Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2841375 A
Publication typeGrant
Publication dateJul 1, 1958
Filing dateMar 3, 1954
Priority dateMar 3, 1954
Publication numberUS 2841375 A, US 2841375A, US-A-2841375, US2841375 A, US2841375A
InventorsWilhelm Salomonsson Gosta Joha
Original AssigneeSvenska Skifferolje Aktiebolag
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method for in-situ utilization of fuels by combustion
US 2841375 A
Abstract  available in
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

y 1953 G. J. w. SALOMONSSON 2,841,375

METHOD FOR IN-SITU UTILIZATION OF FUELS BY COMBUSTION Filed March 5, 1954 2 Sheets-Sheet 1 FIG.1 H

?'?9 i l!!!. I 1 I I I I I c a|lc o 0095A ill! 4 OVERBURDEN \,E g f j FUEL CONTAINING LAyERS F ENZENTOR F102 AT TORNEY July 1, 1958 G. J. w. sssssssss ON 2,841,375

- METHOD FOR IN-SITU UTILIZATION OF Fi l e d M a r c h 5 l 9 54 I A L- ATTORNEY United States Patent METHOD FOR lN-SITU UTILIZATION OF FUELS BY COMBUSTIDN Application March 3, 1954, Serial No. 413,904

' Claims. c1. 262-3) This invention relates to methods for in situ utilization of carbonaceous deposits capable of combustion with combustion supporting gases to produce heat utilizable economically for heat treatments both above and below ground particularly from fuels or other deposits which cannot be mined andv utilized above earth in an economical way.

There are many such deposits that can not be economically mined. Some cannot be so exploited because the deposits have too low a content of combustible matter to be used in that way economically. Others which may contain a satisfactory content of combustible matter, are so situated in the earth, as in depth or thickness of layer, as to make the mining operation unattractive.

Methods of underground combustion have been heretofore proposed but have not been successful because of the difiiculty of distributing the combustion supporting gas such as air, in the rock in such manner as to obtain a substantially uniform combustion zone. The introduction of the combustion supporting gas through a borehole into the rock, does not result in uniform flow of the gas because such flow is usually disturbed by the presence of cracks, laminations, cavities, etc. in the rock. As a result of such non-uniform flow, the combustion zone may advance along a crack in one direction very rapidly to a relatively distant location from the inlet hole, While in the meantime, the advance in another direction may be very slow due to a greater tightness or impermeability or density of the structure. Under such circumstances, it has been impossible by prior art procedures to control the heat distribution to the parts of the rock where the heat treatment is to be applied.

Among the objects of the present invention are included methods for combustion in situ of combustible organic material in subterranean deposits with substantially uniformheat distribution therein despite irregularities in the formation that might otherwise interfere with uniformity of heat distribution.

Other objects include the production of a controlled combustion zone and a controlled heat transfer" to other portions of the rock or formation or deposit.

Further objects and advantages of this invention will appear fromthe more detailed description set forth be low, it being understood that such more detailed description is given by way of illustration and explanation only, and not by way of limitation since various changes therein may be made by those skilled in the art without departing from the scope and spirit of the present invention.

. In connection with that more detailed description, the drawings show the following:

Figure l is a plan view of a field showing a number of boreholes for utilization in connection with the present invention;

Figure 2 is a transverse vertical section through the field of Figure 1;

Figure 3 is an enlarged fragmentary view of a portion.

of the section of Figure 2;

Figure 4 is a section on the line 44 of Figure 3; and Figure 5 is a section on line 4--4 of Figure 3 illustrating the heat front developed by the present invention. The present invention produces combustion in situ of combustible organic material contained in subterranean deposits under controlled conditions to produce a controlled combustion zone and a controlled heat transfer from the combustion zone to other parts of the rock, formation, or deposit. The controlled conditions are obtained by withdrawal of combustion gases from boreholes in the vicinity of the air-inlet boreholes. This withdrawal may be attained for example by suction in the pipelines, connected to the outlet holes. Thereby the hot combustion gases are forced to flow in certain directions and their flow can thus be regulated and controlled. When passing through the outlet holes towards the exit thereof, they give off at least part of their heat'content to the Walls of the borehole, thus raising the temperature of said walls. In said walls the heat is fairly well distribu ted along the length of the hole and thus a' substantially uniform or even heat transfer takes place from saidwalls to the surrounding parts of the rock. 'The invention is applicable to any subterranean deposits of combustible organic material including oil shale and oil shale coke (the latter being formed by in-situ pyrolysis of oil shale), tar sand and tar sand coke (the latter being formed by in-situ pyrolysis of tar sand), oil sand and depleted oil sand, (still retaining a small amount of oil), lignite, coil, or other carbonaceous and combustible or fuel type materials.

For these purposes, any combustion supporting gas such as air or other oxygen containing gas, is introduced to the deposit to produce a combustion zone and to form hot combustion products, the latter are passed through 'the deposit or portion thereof wherethey .are withdrawn, usually in the vicinity of the inlet boreholes for the combustion supporting gases, the heat from said combustion products serving to heat the walls of the outlets and thereby adjacent organic material to form valuable products containing gases or vapors or both. The latter are recovered separately from and substantially free of the combustion products, at a point or points spaced from the point or points where the combustion products are withdrawn; 7

Accordinglymethods of combustion in situ may be utilized wherein deposits pierced by borcholes'in successive alinement serve for introduction respectively of combustion supporting gas, removal of combustion products, and separate removal of valuable products including gases or vapors or both free from combustion products. When the flow of valuable products has ceased or has been reduced to a low value, the borehole which initially served for introduction of the combustion supporting gas is sealed off, the latter gas is then introduced into aborehole used theretofore for collection of combustion products, the combustion products are collected in the borehole theretofore used for reception of the valuable products, and an additional successive alined borehole is then utilized for recovery of the valuable products, the rela tion of heating and heat transfer described above being maintained in the new arrangement. in this Way, the combustion zone may be advanced as desired in the deposit or formation. And by repeating the advance in this way, it is possible to carry out the combustion of the entire or any part of the deposit under controlled conditions advancing through the deposit as desired,

Further features of the invention will appear from the following description thereof in connection with the figures of the drawings,without however any limitation thereto.

