Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2809624 A
Publication typeGrant
Publication dateOct 15, 1957
Filing dateJul 26, 1954
Priority dateJul 26, 1954
Publication numberUS 2809624 A, US 2809624A, US-A-2809624, US2809624 A, US2809624A
InventorsBecher Harold, Pepper Martin
Original AssigneeDellenbarger Machine Company I
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Missile firing trainer device
US 2809624 A
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

Oct. 15, 1957 H. BECHER ETA]. 4 MISSILE'FIRINGTRAINER DEVICE 2 Sheets-Sheetl v Filed July 26, 1954 IN VEN TORS.

'HAROLD B ER MARTIN P ER l6 7 ATTORNEY Oct. 15, 1957 H. BECHER ETAL MISSILE FIRING TRAINER DEVICE I Filed July 26, 1954 2 Sheets-Sheet 2 8 m Q 2 %W\ u 5 8 V 8 U lb 1/ n fl W lwlm v w /m,6 A. 7 H 3 7 S M w m m 2 8 \8 B 5 8 I6 8 7 8 8 -7 Wm 0 m, vn a H A HAROLD BEOHER BY |:AR%T|- PEPPER 7 ATTORNEY 2,309,624 MISSILE FIRING TRAl NER DEVICE Harold Becher, Brooklyn, and Martin Pepper, Jamaica, N, Y assignors to Dellenbarger Machine Company, nc New York, N- Y, a co p rat onof w Y rk Application July 26, 1954, Serial No. 445,542

6 Claims. (Cl. 1 2.4..1 1)

This invention relates to a missile firing training device. Morespecifically, this invention relates'to an apparatus for practice firing from a mortar and the like, under conditions which simulate actual firing conditions except that costly operational explosive missiles and explosive propellants are not used.

An object of this invention is to provide the operational weapon with means to receive a dummy missile, preterably s'ubcaliber which actuates arnechanism that releases compressed air or gas above atmospheric pressure to propel the missile. t

Another object of our invention is to provide such a training device capable of firing missiles at short ranges with the same relative accuracy as the operational weapon.

Further advantages and details of our inventionwill be apparent from the following description and accompany.- ing drawing, wherein A Figure 1 is a perspective view of our subealiber mortar trainer device,

Figure 2 is an enlarged elevational view, partly in section, illustrating the lower portion of the s ubealiber thrower barrel and fluidactuating elements connected thereto, a Figure 3 is an'enlarged broken vertical sectional View of the mortar barrel shown in Figure 1 showing the subcaiiber thrower barrel retained therein,

v Figure 4. is a vertical sectional View of a modified valve construction positioned atthe lower end of the subcaliber thrower barrel in inoperative firing position,

Figure 5 is a vertical sectional view of the valve shown in Figure 4 in operative firing position to eject a missile placed in the thrower barrel, and Figure 6 is a perspective view, partly in section, "of a miniature missile for use in our device containing a firing, mechanism to fire a spotting charge.

Referring to the drawin Figured illustrates a mortar thrower having an operational mortar barrel, 1 open atits. ripper end and closed at its lower end by closure 2 which is supported on adjustable tripod legs 12 and base 13 so that the mortar elevation angle may be suitably adjusted to range from 45 to 9-0". A subcaliber thrower barrel 1,0. is retained in the mortar barrel 1 by an adapter 2 retained'in the mouth of the barrel 1 by retaining rig S57 and 8. and a clamp 6, as shown in Figure 3; er adapter ring 5 and retaining rings 3- an d .4 i withinjthefharrei 1, as. shown in Figure 3,

position. The. lower end of the subaver ba el is eonnected to a conduit '14 nder suitable pressure. to the lower l) capta n a as valve and solenoidassembly eont al a he v of as to th ubcaliber barrel 1,0 which are show d in figure 2. The

tower and st subsali e seeds sw tsli .1 when dosed estu r es the, sa e noid and valve assembly for admitting gas under pressure the ba rel 1.0;- A housing 5 bar 1110 i presided w th United States Patent 2,809,624 Patented Oct. I5, 1957 2 to the bottom of the subcaliber barrel 10 which will eject a missile, shown in Figure 6, placed in the barrel as will be fully described hereinafter.

