Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2780449 A
Publication typeGrant
Publication dateFeb 5, 1957
Filing dateDec 26, 1952
Priority dateDec 26, 1952
Publication numberUS 2780449 A, US 2780449A, US-A-2780449, US2780449 A, US2780449A
InventorsFrank R Fisher, Harry L Pelzer
Original AssigneeSinclair Oil & Gas Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Thermal process for in-situ decomposition of oil shale
US 2780449 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

2,780,449 THERMAL PROCESS FOR IN-SITU DECOMPOSITION OF OIL SHALE 1957 F. R. FISHER ETAL Filed Dec. 26, 1952 mmDhODmhm M435 :0

, FRANK R. FISHER HARRY L. PELZER ATTORNEYS United States Patent THERMAL PROCESS FOR IN-SITU DECOMPOSI- TION OF OIL SHALE Frank R. Fisher, Hastings on Hudson, N. Y., and Harry L. Pelzer, Catoosa, Okla, assignors to Sinclair Oil and Gas Company, Tulsa, Okla, a corporation of Maine Application December 26, 1952, Serial No. 328,144

5 Claims. (Cl. 262-3) Our invention relates to improvements in the recovery of oil from subsurface oil shale formations and particularly relates to a process providing in situ means for decomposition of the oil shale and for recovery of its oil content. Although vast reserves of oil in the form of shale oil are potentially available both in this country and abroad, the high costs of mining the oil shale, crushing and grinding it as a preliminary to any feasible recovery method such as by high temperature retorting make shale oil as a source of additional oil completely infeasible from the present economic standpoint. Thus before shale oil is available in crude form comparable to ordinary crude petroleum, the operations of stripping or drilling the overburden, mining the rock, transporting the rock to the surface and/or a suitable processing point, crushing the shale and grinding the crushed rock to a particle size permitting efiective heat treating and retorting the shale particles at high temperature must be performed. Even though potential recovery of shale oil may approximate as high as 50 to 75 gallons per ton of shale processed, the aggregate mining and processing costs impose such an economic burden that it would seem that shale oil could not become a significant energy supply factor unless a real and substantial shortage of petroleum developed.

The object of our invention is to provide a practical process for recovering shale oil by in situ means which will eliminate the costly operations of mining, transporting and processing the rock. More particularly, we accomplish in situ decomposition of the oil shale and induce flow of the shale oil in a manner permitting practical recovery by thermal means. Although application of underground burning or thermal methods has been proposed for recovery of shale oil, these proposals have failed to take into account the extreme impernieability of oil shale and hence have been unable to effect recovery except from the immediate locality of the input source of thermal energy. Obviously, a requirement that a great number of closely spaced wells must be drilled to effect recovery renders the recovery process as non-competitive with ordinary petroleum production as the requirements for mining and subsequent processing of the rock.

According to our invention, more fully described and illustrated by the accompanying drawing a plurality of wells, including an input well 3 and one or more output wells 20, may be employed in a manner similar to the well spacing patterns employed in recovery of crude oil by secondary methods. Thus an input and an output well may be drilled in a manner providing access to the oil shale formation over substantially its entire cross-section. Where outcropping of the shale formation occurs, only an input well need be drilled, and the oil may be produced from the outcrop instead of a drilled output well. A fluid pressuring medium, e. g. gas or water, is introduced through conduit 9 into the formation at an elevated pressure sufficient to penetrate the naturally occurring seams and small cracks or fissures in the shale and cause parting and cracking of the formation 15. The fluid pressuring medium can be introduced through one well until communication by pressure parting of the naturally occurring seams and cracks is established with a second well. Alternatively, the fluid pressuring medium can be introduced simultaneously through more than one well until the communication between wells has been nearly established whereupon the output well is vented and the operation is completed by fluid pressuring from the input well. Once communication between a plurality of wells, or between an input well and an outcrop, has been accomplished so as to permit passage of gases with pressure drops within the range of operation with practical compression equipment, a hot zone 12 is established within the formation at the bottom of an input well 3 by burning fuel gas or other extraneous fuel introduced via conduit 6 with air or oxygen injected through conduit 9 for a period of time sufiicient to heat a portion of the formation surrounding the input bore to a temperature promoting combustion of the carbonaceous matter left in the shale by vaporization or decomposition of the shale oils. The flow of hot combustion gases through the channels and communicating seams established during the pressure parting operation releases the trapped shale oil from the shale particles by vaporization and desorption so that the released shale oil can flow into the system of communicating passages. As the flowing oil passes into the cold unheated portions of the formation 15, condensation and increase in viscosity of course occurs, but the pressure drive effect of the combustion gases continues flow into the region of the output well which can be produced by pumping or other means.

In operation according to our invention, the potential producing field 15 is advantageously handled as a whole by drilling a plurality of wells 3 spaced in a manner designed to cover the subsurface formation efficiently but economically. Advantageously, a 5-spot or 9-spot pattern with a central input well may be employed as in conventional secondary petroleum recovery operations. The input well 3, or wells if more than one is employed, should be cased and capped for the pressure parting operation by cementing off the bore below the overburden line. As noted above, more than one well is advantageously employed in pressure parting operations until communication between the wells is nearly completed when the output Well or wells are vented. The pressure required to separate or pressure part the oil shale formation varies with the depth of the formation, its structure and permeability and the nature of the surrounding geologic structures. The pressure is best determined by actual trial in each individual formation, but as a rule of thumb, approximately one p. s. i. is required for each foot of depth. With shallow formations a pressure from about 50 percent in excess of the calculated overburden pressure to 350-400 pounds indicated as pressure above the overburden pressure may be required. If the structure or thickness of the oil shale formation requires, well bore packers may be installed at varying distances to reduce the equipment requirements for obtaining the necessary pressures for parting and cracking formation.

After formation parting and cracking has been accomplished a hot zone 12 should be established within the formation in the region of the input well or wells. The heating operation may be effected for example by piping air and fuel gas separately through conduits 9 and 6, respectively, to the bottom of the well in an explosive ratio, mixing the air and fuel at the bottom of the well and igniting the mixture by means of a pilot burner, a spark ignition device, a time delay bomb or the like. The heating operation is continued until a suflicient block of heat is built up within the formation to insure re-igni-tion of residual combustible material or an air-fuel gas mixture without resorting to ignition aids. In order to maintain the thermal drive phase of the recovery operation eficiently, the tempera-ture level in the hot zone 12 should be at least about 1,000 F. or higher in its peak region. The amount of heat required to heat up a designated portion of the formation from the input well to a given temperature is susceptible of calculation by taking into account the dimensions of the formation, the thermal properties of the oil shale and the flow rate of the combustion mixture. Usually the direct firing phase of the thermal operation requires a substantial period of time, e, g., about a month. The gas flow rate should be as high as is practicable at a pressure sufficient to maintain passage through the formation from the input well to the output wells or output zone. For example, a flow rate of about 50,000 cubic feet per hour may be employed. Assuming an oil content of about 1200 barrels per acre-foot, about 10,000 cubic feet of air per barrel of oil produced may be taken as a basis for planning the operation.

When the heat zone 12 has been established in the region of the input well 3, the operation is conducted by discontinuing burning at the bottom of the input well 3 and moving the heat zone 12 as a thermal front 14 or wave radially outward into the formation 15 in the direction of the output wells. Thus, introduction of an unheated substantially non-ccmbustible oxygen-containing gas stream is substituted so that the region of peak temperature is moved gradually outward into the formation 15 as the cold input gas flow continues at high rate from conduit 9. ln this manner, the injected gas stream acts as an effective heat transfer medium, absorbing heat as it approaches the peak temperature region and transferring heat absorbed in the process to the cooler regions of the formation 15 beyond the hot zone. Thus the hot zone is moved as a front or thermal wave 14 from the input well region through the formation toward the output Wells or outcrops. During the operation or as part of a coordinated cycle, the temperature level is maintained in the frontal zone by controlling the oxygen content of the input gas with Water, recycle field gas or other substantially inert diluents.

