Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2748753 A
Publication typeGrant
Publication dateJun 5, 1956
Filing dateJul 30, 1951
Priority dateAug 8, 1950
Publication numberUS 2748753 A, US 2748753A, US-A-2748753, US2748753 A, US2748753A
InventorsBertin Jean, Francois G Paris, Sarrazin Paul
Original AssigneeSnecma
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Boilers
US 2748753 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

June 5, 1956 P. SARRAZlN ET AL 2,748,753

BOILERS Filed July 50. 1951 INVQNTORS M s I M *9. M

7- M,MM MM United States Patent BOILERS "Paul 'Sarrazin, Paris, Francois G. Paris, Chav'ille and Jean :Bertin,Neuilly-sur-Seine, France, .assignors to So'ciete Nationale dEtude 'et de Construction de Meteors dAviation, Paris, France, a French company Application July 30, 1951," SerialNo.239;268

Claims priority, applicationFrance August 8, 1950 3 Claims. '(Cli'l22-24) The invention relates to intermittent-combustion boilwars, that is to say boilers provided with a combustion chamber supplied with liquid fuel and wherein combustion takes place in an intermittent way.

According to the invention, the intermittent combustion chamber used for heat generation is a resonant pulsecombustion duct. This latter term will be meant to indicate, in the following description and in the subjoined claims, a thermal duct such as that used in the so-called pulse-jet engines for reaction jet propulsion.

As known, pulse-jet engines include a simple duct or tube having a front air intake passage, an intermediate combustion zone into which a liquid fuel is continuously injected, and a rear reaction nozzle. In this duct, combustion does not take place in a continuous manner, but in a succession of explosions which naturally occur at the resonance frequency of the duct considered as a sound pipe, notwithstanding the continuous supply of fuel. The successive explosions cause hot gases to be exhausted rearward through the reaction nozzle and fresh atmospheric air to be sucked in through the front intake passage, the latter being provided with unidirectional fiow means.

An object of the present invention is to adapt such resonant pulse-combustion ducts, not for jet propulsion purposes, but for heating purposes, in a boiler.

We have discovered that such an arrangement brings about particular unexpected results of very great interest due to the fact that, even when the ducts are supplied with air at atmospheric pressure, the important tur bulence obtaining in the very hot gases therein leads both to a considerable combustion density (i. e. the amount of heat evolved per unit volume) and to a very high value of the heat transmission coefiicient through the walls.

These ducts are further capable of ensuring their own supply of combustive air owing to the very operation of the pressure pulses therein, and therefore do not require any blasting, although, if desired, they can be supplied with air at a pressure above atmospheric pressure. Moreover they can operate with a great diversity of fuels such as for instance gasoline, kerosene, gas oil, domestic fuel and light fuel, and even powdery coal. Lastly the exhaust gases have suflicient pressure for ensuring adequate fiow thereof through economisers and regenerators used in particular for heating feed water and whose tubenest, disposed in the path of the gases, can further damp pulse sonority.

The ducts will preferably be of the type which does not include check valves or any movable mechanical member for adjusting air intakes between successive explosions or combustions, the substantially unidirectional flow of air being achieved by means of aerodynamic valves examples of which have been described in our U. S. patent application Serial No. 56,582, filed October 26, 1948, now Patent No. 2,670,011.

Our invention may best be further described by reference to the accompanying drawing, which illustrates an ZPatented June 5, 1956 embodiment thereof, and in which the single figure is a diagrammatic vertical section of a steam generator-according to the invention.