The switch 16 is retained at the bottom of the subcaliber barrel 10 by a retaining housing 17, as shown in Figure 2, through which electric leads 18 and 19 extend and pass through a hole 9a in the adapter 9. The leads 18 and 19 are connected to a suitable source. of electric current, such as a 110 volt power supply or a portable battery. A threaded plug 22 is retained at the bottom of the subcaliber barrel 10 for closing same. The plug 22 is provided with a vertical passageway 24 which communicates with the port 15 to permit gas from conduit 14 to be supplied to the bottom of subcaliber barrel iii. A gasket 20 is interposed between the plug 7 to valve under suitable pressure through conduit 3 A pressure regulator 3.4 connected to the gas cylinder controls the pressure of the gas supplied to conduit 33., Valve 30 is provided with a port 35 which is con: nected with conduit 14 for supplying gas under pressure from cylinder 32. Valve 30 is also provided with an exhaustport 3. connected to a conduit 37 provided with a valve 38. The rate of exhaust from conduit 37 can be controlled by suitably setting pet-cool; 33. The QlQS- i g; n pen g of P s 5 n 36 are cout olle 'by a solenoid 40 connected by electric leads 4i andil to the sa e current pp y as tsh 16- A ed 3.1a s sonnected to the solenoid plunger (it? which carries piston 31 for opening or closing ports 35 and 36. A'spring 45 is connected to: valve housing 30 and the movable solenoid plunger 46 which normally tends to position the sqlenoid piston 31 so as to close port 35 in IhQ P sition shown by the solid lines in Figure 2. against passage of gas therthrough supplied by conduit 33. At the'same time, port 36 will be inconirnunication with exhaust o d 37 o as to pe m expe led throu h ond i 14 to pass therethrough. Figure 6 illustrates a subcaliber missile designated generallyby numeral suitable for use with our apparatus which consists ,of a nose 51 made of a substantially heavy material, such as steel or brass, and provided with a transverse hole 52 for the escape of gases when ablank bullet 53 on ning t spo t n hares n e t d n a v ticalport 54 is tired. The nose is screwed into a body 55 made of a relatively lighter material, such as aluminum, magnesium or plastic, or the like, which is. provided with circumferential grooves 56 for oilering resistance to air when this missile is expelled and with a plurality of fins 57 on the tail which is stream-lined so as to give good ballistic characteristics and cause the missile to landon its nose after being expelled from the barrel. A striker 58 held ba y a pri 5% and a, r a n ri 62 is p a ed in the cavity 61 n th rward and O t is bsdy W n the nose Slh th a o nd i s nses the striker 58, by inertia, to move forward and the pin. portion 58a integral with the striker to hit the primer- .contai-ning end of the bullet 53 so as to detonate the plug 22, then through port 15, conduit 14 into valve 30 and out through exhaust port 36 to conduit 37 through which it escapes to the atmosphere. When the missile 60 contacts the plunger head 29 it will close the switch 16 which will then actuate the solenoid 40, thereby moving piston 31 to the dotted line position shown in Figure 2. In this position port 35 will be in communication with the gas pressure conduit and exhaust port 36 will be closed. Gas under pressure will then flow through conduit 14, through port 15 and passageway 24 to the bottom of the subcaliber barrel 10. The gas under pressure in the barrel 10 will eject the missile from the barrel. The switch will remain in closed position due to the gas pressure within the barrel 10 until the missile is ejected and leaves the barrel. The resulting drop of pressure in the barrel 10 will cause the switch to open. The solenoid plunger 46 will then be retracted by spring 45 so as to close port 35 and return the exhaust port 36 to open position ready to repeat the cycle.

Our missile firing trainer device can be readily adapted to standard equipment with the use of minimum of parts and labor. The operational mortar construction is operated by the learner in the same manner as under actual firing conditions except that the use of expensive missiles is avoided since the missile is fired by gas pressure. While we have shown a subcaliber barrel inserted into the barrel of the operational weapon, our invention is not limited to this construction since the barrel of the operational weapon can be used, if means are provided at the bottom thereof, for leading in air to expel a missile therefrom. Of course, in such a case a missile of equivalent internal diameter as that of the barrel of the operational weapon would have to be used. This might still be economical since an operational missile emptied of its explosive charge and lightened in weight can be used.

It is likewise possible to put the solenoid and valve inside the operational weapon barrel below and/ or attached to the subcaliber barrel 10. Such a construction is limited only by the available space inside the operational weapon barrel and by the fact that shortening the barrel 10 shortens the firing range.