In order to accomplish continuous forward movement of the heat zone 14 as a wave of relatively narrow profile and high peait temperature, it is important to move the hot zone 14 out into the formation by use of a relatively cool gas drive and to avoid burn-bacl in the incoming gas drive stream. Accordingly, the operation may be conducted by cutting back the hydrocarbon content of the drive gas stream to a proportion below the explosive limit so that the mixture cannot ignite until it is well out into the formation where unburned carbonaceous matter is available to enrich the fuel-oxygen ratio to within combustible limits and where a high enough temperature for spontaneous combustion exists. For example, a gas drive at 50,000 cubic feet per hou may be employed providing a hydrocarbon content equivalent to 40 B. t. it. per cubic foot; e. g. about 4 percent methane in air, without danger of burn-back. Alternatively, alternate cycles in which an inert gas mixture; e, g. recycled field gas substantially free of oxygen, is introduced through conduit 9 as the cold gas drive until the temperature level in the hot zone begins to drop to a point endangering spontaneous reignition whereupon air or an oxygen-containing gas mixture which may be supplemented with fuel gas is substituted as the injection medium until the desired temperature level is restored in the hot zone. In this way, the hot zone 14 is moved out into the formation as a wave leaving bands of carbonaceous residue during the periods of inert gas drive. The duration of the inert gas drive cycle may approximate, for example, from several days to several weeks operation while the combustion drive cycle is usually substantially shorter in duration.

The residual carbon content of the shale after thermal displacement of the bulk of the oil content is available as fuel and advantageously is utilized as such at least in part in the combustion cycle by introduction of sufficient oxygen in the cycle gas. If the residual carbon content is low and extraneous fuel gas forms the chief combustible component, it is desirable to restrict the oxygen con tent of the oxygen-containing gas drive to less than about 6 percent in order to insure that burn-back from the hot front to the input well will not result with corresponding immobilization of the heat wave and excessive consumption of fuel.

The progress of the thermal operations within the formation can be followed by a number of means. Most directly, temperature recording wells can be drilled into the formation at appropriate intervals, or temperature rccording means can be injected laterally into the formation from the input well by horizontal drilling techniques. Indirect means, however, rovide a relatively sensitive means of following the operations involved even though allowance must be made for an inevitable time lag caused by the time required by the gas stream to traverse the formation. During combustion periods when oxygen is injected as a part of the gas drive, the proportions of oxygen, carbon dioxide and carbon monoxide in the edit:- ent gases are indicative of the relative completeness of combustion reactions and the correctness of the ratios of oxygen to the fuel in the injection gas stream.

A particular advantage of our combined method of imparting permeability to the subsurface shale oil formation by preliminary pressure parting followed by in situ decomposition of the shale to release oil by thermal means is that the essential initial permeability is established without necessity of supplying large amounts of heat or of employing costly mechanical methods. A further advange is that the thermal gas drive system, once initiated, tends to increase greatly the porosity of the shale by cracking and disintegrating the rock making it more and more permeable to subsurface gas llow, so that the efficiency of the overall gas drive operation increases as the operation proceeds. Since the region to be heated is confined by control of the gas drive operation to a peak frontal area or wave out in the region of decomposition, vaporization and oil flow, there is no need to attempt to heat the entire underground formation and the fuel costs per barrel of oil produced are small.

We claim:

1. A process for the recovery of shale oil from a subsurface oil shale formation by in situ decomposition which comprises drilling an input well to provide access to the oil shale formation, introducing a fluid pressuring medium into the formation at an elevated pressure suflicient to cause parting and cracking of the formation, establishing a hot zone within the formation by burning fuel gas at the bottom of the input well for a period of time suflicient to heat the surrounding formation to an elevated temperature promoting spontaneous combustion Within the formation; discontinuing burning at the bottom of the well, introducing an unheated substantially non-combustible oxygen-containing gas into said input well and passing said gas through said hot zone to absorb heat and to transfer absorbed heat to cooler regions of the shale formation beyond said hot zone, thereby mov ing said hot zone gradually outward into the formation; introducing into said hot zone a cool oxygen-containing combustion-supporting gas to promote forward movement of said hot zone as a thermal wave of relatively narrow profile and high peak temperature promoting combustion in a limited region of the formation, whereby oil is distilled in the formation in front of the advancing hot zone, and recovering oil from an output zone.

2. A process for the recovery of shale oil from a subsurface oil shale formation by in-situ decomposition which comprises drilling a plurality of input wells to provide access to the oil shale formation, introducing a fluid pressuring medium into the formation by means of said wells at an elevated pressure sufiicient to cause parting and cracking of the formation and until permeability permitting gas flow between said wells has been established, establishing a hot zone within the formation by burning fuel gas at the bottom of the input well for a period of time sufi'icient to heat the surrounding formation to an elevated temperature promoting spontaneous combustion Within the formation; discontinuing burning at the bottom of the well, introducing an unheated substantially non-combustible oxygen-containing gas into the input welt and passing said gas through said hot zone to absorb heat and to transfer absorbed heat to cooler regions of the shale formation beyond said hot zone, thereby moving said hot zone gradua'ily outward into the formation; introducing intosaid hot zone a cool oxygencontaining combustion-supporting gas to promote forward movement of said hot zone as a thermal wave of relatively narrow profile and high peak temperature promoting combustion in a limited region of the formation, whereby oil is distilled in the formation in front of the advancing hot zone, and recovering oil from an output zone.

3. The process of claim 1 wherein said combustionsupporting gas contains hydrocarbon gas in a proportion below the explosive limit whereby said gas ignites only in the presence of unburned carbonaceous matter hav- References Cited in the file of this patent UNITED STATES PATENTS l,422,204 Hoover et al. July 11, 1922 2,497,868 Dalin Feb. 21, 1950 2,584,605 Merriam et al. Feb. 5, 1952 2,584,606 Merriam et al. Feb. 5, 1952 2,596,843 Farris May 13, 1952 2,630,307 Martin Mar. 3, 1953 2,642,943 Smith et al. June 23, 1953 2,695,163 Pearce et al Nov. 23, 1954

