Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2856323 A
Publication typeGrant
Publication dateOct 14, 1958
Filing dateNov 9, 1955
Priority dateNov 9, 1955
Publication numberUS 2856323 A, US 2856323A, US-A-2856323, US2856323 A, US2856323A
InventorsGordon Jack C
Original AssigneeGordon Jack C
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Indented resilient matted fibrous pad
US 2856323 A
Abstract  available in
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Oct. 14, 1958 J. c. GORDON INDENTED RESILIENT MATTED FIBROUS PAD Filed NOV. 9, 1955 3 Sheets-Sheet 1 INVENTOR. Jaci 6? 60 217071.

, 3M I Tar/V5045 J. C. GORDON INDENTED RESILIENT MATTED FIBROUS PAD Oct. 14, 1958 3 Sheets-Sheet 2 Filed Nov. 9, 1955 a a NIT/3 Oct. 14, 1958 J. c. GORDON 2,856,323

INDENTED RESILIENT MATTED FIBROUS PAD Filed Nov. 9. 1955 3 Sheets-Sheet 3 INVENTOR flag 6: 50 7'10 71.

army/s United States Patent INDENTED RESILIENT MATTED FIBROUS PAD Jack C. Gordon, Detroit, Mich.

Application November 9, 1955, Serial No. 545,848

6 Claims. (Cl. 154-49) This invention relates to pads for use as rug underlays, as packing material, as wall coverings, as insulation, as acoustic damping material, and the like.

This application is a continuation-in-part of my applications Serial Nos. 369,458, filed July 21, 1953, and 440,581, filed July 1 1954, both now abandoned.

Fibrous materials and the like have commonly been employed in sheet form for various padding purposes, such as those enumerated above. In substantially all such uses, the padding capability accrues either from the natural resilience, the looseness, or the inherent air-trapping characteristics of these selected materials. The characteristics which recommend various materials to such uses, however, also normally tend to render those materials difficult or unwieldy of application. Thus, matted fiber pads used as rug underlays tend to have exceedingly poor dimensional stability and loose fiber packing or insulating materials and wall coverings are difficult of either initial installation or retention in positon.

In one solution, bats are formed of loose fibrous material such as excelsior or insulating material backed by or sandwiched between sheets ofpaper. In other cases, the fibrous material per se is so compressed and bonded as to become relatively rigid and self-supporting, in the nature ofcertain wallboards and molded egg separators.

In other padding, such as rug underlays, increased strength and dimensional stability have been imparted to matted fibrous sheets by compressing portions of the sheet in a pattern, ofttimes resiliently bonding the material in its selectively compressed form, as is disclosed,

for example, in my Patents 2,541,868 and 2,572,470.

In accordance with the teachings of the present invention, materials are formed into pads suited for any of the aforesaid purposes as-well as for others. Contrary to the prior practices, rigidity, strength, resistance to crushing and dimensional stability are achieved not so much from the inate characteristics ,of-the material itself as from the structural shape into which it is formed. In the preferred forms, a plurality of small, loadrbearing areas are trussed between supporting walls, with the walls acting, in essence, as columnar members and with the volume defined by the trussed area and the supporting walls therefor serving as an air cavity. The cellularly trapped air serves as an insulator and/or as a resilient, compressible reinforcement to the trussed area to correspondingly increase the load-bearing.capabilities of the pad. The intercell walls may be substantially impervious to air, but advantageously are adapted to allow a transfer of air from cell-to-cell at a controlled, slow rate. This may be accomplished either by rendering the cell walls semipervious to air or by interconnecting relatively impervious cell walls with minute air-transmitting channels.

In the disclosedforms, a sheet of material is distorted to define a plurality of cupsand raised portions on each surface of the sheet, the bottom of each cup on one surface constituting the top or plateau of a raised portion on the other surface. Whether the original sheet be relatively thisls or thin, the thickness ofthebottom wall of each cup on each surface is preferably less than one-half of the thickness of the finished article and is preferably substantially impervious to air flow therethrough.

Where the original sheet is relatively thick, such as a matted-fiber rug underlay material, there is or may be compression of the fibers in the bottom walls of the cups, but the forming of the sheet material, under the principles of the present invention, is by a drawing op- 0 eration, assimilable to deep drawing in metalworking.