Nor is our device limited to the use of a switch and solenoid to operate the valve. In lieu thereof a pilot valve operated by relatively low pressures and actuated by the plunger 29 can be used to actuate the valve 30 to release the necessary volume of air to expel the missile when it is caused to actuate the plunger 29.

A modified valve construction is illustrated in Figures '4 and which can be positioned at the bottom of the subcaliber barrel for actuation by a missile positioned within the barrel 10. The valve construction is housed in a cylindrical member 70 which is received at the lower end of the barrel 10. The member 70 is provided with an inlet port 82 suitably connected to a source of compressed air or other gas under pressure.

The valve is provided with a bore 70a which receives a plunger 71 having a cylindrical port-closing member 71a connected by a spindle 71c to a second cylindrical port-closing member 71b. The plunger 71 is normally urged by a spring 75 to the inoperative position shown in Figure 4 so that member 711) closes ports 84 and 76 which can be made to communicate with inlet port 82.

When a missile 60 is positioned in barrel 10 so as to slide down toward the lower end, the air entrapped in the barrel 10 will pass through channel 72 which communicates with channel 73 and capillary channel 74 and will escape from port 74a. When the missile 60 contacts plunger 71 the plunger will be moved to the operative position shown in Figure 5 so that valve member 71a closes channel 73 and opens channel 84 which is in communication through channel 83 with the high gas pressure inlet 82. The compressed gas will enter the bore 70a and then pass through channel 76 into a second bore 78 which houses a movable valve-closing piston member 79 connected by a spindle 79a to another valveclosing piston member 79!). A spring 8! normally tends to urge valve member 79 to the inoperative position shown in Figure 4. A sleeve insert 88 serves as a stop member for limiting the travel of member 79. -In this inoperative position piston member 7% closes channel so that gas under pressure cannot be supplied to channel 87. When channel 84 is opened, as previously described, as a result of the movement of plunger 71 to the position shown in Figure 5, the gas under pressure will enter bore 78 causing piston member 79 to move against the pressure of spring 80, as shown in Figure 5, thereby opening channel 85. The gas under pressure from inlet 82 will then enter bore 86, pass through channel '87 to the bottom of the barrel 10 and eject the missile 60. The channel 87 is of suitable size so as to supply an adequate gas blast to eject the missile.

As long as the missile remains in the barrel 10 the gas pressure within the barrel will keep the plunger in the open position shown in Figure 5, but as soon as the missile 60 leaves the barrel 10 the gas pressure in the barrel will drop causing the plunger 71 to be automatically moved to the closing position shown in Figure 4 by action of spring 75. Piston member 79 will then also move to its closing position by action of spring 8% as shown in Figure 4. This cycle is repeated each time a missile is p0- sitioned within the barrel 10 for firing same.

The principle of having a weaker source of power when released by a missile actuate a stronger power to expel the missile can find application in many other military weapon firing missiles, such as Howitzers, Hedgehogs, Bazook'as, Rockets and the like. Subcaliber barrels may be inserted into large missiles, and this principle used to expel smaller missiles therefrom when the large missile is lowered into the operational weapon or inserted in the breech of same. Operational weapons can be constructed using the same principle.

While we have described the method of keeping the air supply valve open by the pressure exerted upon the plunger by the air in the barrel during the expulsion of the missile, we are not limited thereto. Time delay switches or motor actuated time delay means of the nature well known in the art may be used for keeping the air supply line open for the interval required to expel the missile.

It is to be understood that numerous other changes and modifications may be made in our construction which are intended to be included within the scope of the appended claims.

We claim:

1 A missile firing device of the class described comprising a barrel for receiving a missile, a valve assembly connected to the bottom of said barrel, said valve assembly being provided with a gas exhaust port and a gas supply port, a switch at the bottom of said barrel, said switch being adapted to be contacted and actuated by the missile positioned in said barrel to control said valve assembly, said exhaust port permitting air to escape from said barrel when the missile is placed therein, and said gas supply port permitting gas under pressure to be supplied to said barrel to eject said missile from the barrel.