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1422204 *Dec 19, 1919Jul 11, 1922Brown Thomas EMethod for working oil shales
US2497868 *Oct 10, 1946Feb 21, 1950David DalinUnderground exploitation of fuel deposits
US2584605 *Apr 14, 1948Feb 5, 1952Frederick SquiresThermal drive method for recovery of oil
US2584606 *Jul 2, 1948Feb 5, 1952Frederick SquiresThermal drive method for recovery of oil
US2596843 *Dec 31, 1949May 13, 1952Stanolind Oil & Gas CoFracturing formations in wells
US2630307 *Dec 9, 1948Mar 3, 1953Carbonic Products IncMethod of recovering oil from oil shale
US2642943 *May 20, 1949Jun 23, 1953Sinclair Oil & Gas CoOil recovery process
US2695163 *Dec 9, 1950Nov 23, 1954Stanolind Oil & Gas CoMethod for gasification of subterranean carbonaceous deposits
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2880802 *Mar 28, 1955Apr 7, 1959Phillips Petroleum CoRecovery of hydrocarbons from oil-bearing strata
US2901043 *Jul 29, 1955Aug 25, 1959Pan American Petroleum CorpHeavy oil recovery
US2911206 *Mar 8, 1957Nov 3, 1959Phillips Petroleum CoIn situ retorting of oil shale
US2914309 *May 25, 1953Nov 24, 1959Svenska Skifferolje AktiebolagOil and gas recovery from tar sands
US2917296 *Mar 8, 1957Dec 15, 1959Phillips Petroleum CoRecovery of hydrocarbon from oil shale adjoining a permeable oilbearing stratum
US2930598 *Aug 26, 1957Mar 29, 1960Phillips Petroleum CoIn situ combustion of carbonaceous deposits
US2939688 *Oct 5, 1955Jun 7, 1960Sinclair Oil & Gas CompanyOpening fissures in low-permeability strata
US2946382 *Sep 19, 1956Jul 26, 1960Phillips Petroleum CoProcess for recovering hydrocarbons from underground formations
US2952449 *Feb 1, 1957Sep 13, 1960Fmc CorpMethod of forming underground communication between boreholes
US2954218 *Dec 17, 1956Sep 27, 1960Continental Oil CoIn situ roasting and leaching of uranium ores
US2962095 *Mar 6, 1957Nov 29, 1960Pan American Petroleum CorpUnderground combustion process for oil recovery
US2967052 *Mar 31, 1958Jan 3, 1961Phillips Petroleum CoIn situ combustion process
US2970826 *Nov 21, 1958Feb 7, 1961Texaco IncRecovery of oil from oil shale
US3001776 *Apr 10, 1959Sep 26, 1961Ohio Oil CompanyMethod of preparation for and performance of in situ retorting
US3004594 *Nov 19, 1956Oct 17, 1961Phillips Petroleum CoProcess for producing oil
US3017168 *Jan 26, 1959Jan 16, 1962Phillips Petroleum CoIn situ retorting of oil shale
US3024841 *Jul 30, 1958Mar 13, 1962Jersey Prod Res CoMethod of oil recovery by in situ combustion
US3034580 *Aug 31, 1959May 15, 1962Phillips Petroleum CoIn situ combustion of lignite
US3079995 *Apr 16, 1958Mar 5, 1963Richfield Oil CorpPetroleum recovery from subsurface oil-bearing formation
US3085957 *Dec 26, 1957Apr 16, 1963Richfield Oil CorpNuclear reactor for heating a subsurface stratum
US3091292 *Feb 12, 1959May 28, 1963Texaco IncRecovering hydrocarbons from subsurface formations
US3113620 *Jul 6, 1959Dec 10, 1963Exxon Research Engineering CoProcess for producing viscous oil
US3126955 *Aug 22, 1955Mar 31, 1964 Oil recovery process
US3136361 *May 11, 1959Jun 9, 1964Phillips Petroleum CoFracturing formations in wells
US3149670 *Mar 27, 1962Sep 22, 1964Smclair Res IncIn-situ heating process
US3163216 *Dec 15, 1961Dec 29, 1964Pan American Petroleum CorpUse of water injection for promoting uniform initiation of underground combustion
US3170515 *Jun 12, 1961Feb 23, 1965Jersey Prod Res CoIn-situ combustion process
US3196945 *Oct 8, 1962Jul 27, 1965Pan American Petroleum CompanyMethod of forward in situ combustion with water injection
US3208519 *Jul 17, 1961Sep 28, 1965Exxon Production Research CoCombined in situ combustion-water injection oil recovery process
US3223158 *Dec 10, 1962Dec 14, 1965Socony Mobil Oil Co IncIn situ retorting of oil shale
US3228468 *Dec 8, 1961Jan 11, 1966Socony Mobil Oil Co IncIn-situ recovery of hydrocarbons from underground formations of oil shale
US3239405 *Nov 4, 1963Mar 8, 1966Pan American Petroleum CorpUnderground combustion process
US3379254 *Aug 25, 1966Apr 23, 1968Mobil Oil CorpMethod for initiating in situ combustion within a subterranean formation
US3400762 *Jul 8, 1966Sep 10, 1968Phillips Petroleum CoIn situ thermal recovery of oil from an oil shale
US3454958 *Nov 4, 1966Jul 8, 1969Phillips Petroleum CoProducing oil from nuclear-produced chimneys in oil shale
US3502372 *Oct 23, 1968Mar 24, 1970Shell Oil CoProcess of recovering oil and dawsonite from oil shale
US3593789 *Oct 18, 1968Jul 20, 1971Shell Oil CoMethod for producing shale oil from an oil shale formation
US3596993 *Feb 14, 1969Aug 3, 1971Mc Donnell Douglas CorpMethod of extracting oil and by-products from oil shale
US3599714 *Sep 8, 1969Aug 17, 1971Becker Karl EMethod of recovering hydrocarbons by in situ combustion
US3630278 *Nov 7, 1968Dec 28, 1971Phillips Petroleum CoMethod for strengthening reservoir fractures
US3994343 *Mar 4, 1974Nov 30, 1976Occidental Petroleum CorporationProcess for in situ oil shale retorting with off gas recycling
US4045085 *Apr 14, 1975Aug 30, 1977Occidental Oil Shale, Inc.Fracturing of pillars for enhancing recovery of oil from in situ oil shale retort
US4202168 *Jul 18, 1978May 13, 1980Gulf Research & Development CompanyMethod for the recovery of power from LHV gas
US4263970 *Jul 31, 1978Apr 28, 1981Occidental Oil Shale, Inc.Method for assuring uniform combustion in an in situ oil shale retort
US4369841 *Dec 29, 1980Jan 25, 1983Occidental Oil Shale, Inc.Method for igniting an in situ oil shale retort
US4573530 *Nov 7, 1983Mar 4, 1986Mobil Oil CorporationIn-situ gasification of tar sands utilizing a combustible gas
US6581684Apr 24, 2001Jun 24, 2003Shell Oil CompanyIn Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US6588504Apr 24, 2001Jul 8, 2003Shell Oil CompanyIn situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US6591906Apr 24, 2001Jul 15, 2003Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US6591907Apr 24, 2001Jul 15, 2003Shell Oil CompanyIn situ thermal processing of a coal formation with a selected vitrinite reflectance
US6607033Apr 24, 2001Aug 19, 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to produce a condensate
US6609570Apr 24, 2001Aug 26, 2003Shell Oil CompanyIn situ thermal processing of a coal formation and ammonia production
US6684948Jan 15, 2002Feb 3, 2004Marshall T. SavageApparatus and method for heating subterranean formations using fuel cells
US6688387Apr 24, 2001Feb 10, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6698515Apr 24, 2001Mar 2, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a relatively slow heating rate
US6702016Apr 24, 2001Mar 9, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US6708758Apr 24, 2001Mar 23, 2004Shell Oil CompanyIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US6712135Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation in reducing environment
US6712136Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US6712137Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US6715546Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6715547Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US6715548Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6715549Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6719047Apr 24, 2001Apr 13, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US6722429Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6722430Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US6722431Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of hydrocarbons within a relatively permeable formation
US6725920Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US6725921Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation by controlling a pressure of the formation
US6725928Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a distributed combustor
US6729395Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US6729396Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6729397Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729401Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation and ammonia production
US6732794Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6732795Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US6732796Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US6736215Apr 24, 2001May 18, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US6739393Apr 24, 2001May 25, 2004Shell Oil CompanyIn situ thermal processing of a coal formation and tuning production
US6739394Apr 24, 2001May 25, 2004Shell Oil CompanyProduction of synthesis gas from a hydrocarbon containing formation