The operation is not properly characterizable as molding since the sheet material is and remains solid throughout the forming. As far as is known, it is not possible to form articles of fibrous material of this nature into the herein defined configurations without performing, in effect, a deep drawing operation, and, as far as is known, drawing of fibrous materials of this nature has not previously been attempted.

Materials to be formed by the machine and methods set forth herein must have, or have imparted thereto, adequate ductility to permit the requisite depth of draw. Matted fiber pads and certain other materials such as burlap tend to have sufiiciently loose interparticle binding to permit proper drawing without pretreatment. Other materials, including most papers, may require treatment preliminary to or concurrently with the drawing, effectively to increase their ductilities so as to prevent rupture.

Sheets deformed to the noted configuration may be resiliently fixed by the application of an appropriate bonding agent thereto.

For special purposes, the pads so formed may be provided with planar backing sheets on one or both faces, may be provided with any desired coating to better adapt the article to its ultimate use, may be provided with inlays of wire to facilitate the attaching of the pads to an object to be protected, and may be otherwise modified within the scope of the invention.

An object of the invention is to reduce the cost and to increase the effectiveness of pads employed for rug underlays, packing, insulation, sound damping, and the like.

The manner of accomplishing the aforesaid and other objects of the invention will be appreciated from the following detailed description of embodiments of the invention when' read with reference to the accompanying drawings in which:

Figure l is a diagrammatic representation of a system for processing articles under the principles of the invention;

Fig. 2 is a perspective view of a machine embodying certain of the principles of the invention;

Fig. 3 is a fragmentary developmental view of the rolls of Fig. 2 showing the relationship of the protuberances thereupon;

Fig. 4 is a fragmentary side view of portions of the mating surfaces of the rolls of Fig. 2;

Fig. 5 is a fragmentary perspective view of an article which may be formed by the apparatus represented in Fig. 1 and which may be deformed by the machine represented in Fig. 2;

Fig. 6 is a vertical sectional view taken substantially along the line 66 of Fig. 5;

Fig. 7 is a perspective view of a different article which may be manufactured by the system of Fig. 1 and which may be deformed by the machine of Fig. 2;

Fig. 8 is a view of a modified form of article embodying certain of the principles of the invention; and

Fig. 9 is a view of a mechanism for forming the article of Fig. 7.

The principles of the present invention are primarily although not exclusively applicable to articles, and the manufacturing thereof, formed from sheets of solid,

3 fibrous materials including felted jute or other matted fiber sheets (e. g., flax, sisal, animal hair, or combinatrons thereof), paper, cloth including burlap, and so 'forth. The shape of the flat sheets is distorted into a selected pattern by an operation most accurately characterized as drawing, for reasons set forth hereinafter.

To resiliently retain the article in its deformed shape, a

bonding or binding material is applied to the sheet or sheets, becoming a solid coating on or partial impregnation of'the surface or surfaces of the article upon the completion of an appropriate drying or curing operation.

Certain equipment for forming the articles disclosed herein, and others, is diagrammatically represented in Fig. l of the drawings. The stock sheet material 10 is Withdrawn from any suitable source such as a supply roll 12. At some time prior to, during or after deformation,

an appropriate bonding or binding material is applied to one or both surfaces of the material. It is convenient to apply this material, by spraying, roll coating or otherwise, prior to the deforming operation since at that time the sheet has a relatively smooth surface and even application of the coating is more readily achieved. Further, as will be noted hereinafter, the application of the bonding material prior to deformation also permits,.in some cases, a partial cure of the bonding material during the deforming operation, permits a liquefying of solid bonding materials during deformation, and permits the bonding material or its liquid carrier to serve to wet the surface or surfaces of the sheet prior to or during deformation. In the arrangement of Fig. l, the sheet material 10 is passed 'by a bank of sprayers 14 adapted to apply a liquid bonding material or a mixture of a liquid and a solid bonding agent to one or both surfaces of the sheet.

The bonding material should have the capability of adhering to the surface of the article after deformation, be flexible in nature at least after curing or drying, and possess the capability of resiliently fixing the article in its deformed shape. It may be a coating or size either solid or liquid in initial form. The bonding material may be, for example, a thermoplastic material normally supplied in liquid form or may be a normally solid bonding agent dissolved, suspended or dispersed in a liquid.