Figure 1 is a horizontal drawing of a field, showing a numberofboreholes for the successive use as outlets A for volatilized products, obtained by heat treatment.

of the fuel containing rock layers, outlets B for com- 7 bustion gases; and injection holes C'for air or "other also shows the location of :the abovegmentioned rows of' holes. 7 V I Fig. 3 isan enlargedpart of Fig. 2, showing one'air inlet hole C supplied with air and one combustion-gas outlet hole B which is exhausted. The figure shows how the combustion zone advances'mainly in the fissures and Cavities of the rock. The dotted line G shows the loca-' tion of the combustion zone at a given moment. It is evident that the heat transferv to the surroundings will be very irregular from a hot surface of such an irregular shape. ThecombustionYproducts not being forced to flow in a certain direction, they will spread irregularly in the rock'in the air inlet tube, especially along cracks 1, 2, etc. and fissures in the layers. This irregular flow is shown in Fig. 4, which is a horizontal'section through part of the fuel deposit, on the line 4 -4 in 'Fig. 3. The line'H illustrates the location in this sectionof the combustion zone at a given moment. The irregularity of advance. of the heating'zone is thuslapparent.

If, however, the flow'of combustion gases is directed by applying a lower pressure in the'row of outlet holes B than the pressure in the surrounding rock, the combustion zone will be more regularly 'shaped as shown in Fig. .5; "whichIis a horizontal section, corresponding to Fig.4. .;Even if there. may remain siom e irregularities in the combustion zone, it is evident that, the regular heat'flow in thiscase is much improved compared to that in the case, illustrated in Fig. 4. The essential improve ment in the regular heat flow is, however, created through the regular shape of a hot, cylindrical surface around each outlet'hole B. The hot combustion gases collected in each hole, giveofi part or their heat to the walls of those holes B. If the same subpressure is maintained in the holes B, as in the'product gas outlets 'A,'there is no flow of fluids in direction from A to B or' vice versa.

' Thus thoseparts of the walls of the B -holes, which face the row of A holes, are undisturbed by flows in any cracks etc. .The heat, which is supplied bythe hot combustion gases, arriving from the'opposite side of the holes, and ascending vertically throughtheB-holes, is thus fairly equally distributed along the hole. wall. Thus a hot body is created around the hole, and the part of this hot body, which'faces the row of A-holes, is almost ;cylindrical. The heat transfer by conduction in the rock towards the zone, where the heat is to be utilized (the pyrolysiszone, cracking zone, etc.), will thus be r'egular and'the' shape of'the heat wave, moving forwards through lthe f uel' deposi t, will be that of a surfaceconsisting of a number "of vertical semicylindrical surfaces The heat methods, where heat is supplied through} electrically heated or gas-fired heating. tubes, inserted in drillholes.

product vapors. through the A-holes and the combustion vapors through the B-holes.

actualifie'ld, for instance a triangular,=square. or hexagonal pattern, and tubes whichmaybelinsertediinithe bore holes. The tubes may be perforated in conventional manner along'the part "of the tube which'passesthroug'h shale coke.

the. fuel-containing layers, the purpose of the perforations being to provide a distribution of inlet or outlet fluid through the whole fuel-containingrlayer, or the'y' may be' open in their lower ends and ending at a. certain level, for instance at the top of the fuel deposit. The opentubesmay' be used in deposits that'are consolidated and the whole layer being of approximatelythe same permeability to fluids, I for instance oil shale oil The tubes in the bore-holes pass t ough the overburden and around each tube a packer may be arranged in the overburden in order'to prevent fluids fromescaping from or leaking in tothe fuel deposits between the tube and the borehole. V r

Above ground the tubes are valved and connected to either aircompressors (when the holes are. used for air injection) or fans or blowers (when the holes areTused as gas or vapor outlets). The valves may bemaiiually or automatically operated, to maintain pressures; wanted in the tubes. The vapor outlets in tubes A should further be connected with means fo'r condensation and collection of the obtained air vapors and other products;

Example 7 the Swedish Shale Oil Company, at Kvantorp, "Sweden',

' the hole pattern was a hexagonal one, theedge-lerigth' of annular spacebetween the borehole and th'e tube bein'g the hexagon unit being 2.20 meter. 'I 'he thickness of the V overburden was about S'meter' an'd the thickness of the: V shale coke was'about 15 meters. fThe dianleterfofithe' boreholes was'about 0.060 meter,"and their-depth"was-23 meters thus passing to the bottom of theshale'cokefi' The inserted tubes had a diameter ot about 0.055 fr'neter, the

packed with fine-grained sand. The length-'of=the tube"s was about 9 meters and the lower ends of the tubesfwas located about 0.5 meter below the 'top of the shale'coke layer. through the shalecoke.