2. A missile firing device of the class described comprising a barrel for receiving a missile from the open end thereof, the opposite end of the barrel being closed by a plug, said plug having a bore therein for receiving a slidable plunger, said plunger being adapted to be contacted and actuated by the missile received in the barrel, a switch positioned adjacent said plunger, said switch being actuated into closing position upon actuation of said slidable plunger, a port in said plug to permit escape of air from said barrel when a missile is received therein and to permit flow of gas under pressure to the barrel to eject the missile received therein, said switch being connected to a valve and solenoid assembly for controlling the supply of gas under pressure to the barrel when said switch is closed by movement of said plunger and being opened When the pressure in said barrel drops upon ejection' of the missile from said barrel whereby the supply of gas under pressure is cutofi to the barrel and the air in the barrel can escape through the said port in said plug.

3. A missile firing device of the class described comprising an operational weapon having a barrel, a subcaliber barrel inserted in said barrel for receiving a subcaliber missile, a valve assembly connected to the bottom of said subcaliber barrel, said valve assembly being provided with an exhaust port and a gas supply port connected to said subcaliber barrel, means to actuate said valve assembly, said means being contacted and actuated by the missile received in said subcaliber barrel, said exhaust port normally permitting air to escape from said subcaliber barrel when the missile is placed therein in firing position and said supply port supplying gas under pressure to the bottom of said subcaliber barrel to eject 1 the missile from the subcaliber barrel when said valve assembly is actuated.

4. A missile firing device of the class described comprising an operational weapon having a barrel, asubcaliber barrel inserted in said barrel for receiving a subcaliber missile, a valve assembly connected to the bottom of said subcaliber barrel, said valve assembly being provided with a gas exhaust port anda gas supply port, a switch at the bottom of said subcaliber barrel, said switch being adapted to be contacted and actuated by the missile positioned in said subcaliber barrel to controlsaid valve assembly, said exhaust port permitting air to escape from said subcaliber barrel when the missile is placed therein, and said gas supply port permitting gas under pressure to be supplied to said subcaliber barrel to eject said missile from the subcaliber barrel.

5. A missile firing device of the class described comprising an operational weapon having a barrel, a subcaliber barrel inserted in said barrel for receiving a subcaliber missile from the open end thereof, the opposite end of the subcaliber barrel being closed by a plug, said plug having a bore therein for receiving a slidable plunger, said plunger being adapted to be contacted and actuated by the missile received in the subcaliber barrel, a switch positioned adjacent said plunger, said switch being actuated into closing position upon actuation of said slidable plunger, a channel in said plug to permit escape of air from said'subcaliber barrel when a missile is received therein and to permit flow of gas under pressure to the subcaliber barrel to eject the missile received therein, said switch being connected to a valve and solenoid assembly for controlling the supply of gas under pressure to the subcaliber barrel when said switch is closed by movement of said plunger and being opened when the pressure in said barrel drops upon ejection of the missile from said subcaliber barrel whereby the supply of gas under pressure is cut off to the subcaliber barrel and the air in the subcaliber barrel can escape through the said port in said p 7 6. A missile firing device of the class described comprising a barrel for receiving a missile, a valve means connected to the bottom of said barrel, said valve means being provided with an exhaust port and a gas supply port connected to said barrel, valve actuating means to actuate said valve means, said actuating means being contacted and actuated by the missile received in said barrel, said-valve means permitting air to escape from said barrel'when the missile is placed therein in firing position, said valve means being actuated upon contact of said missile with said valve actuating means for supplying gas under pressure to the bottom of said barrel to eject the missile from the barrel and to prevent air to escape from the barrel through-said valve means;

References Cited in the file of this patent UNITED STATES PATENTS 453,692 Eichbaum June 9, 1891 1,964,167 Needham June 26, 1934 2,342,684 Nelson Feb. 29, 1944 2,478,224 Armstrong Aug. 9, 1949 2,484,320 Stevens Oct. 11, 1949 2,537,358 Lincoln Jan. 9, 1951 2,581,758 Galliano et al. Jan.- 8, 1952