The exact nature of the bonding material which is employed will be determined by a number of factors including availability, cost, the nature of the sheet material 10, and the characteristics desired in the completed article. Any of a vast variety of sizes can be used including starches, gums, resins, cements, varnishes, and latexes or rubber dispersions, carried in water or some other appropriate liquid. As one example of a bonding material employed in practice in conjunction with a matted fiber web to form arug underlay, a composition may be employed comprising a dispersion in water of a mixture of approximately one hundred parts of neoprene, one part of phenyl alpha naphthyl amine, one part of para phenol, ten parts of carbon black, and five parts of zinc oxide suspended as a latex in water. Obviously, the amount of such solution which is applied will be determined on the basis of considerations such 'as those previously enunciated; including the degree of pliancy or rigidity of the completed article.

underlays, in which the matted jute fiber formation has a thickness in the order, for example, of one-eighth to one-quarter of an inch, it has been found satisfactory to apply one or two ounces of the mixture per square yard on each surface of the sheet material.

The coated sheet 10 is then passed through a pair of deforming rolls 16 and 18 adapted to deform the ma- For rug Rolls 16-18 draw the ma- H therethrough or by positioning a source or sources of radiant energy, such as heat lamps, adjacent the rolls. Such partial or full setting is normally employed, with a liquid bonding material, only if the sheet stock per se is incapable of transiently retaining the deformation created therein. Matted fiber tends rapidly to lose its deformed shape so that it is advantageous in that case to heat rolls 16-18 so as sufficiently to cure the representatively applied latex to retain the pattern imparted to the web. It will be noted that the heating need not be suficient, either timewise or temperaturewise, to thoroughly dry the fabric and fully cure the rubber. In one practical embodiment of the invention, rolls 16-48 are heated to a temperature of about 270-350 F.

After deformation, with or Without partial curing or drying, the deformed web is passed into a chamber 29 in which, for example, air at a temperature of 200 F.

or more is circulated about the deformed web for an appropriate time, fifteen minutes being employed as a drying or curing period in one successful use of the method. This accomplishes a solidifying or drying or curing of the bonding material.

As will be better appreciated after consideration of the ensuing materials, the use of rolls 16 and 18 is purely representative and other means may be employed to produce the desired deformation of the sheet material.

The machine represented in Fig. 2 of the drawings (which may but need not be employed in the system of Fig. 1) comprises a base 26 upon which a pair of pedestal assemblies 28 and 30 are mounted. Each of the pedestal assemblies, such as pedestal assembly 28, comprises a pair of uprights 34 and 36 mounted upon base 26 and interjoined at their upper ends by a top plate 38. A lower bearing block 40 is secured between the uprights 34 and 36 and is preferably fixed in position such as by a pin '42. An upper bearing block 44 is slidably mounted between the uprights 34 and 36 and is adapted to be biased downwardly to an adjustable extent by means of a coil compression spring 46, one end of which abuts the upper surface of the bearing block 44 and the upper end of which is seated in a bearing cup 48. Cup 48 is mounted upon a screw 50 which threadedly engages a tapped aperture in the top plate 38 and which terminates in a turning means such as head 52. It will be perceived that by rotating head 52 to advance screw 50 downwardly, the force exerted through cup 48 and spring 46 upon hearing block 44 may be increased, and conversely.

Bearing block 40 (and its counterpart in pedestal assembly 30) is adapted rotatably to support a shaft 54 which is keyed, welded or otherwise secured to the preferably tubular lower roll 18, while the upper bearing block 44 (and its counterpart in pedestal assembly 30) is adapted to support a shaft 56 secured to the upper roll 16, which is also preferably tubular.

It is important that adequate pressure exist between the rolls 16 and 18 during the forming operation, the extent of this pressure being established by the characteristics of the material being processed. If the upper roll 16 is heavier than is necessary to provide the maximum requisite pressure, then springs 46 should be adapted to press or pull upwardly on the upper bearing blocks 44. However, in a practical embodiment of the invention, it was found that greater force was required than was provided by the weight of the upper roll 16 alone and, consequently, springs 46 were disposed and employed as described. If desired, a limit stop (not shovm) may be provided to establish the lowermost position of bearing blocks 44 and, hence, the minimum spacing between the rolls 16 and 18.