US6742587Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6742588Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US6742589Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US6742593Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US6745831Apr 24, 2001Jun 8, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US6745832Apr 24, 2001Jun 8, 2004Shell Oil CompanySitu thermal processing of a hydrocarbon containing formation to control product composition
US6745837Apr 24, 2001Jun 8, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US6749021Apr 24, 2001Jun 15, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a controlled heating rate
US6752210Apr 24, 2001Jun 22, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US6758268Apr 24, 2001Jul 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US6761216Apr 24, 2001Jul 13, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US6763886Apr 24, 2001Jul 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with carbon dioxide sequestration
US6769483Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6769485Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ production of synthesis gas from a coal formation through a heat source wellbore
US6789625Apr 24, 2001Sep 14, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US6805195Apr 24, 2001Oct 19, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US6820688Apr 24, 2001Nov 23, 2004Shell Oil CompanyIn situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio
US6866097Apr 24, 2001Mar 15, 2005Shell Oil CompanyIn situ thermal processing of a coal formation to increase a permeability/porosity of the formation
US6871707Apr 24, 2001Mar 29, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US6877554Apr 24, 2001Apr 12, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control
US6877555Apr 24, 2002Apr 12, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation while inhibiting coking
US6880633Apr 24, 2002Apr 19, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce a desired product
US6880635Apr 24, 2001Apr 19, 2005Shell Oil CompanyIn situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio
US6889769Apr 24, 2001May 10, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US6896053Apr 24, 2001May 24, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US6902003Apr 24, 2001Jun 7, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content
US6902004Apr 24, 2001Jun 7, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a movable heating element
US6910536Apr 24, 2001Jun 28, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US6913078Apr 24, 2001Jul 5, 2005Shell Oil CompanyIn Situ thermal processing of hydrocarbons within a relatively impermeable formation
US6915850Apr 24, 2002Jul 12, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation having permeable and impermeable sections
US6918442Apr 24, 2002Jul 19, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation in a reducing environment
US6918443Apr 24, 2002Jul 19, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US6923257Apr 24, 2002Aug 2, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce a condensate
US6923258Jun 12, 2003Aug 2, 2005Shell Oil CompanyIn situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6929067Apr 24, 2002Aug 16, 2005Shell Oil CompanyHeat sources with conductive material for in situ thermal processing of an oil shale formation
US6932155Oct 24, 2002Aug 23, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US6948562Apr 24, 2002Sep 27, 2005Shell Oil CompanyProduction of a blending agent using an in situ thermal process in a relatively permeable formation
US6948563Apr 24, 2001Sep 27, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US6951247Apr 24, 2002Oct 4, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation using horizontal heat sources
US6953087Apr 24, 2001Oct 11, 2005Shell Oil CompanyThermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US6959761Apr 24, 2001Nov 1, 2005Shell Oil CompanyIn situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US6964300Apr 24, 2002Nov 15, 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US6966372Apr 24, 2001Nov 22, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US6966374Apr 24, 2002Nov 22, 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation using gas to increase mobility
US6969123Oct 24, 2002Nov 29, 2005Shell Oil CompanyUpgrading and mining of coal
US6973967Apr 24, 2001Dec 13, 2005Shell Oil CompanySitu thermal processing of a coal formation using pressure and/or temperature control
US6981548Apr 24, 2002Jan 3, 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation
US6991031Apr 24, 2001Jan 31, 2006Shell Oil CompanyIn situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US6991032Apr 24, 2002Jan 31, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US6991033Apr 24, 2002Jan 31, 2006Shell Oil CompanyIn situ thermal processing while controlling pressure in an oil shale formation
US6991036Apr 24, 2002Jan 31, 2006Shell Oil CompanyThermal processing of a relatively permeable formation
US6991045Oct 24, 2002Jan 31, 2006Shell Oil CompanyForming openings in a hydrocarbon containing formation using magnetic tracking
US6994160Apr 24, 2001Feb 7, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US6994161Apr 24, 2001Feb 7, 2006Kevin Albert MaherIn situ thermal processing of a coal formation with a selected moisture content
US6994168Apr 24, 2001Feb 7, 2006Scott Lee WellingtonIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US6994169Apr 24, 2002Feb 7, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation with a selected property
US6997255Apr 24, 2001Feb 14, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a reducing environment
US7004247Apr 24, 2002Feb 28, 2006Shell Oil CompanyConductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US7004251Apr 24, 2002Feb 28, 2006Shell Oil CompanyIn situ thermal processing and remediation of an oil shale formation
US7011154Oct 24, 2002Mar 14, 2006Shell Oil CompanyIn situ recovery from a kerogen and liquid hydrocarbon containing formation
US7013972Apr 24, 2002Mar 21, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a natural distributed combustor
US7017661Apr 24, 2001Mar 28, 2006Shell Oil CompanyProduction of synthesis gas from a coal formation
US7032660 *Apr 24, 2002Apr 25, 2006Shell Oil CompanyIn situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US7036583Sep 24, 2001May 2, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US7040398Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation in a reducing environment
US7040399Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a controlled heating rate
US7040400Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of a relatively impermeable formation using an open wellbore
US7051807Apr 24, 2002May 30, 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with quality control
US7051808Oct 24, 2002May 30, 2006Shell Oil CompanySeismic monitoring of in situ conversion in a hydrocarbon containing formation
US7051811Apr 24, 2002May 30, 2006Shell Oil CompanyIn situ thermal processing through an open wellbore in an oil shale formation
US7055600Apr 24, 2002Jun 6, 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with controlled production rate
US7063145Oct 24, 2002Jun 20, 2006Shell Oil CompanyMethods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US7066254Oct 24, 2002Jun 27, 2006Shell Oil CompanyIn situ thermal processing of a tar sands formation
US7066257Oct 24, 2002Jun 27, 2006Shell Oil CompanyIn situ recovery from lean and rich zones in a hydrocarbon containing formation
US7073578Oct 24, 2003Jul 11, 2006Shell Oil CompanyStaged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US7077198Oct 24, 2002Jul 18, 2006Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using barriers
US7077199Oct 24, 2002Jul 18, 2006Shell Oil CompanyIn situ thermal processing of an oil reservoir formation
US7086465Oct 24, 2002Aug 8, 2006Shell Oil CompanyIn situ production of a blending agent from a hydrocarbon containing formation
US7086468Apr 24, 2001Aug 8, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US7090013Oct 24, 2002Aug 15, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US7096941Apr 24, 2001Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US7096942Apr 24, 2002Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation while controlling pressure
US7096953Apr 24, 2001Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a coal formation using a movable heating element
US7100994Oct 24, 2002Sep 5, 2006Shell Oil CompanyProducing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation
US7104319Oct 24, 2002Sep 12, 2006Shell Oil CompanyIn situ thermal processing of a heavy oil diatomite formation
US7114566Oct 24, 2002Oct 3, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US7121341Oct 24, 2003Oct 17, 2006Shell Oil CompanyConductor-in-conduit temperature limited heaters