When the stated run was performed air 'was blown 7 into three adjacent holes in an amount-ofbetweenf1'00 and 300 m. /hour, totally.- The pressure required'to force the air into the rock was about 150 Hg (gauge). During the air injectiong'temperature measurements were made and gas products weretakenofiat' several points, distributed at difierent distances nqm the injection hole 'group. The shale coke "had fromfi the beginning a temperature offabout300'C; which"was"sufficientffor igniting the coke, when air vvas introduced. 7

(The heat of the coke originated fror n'the earlier electrothermal heating'of this field.) 'The rnovement-of the combustionngasesfin the layers could' be followed 'by means ofgasproductatakezifrom difierent-pointssinthe field. Before the run was. started, 'the' whole shal'e'c'oke layer was filled with gaseous or vaporizedhydrocarbons at a pressure of about lOO mm. Hg'.(. Iemainiflgfronrthe electrothermal pyr'olysis of the shale; This;

' transfer 'conditions may be substantially the same as in v a e -70. The equipment for carrying out the'above-mentionedi combustion, method includes the :boreholesywhichi-may' V 4 inlet hole group. The-faster flow inthis directioifmust. be arrangedfin any regular hole-pattern, coveringthe a crack or other irregularityin the rock pressure was rather equally distributed in the whble'sliale' coke body. .It' was found -that thecombusti'ofi productsspreadin all directions fro rnth e'inlet hole'group; {The velocity of advancement'was about the same in alli direcf tions except in one, in which the combustion gases flow'ed' muchmore rapidly. At a certain moment of 'the'runfthe radius, within which combustionp'roducts were obtained" was about 10-12 meters, in "most directions. *Ifi'fone narrow direction, however, it was found thatthe'comb'us tion gases had moved not less than 27 meters have been due to Below the tube ends the boreholes -were open ucts could be controlled from the surface, the run was repeated with some of the outlet hole valves open to the atmosphere. At these points the pressure in the rock was thus lowered below the pressure of the surroundings (about 100 mm. Hg (gauge)), the run conditions thus being of the same effect as if a suction fan had been connected to outlet points in rock layers, where the original pressure was atmospheric pressure.

In the repeated run it was found that the combustion gases only advanced in the directions towards the open holes. No essential flow in other directions was found to take place, not even in the direction of the crack in the rock.

It was thus found possible to direct the flow of combustion products in desired directions in the rock by means of pressure control on the holes.

In the description of the invention, given above, its usefulness for in-situ-pyrolysis or other heat treatment of shale has been illustrated. The same process of directing the advancement of the combustion zone and of withdrawal of hot combustion gases may also be used as a means of recovery from underground sources of heat for other purposes, for instance for heating of buildings or other structures above ground. The heat of the combustion gases may also be utilized for heat treatment of other underground deposits in the vicinity whereby the hot combustion gases are piped in for example insulated pipes to the actual deposits. Thus the heat value of a shale-coke-containing field may be used for preheating an oil-shale field in another location, or for other purposes.

Having thus set forth my invention, I claim:

1. A method for combustion in situ of combustible organic material in subterranean deposits pierced by inlet and outlet boreholes which comprises introducing a combustion supporting gas through an inlet borehole to said combustible material to produce a combustion zone and to form hot combustion products, passing the products of combustion through the deposit to heat adjacent organic material to form valuable products including gases and vapors, collecting and removing said valuable products including gases and vapors separately from said products of combustion at a first outlet borehole which is located a distance from said combustion zone, collecting and removing the products of combustion separately from the valuable products at a second outlet borehole, said second outlet borehole being located between said first inlet borehole and said first outlet borehole, the pressures at both of said first and second outlet boreholes being below atmospheric and substantially equal; and being lower than pressures at said inlet borehole.

2. A method as set forth in claim 1, which comprises removing said products of combustion from said second outlet borehole while retaining sensible heat to a point above the ground and passing them while retaining substantial sensible heat to a zone adjacent the combustion zone as a source of heat for said combustion zone.

3. A method as set forth in claim 1, wherein a plurality of inlet and outlet boreholes are provided to form a pattern of boreholes, maintaining a pressure differential along a direction between inlet boreholes at which combustion supporting gas is introduced and second outlet boreholes at which combustion gas is Withdrawn thereby causing predirected advancement of the combustion zone along said direction.

4. A method as set forth in claim 3, including the step of flowing combustion gases substantially in one direction towards second outlet boreholes thereby maintaining a substantially uniform heat distribution in said deposit between the inlet borehole for introduction of combustion supporting gas and the first outlet borehole for removal of said valuable products of combustion, said uniform heat distribution being undisturbed by combustion taking place in cracks, fissures and cavities.

5. The method as set forth in claim 3, comprising successively adding an aligned outlet borehole which is in advance of and in aligrunent with said advancing combustion zone for the removal of valuable products free of combustion products While sealing ofi said inlet borehole theretofore used for introduction of combustion supporting gas, introducing the combustion supporting gas to said second outlet borehole theretofo-re used for removal of combustion products and removing combustion products from the first outlet borehole theretofore used for the removal of valuable products, thus advancing the combustion zone for treatment of the deposit.