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US453692 *Jun 11, 1890Jun 9, 1891 eichbaum
US1964167 *Feb 16, 1931Jun 26, 1934Gen Conveyors LtdPneumatic dispatch tube apparatus
US2342684 *Apr 27, 1942Feb 29, 1944Nelson Glen ASubcaliber adapter
US2478224 *Feb 1, 1946Aug 9, 1949Leslie ArmstrongToy projectile
US2484320 *Feb 5, 1946Oct 11, 1949Stevens George SToy projectile
US2537358 *Feb 23, 1949Jan 9, 1951Herbert R LincolnCompressed gas pistol
US2581758 *Aug 20, 1946Jan 8, 1952Ind Ideas IncHarpoon cannon
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2886025 *Jan 12, 1955May 12, 1959Amistadi E HenryElectropneumatic subcaliber mortar trainer
US2955585 *Apr 15, 1957Oct 11, 1960Cleburne B HatfieldPneumatic subcaliber mortar trainer
US2960083 *Sep 17, 1957Nov 15, 1960Grimland Company ManufacturersControlled volume blast valve
US3035550 *Apr 25, 1960May 22, 1962Webcor IncFluid motor
US3072289 *May 23, 1958Jan 8, 1963Stopp Robert BLinear compressed air metering device
US3088225 *May 26, 1960May 7, 1963Amistadi E HenrySubcaliber howitzer trainer
US3240200 *Mar 7, 1962Mar 15, 1966Fairchild Hiller CorpSonobuoy launcher
US3352056 *Oct 13, 1965Nov 14, 1967Luxe Reading Corp DeCap-exploding projectile
US3387843 *Aug 19, 1964Jun 11, 1968Lloyd E. ChandlerExercise machine in which the user pushes or pulls against a resisting force produced by a pneumatic cylinder operating in conjunction with compressed air
US3467073 *Mar 28, 1966Sep 16, 1969Rhodes Barry VAutomatic ball throwing machine
US4227689 *Jul 24, 1978Oct 14, 1980Kintron, IncorporatedExercising device including linkage for control of muscular exertion required through exercising stroke
US5282455 *Jun 11, 1992Feb 1, 1994The Walt Disney CompanyLauncher for launching multiple fireworks projectiles
US5339741 *Jan 7, 1992Aug 23, 1994The Walt Disney CompanyPrecision fireworks display system having a decreased environmental impact
US5526750 *Jul 27, 1993Jun 18, 1996The Walt Disney CompanyExplosive charge connected to detonating fuse contained in shell; priming composition of acetone and black powder added to shell
US5627338 *Jun 6, 1995May 6, 1997The Walt Disney CompanyFireworks projectile having distinct shell configuration
US5739462 *Jun 27, 1995Apr 14, 1998The Walt Disney CompanyMethod and apparatus for creating pyrotechnic effects
US6193517Apr 19, 1999Feb 27, 2001Se Schweizerische ElektronikunternehmungSimulator for front-loaded barrel weapons
US7441489 *Jun 28, 2006Oct 28, 2008The United States Of America As Represented By The Secretary Of The ArmyMortar bomb positioning apparatus
US7458304 *Jun 28, 2006Dec 2, 2008United States Of America As Represented By The Secretary Of The ArmyMortar bomb vacuum positioning apparatus
US7694452 *Aug 27, 2007Apr 13, 2010Croisetiere Leo RBait launcher
US7886731 *Feb 6, 2006Feb 15, 2011Kee Action Sports I LlcCompressed gas gun having reduced breakaway-friction and high pressure dynamic separable seal flow control device
US7946285 *Nov 2, 2009May 24, 2011Kee Action Sports, LlcPneumatically operated projectile launching device
US8272373Jul 15, 2009Sep 25, 2012Kee Action Sports I LlcCompressed gas-powered projectile accelerator
US8336532May 10, 2007Dec 25, 2012Kee Action Sports I LlcCompressed gas-powered projectile accelerator
US8413644Jan 22, 2009Apr 9, 2013Kee Action Sports I LlcCompressed gas gun having reduced breakaway-friction and high pressure dynamic separable seal and flow control and valving device
US8739770 *Jun 4, 2012Jun 3, 2014Kee Action Sports I LlcCompressed gas-powered projectile accelerator
US20130092141 *Jun 4, 2012Apr 18, 2013Kee Action Sports I LlcCompressed gas-powered projectile accelerator
EP0952422A1 *Apr 20, 1998Oct 27, 1999SE Schweizerische ElektronikunternehmungSimulator for muzzle loading gun
WO1993025861A1 *Jun 11, 1993Dec 23, 1993Walt Disney ProdLauncher for launching multiple fireworks projectiles
WO2011026560A1 *Aug 14, 2010Mar 10, 2011Rheinmetall Waffe Munition GmbhPneumatic launching device
Classifications
U.S. Classification124/77, 91/403, 91/398, 89/37.5, 89/37.1, 446/211
International ClassificationF41A33/00
Cooperative ClassificationF41B11/62, F41A33/00
European ClassificationF41B11/62, F41A33/00