US7121342Apr 23, 2004Oct 17, 2006Shell Oil CompanyThermal processes for subsurface formations
US7128153Oct 24, 2002Oct 31, 2006Shell Oil CompanyTreatment of a hydrocarbon containing formation after heating
US7156176Oct 24, 2002Jan 2, 2007Shell Oil CompanyInstallation and use of removable heaters in a hydrocarbon containing formation
US7165615Oct 24, 2002Jan 23, 2007Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US7182132Oct 15, 2003Feb 27, 2007Independant Energy Partners, Inc.Linearly scalable geothermic fuel cells
US7219734Oct 24, 2003May 22, 2007Shell Oil CompanyInhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US7225866Jan 31, 2006Jun 5, 2007Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US7320364Apr 22, 2005Jan 22, 2008Shell Oil CompanyInhibiting reflux in a heated well of an in situ conversion system
US7353872Apr 22, 2005Apr 8, 2008Shell Oil CompanyStart-up of temperature limited heaters using direct current (DC)
US7357180Apr 22, 2005Apr 15, 2008Shell Oil CompanyInhibiting effects of sloughing in wellbores
US7360588Oct 17, 2006Apr 22, 2008Shell Oil CompanyThermal processes for subsurface formations
US7370704Apr 22, 2005May 13, 2008Shell Oil CompanyTriaxial temperature limited heater
US7383877Apr 22, 2005Jun 10, 2008Shell Oil CompanyTemperature limited heaters with thermally conductive fluid used to heat subsurface formations
US7424915Apr 22, 2005Sep 16, 2008Shell Oil CompanyVacuum pumping of conductor-in-conduit heaters
US7431076Apr 22, 2005Oct 7, 2008Shell Oil CompanyTemperature limited heaters using modulated DC power
US7435037Apr 21, 2006Oct 14, 2008Shell Oil CompanyLow temperature barriers with heat interceptor wells for in situ processes
US7461691Jan 23, 2007Dec 9, 2008Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7481274Apr 22, 2005Jan 27, 2009Shell Oil CompanyTemperature limited heaters with relatively constant current
US7490665Apr 22, 2005Feb 17, 2009Shell Oil CompanyVariable frequency temperature limited heaters
US7500528Apr 21, 2006Mar 10, 2009Shell Oil CompanyLow temperature barrier wellbores formed using water flushing
US7510000Apr 22, 2005Mar 31, 2009Shell Oil CompanyReducing viscosity of oil for production from a hydrocarbon containing formation
US7527094Apr 21, 2006May 5, 2009Shell Oil CompanyDouble barrier system for an in situ conversion process
US7533719Apr 20, 2007May 19, 2009Shell Oil CompanyWellhead with non-ferromagnetic materials
US7540324Oct 19, 2007Jun 2, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a checkerboard pattern staged process
US7546873Apr 21, 2006Jun 16, 2009Shell Oil CompanyLow temperature barriers for use with in situ processes
US7549470Oct 20, 2006Jun 23, 2009Shell Oil CompanySolution mining and heating by oxidation for treating hydrocarbon containing formations
US7556095Oct 20, 2006Jul 7, 2009Shell Oil CompanySolution mining dawsonite from hydrocarbon containing formations with a chelating agent
US7556096Oct 20, 2006Jul 7, 2009Shell Oil CompanyVarying heating in dawsonite zones in hydrocarbon containing formations
US7559367Oct 20, 2006Jul 14, 2009Shell Oil CompanyTemperature limited heater with a conduit substantially electrically isolated from the formation
US7559368Oct 20, 2006Jul 14, 2009Shell Oil CompanySolution mining systems and methods for treating hydrocarbon containing formations
US7562706Jul 21, 2009Shell Oil CompanySystems and methods for producing hydrocarbons from tar sands formations
US7562707Jul 21, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a line drive staged process
US7575052Apr 21, 2006Aug 18, 2009Shell Oil CompanyIn situ conversion process utilizing a closed loop heating system
US7575053Apr 21, 2006Aug 18, 2009Shell Oil CompanyLow temperature monitoring system for subsurface barriers
US7581589Oct 20, 2006Sep 1, 2009Shell Oil CompanyMethods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US7584789Oct 20, 2006Sep 8, 2009Shell Oil CompanyMethods of cracking a crude product to produce additional crude products
US7591310Oct 20, 2006Sep 22, 2009Shell Oil CompanyMethods of hydrotreating a liquid stream to remove clogging compounds
US7597147Apr 20, 2007Oct 6, 2009Shell Oil CompanyTemperature limited heaters using phase transformation of ferromagnetic material
US7604052Oct 20, 2009Shell Oil CompanyCompositions produced using an in situ heat treatment process
US7610962Nov 3, 2009Shell Oil CompanySour gas injection for use with in situ heat treatment
US7631689Dec 15, 2009Shell Oil CompanySulfur barrier for use with in situ processes for treating formations
US7631690Oct 19, 2007Dec 15, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a spiral startup staged sequence
US7635023Apr 20, 2007Dec 22, 2009Shell Oil CompanyTime sequenced heating of multiple layers in a hydrocarbon containing formation
US7635024Oct 19, 2007Dec 22, 2009Shell Oil CompanyHeating tar sands formations to visbreaking temperatures
US7635025Oct 20, 2006Dec 22, 2009Shell Oil CompanyCogeneration systems and processes for treating hydrocarbon containing formations
US7640980Jan 5, 2010Shell Oil CompanyThermal processes for subsurface formations
US7644765Oct 19, 2007Jan 12, 2010Shell Oil CompanyHeating tar sands formations while controlling pressure
US7673681Oct 19, 2007Mar 9, 2010Shell Oil CompanyTreating tar sands formations with karsted zones
US7673786Apr 20, 2007Mar 9, 2010Shell Oil CompanyWelding shield for coupling heaters
US7677310Oct 19, 2007Mar 16, 2010Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US7677314Oct 19, 2007Mar 16, 2010Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US7681647Mar 23, 2010Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US7683296Mar 23, 2010Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US7703513Oct 19, 2007Apr 27, 2010Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US7717171Oct 19, 2007May 18, 2010Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US7730945Oct 19, 2007Jun 8, 2010Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730946Oct 19, 2007Jun 8, 2010Shell Oil CompanyTreating tar sands formations with dolomite
US7730947Oct 19, 2007Jun 8, 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US7735935Jun 1, 2007Jun 15, 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US7785427Apr 20, 2007Aug 31, 2010Shell Oil CompanyHigh strength alloys
US7793722Apr 20, 2007Sep 14, 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US7798220Apr 18, 2008Sep 21, 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US7798221Sep 21, 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7831133Apr 21, 2006Nov 9, 2010Shell Oil CompanyInsulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration
US7831134Apr 21, 2006Nov 9, 2010Shell Oil CompanyGrouped exposed metal heaters
US7832484Apr 18, 2008Nov 16, 2010Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US7841401Oct 19, 2007Nov 30, 2010Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US7841408Apr 18, 2008Nov 30, 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US7841425Nov 30, 2010Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US7845411Dec 7, 2010Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US7849922Dec 14, 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US7860377Apr 21, 2006Dec 28, 2010Shell Oil CompanySubsurface connection methods for subsurface heaters
US7866385Apr 20, 2007Jan 11, 2011Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US7866386Oct 13, 2008Jan 11, 2011Shell Oil CompanyIn situ oxidation of subsurface formations
US7866388Jan 11, 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US7912358Apr 20, 2007Mar 22, 2011Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US7931086Apr 18, 2008Apr 26, 2011Shell Oil CompanyHeating systems for heating subsurface formations
US7942197Apr 21, 2006May 17, 2011Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US7942203May 17, 2011Shell Oil CompanyThermal processes for subsurface formations
US7950453Apr 18, 2008May 31, 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US7986869Apr 21, 2006Jul 26, 2011Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US8011451Sep 6, 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US8027571Sep 27, 2011Shell Oil CompanyIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US8042610Oct 25, 2011Shell Oil CompanyParallel heater system for subsurface formations
US8070840Apr 21, 2006Dec 6, 2011Shell Oil CompanyTreatment of gas from an in situ conversion process
US8083813Dec 27, 2011Shell Oil CompanyMethods of producing transportation fuel
US8113272Oct 13, 2008Feb 14, 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US8146661Oct 13, 2008Apr 3, 2012Shell Oil CompanyCryogenic treatment of gas
US8146669Oct 13, 2008Apr 3, 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US8151880Dec 9, 2010Apr 10, 2012Shell Oil CompanyMethods of making transportation fuel