References (lited in the file of this patent UNITED STATES PATENTS 947,608 Betts Jan. 25, 1910 1,457,479 Wolcott June 5, 1923 2,497,868 Dalin Feb. 21, 1950 FOREEGN PATENTS 123,138 Sweden Nov. 9, 1948 OTHER REFERENCES American Gas Journal, Jan. 1944, pages 28 and 29.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US947608 *Dec 27, 1906Jan 25, 1910Anson G BettsMethod of utilizing buried coal.
US1457479 *Jan 12, 1920Jun 5, 1923Wolcott Edson RMethod of increasing the yield of oil wells
US2497868 *Oct 10, 1946Feb 21, 1950David DalinUnderground exploitation of fuel deposits
SE123138A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2953205 *Jul 28, 1958Sep 20, 1960Phillips Petroleum CoProcess for initiating in situ combustion
US2958519 *Jun 23, 1958Nov 1, 1960Phillips Petroleum CoIn situ combustion process
US3017168 *Jan 26, 1959Jan 16, 1962Phillips Petroleum CoIn situ retorting of oil shale
US3109487 *Dec 29, 1959Nov 5, 1963Texaco IncPetroleum production by secondary recovery
US3172467 *Oct 8, 1962Mar 9, 1965Phillips Petroleum CoMethod of reversing in situ combustion frontal movement
US3208516 *May 13, 1963Sep 28, 1965Shell Oil CoControl method in underground combustion drives
US3223158 *Dec 10, 1962Dec 14, 1965Socony Mobil Oil Co IncIn situ retorting of oil shale
US3253652 *Jun 24, 1963May 31, 1966Socony Mobil Oil Co IncRecovery method for petroleum oil
US3272261 *Dec 13, 1963Sep 13, 1966Gulf Research Development CoProcess for recovery of oil
US3276518 *Aug 6, 1962Oct 4, 1966Deutsche Erdoel AgProcess for extracting liquid bitumens from an underground deposit
US3285335 *Dec 11, 1963Nov 15, 1966Exxon Research Engineering CoIn situ pyrolysis of oil shale formations
US3298434 *May 27, 1964Jan 17, 1967Graham Thomas TGasification of coal
US3316962 *Mar 15, 1966May 2, 1967Deutsche Erdoel AgIn situ combustion method for residualoil recovery from petroleum deposits
US3330353 *Sep 22, 1964Jul 11, 1967Shell Oil CoThermal soak zones by fluidized fractures in unconsolidated, petroleum producing reservoirs
US3472318 *Jun 29, 1967Oct 14, 1969Texaco IncHydrocarbon production by secondary recovery
US3563606 *Mar 24, 1969Feb 16, 1971St Joe Minerals CorpMethod for in-situ utilization of fuels by combustion
US3599714 *Sep 8, 1969Aug 17, 1971Becker Karl EMethod of recovering hydrocarbons by in situ combustion
US3997005 *Oct 23, 1975Dec 14, 1976The United States Of America As Represented By The United States Energy Research And Development AdministrationMethod for control of subsurface coal gasification
US4036298 *Aug 12, 1975Jul 19, 1977Efim Vulfovich KreininMethod of connection of wells by in-situ combustion
US4059151 *Mar 4, 1976Nov 22, 1977In Situ Technology, Inc.Methods of fluidized production of coal in situ
US4076312 *Jul 30, 1976Feb 28, 1978Occidental Oil Shale, Inc.Method and apparatus for retorting oil shale at subatmospheric pressure
US4120357 *Oct 11, 1977Oct 17, 1978Chevron Research CompanyMethod and apparatus for recovering viscous petroleum from thick tar sand
US4303126 *Feb 27, 1980Dec 1, 1981Chevron Research CompanyArrangement of wells for producing subsurface viscous petroleum
US4480689 *Dec 6, 1982Nov 6, 1984Atlantic Richfield CompanyBlock pattern method for in situ gasification of subterranean carbonaceous deposits
US6581684Apr 24, 2001Jun 24, 2003Shell Oil CompanyIn Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US6588504Apr 24, 2001Jul 8, 2003Shell Oil CompanyConversion of hydrocarbons to produce hydrocarbons, hydrogen, and/or novel product streams from underground coal formations; pyrolysis
US6591906Apr 24, 2001Jul 15, 2003Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US6591907Apr 24, 2001Jul 15, 2003Shell Oil CompanyPyrolysis
US6607033Apr 24, 2001Aug 19, 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to produce a condensate
US6609570Apr 24, 2001Aug 26, 2003Shell Oil CompanyIn situ thermal processing of a coal formation and ammonia production
US6684948Jan 15, 2002Feb 3, 2004Marshall T. SavageApparatus and method for heating subterranean formations using fuel cells
US6688387Apr 24, 2001Feb 10, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6698515Apr 24, 2001Mar 2, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a relatively slow heating rate
US6702016Apr 24, 2001Mar 9, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US6708758Apr 24, 2001Mar 23, 2004Shell Oil CompanyIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US6712135Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation in reducing environment
US6712136Apr 24, 2001Mar 30, 2004Shell Oil CompanyProviding heat to the formation; controlling the heat from the heat source such that an average temperature within at least a majority of the selected section of the formation is less than about 375 degrees c.
US6712137Apr 24, 2001Mar 30, 2004Shell Oil CompanyHeat exchanging to superimpose heat
US6715546Apr 24, 2001Apr 6, 2004Shell Oil CompanyChemical and/or physical properties of hydrocarbon material within a subterranean formation may need to be changed to allow hydrocarbon material to be more easily removed
US6715547Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US6715548Apr 24, 2001Apr 6, 2004Shell Oil CompanyElectrical heaters may be used to heat the subterranean formation by radiation and/or conduction
US6715549Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6719047Apr 24, 2001Apr 13, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US6722429Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6722430Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US6722431Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of hydrocarbons within a relatively permeable formation
US6725920Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US6725921Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation by controlling a pressure of the formation
US6725928Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a distributed combustor
US6729395Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US6729396Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6729397Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729401Apr 24, 2001May 4, 2004Shell Oil CompanySynthesis gas may be produced from the formation. synthesis gas may be used as a feed stream in an ammonia synthesis process. ammonia may be used as a feed stream in a urea synthesis process.