Each of the resonant pulse combustion ducts illustrated in-the drawing comprises an air inlet tube 1, a combustion chamber properly speakingZ formed byan enlarged portion of tube land a nozzle 4 for the ex- .pansionand exhaust of the gases. A fuel injector 3 opens out .at 2. The inlet tube 1 is provided with an aerodynamic valveincluding check cups 5 of the type described in our above-mentionedpatent application and designed for allowing admission of fresh air toward chamber 2 while hindering any back fiow of gases during combustion, the cups 5 having for this purpose. the shape of sharp-edged nozzles directed towards chamber 2. Ob-

viously this valve arrangement is given-merely as an example and other devices for adjusting the unidirectional flow of air and of the gases may be resorted to. Each of the injectors 3 is supplied With a convenient liquid fuel discharged in a continuous manner by a pump or a pressure tank. Starting can be effected by injecting gasoline and feeding compressed air from an auxiliary cylinder through the tubes 1, the first explosions being produced by ignition by means of a plug 3a connected to a magneto and adequately protected. The combustions or explosions are automatically adjusted to the frequency of the resonator or sound-pipe formed by each of the ducts 12--4, although the flow of liquid through the injectors 3 is continuous or practically so. As soon as starting is effected, gasoline can be replaced by another fuel and the plugs 3a disconnected, the successive combustions then occurring by self-ignition owing to the temperature reached and to the turbulence of the gases.

Several resonant pulse-combustion ducts thus arranged are fitted up in parallel relationship, in the same way as fire-tubes or fines, in the boiler 6 between the bottoms 7 and 8 thereof, the fiuidtightness of these bottoms being obtained by welding or in any other way. The boiler 6 is filled with water up to a level 9 located in the connecting zone between the combustion chambers 2 and the expansion nozzles 4. The steam generated by heat transmitted through the wall of the ducts collects above the level 9 and is led through 10 to the steam engines. The walls of the chambers 2, being at a very high temperature, are useful for snperheating the steam, convenient bailles such as 11 being provided for compelling the steam to flow along the walls of these chambers before being discharged. The vertical arrangement of the intermittent-combustion ducts is of interest in so far as it allows direct contact between steam and the hottest portion of the walls for the purpose of superheating. Moreover the fact that the walls 2 of the combustion chambers are not dipping into the liquid allows of keeping these walls at a quite high temperature, this being important when heavy liquid fuels are used. The air inlet tubes 1 open out into a common manifold 12 which can be fed with air at atmospheric pressure through a device with balfies 13 in staggered formation for damping sonorous pulses.

The gases issuing from the exhaust ducts 4 collect in a common flue or manifold 14 from which they are sent to the chimney. The residual heat energy contained in these gases can be conveniently used for heating recovery coils 15 through which feed-water for the boiler 6 flows. These coils form, in the path of the gases, sound damping obstacles.

What we claim is:

l. A boiler for generating and superheating steam comprising: an enclosure having a watertight bottom and a steam-tight top, said enclosure being designed for containing water up to a level located at a substantial distance from said top, a plurality of heating ducts of the pulsatory combustion type, adjacent to but spaced from each other, each of said ducts comprising a resonant-firing combustion chamber, the major portion of which extends between the top of said enclosure and the level of the water, and a gas exhaust pipe, the major portion of which is bathed by said water, said combustion chamher and gas exhaust pipe extending in succession and substantially vertically through said enclosure, said gas exhaust pipes extending through the bottom of said enclosure and discharging outside the same, an air intake device for each resonant-firing combustion chamber, extending through the top of said enclosure and having an inlet opening outside the same, said air intake devices being of the statical, aerodynamically operating type allowing substantially free flow of air towards the combustion chamber while hindering back-flow of con1bustion gas therefrom, a common air intake manifold above the top of said enclosure, in communication with the inlets of said air intake devices, a common gas exhaust manifold, below the bottom of said enclosure, in communication with said gas exhaust pipes, means adjacent the top of said enclosure for leading off superheated steam generated therein, and piping means leading into said enclosure for supplying water thereto.

2. Boiler as claimed in claim 1, wherein the air intake manifold opens to the atmosphere and comprises battles designed for damping the sound of the infiowing air.

3. Boiler as claimed in claim 1, wherein the piping means extends within the gas exhaust manifold, in heat exchange relation therewith, and is in the form of a coil adapted to damp the sound of the outfiowing gas.