The rolls 16 and 18 are provided with a plurality of protuberances 56 and 58, respectively. An examplary nature and positioning of these protuberances 56 and 58 is represented in the developmental view of Fig. 3 of the drawings whiehisintended to represent a portion of the surface of the roll 16 developed to a plane, with the protuberances 56 thereon, and with the protuberances 58 being shown in dotted lines in the position they would assume if roll 18 were similarly developed to a plane. In that representative showing of Fig. 3, a regular pattern of protuberances is established, each protuberance exemplarily being square in any cross-sectional plane taken parallel to the surface of the roll. In the pattern shown, the protuberances on each of the roll surfaces lie in regular circumferential, longitudinal and helical rows. The diagonals of the squares are representatively aligned circumferentially rather than helically, in the disclosed arrangement, which tends to provide abetter stress distribution during the drawing of the material. The protuberances in each helical rollof protuberances are spaced sufiiciently far apart to permit the interposition therebetween of a protuberance 58 on the surface of the mating roll, with a selected space existing between each protuberance on one roll and any protuberance on the other roll. It will be observed that each protuberance on each roll surface is effectively bounded by four protuberances on the mating surface, the faces of the protuberances being adjacent, each group of four protuberances defining a cavity adapted to accept a protuberance on the other roll.

As a concrete example of an arrangement which has been successfully employed in practice, the protuberances 56 may be mounted on approximately one-inch centers both longitudinally and circumferentially of the roll, with the protuberances 58 being. similarly mounted on approximately one-inch centers both longitudinally and circumferentially of the other roll, but with the grid Work .of center lines on the two rolls being both circumferentially and longitudinally medially offset. The protuberances themselves may conveniently be boltheads, standard square inch bolts being employed in one practical embodiment of the invention, so that each of the protuberances is about inch on a side and extends above the surface of the roll with which it is associated about inch. I The bolts may be secured to the roll in any suitable fashion, such as by reaming a plurality of appropriately sized body holes in the face of the roll, inserting the bolts therein, and securing them in position by welding, by staking, or by screwing nuts thereon. If the roll is solid, other methods of attachment of the boltsmay be necessary, such as by establishing a drive fit between the shank of the'bolt and the hole into which it is to be inserted. After the bolts are inserted into position, their heights may be uniformed by turning or grindingthe roll.

The rolls may also-be constructed by milling appropriate slots in the surface of a solid roll, a tubular member or a sleeve.

As may best be seen in the fragmentary end view of Fig. 4, not only are the protuberances 56 and 58 spaced apart laterally, but also the spacing between the rolls is selected so that the protuberances on one roll do not strike the surface of the mating roll. In :a representative arrangement for forming rug underlays from material approximately fit inch thick, the protuberances 56 and 58 are each about inch high, with a spacing of about inch being established between the end face of each protuberance and the surface of the mating roll. Obviously, other spacing may be desirable or required for thicker or thinner materials. Substantially closer spacing may be in order where paper is' employed as the raw stool: material.

It will be appreciated that the shape of the individual protuberances may be modified within the principles of the invention. Thus, the protuberances 56 may each be rotated forty-five degrees (Fig. 3) so that the side faces of the protuberances on any-one roll "are adjacent one another, the protuberances may he other than square, including rectangular, hexagonal, roundand substantially any other regular or irregular form; the facetsurfaces In the shown arrangement, both rolls are circular cylindrical, with means being provided to drive the two rolls at the same surface speeds. In practice, one or both of the rolls may be otherwise conformed such as being semi-circular cylindrical. Both rolls need not be cylindrical. Thus, for example, a flat plate may be employed in lieu of one of the rolls, with the remaining roll rotating with respect thereto and with means being provided for moving the rotational axis of the cylindrical or partially cylindrical roll in translation longitudinally of the flat plate, or vice versa, in the nature of a rack and pinion. However, while the articles can be formed by pressing a single protuberance between a flat plate nest of protuberances, it has been found that fibrous materials of the noted nature normally do not have sufficient ductility to permit their deformation between extended-area flat plate dies, at least deforamiton to the desirable depth, without rupturing. Apparently, the material in such an arrangement is too restriced against longitudinal and transverse fiber flow. Of course, at a lower production rate, a single row of protuberances can be mounted upon a curvilinear member which is rocked upon a flat mating die and transversely of the direction of incremental movement of the material.