US6732794Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6732795Apr 24, 2001May 11, 2004Shell Oil CompanyProviding heat from one or more heat sources to at least one portion of formation; allowing heat to transfer from the one or more heat sources to a selected section of the formation; controlling the heat; producing a mixture from the formation
US6732796Apr 24, 2001May 11, 2004Shell Oil CompanyHeating section of formation with heat sources to temperature allowing generation of synthesis gas, providing synthesis gas generating fluid to section, removing synthesis gas generated, repeating for second section, blending for desired ratio
US6736215Apr 24, 2001May 18, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US6739393Apr 24, 2001May 25, 2004Shell Oil CompanyIn situ thermal processing of a coal formation and tuning production
US6739394Apr 24, 2001May 25, 2004Shell Oil CompanyProviding heat and a synthesis gas generating fluid to the section to generate synthesis gas
US6742587Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6742588Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US6742589Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US6742593Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US6745831Apr 24, 2001Jun 8, 2004Shell Oil CompanyMixture of hydrocarbons, h2, and/or other formation fluids may be produced from the formation. heat may be applied to the formation to raise a temperature of a portion of the formation to a pyrolysis temperature.
US6745832Apr 24, 2001Jun 8, 2004Shell Oil CompanySitu thermal processing of a hydrocarbon containing formation to control product composition
US6745837Apr 24, 2001Jun 8, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US6749021Apr 24, 2001Jun 15, 2004Shell Oil CompanyPyrolysis
US6752210Apr 24, 2001Jun 22, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US6758268Apr 24, 2001Jul 6, 2004Shell Oil CompanyHeat exchanging, pyrolysis; monitoring temperature
US6761216Apr 24, 2001Jul 13, 2004Shell Oil CompanyPyrolysis temperature
US6763886Apr 24, 2001Jul 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with carbon dioxide sequestration
US6769483Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6769485Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ production of synthesis gas from a coal formation through a heat source wellbore
US6789625Apr 24, 2001Sep 14, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US6805195Apr 24, 2001Oct 19, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US6820688Apr 24, 2001Nov 23, 2004Shell Oil CompanyHeat exchanging after pyrolyzation to support synthesis gas generation
US6866097Apr 24, 2001Mar 15, 2005Shell Oil CompanySuperpositioning of heaters for pyrolysis to form mixture of hydrocarbons and hydrogen; controlling pressure; heat exchanging
US6871707Apr 24, 2001Mar 29, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US6877554Apr 24, 2001Apr 12, 2005Shell Oil CompanyPyrolysis
US6877555Apr 24, 2002Apr 12, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation while inhibiting coking
US6880633Apr 24, 2002Apr 19, 2005Shell Oil CompanyIncludes shutting-in an in situ treatment process in an oil shale formation may include terminating heating from heat sources providing heat to a portion of the formation; hydrocarbon vapor may be produced
US6880635Apr 24, 2001Apr 19, 2005Shell Oil CompanyMethods and systems for production of hydrocarbons, hydrogen, and/or other products from underground coal formations
US6889769Apr 24, 2001May 10, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US6896053Apr 24, 2001May 24, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US6902003Apr 24, 2001Jun 7, 2005Shell Oil CompanyAllowing heat to transfer from heaters to a formation selected for heating using a total organic matter weight percentage of > 5% and recirculating hydrogen
US6902004Apr 24, 2001Jun 7, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a movable heating element
US6910536Apr 24, 2001Jun 28, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US6913078Apr 24, 2001Jul 5, 2005Shell Oil CompanyIn Situ thermal processing of hydrocarbons within a relatively impermeable formation
US6915850Apr 24, 2002Jul 12, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation having permeable and impermeable sections
US6918442Apr 24, 2002Jul 19, 2005Shell Oil CompanyIn situ conversion of hydrocarbons to produce hydrocarbons, hydrogen, and/or novel product streams from underground oil shale formations
US6918443Apr 24, 2002Jul 19, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US6923257Apr 24, 2002Aug 2, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce a condensate
US6923258Jun 12, 2003Aug 2, 2005Shell Oil CompanyIn situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6929067Apr 24, 2002Aug 16, 2005Shell Oil CompanyHeat sources with conductive material for in situ thermal processing of an oil shale formation
US6932155Oct 24, 2002Aug 23, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US6948562Apr 24, 2002Sep 27, 2005Shell Oil CompanyProduction of a blending agent using an in situ thermal process in a relatively permeable formation
US6948563Apr 24, 2001Sep 27, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US6951247Apr 24, 2002Oct 4, 2005Shell Oil CompanyControl the heat exchanging, pyrolyzing hydrocarbons, enhancing oil recovery
US6953087Apr 24, 2001Oct 11, 2005Shell Oil CompanyThermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US6959761Apr 24, 2001Nov 1, 2005Shell Oil CompanyIn situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US6964300Apr 24, 2002Nov 15, 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US6966372Apr 24, 2001Nov 22, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US6966374Apr 24, 2002Nov 22, 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation using gas to increase mobility
US6969123Oct 24, 2002Nov 29, 2005Shell Oil CompanyUpgrading and mining of coal
US6973967Apr 24, 2001Dec 13, 2005Shell Oil Companyhydrocarbons within a coal formation are converted in situ within the formation to yield a mixture of relatively high quality hydrocarbon products, hydrogen, and other products; the coal is heated to to temperatures that allow pyrolysis