References Cited in the file of this patent UNITED STATES PATENTS

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1948538 *Jan 7, 1930Feb 27, 1934Bbc Brown Boveri & CieSteam generator
US1948939 *Dec 16, 1930Feb 27, 1934Bbc Brown Boveri & CieSteam superheater
US1974177 *Mar 11, 1933Sep 18, 1934John C DouchaExplosive combustion boiler
US2618925 *Jan 31, 1947Nov 25, 1952Packard Motor Car CoFlow control means for pulse jet combustion units
US2643107 *Nov 28, 1949Jun 23, 1953Wunibald I E KammHeating device
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2950592 *Jan 6, 1954Aug 30, 1960Curtis Automotive Devices IncResonant pulse jet engine having an engine valve antechamber
US2965079 *Jul 8, 1957Dec 20, 1960Lucas Rotax LtdWater heating apparatus
US3091224 *Dec 6, 1956May 28, 1963Gustavsbergs Fabriker AbDevice for intermittent combustion
US3108054 *Jun 15, 1960Oct 22, 1963United Aircraft CorpNuclear powered propulsive device
US3119436 *Sep 20, 1961Jan 28, 1964Gustavsbergs Fabriker AbFurnace for intermittent combustion, particulary for steam boilers and heating boilers
US3171465 *Sep 20, 1961Mar 2, 1965Gustavsbergs Fabriker AbFurnace for intermittent combustion
US3414306 *Jul 12, 1965Dec 3, 1968Albert A. BernsteinDoor knob, lock and slide bolt protector
US3839994 *Dec 15, 1972Oct 8, 1974Steamotive IncSteam generator
US4314444 *Jun 23, 1980Feb 9, 1982Battelle Memorial InstituteHeating apparatus
US4846149 *Jan 27, 1988Jul 11, 1989Chato John DFluid heater using pulsating combustion
US4917596 *Jul 27, 1989Apr 17, 1990Kabushiki Kaisha ToshibaPulsating combustion system and method of starting the system
US4940405 *Feb 23, 1989Jul 10, 1990Kelly John TPulse combustion driven in-furnace NOx and SO2 control system for furnaces and boilers
US5145354 *Jun 25, 1991Sep 8, 1992Fulton Thermatec CorporationMethod and apparatus for recirculating flue gas in a pulse combustor
US5252058 *Sep 4, 1992Oct 12, 1993Fulton Thermatec CorporationMethod and apparatus for recirculating flue gas in a pulse combustor
US6003301 *Mar 27, 1997Dec 21, 1999Adroit Systems, Inc.Exhaust nozzle for multi-tube detonative engines
US6010329 *Nov 7, 1997Jan 4, 2000Shrinkfast CorporationHeat gun with high performance jet pump and quick change attachments
US6227846Nov 30, 1999May 8, 2001Shrinkfast CorporationHeat gun with high performance jet pump and quick change attachments
US6325616Apr 3, 2000Dec 4, 2001John D. ChatoPulsating combustion unit with interior having constant cross-section
US6464490Aug 27, 1999Oct 15, 2002Clean Energy Combustion Systems, Inc.Circular pulsating combustors
US7549509 *Apr 21, 2005Jun 23, 2009Ingersoll-Rand CompanyDouble throat pulsation dampener for a compressor
US8402745 *May 3, 2005Mar 26, 2013William Anthony DennePulse jet engines
US9062679May 11, 2009Jun 23, 2015Ingersoll-Rand CompanyDouble throat pulsation dampener for a compressor
US20060237081 *Apr 21, 2005Oct 26, 2006Ingersoll-Rand CompanyDouble throat pulsation dampener for a compressor
US20080209884 *May 3, 2005Sep 4, 2008William Anthony DennePulse Jet Engines
US20120204534 *Aug 16, 2012General Electric CompanySystem and method for damping pressure oscillations within a pulse detonation engine
WO1982000047A1 *Jun 19, 1981Jan 7, 1982Battelle Development CorpFluid heating device with pulse combustor
Classifications
U.S. Classification122/24, 60/39.77, 110/297, 60/784
International ClassificationF22B13/00, F22B3/06
Cooperative ClassificationF22B3/06, F22B13/005
European ClassificationF22B13/00B, F22B3/06