It will be perceived that a pattern corresponding to that uponthe. rolls 1,6 and 18 will be imparted to a sheet material passed between those rolls. As an example, if a matted fiber sheet of /8 inch to A inch in thickness be passed, between the rolls .of Figs. 2-4, the sheet will be deformed to the shape represented in Figs. 5 and 6 of the drawings, which show .a rug underlay resiliently retained in deformed condition .by a bonding step in the practice of the method represented in Fig. 1, for example. Each surface of the articlecomprises ,a plurality of protuberances and cups or depressions such as protuberances 66a and cups 68a on the upper surface of the article and protuberances 66b and cups 6% on the lower surface of the article.- The bottom wall of each cup 68 on one surface constitutes the face wall or plateau of a protuberance 66 on the other surface. The plateaus or face walls of the protuberances on each of the surfaces may be considered to be diaphragms trussed between bounding substantially vertical walls, those plateaus serving as loadbearing surfaces supported, at least in part, by the columnar action of the gridwork of walls.

The strength and at least the transient load-bearing capabilities of the pad maybe enhanced by imbuing the article with semi-pneumatic characteristics. If the raw stock material is relatively impervious to air flow, this semi-pneumatic characteristic is automatically achieved. However, if a material which is by its nature relatively porous, such as matted fiber, is employed as the raw stock material, the degree of interroll pressure and the nature and extent of thebonding material are preferably selected in the light of the thickness and nature of the raw stock material to reduce the perviousess of at least a portion of the article to the transmission of air. Thus, in the article shown in Figs. 5 and 6 of the drawings, the spacing between the top face of each protuberance on each roll and the surface of the other roll is selected to provide a partial compacting of the fibers defining the plateaus or diaphragms on each surface of the finished article. If desired, there may be a partialsurface impregnation of'thosefibers with the'bonding material. It

store them to volume.

may also be desirable to space the protuberances on each .of .the two rolls so that the wall thickness'is sutficiently less thanjthe thickness of the raw stock material to pro- :duce a compacting of the vertical wall structure of the finished, article. In that event, each cup forms, in co- Howwalls semi-pervious to the transmission iof air so that when a load is applied to a portion of the total area,

.the air in the cells in that area may be slowly exhausted to other cells and so that when the load is relieved, air

from other cells may travel back, through the cell walls to refill the previously partially exhausted cells and re- In this preferred arrangement, therefore, the, total load is borne partly by the trussed diaphragms supported 'by the columnar action of the walls and partly by the semi-pneumatic effect accruing from the, relatively complete imperviousncss (under normal conditions of use) of the diaphragms to air flow and a semi-pneumatic effect may be experienced by pressing downwardly upon the upper surface of the pad first with the pad supported on an air-pervioussurface such as a screen or a perforated metal grillworkand then with the pad'supported upon a solid surface such as a floor. The resilient resistance to crushing under the latter case is much greater than it is in the former. In either case, it will be found that the material will restore to its normal shape upon release of the forces dueto the resilient fixing of that shape by the presence of the bonding material as a surface coating or as a partial surfac impregnation;

In the article of Figs. 5 and 6, the thickness of the diaphragms 70 is shown to be substantially less than the thickness of'the walls 72, with the cell walls 72 being more pervious to air flow than the diaphragms 70. It is also important to observe that the depth of each cup and the height of each protuberance is greater than one-half of the hight of the total, finished article. If thiswere not true, then there would be'no counterparts of the vertical walls and the salutary advantages of the formation shown would not accrue. Each wall 72'should divide and partially define cups or cells on opposite sides of the material. 1 1 The formation of the article of Figs. 5 and 6', and of the other articlesherein disclosed, isimost accurately characterized as a drawing operation, akin to the deep drawing of ductile metals. It is not a molding operation since the raw materials are solid and remain solid throughout their deformation, and it is not simply a com.- pressing or selective compressing operation such. as those previously practiced in the art, exemplarily represented by the disclosures of my two above-noted patents. Deforming pressures are exerted sufficient to exceed the elastic limit of the stock sheet material and'effect permanent changes inits contour, that is, to impart the counterpart of a permanent set to the material. In such formation, the pressures must not exceed the ultimate strength or' breakin g point of the material or there will be rup: turing. Hence, the materialmust be, at the instant of deformation, adequately ductile so that it maybe de formed to the desired degree without rupture, that is, the material must have at the instant of deformation. at suthcient capacity for plastic (non-elastic) deformation in tension so that it will not rupture or fail. f