US6981548Apr 24, 2002Jan 3, 2006Shell Oil Companyheating and pyrolysis of heavy hydrocarbon sections in subterranean wells to produce light hydrocarbons; reduced viscosity improves movement; fluid removal in liquid and/or vapor phase
US6991031Apr 24, 2001Jan 31, 2006Shell Oil CompanyIn situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US6991032Apr 24, 2002Jan 31, 2006Shell Oil CompanyHeat sources positioned within the formation in a selected pattern raise a temperature of a portion of the formation to a pyrolysis temperature.
US6991033Apr 24, 2002Jan 31, 2006Shell Oil CompanyIn situ thermal processing while controlling pressure in an oil shale formation
US6991036Apr 24, 2002Jan 31, 2006Shell Oil CompanyThermal processing of a relatively permeable formation
US6991045Oct 24, 2002Jan 31, 2006Shell Oil CompanyForming openings in a hydrocarbon containing formation using magnetic tracking
US6994160Apr 24, 2001Feb 7, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US6994161Apr 24, 2001Feb 7, 2006Kevin Albert MaherIn situ thermal processing of a coal formation with a selected moisture content
US6994168Apr 24, 2001Feb 7, 2006Scott Lee WellingtonIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US6994169Apr 24, 2002Feb 7, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation with a selected property
US6997255Apr 24, 2001Feb 14, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a reducing environment
US6997518Apr 24, 2002Feb 14, 2006Shell Oil CompanyIn situ thermal processing and solution mining of an oil shale formation
US7004247Apr 24, 2002Feb 28, 2006Shell Oil CompanyConductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US7004251Apr 24, 2002Feb 28, 2006Shell Oil CompanyIn situ thermal processing and remediation of an oil shale formation
US7011154Oct 24, 2002Mar 14, 2006Shell Oil CompanyIn situ recovery from a kerogen and liquid hydrocarbon containing formation
US7013972Apr 24, 2002Mar 21, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a natural distributed combustor
US7017661Apr 24, 2001Mar 28, 2006Shell Oil CompanyProduction of synthesis gas from a coal formation
US7032660 *Apr 24, 2002Apr 25, 2006Shell Oil CompanyIn situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US7036583Sep 24, 2001May 2, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US7040398Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation in a reducing environment
US7040399Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a controlled heating rate
US7040400Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of a relatively impermeable formation using an open wellbore
US7051807Apr 24, 2002May 30, 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with quality control
US7051808Oct 24, 2002May 30, 2006Shell Oil CompanySeismic monitoring of in situ conversion in a hydrocarbon containing formation
US7051811Apr 24, 2002May 30, 2006Shell Oil CompanyIn situ thermal processing through an open wellbore in an oil shale formation
US7055600Apr 24, 2002Jun 6, 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with controlled production rate
US7063145Oct 24, 2002Jun 20, 2006Shell Oil CompanyMethods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US7066254Oct 24, 2002Jun 27, 2006Shell Oil CompanyIn situ thermal processing of a tar sands formation
US7066257Oct 24, 2002Jun 27, 2006Shell Oil CompanyIn situ recovery from lean and rich zones in a hydrocarbon containing formation
US7073578Oct 24, 2003Jul 11, 2006Shell Oil CompanyStaged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US7077198Oct 24, 2002Jul 18, 2006Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using barriers
US7077199Oct 24, 2002Jul 18, 2006Shell Oil CompanyIn situ thermal processing of an oil reservoir formation
US7086465Oct 24, 2002Aug 8, 2006Shell Oil CompanyIn situ production of a blending agent from a hydrocarbon containing formation
US7086468Apr 24, 2001Aug 8, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US7090013Oct 24, 2002Aug 15, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US7096941Apr 24, 2001Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US7096942Apr 24, 2002Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation while controlling pressure
US7096953Apr 24, 2001Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a coal formation using a movable heating element
US7100994Oct 24, 2002Sep 5, 2006Shell Oil Companyinjecting a heated fluid into the well bore, producing a second fluid from the formation, conducting an in situ conversion process in the selected section.
US7104319Oct 24, 2002Sep 12, 2006Shell Oil CompanyIn situ thermal processing of a heavy oil diatomite formation
US7114566Oct 24, 2002Oct 3, 2006Shell Oil CompanyHeat treatment using natural distributed combustor; oxidation of hydrocarbons to generate heat; pyrolysis
US7121341Oct 24, 2003Oct 17, 2006Shell Oil CompanyConductor-in-conduit temperature limited heaters
US7121342Apr 23, 2004Oct 17, 2006Shell Oil CompanyThermal processes for subsurface formations
US7128153Oct 24, 2002Oct 31, 2006Shell Oil CompanyTreatment of a hydrocarbon containing formation after heating
US7156176Oct 24, 2002Jan 2, 2007Shell Oil CompanyInstallation and use of removable heaters in a hydrocarbon containing formation
US7165615Oct 24, 2002Jan 23, 2007Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US7182132Oct 15, 2003Feb 27, 2007Independant Energy Partners, Inc.Linearly scalable geothermic fuel cells
US7219734Oct 24, 2003May 22, 2007Shell Oil CompanyInhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US7225866Jan 31, 2006Jun 5, 2007Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US7320364Apr 22, 2005Jan 22, 2008Shell Oil CompanyInhibiting reflux in a heated well of an in situ conversion system
US7353872Apr 22, 2005Apr 8, 2008Shell Oil CompanyStart-up of temperature limited heaters using direct current (DC)
US7357180Apr 22, 2005Apr 15, 2008Shell Oil CompanyInhibiting effects of sloughing in wellbores
US7360588Oct 17, 2006Apr 22, 2008Shell Oil CompanyThermal processes for subsurface formations
US7370704Apr 22, 2005May 13, 2008Shell Oil CompanyTriaxial temperature limited heater
US7383877Apr 22, 2005Jun 10, 2008Shell Oil CompanyTemperature limited heaters with thermally conductive fluid used to heat subsurface formations