US8151907Apr 10, 2009Apr 10, 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8162059Apr 24, 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US8162405Apr 24, 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US8172335May 8, 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8177305Apr 10, 2009May 15, 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8191630Apr 28, 2010Jun 5, 2012Shell Oil CompanyCreating fluid injectivity in tar sands formations
US8192682Apr 26, 2010Jun 5, 2012Shell Oil CompanyHigh strength alloys
US8196658Jun 12, 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US8220539Jul 17, 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8224163Oct 24, 2003Jul 17, 2012Shell Oil CompanyVariable frequency temperature limited heaters
US8224164Oct 24, 2003Jul 17, 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US8224165Jul 17, 2012Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US8225866Jul 21, 2010Jul 24, 2012Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8230927May 16, 2011Jul 31, 2012Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US8233782Jul 31, 2012Shell Oil CompanyGrouped exposed metal heaters
US8238730Aug 7, 2012Shell Oil CompanyHigh voltage temperature limited heaters
US8240774Aug 14, 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US8256512Oct 9, 2009Sep 4, 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US8261832Sep 11, 2012Shell Oil CompanyHeating subsurface formations with fluids
US8267170Sep 18, 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US8267185Sep 18, 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US8272455Sep 25, 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US8276661Oct 2, 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US8281861Oct 9, 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US8327681Dec 11, 2012Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US8327932Apr 9, 2010Dec 11, 2012Shell Oil CompanyRecovering energy from a subsurface formation
US8353347Oct 9, 2009Jan 15, 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US8355623Jan 15, 2013Shell Oil CompanyTemperature limited heaters with high power factors
US8381815Apr 18, 2008Feb 26, 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US8434555Apr 9, 2010May 7, 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US8448707May 28, 2013Shell Oil CompanyNon-conducting heater casings
US8459359Apr 18, 2008Jun 11, 2013Shell Oil CompanyTreating nahcolite containing formations and saline zones
US8485252Jul 11, 2012Jul 16, 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8536497Oct 13, 2008Sep 17, 2013Shell Oil CompanyMethods for forming long subsurface heaters
US8555971May 31, 2012Oct 15, 2013Shell Oil CompanyTreating tar sands formations with dolomite
US8562078Nov 25, 2009Oct 22, 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8579031May 17, 2011Nov 12, 2013Shell Oil CompanyThermal processes for subsurface formations
US8606091Oct 20, 2006Dec 10, 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US8627887Dec 8, 2008Jan 14, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8631866Apr 8, 2011Jan 21, 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8636323Nov 25, 2009Jan 28, 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US8662175Apr 18, 2008Mar 4, 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8701768Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US8701769Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US8739874Apr 8, 2011Jun 3, 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US8752904Apr 10, 2009Jun 17, 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8789586Jul 12, 2013Jul 29, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8791396Apr 18, 2008Jul 29, 2014Shell Oil CompanyFloating insulated conductors for heating subsurface formations
US8820406Apr 8, 2011Sep 2, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8833453Apr 8, 2011Sep 16, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US8851170Apr 9, 2010Oct 7, 2014Shell Oil CompanyHeater assisted fluid treatment of a subsurface formation
US8857506May 24, 2013Oct 14, 2014Shell Oil CompanyAlternate energy source usage methods for in situ heat treatment processes
US8875788Apr 8, 2011Nov 4, 2014Shell Oil CompanyLow temperature inductive heating of subsurface formations
US8881806Oct 9, 2009Nov 11, 2014Shell Oil CompanySystems and methods for treating a subsurface formation with electrical conductors
US9016370Apr 6, 2012Apr 28, 2015Shell Oil CompanyPartial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9022109Jan 21, 2014May 5, 2015Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US9022118Oct 9, 2009May 5, 2015Shell Oil CompanyDouble insulated heaters for treating subsurface formations
US9033042Apr 8, 2011May 19, 2015Shell Oil CompanyForming bitumen barriers in subsurface hydrocarbon formations
US9051829Oct 9, 2009Jun 9, 2015Shell Oil CompanyPerforated electrical conductors for treating subsurface formations
US9127523Apr 8, 2011Sep 8, 2015Shell Oil CompanyBarrier methods for use in subsurface hydrocarbon formations
US9127538Apr 8, 2011Sep 8, 2015Shell Oil CompanyMethodologies for treatment of hydrocarbon formations using staged pyrolyzation
US9129728Oct 9, 2009Sep 8, 2015Shell Oil CompanySystems and methods of forming subsurface wellbores
US9181780Apr 18, 2008Nov 10, 2015Shell Oil CompanyControlling and assessing pressure conditions during treatment of tar sands formations
US9309755Oct 4, 2012Apr 12, 2016Shell Oil CompanyThermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US20020027001 *Apr 24, 2001Mar 7, 2002Wellington Scott L.In situ thermal processing of a coal formation to produce a selected gas mixture
US20020040778 *Apr 24, 2001Apr 11, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US20020046883 *Apr 24, 2001Apr 25, 2002Wellington Scott LeeIn situ thermal processing of a coal formation using pressure and/or temperature control
US20020049360 *Apr 24, 2001Apr 25, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce a mixture including ammonia
US20020076212 *Apr 24, 2001Jun 20, 2002Etuan ZhangIn situ thermal processing of a hydrocarbon containing formation producing a mixture with oxygenated hydrocarbons
US20020132862 *Apr 24, 2001Sep 19, 2002Vinegar Harold J.Production of synthesis gas from a coal formation
US20030079877 *Apr 24, 2002May 1, 2003Wellington Scott LeeIn situ thermal processing of a relatively impermeable formation in a reducing environment
US20030080604 *Apr 24, 2002May 1, 2003Vinegar Harold J.In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US20030098149 *Apr 24, 2002May 29, 2003Wellington Scott LeeIn situ thermal recovery from a relatively permeable formation using gas to increase mobility
US20030098605 *Apr 24, 2002May 29, 2003Vinegar Harold J.In situ thermal recovery from a relatively permeable formation
US20030100451 *Apr 24, 2002May 29, 2003Messier Margaret AnnIn situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US20030102124 *Apr 24, 2002Jun 5, 2003Vinegar Harold J.In situ thermal processing of a blending agent from a relatively permeable formation
US20030102125 *Apr 24, 2002Jun 5, 2003Wellington Scott LeeIn situ thermal processing of a relatively permeable formation in a reducing environment
US20030102126 *Apr 24, 2002Jun 5, 2003Sumnu-Dindoruk Meliha DenizIn situ thermal recovery from a relatively permeable formation with controlled production rate
US20030102130 *Apr 24, 2002Jun 5, 2003Vinegar Harold J.In situ thermal recovery from a relatively permeable formation with quality control
US20030111223 *Apr 24, 2002Jun 19, 2003Rouffignac Eric Pierre DeIn situ thermal processing of an oil shale formation using horizontal heat sources
US20030116315 *Apr 24, 2002Jun 26, 2003Wellington Scott LeeIn situ thermal processing of a relatively permeable formation
US20030131993 *Apr 24, 2002Jul 17, 2003Etuan ZhangIn situ thermal processing of an oil shale formation with a selected property
US20030131995 *Apr 24, 2002Jul 17, 2003De Rouffignac Eric PierreIn situ thermal processing of a relatively impermeable formation to increase permeability of the formation
US20030131996 *Apr 24, 2002Jul 17, 2003Vinegar Harold J.In situ thermal processing of an oil shale formation having permeable and impermeable sections
US20030136558 *Apr 24, 2002Jul 24, 2003Wellington Scott LeeIn situ thermal processing of an oil shale formation to produce a desired product
US20030136559 *Apr 24, 2002Jul 24, 2003Wellington Scott LeeIn situ thermal processing while controlling pressure in an oil shale formation
US20030137181 *Apr 24, 2002Jul 24, 2003Wellington Scott LeeIn situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US20030141066 *Apr 24, 2002Jul 31, 2003Karanikas John MichaelIn situ thermal processing of an oil shale formation while inhibiting coking