In general, matted fibers of the type commonly used for rug 'underlays are adequately plastic (in the mechanical sense) to permit the desired degree of deformation without rupture even without pretreatment, contrary to the experience with certain other stock materials as will be noted, although, in any case, appropriate pretreatmentmayfacilitate thedrawing of the material; One effect of the drawing operation will be perceived lesser extent.

7 s.- A by viewing the cut edge of the article represented in Figs. .5. and 6 of the drawings, in which it will be observed that the length of the undulating centerline of the material is substantially greater than the width, length or diagonal (depending upon the orientation of the article and the position of the protuberances on the rolls) of the final article; In running the raw stock through the machine of Figs. 2 to 5,'for example, a necking in of the stock will be observed just prior to the tangential nipof the rolls and it will be found that the total length of finished product will be somewhat less than the length of stock fed into the machine, although in both cases, the effect is less, down to zero, if the basic ductility of the material is sufliciently great. 7

When the disclosed machine is employed, the spacing between the rolls and the spacing between the protuberances may be selected to, provide a depth of draw within the ductility capabilities of any given fibrous material. However, articles which are effectively deep drawn roughly to the extent shown tend to be substantially more satisfactory in use than articles which are drawn to a Hence, where the natural ductility of the material is not adequate to permit drawing to the desired degree, it may be advisable to enhance the ductility of that material in some appropriate fashion; For example, the ductility or drawability of paper of most forms is not adequate for deformation by the machine shown in Figs. 2, 3 and 4 with the physical sizes disclosed, the paper tending merely to rupture at each point of engagement with a protuberance on therolls. However, if the paper (or other fibrous material) be wetted by water or. other appropriate liquid or vapor, the ductility may 'be increased adequately to permit the degree ofdeformation desired. For example, a steam chest may be interposed in the process line of Fig. 1 intermediate the supply roll 12 and the deforming rolls 16 and 18 or a liquid may be sprayed, coated or otherwise applied upon the surface or surfaces of the stock material by a bank of sprayers or other means additional to the bank shown at 14. Alternatively and advantageously, the bonding material'p'er'se may be employed as a wetting agent. Thus, i fa solid bonding'agent is dissolved, suspended or dispersed in wateror other liquid (to form that which is hereinincluded in the term bonding material),'that liquid may in itself serve towet the surface adequately to increase, the ductility of the raw stock material to the necessary extent, so that thezbonding material performs both' the function of imparting increased ductility to-the raw stock material prior to or during deformation and also of resiliently fixing the article in its deformed shape after curing (which is'intended to include both heating and drying). i

The article shown in Fig. 7 of the drawings is representative of one manufactured of paper. The article of Fig. 7 may be conveniently manufactured by coating one or both surfaces of a single sheet of paper with an appropriate adhesive material .(including the bonding agents and bonding materials hereinbefore enumerated) or by sandwiching such a material between two or more sheets of papers, and passing the resultant sheet or sandwich between the'rolls 16 and 18. It will be noted that the depth of the cups 73 (on the shown surface) and the height of each of the protuberances 74 is many times the thickness of the raw paper sheet stock. If a liquid bonding material is employed, the liquid therein may be also used to enhance the drawability or-stretchability of a type of paper which would otherwise rupture when passed through the rolls 16 and 18. It will be appreciated, however, that some papers do not require such pretreatment, particularly those papers which are supplied in an appropriate pretreated form such as latex impregnated papers or papers which have been previously creped at least in a direction transverse to their length, that is, so. that there is excess material across the width of the sheet.