US7424915Apr 22, 2005Sep 16, 2008Shell Oil CompanyVacuum pumping of conductor-in-conduit heaters
US7431076Apr 22, 2005Oct 7, 2008Shell Oil CompanyTemperature limited heaters using modulated DC power
US7435037Apr 21, 2006Oct 14, 2008Shell Oil CompanyLow temperature barriers with heat interceptor wells for in situ processes
US7461691Jan 23, 2007Dec 9, 2008Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7481274Apr 22, 2005Jan 27, 2009Shell Oil CompanyTemperature limited heaters with relatively constant current
US7490665Apr 22, 2005Feb 17, 2009Shell Oil CompanyVariable frequency temperature limited heaters
US7500528Apr 21, 2006Mar 10, 2009Shell Oil CompanyLow temperature barrier wellbores formed using water flushing
US7510000Apr 22, 2005Mar 31, 2009Shell Oil CompanyReducing viscosity of oil for production from a hydrocarbon containing formation
US7527094Apr 21, 2006May 5, 2009Shell Oil CompanyDouble barrier system for an in situ conversion process
US7533719Apr 20, 2007May 19, 2009Shell Oil CompanyWellhead with non-ferromagnetic materials
US7540324Oct 19, 2007Jun 2, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a checkerboard pattern staged process
US7546873Apr 21, 2006Jun 16, 2009Shell Oil CompanyLow temperature barriers for use with in situ processes
US7549470Oct 20, 2006Jun 23, 2009Shell Oil CompanySolution mining and heating by oxidation for treating hydrocarbon containing formations
US7556095Oct 20, 2006Jul 7, 2009Shell Oil CompanySolution mining dawsonite from hydrocarbon containing formations with a chelating agent
US7556096Oct 20, 2006Jul 7, 2009Shell Oil CompanyVarying heating in dawsonite zones in hydrocarbon containing formations
US7559367Oct 20, 2006Jul 14, 2009Shell Oil CompanyTemperature limited heater with a conduit substantially electrically isolated from the formation
US7559368Oct 20, 2006Jul 14, 2009Shell Oil CompanySolution mining systems and methods for treating hydrocarbon containing formations
US7562706Oct 20, 2006Jul 21, 2009Shell Oil CompanySystems and methods for producing hydrocarbons from tar sands formations
US7562707Oct 19, 2007Jul 21, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a line drive staged process
US7575052Apr 21, 2006Aug 18, 2009Shell Oil CompanyIn situ conversion process utilizing a closed loop heating system
US7575053Apr 21, 2006Aug 18, 2009Shell Oil CompanyLow temperature monitoring system for subsurface barriers
US7581589Oct 20, 2006Sep 1, 2009Shell Oil CompanyMethods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US7584789Oct 20, 2006Sep 8, 2009Shell Oil CompanyMethods of cracking a crude product to produce additional crude products
US7591310Oct 20, 2006Sep 22, 2009Shell Oil CompanyMethods of hydrotreating a liquid stream to remove clogging compounds
US7597147Apr 20, 2007Oct 6, 2009Shell Oil CompanyTemperature limited heaters using phase transformation of ferromagnetic material
US7604052Apr 20, 2007Oct 20, 2009Shell Oil CompanyCompositions produced using an in situ heat treatment process
US7610962Apr 20, 2007Nov 3, 2009Shell Oil CompanyProviding acidic gas to a subterrean formation, such as oil shale, by heating from an electrical heater and injecting through an oil wellbore; one of the acidic acids includes hydrogen sulfide and is introduced at a pressure below the lithostatic pressure of the formation to produce fluids; efficiency
US7631689Apr 20, 2007Dec 15, 2009Shell Oil CompanySulfur barrier for use with in situ processes for treating formations
US7631690Oct 19, 2007Dec 15, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a spiral startup staged sequence
US7635023Apr 20, 2007Dec 22, 2009Shell Oil CompanyTime sequenced heating of multiple layers in a hydrocarbon containing formation
US7635024Oct 19, 2007Dec 22, 2009Shell Oil CompanyHeating tar sands formations to visbreaking temperatures
US7635025Oct 20, 2006Dec 22, 2009Shell Oil CompanyCogeneration systems and processes for treating hydrocarbon containing formations
US7640980Apr 7, 2008Jan 5, 2010Shell Oil CompanyThermal processes for subsurface formations
US7644765Oct 19, 2007Jan 12, 2010Shell Oil CompanyHeating tar sands formations while controlling pressure
US7673681Oct 19, 2007Mar 9, 2010Shell Oil CompanyTreating tar sands formations with karsted zones
US7673786Apr 20, 2007Mar 9, 2010Shell Oil CompanyWelding shield for coupling heaters
US7677310Oct 19, 2007Mar 16, 2010Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US7677314Oct 19, 2007Mar 16, 2010Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US7681647Oct 19, 2007Mar 23, 2010Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US7683296Apr 20, 2007Mar 23, 2010Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US7703513Oct 19, 2007Apr 27, 2010Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US7717171Oct 19, 2007May 18, 2010Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US7730945Oct 19, 2007Jun 8, 2010Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730946Oct 19, 2007Jun 8, 2010Shell Oil CompanyTreating tar sands formations with dolomite
US7730947Oct 19, 2007Jun 8, 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US7735935Jun 1, 2007Jun 15, 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US7785427Apr 20, 2007Aug 31, 2010Shell Oil CompanyChromium, nickel, copper; niobium, iron manganese, nitrogen; nanonitrides; system for heating a subterranean formation;
US7793722Apr 20, 2007Sep 14, 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US7798220Apr 18, 2008Sep 21, 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US7798221May 31, 2007Sep 21, 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7831133Apr 21, 2006Nov 9, 2010Shell Oil CompanyInsulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration
US7831134Apr 21, 2006Nov 9, 2010Shell Oil CompanyGrouped exposed metal heaters
US7832484Apr 18, 2008Nov 16, 2010Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US7841401Oct 19, 2007Nov 30, 2010Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US7841408Apr 18, 2008Nov 30, 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US7841425Apr 18, 2008Nov 30, 2010Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US7845411Oct 19, 2007Dec 7, 2010Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US7849922Apr 18, 2008Dec 14, 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US7860377Apr 21, 2006Dec 28, 2010Shell Oil CompanySubsurface connection methods for subsurface heaters
