Moreno Gil GApparatus to add gas from liquid state source to a dry carrier gas at low pressure
USRE38700 *Apr 6, 2001Feb 15, 2005Briggs Iii Stephen WMedical nebulization device
EP0488909A1 *Nov 22, 1991Jun 3, 1992Association De Gestion De L'ecole Francaise De Papeterie Et De L'imprimerieMethod for controlling the condition of a gas and device therefor
EP2218496A1 *Feb 9, 2010Aug 18, 2010Linde AktiengesellschaftMethod and apparatus for stable and adjustable gas humidification
WO2006108563A1 *Apr 7, 2006Oct 19, 2006Altana Pharma AgDevice for dry nebulization
Classifications
U.S. Classification261/2, 128/200.21, 116/112, 261/76, 137/537, 261/DIG.650, 239/338, 137/557, 239/524
International ClassificationA61M11/06, A61M16/20, A61M16/16
Cooperative ClassificationA61M16/16, A61M11/06, Y10S261/65, A61M2016/209, A61M2205/183
European ClassificationA61M16/16