Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS2783887 A
Publication typeGrant
Publication dateMar 5, 1957
Filing dateOct 22, 1952
Publication numberUS 2783887 A, US 2783887A, US-A-2783887, US2783887 A, US2783887A
InventorsG. G. Chisholm
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Cyclone separator
US 2783887 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

- WWi a, in! I 20 HIM G. G. CHISHOLM CYCLONE SEPARATOR Filed Oct. 22, 1952 4 1 'G/lBf/ff 5, 5/71/5170! /& lay/7 s.

United States PatentOfl ice 2,783,887 Patented Mar. 5, 1,195?

CYCLONE SEPARAEGR Gilbert G. Chisholm, sybeiscrosse lliican, Ontario, Can- ,ada assignor of fifty-one percent to Raymond -Basil Earl Robinson Application October 22, 1952, Serial No. 316,264

2 Claims. (Cl. 209-211) This invention relates to improvements in methods of and apparatus for concentrating ores and the like by centrifugally separating particles of various densities and more particularly to so-called cyclone separators and separation methods.

In conventional cyclone separators used in the concentration of an ore pulp or in dust collection techniques, the air or liquid entrained particles to be separated are fed into the cyclone tangentially and in any case, the fluid, either gaseous or liquid, entraining such particles, serves as the medium for forming a vortex within the cyclone structure.

According to the present invention, a vortex is set up within a cyclone separator by means of a suitable fluid and the particles of various densities to be separated are injected into the separator in such manner that each individual particle must penetrate through the fluid surface or wall of the fluid vortex therein, it being manifest that the skin effect of the fluid vortex wall is penetrated to a varying depth according to the kinetic energy of a particle striking such surface and the area-density relationship of such particle. persons that the method and apparatus for separating materials according to the present invention will give more closely consistent results Where the particle size distribution of a given sample to be separated is small; that is, the particles are all of substantially the same size.

The invention will be appreciated in more detail by reference to the following specification taken in conjunction with the accompanying drawings.

In the drawings:

Figure l is a sectional view of one form of a cyclone class of separator according to the invention, illustrating means for injecting the particles of various densities to be separated into the surface of a vortex formed therein by a vortex forming fluid; and

Figure 2 is a sectional view of a modified form of particle injector feeder.

In the drawings, shows a preferred form of cyclone separator according to the invention, comprised of a bowl part 11 having an axially located concentrate opening 12 communicating with a nozzle 13 and a tailings discharge opening 14 of larger diameter, preferably arranged within a relatively large launder 15 of cylindrical construction, rising to a substantial height but having a tailings discharge spout 16 located therein. As indicated, this construction may be formed in an integral casting.

An inlet nozzle 17 extends tangentially into the bowl at the point of its maximum inner diameter as at 18 whereby a suitable fluid such as water or air may be injected as a vortex forming medium into the bowl at suflicient pressure to create a fast circulating body of fluid 19 of annular shape between the walls 20 of the bowl and the upwardly diverging surface of the vortex 22.

It will be apparent to skilled Elbe-observed that in the type of vortex formed,

rising-fromthe-centroid opening 12 to and beyond the tailings opening 1 4 with some -'reeirculation within'the aaccordi ngly; as iparticles of various densities are prolocated pipe 24 having an end fitting 25 defining in conjunction with the pipe, a circumferential slot 26, the particles proceed from such slot at a velocity determined by the injection pressure and rotation of the injector, if desired, to strike the skin 21 of the vortex 22 and penetrate such skin to enter the body of fluid 19.

The depth of penetration of the vortex skin 21 by a particle will be determined by the velocity of the individual particle and its mass. A new factor also arises in that the penetration of the particle will also be controlled by the area-density relationship of the particle.

Very light small particles will effect a negligible penetration of the skin 21 and will be carried by the upward motion of the latter through the tailings outlet to the tailings discharge spout 16. Particles of smaller effective area per unit mass will eifect a deeper penetration as will those of greater kinetic energy.

In operation, the fluid vortex forming media is adjusted in its pressure of injection into the bowl until the heavier particles of ore pulp teed just penetrate the wall of the vortex; the particles having the greater specific gravity are smaller than other mineral particles and penetrate more rapidly, being carried to the wall of the concentrate bowl and down to the concentrate discharge opening. Larger particles of lesser specific gravity will not penetrate so effectively and are carried to tailings discharge.

If it is desired to feed dry ore, the bottom plate 25 of the feed injector pipe 23 is replaced by a flat disc rotated about the axis of the concentrator, this form being designated in Figure 2 wherein the flat disc 25 is supported by the rod 26 carried by open spider guides 27 in the tube 28. The rod 26 may be rotated by any suitable drive means such as the motor illustrated. The disc 25 along with the drive and rod 26, is raised or lowered until a desired rate of feed is arrived at, in conjunction with the best speed of rotation of the disc.

As will be apparent from an examination of Figure 1, the launder 15 is in the form of a vertical open-ended surge pipe which may be of very great height to effect a more uniform vortex in the separator bowl 11. The arrows illustrated on the drawing, indicate the direction of flow of the fluid vortex medium within the bowl.

From the foregoing, it will be apparent that my injection system for cyclone type of separators enables a greater control through a large number of factors effecting separation and permits an independent control over feed rate of the material being introduced for separation as compared with the rate of injection of the fluid medium forming the vortex. Moreover, the feed injection device being located axially of the vortex may be raised or lowered therewithin to obtain maximum eificiency of injection and separation, along with the control of feed rate and the control of the vortex itself, by independent means.

It is intended that the present disclosure should not be construed in any limiting sense other than that indicated by the scope of the following claims.

What I claim as my invention is:

1. In acyclone separator having a separating bowl with an axially located concentrate opening of relatively small orilice' diameter and a co-axial opposed tailings opening of relatively large diameter but of a lesser diameter than said bowl, the combination therewith of: a surge pipe co-axially formed on said bowl and projecting beyond the tailings opening thereof; a tailings outlet on said surge pipe; a vortex forming medium inlet located tangentially on said bowl; and a feed injector device disposed coaxially in said bowl, including means for distributing feed therefrom outwardly toward the surface of a vortex formed within said bowl by the vortex forming medium.

2. In a cyclone separator, the combination claimed in claim 1 wherein the feed injector device is in the form of a tube disposed co-axially within said separator and projecting through the tailings opening thereof; and wherein the feed distributing means is in the form of a fitting defining in conjunction with said tube substantially, a circumferential slot.

References Cited in the file of this patent UNITED STATES PATENTS

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2856072 *May 4, 1955Oct 14, 1958Haavard KronstadCentrifugal separators
US2900080 *Feb 17, 1956Aug 18, 1959Gen ElectricDrain means for clothes washer
US2958420 *May 27, 1957Nov 1, 1960Phillips Petroleum CoHydrocyclone and process
US2963154 *Jan 29, 1958Dec 6, 1960Zdenek VaneCentrifugal separation apparatus
US2965232 *May 4, 1959Dec 20, 1960Zdenek VaneCentrifugal screen separation apparatus
US2976994 *Feb 6, 1958Mar 28, 1961Oreclone Concentrating CorpMineral concentrating and separating apparatus
US3023903 *Dec 1, 1959Mar 6, 1962Nortons Tividale LtdHeavy media process and apparatus
US3389793 *Apr 12, 1967Jun 25, 1968StamicarbonCyclone washer with water only
US3396844 *May 20, 1964Aug 13, 1968Ajem Lab IncVortical separator
US5078549 *Jul 19, 1990Jan 7, 1992J. M. Voith GmbhHydrocyclone