US7866385Apr 20, 2007Jan 11, 2011Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US7866386Oct 13, 2008Jan 11, 2011Shell Oil Companyproduction of hydrocarbons, hydrogen, and/or other products from various subsurface formations such as hydrocarbon containing formations through use of oxidizing fluids and heat
US7866388Oct 13, 2008Jan 11, 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US7912358Apr 20, 2007Mar 22, 2011Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US7931086Apr 18, 2008Apr 26, 2011Shell Oil CompanyHeating systems for heating subsurface formations
US7942197Apr 21, 2006May 17, 2011Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US7942203Jan 4, 2010May 17, 2011Shell Oil CompanyThermal processes for subsurface formations
US7950453Apr 18, 2008May 31, 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US7986869Apr 21, 2006Jul 26, 2011Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US8011451Oct 13, 2008Sep 6, 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US8027571Apr 21, 2006Sep 27, 2011Shell Oil CompanyIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US8042610Apr 18, 2008Oct 25, 2011Shell Oil CompanyParallel heater system for subsurface formations
US8070840Apr 21, 2006Dec 6, 2011Shell Oil CompanyTreatment of gas from an in situ conversion process
US8083813Apr 20, 2007Dec 27, 2011Shell Oil CompanyMethods of producing transportation fuel
US8113272Oct 13, 2008Feb 14, 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US8146661Oct 13, 2008Apr 3, 2012Shell Oil CompanyCryogenic treatment of gas
US8146669Oct 13, 2008Apr 3, 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US8151880Dec 9, 2010Apr 10, 2012Shell Oil CompanyMethods of making transportation fuel
US8151907Apr 10, 2009Apr 10, 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8162059Oct 13, 2008Apr 24, 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US8162405Apr 10, 2009Apr 24, 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US8172335Apr 10, 2009May 8, 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8177305Apr 10, 2009May 15, 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8191630Apr 28, 2010Jun 5, 2012Shell Oil CompanyCreating fluid injectivity in tar sands formations
US8192682Apr 26, 2010Jun 5, 2012Shell Oil CompanyHigh strength alloys
US8196658Oct 13, 2008Jun 12, 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US8220539Oct 9, 2009Jul 17, 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8224163Oct 24, 2003Jul 17, 2012Shell Oil CompanyVariable frequency temperature limited heaters
US8224164Oct 24, 2003Jul 17, 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US8224165Apr 21, 2006Jul 17, 2012Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US8225866Jul 21, 2010Jul 24, 2012Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8230927May 16, 2011Jul 31, 2012Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US8233782Sep 29, 2010Jul 31, 2012Shell Oil CompanyGrouped exposed metal heaters
US8238730Oct 24, 2003Aug 7, 2012Shell Oil CompanyHigh voltage temperature limited heaters
US8240774Oct 13, 2008Aug 14, 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US8256512Oct 9, 2009Sep 4, 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US8261832Oct 9, 2009Sep 11, 2012Shell Oil CompanyHeating subsurface formations with fluids
US8267170Oct 9, 2009Sep 18, 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US8267185Oct 9, 2009Sep 18, 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US8272455Oct 13, 2008Sep 25, 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US8276661Oct 13, 2008Oct 2, 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US8281861Oct 9, 2009Oct 9, 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US8327681Apr 18, 2008Dec 11, 2012Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US8327932Apr 9, 2010Dec 11, 2012Shell Oil CompanyRecovering energy from a subsurface formation
US8353347Oct 9, 2009Jan 15, 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US8355623Apr 22, 2005Jan 15, 2013Shell Oil CompanyTemperature limited heaters with high power factors
US8381815Apr 18, 2008Feb 26, 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US8434555Apr 9, 2010May 7, 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US8448707Apr 9, 2010May 28, 2013Shell Oil CompanyNon-conducting heater casings
US8459359Apr 18, 2008Jun 11, 2013Shell Oil CompanyTreating nahcolite containing formations and saline zones
US8485252Jul 11, 2012Jul 16, 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8536497Oct 13, 2008Sep 17, 2013Shell Oil CompanyMethods for forming long subsurface heaters
US8555971May 31, 2012Oct 15, 2013Shell Oil CompanyTreating tar sands formations with dolomite
US8562078Nov 25, 2009Oct 22, 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8579031May 17, 2011Nov 12, 2013Shell Oil CompanyThermal processes for subsurface formations
US8606091Oct 20, 2006Dec 10, 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US8627887Dec 8, 2008Jan 14, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8631866Apr 8, 2011Jan 21, 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8636323Nov 25, 2009Jan 28, 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US8662175Apr 18, 2008Mar 4, 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8701768Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US8701769Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US8739874Apr 8, 2011Jun 3, 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US8752904Apr 10, 2009Jun 17, 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8789586Jul 12, 2013Jul 29, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8791396Apr 18, 2008Jul 29, 2014Shell Oil CompanyFloating insulated conductors for heating subsurface formations
US8820406Apr 8, 2011Sep 2, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8833453Apr 8, 2011Sep 16, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with tapered copper thickness
Classifications
U.S. Classification166/245, 175/12, 166/256
International ClassificationE21B43/243, E21B43/16
Cooperative ClassificationE21B43/243
European ClassificationE21B43/243