US20030141067 *Apr 24, 2002Jul 31, 2003Rouffignac Eric Pierre DeIn situ thermal processing of an oil shale formation to increase permeability of the formation
US20030141068 *Apr 24, 2002Jul 31, 2003Pierre De Rouffignac EricIn situ thermal processing through an open wellbore in an oil shale formation
US20030142964 *Apr 24, 2002Jul 31, 2003Wellington Scott LeeIn situ thermal processing of an oil shale formation using a controlled heating rate
US20030146002 *Apr 24, 2002Aug 7, 2003Vinegar Harold J.Removable heat sources for in situ thermal processing of an oil shale formation
US20030148894 *Apr 24, 2002Aug 7, 2003Vinegar Harold J.In situ thermal processing of an oil shale formation using a natural distributed combustor
US20030155111 *Oct 24, 2002Aug 21, 2003Shell Oil CoIn situ thermal processing of a tar sands formation
US20030164239 *Apr 24, 2002Sep 4, 2003Wellington Scott LeeIn situ thermal processing of an oil shale formation in a reducing environment
US20030173072 *Oct 24, 2002Sep 18, 2003Vinegar Harold J.Forming openings in a hydrocarbon containing formation using magnetic tracking
US20030173078 *Apr 24, 2002Sep 18, 2003Wellington Scott LeeIn situ thermal processing of an oil shale formation to produce a condensate
US20030173080 *Apr 24, 2002Sep 18, 2003Berchenko Ilya EmilIn situ thermal processing of an oil shale formation using a pattern of heat sources
US20030173081 *Oct 24, 2002Sep 18, 2003Vinegar Harold J.In situ thermal processing of an oil reservoir formation
US20030173082 *Oct 24, 2002Sep 18, 2003Vinegar Harold J.In situ thermal processing of a heavy oil diatomite formation
US20030173085 *Oct 24, 2002Sep 18, 2003Vinegar Harold J.Upgrading and mining of coal
US20030178191 *Oct 24, 2002Sep 25, 2003Maher Kevin AlbertIn situ recovery from a kerogen and liquid hydrocarbon containing formation
US20030192691 *Oct 24, 2002Oct 16, 2003Vinegar Harold J.In situ recovery from a hydrocarbon containing formation using barriers
US20030192693 *Oct 24, 2002Oct 16, 2003Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US20030196789 *Oct 24, 2002Oct 23, 2003Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation and upgrading of produced fluids prior to further treatment
US20030196801 *Oct 24, 2002Oct 23, 2003Vinegar Harold J.In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US20030196810 *Oct 24, 2002Oct 23, 2003Vinegar Harold J.Treatment of a hydrocarbon containing formation after heating
US20030201098 *Oct 24, 2002Oct 30, 2003Karanikas John MichaelIn situ recovery from a hydrocarbon containing formation using one or more simulations
US20030205378 *Oct 24, 2002Nov 6, 2003Wellington Scott LeeIn situ recovery from lean and rich zones in a hydrocarbon containing formation
US20040040715 *Oct 24, 2002Mar 4, 2004Wellington Scott LeeIn situ production of a blending agent from a hydrocarbon containing formation
US20040140095 *Oct 24, 2003Jul 22, 2004Vinegar Harold J.Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US20040144540 *Oct 24, 2003Jul 29, 2004Sandberg Chester LedlieHigh voltage temperature limited heaters
US20040144541 *Oct 24, 2003Jul 29, 2004Picha Mark GregoryForming wellbores using acoustic methods
US20040145969 *Oct 24, 2003Jul 29, 2004Taixu BaiInhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US20040146288 *Oct 24, 2003Jul 29, 2004Vinegar Harold J.Temperature limited heaters for heating subsurface formations or wellbores
US20040211554 *Apr 24, 2002Oct 28, 2004Vinegar Harold J.Heat sources with conductive material for in situ thermal processing of an oil shale formation
US20040211557 *Apr 24, 2002Oct 28, 2004Cole Anthony ThomasConductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US20040211569 *Oct 24, 2002Oct 28, 2004Vinegar Harold J.Installation and use of removable heaters in a hydrocarbon containing formation
US20050006097 *Oct 24, 2003Jan 13, 2005Sandberg Chester LedlieVariable frequency temperature limited heaters
US20050016729 *Oct 15, 2003Jan 27, 2005Savage Marshall T.Linearly scalable geothermic fuel cells
US20050092483 *Oct 24, 2002May 5, 2005Vinegar Harold J.In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US20050269077 *Apr 22, 2005Dec 8, 2005Sandberg Chester LStart-up of temperature limited heaters using direct current (DC)
US20050269088 *Apr 22, 2005Dec 8, 2005Vinegar Harold JInhibiting effects of sloughing in wellbores
US20050269089 *Apr 22, 2005Dec 8, 2005Sandberg Chester LTemperature limited heaters using modulated DC power
US20050269090 *Apr 22, 2005Dec 8, 2005Vinegar Harold JTemperature limited heaters with thermally conductive fluid used to heat subsurface formations
US20050269091 *Apr 22, 2005Dec 8, 2005Guillermo Pastor-SanzReducing viscosity of oil for production from a hydrocarbon containing formation
US20050269092 *Apr 22, 2005Dec 8, 2005Vinegar Harold JVacuum pumping of conductor-in-conduit heaters
US20050269093 *Apr 22, 2005Dec 8, 2005Sandberg Chester LVariable frequency temperature limited heaters
US20050269094 *Apr 22, 2005Dec 8, 2005Harris Christopher KTriaxial temperature limited heater
US20050269095 *Apr 22, 2005Dec 8, 2005Fairbanks Michael DInhibiting reflux in a heated well of an in situ conversion system
US20050269313 *Apr 22, 2005Dec 8, 2005Vinegar Harold JTemperature limited heaters with high power factors
US20060005968 *Apr 22, 2005Jan 12, 2006Vinegar Harold JTemperature limited heaters with relatively constant current
US20060213657 *Jan 31, 2006Sep 28, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US20060289536 *Apr 22, 2005Dec 28, 2006Vinegar Harold JSubsurface electrical heaters using nitride insulation
US20070045265 *Apr 21, 2006Mar 1, 2007Mckinzie Billy J IiLow temperature barriers with heat interceptor wells for in situ processes
US20070045266 *Apr 21, 2006Mar 1, 2007Sandberg Chester LIn situ conversion process utilizing a closed loop heating system
US20070045267 *Apr 21, 2006Mar 1, 2007Vinegar Harold JSubsurface connection methods for subsurface heaters
US20070045268 *Apr 21, 2006Mar 1, 2007Vinegar Harold JVarying properties along lengths of temperature limited heaters
US20070095536 *Oct 20, 2006May 3, 2007Vinegar Harold JCogeneration systems and processes for treating hydrocarbon containing formations
US20070095537 *Oct 20, 2006May 3, 2007Vinegar Harold JSolution mining dawsonite from hydrocarbon containing formations with a chelating agent
US20070108200 *Apr 21, 2006May 17, 2007Mckinzie Billy J IiLow temperature barrier wellbores formed using water flushing
US20070108201 *Apr 21, 2006May 17, 2007Vinegar Harold JInsulated conductor temperature limited heater for subsurface heating coupled in a three-phase wye configuration
US20070119098 *Apr 21, 2006May 31, 2007Zaida DiazTreatment of gas from an in situ conversion process
US20070125533 *Oct 20, 2006Jun 7, 2007Minderhoud Johannes KMethods of hydrotreating a liquid stream to remove clogging compounds
US20070127897 *Oct 20, 2006Jun 7, 2007John Randy CSubsurface heaters with low sulfidation rates
US20070131419 *Oct 20, 2006Jun 14, 2007Maria Roes Augustinus WMethods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US20070131420 *Oct 20, 2006Jun 14, 2007Weijian MoMethods of cracking a crude product to produce additional crude products
US20070131427 *Oct 20, 2006Jun 14, 2007Ruijian LiSystems and methods for producing hydrocarbons from tar sands formations
US20070133959 *Apr 21, 2006Jun 14, 2007Vinegar Harold JGrouped exposed metal heaters
US20070133960 *Apr 21, 2006Jun 14, 2007Vinegar Harold JIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US20070133961 *Apr 21, 2006Jun 14, 2007Fairbanks Michael DMethods and systems for producing fluid from an in situ conversion process
US20070137856 *Apr 21, 2006Jun 21, 2007Mckinzie Billy JDouble barrier system for an in situ conversion process
US20070144732 *Apr 21, 2006Jun 28, 2007Kim Dong SLow temperature barriers for use with in situ processes
US20070209799 *Jan 23, 2007Sep 13, 2007Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US20070221377 *Oct 20, 2006Sep 27, 2007Vinegar Harold JSolution mining systems and methods for treating hydrocarbon containing formations
US20080017380 *Apr 20, 2007Jan 24, 2008Vinegar Harold JNon-ferromagnetic overburden casing
US20080035346 *Apr 20, 2007Feb 14, 2008Vijay NairMethods of producing transportation fuel
US20080035347 *Apr 20, 2007Feb 14, 2008Brady Michael PAdjusting alloy compositions for selected properties in temperature limited heaters
US20080035348 *Apr 20, 2007Feb 14, 2008Vitek John MTemperature limited heaters using phase transformation of ferromagnetic material
US20080035705 *Apr 20, 2007Feb 14, 2008Menotti James LWelding shield for coupling heaters
US20080038144 *Apr 20, 2007Feb 14, 2008Maziasz Phillip JHigh strength alloys
US20080107577 *Oct 20, 2006May 8, 2008Vinegar Harold JVarying heating in dawsonite zones in hydrocarbon containing formations
US20080128134 *Oct 19, 2007Jun 5, 2008Ramesh Raju MudunuriProducing drive fluid in situ in tar sands formations
US20080135244 *Oct 19, 2007Jun 12, 2008David Scott MillerHeating hydrocarbon containing formations in a line drive staged process
US20080135253 *Oct 19, 2007Jun 12, 2008Vinegar Harold JTreating tar sands formations with karsted zones
US20080135254 *Oct 19, 2007Jun 12, 2008Vinegar Harold JIn situ heat treatment process utilizing a closed loop heating system
US20080142216 *Oct 19, 2007Jun 19, 2008Vinegar Harold JTreating tar sands formations with dolomite
US20080142217 *Oct 19, 2007Jun 19, 2008Roelof PietersonUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US20080173442 *Apr 20, 2007Jul 24, 2008Vinegar Harold JSulfur barrier for use with in situ processes for treating formations
US20080173444 *Apr 20, 2007Jul 24, 2008Francis Marion StoneAlternate energy source usage for in situ heat treatment processes
US20080173449 *Apr 20, 2007Jul 24, 2008Thomas David FowlerSour gas injection for use with in situ heat treatment
US20080173450 *Apr 20, 2007Jul 24, 2008Bernard GoldbergTime sequenced heating of multiple layers in a hydrocarbon containing formation
US20080174115 *Apr 20, 2007Jul 24, 2008Gene Richard LambirthPower systems utilizing the heat of produced formation fluid
US20080185147 *Oct 19, 2007Aug 7, 2008Vinegar Harold JWax barrier for use with in situ processes for treating formations
US20080217003 *Oct 19, 2007Sep 11, 2008Myron Ira KuhlmanGas injection to inhibit migration during an in situ heat treatment process
US20080217004 *Oct 19, 2007Sep 11, 2008De Rouffignac Eric PierreHeating hydrocarbon containing formations in a checkerboard pattern staged process
US20080217015 *Oct 19, 2007Sep 11, 2008Vinegar Harold JHeating hydrocarbon containing formations in a spiral startup staged sequence
US20080217016 *Oct 19, 2007Sep 11, 2008George Leo StegemeierCreating fluid injectivity in tar sands formations
US20080217321 *Apr 21, 2006Sep 11, 2008Vinegar Harold JTemperature limited heater utilizing non-ferromagnetic conductor
US20080277113 *Oct 19, 2007Nov 13, 2008George Leo StegemeierHeating tar sands formations while controlling pressure
US20080283246 *Oct 19, 2007Nov 20, 2008John Michael KaranikasHeating tar sands formations to visbreaking temperatures
US20090014180 *Oct 19, 2007Jan 15, 2009George Leo StegemeierMoving hydrocarbons through portions of tar sands formations with a fluid
US20090014181 *Oct 19, 2007Jan 15, 2009Vinegar Harold JCreating and maintaining a gas cap in tar sands formations
US20090071652 *Apr 18, 2008Mar 19, 2009Vinegar Harold JIn situ heat treatment from multiple layers of a tar sands formation
US20090078461 *Apr 18, 2008Mar 26, 2009Arthur James MansureDrilling subsurface wellbores with cutting structures
US20090084547 *Apr 18, 2008Apr 2, 2009Walter Farman FarmayanDownhole burner systems and methods for heating subsurface formations
US20090090509 *Apr 18, 2008Apr 9, 2009Vinegar Harold JIn situ recovery from residually heated sections in a hydrocarbon containing formation
US20090095476 *Apr 18, 2008Apr 16, 2009Scott Vinh NguyenMolten salt as a heat transfer fluid for heating a subsurface formation
US20090095477 *Apr 18, 2008Apr 16, 2009Scott Vinh NguyenHeating systems for heating subsurface formations
US20090095478 *Apr 18, 2008Apr 16, 2009John Michael KaranikasVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US20090095479 *Apr 18, 2008Apr 16, 2009John Michael KaranikasProduction from multiple zones of a tar sands formation
US20090095480 *Apr 18, 2008Apr 16, 2009Vinegar Harold JIn situ heat treatment of a tar sands formation after drive process treatment
US20090101346 *May 31, 2007Apr 23, 2009Shell Oil Company, Inc.In situ recovery from a hydrocarbon containing formation
US20090120646 *Apr 18, 2008May 14, 2009Dong Sub KimElectrically isolating insulated conductor heater
US20090126929 *Apr 18, 2008May 21, 2009Vinegar Harold JTreating nahcolite containing formations and saline zones
US20090189617 *Jul 30, 2009David BurnsContinuous subsurface heater temperature measurement
US20090194269 *Oct 13, 2008Aug 6, 2009Vinegar Harold JThree-phase heaters with common overburden sections for heating subsurface formations
US20090194282 *Oct 13, 2008Aug 6, 2009Gary Lee BeerIn situ oxidation of subsurface formations
US20090194329 *Oct 13, 2008Aug 6, 2009Rosalvina Ramona GuimeransMethods for forming wellbores in heated formations
US20090194333 *Oct 13, 2008Aug 6, 2009Macdonald DuncanRanging methods for developing wellbores in subsurface formations
US20090194524 *Oct 13, 2008Aug 6, 2009Dong Sub KimMethods for forming long subsurface heaters
US20090200025 *Oct 13, 2008Aug 13, 2009Jose Luis BravoHigh temperature methods for forming oxidizer fuel
US20090200031 *Oct 13, 2008Aug 13, 2009David Scott MillerIrregular spacing of heat sources for treating hydrocarbon containing formations
US20090200854 *Oct 13, 2008Aug 13, 2009Vinegar Harold JSolution mining and in situ treatment of nahcolite beds
US20090260823 *Oct 22, 2009Robert George Prince-WrightMines and tunnels for use in treating subsurface hydrocarbon containing formations
US20090260824 *Oct 22, 2009David Booth BurnsHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US20090272533 *Apr 10, 2009Nov 5, 2009David Booth BurnsHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US20090272535 *Nov 5, 2009David Booth BurnsUsing tunnels for treating subsurface hydrocarbon containing formations
US20090272578 *Nov 5, 2009Macdonald Duncan CharlesDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US20090301724 *Dec 10, 2009Shell Oil CompanyMethods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US20090321075 *Dec 31, 2009Christopher Kelvin HarrisParallel heater system for subsurface formations
US20100071903 *Mar 25, 2010Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US20100071904 *Mar 25, 2010Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US20100089584 *Oct 9, 2009Apr 15, 2010David Booth BurnsDouble insulated heaters for treating subsurface formations
US20100089586 *Oct 9, 2009Apr 15, 2010John Andrew StaneckiMovable heaters for treating subsurface hydrocarbon containing formations
US20100096137 *Oct 9, 2009Apr 22, 2010Scott Vinh NguyenCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US20100101783 *Oct 9, 2009Apr 29, 2010Vinegar Harold JUsing self-regulating nuclear reactors in treating a subsurface formation
US20100101784 *Oct 9, 2009Apr 29, 2010Vinegar Harold JControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US20100108310 *Oct 9, 2009May 6, 2010Thomas David FowlerOffset barrier wells in subsurface formations
US20100108379 *Oct 9, 2009May 6, 2010David Alston EdburySystems and methods of forming subsurface wellbores
US20100147521 *Oct 9, 2009Jun 17, 2010Xueying XiePerforated electrical conductors for treating subsurface formations
US20100147522 *Oct 9, 2009Jun 17, 2010Xueying XieSystems and methods for treating a subsurface formation with electrical conductors
US20100155070 *Oct 9, 2009Jun 24, 2010Augustinus Wilhelmus Maria RoesOrganonitrogen compounds used in treating hydrocarbon containing formations
US20100206570 *Oct 9, 2009Aug 19, 2010Ernesto Rafael Fonseca OcamposCirculated heated transfer fluid systems used to treat a subsurface formation
US20100224368 *Sep 9, 2010Stanley Leroy MasonDeployment of insulated conductors for treating subsurface formations
US20100258265 *Apr 9, 2010Oct 14, 2010John Michael KaranikasRecovering energy from a subsurface formation
US20100258290 *Oct 14, 2010Ronald Marshall BassNon-conducting heater casings
US20100258291 *Apr 9, 2010Oct 14, 2010Everett De St Remey EdwardHeated liners for treating subsurface hydrocarbon containing formations
US20100258309 *Apr 9, 2010Oct 14, 2010Oluropo Rufus AyodeleHeater assisted fluid treatment of a subsurface formation
US20100270015 *Oct 28, 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation
US20100272595 *Apr 26, 2010Oct 28, 2010Shell Oil CompanyHigh strength alloys
US20100276141 *Nov 4, 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US20110042084 *Feb 24, 2011Robert BosIrregular pattern treatment of a subsurface formation
US20110088904 *Apr 21, 2011De Rouffignac Eric PierreIn situ recovery from a hydrocarbon containing formation
US20110168394 *Dec 9, 2010Jul 14, 2011Shell Oil CompanyMethods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
Classifications
U.S. Classification166/259, 166/260, 175/12, 166/261
International ClassificationE21B43/243
Cooperative ClassificationE21B43/243
European ClassificationE21B43/243