It is also feasible, and frequently advantageous, to

employ a bonding material which is applied-prior to deformation in solid form, either as a powder, or preferablygin practice, in sheet form. Thus, the article-of Fig. 7, for example, may be manufactured by sandwiching a sheet of an appropriate material such as sheet polyethylene or a rubber hydrochloride sheet such as Pliofilm between two sheets of paper and passing the resulting sandwich between the rolls 16 and 18. If polyethylene or a similar thermally fiowable material is employed, heat should be applied in an appropriate fashion to cause that material to flow just prior to or during deformation. As before noted, this heat may be conveniently applied by flowing steam through the rolls 16 and 18 or applying an internal or external source of heat to those rolls. If the raw stock material is adequately ductile to permit deformation without other treatment, then the only function of thermally flowing the previously solid bonding material is to distribute that material and to cause it to adhere to the surfaces of the sheets of raw stock. However, just as liquid bonding material may be employed to serve not only to resiliently fix the distorted shape of the article but also to wet the surface to increase its ductility, so also may the transforming of the solid polyethylene, or other solid bonding material, into a liquid state serve to similarly effectively wet the mating surfaces of the two sheets of raw stock material so as to adequately increase their drawability to permit the requisite degree of deformation. In most cases, it is not necessary to fully fuse the sheet bonding material. After deformation, curing or retransformation to the solid state must be accomplished by means such as heating unit (Fig. 1).

Since thepaper is substantially thinner than the representative spacing between semi-meshing protuberances, the walls tend: to be sloping and small channels tend to be formed interjoining the cells in a row. This enhances the distribution of air when a load is applied or released.

It will be appreciated that the article of Fig. 7 may be made of more than two layers of paper, so long as bonding or adhesive material of some sort exists between each of the adjacent sheets to secure them together.

The article of Fig. 7 is recommended by its resiliency, its cleanliness, its strength, and its lightness for shock wrapping, among other uses. It may, for example, be

rolled into sleeves to serve as individual separators among a plurality of .glass bottles in a carton or case. If the bottles or other articles being separated are light, then a single sheet of relatively light paper deformed as shown may be employed; for heavier bottles or other articles, multiple layers of thinner sheets, athicker-sheet, or-multiple layers of thicker sheets may beemployed. The article of Fig. 7 is also adapted for use as a shock wrap on larger items such as major automobile parts which are to be stored or shipped for replacement purposes. Thus, it may serve as an economical shock wrapping for automobile fenders, Windshields, and so forth. If desired, a plurality of-wires 76 maybe rigidly retained within the article, extending on either side thereof to form a convenient means for attaching'the wrapping to the article, such as by bringing the opposite ends of each wire together around the article and twisting them together. It will be observed that the wire will take or tend to take an undulating form due to the action of the deforming rolls sothat the wine will be securely retained between the paper. a

Paper or other fibrous material formed in the fashion hereinbefore described may also be employed as an insulating or wall covering material. For this and other uses, it may be advantageous to apply a flat sheet of paper or other material to one or both faces of the article of Fig. 7. Thus, there is represented in Fig. 8 of the drawings (distorted for clarity of representation) an article having a backing sheet applied to but one of the two face surfaces of the article. In that showing, two

10 sheets of paper 78 and .79 are bonded together by sand.- wiching an appropriate bonding material .therebetween and passing them through rolls 16 and .18, which are again represented in Fig. 9 of the drawings. Rather than drawing the deformed material from the rolls after they pass the tangential nip, as was done in the system of Fig. 1, the paper may becaused to follow the contour of one of the rolls, such as roll 16,, and be withdrawn along a tangent to a point separated from the tangential nip, the paper representatively being drawn approximately 180 around roll 16 in the showing of Fig. 9. A smooth roll 8'3 is rotatably positioned in spaced proximity to the roll 16 and an additional sheet of paper 82 is fed between the rolls 16 and 80. An appropriate bonding material (desirably a quick-setting adhesive) is r.oll-.coated or sprayed or applied in solidform between one surface .of the sandwiched deformed sheets 78-79 and the smooth sheet 82 so that the sheet 82 will adhere to the deformed sheets 78-79 upon passing between the rolls. 16 and 80. It will be appreciated that the spacing between rolls 16 and should be selected so that there is good contact between the smooth and deformed sheets but so that there will be no effective crushing of the deformed sheets. Obviously, a second smooth sheet can readily be applied to the other surface of the deformed sheets 7879, if

desired, by employing another roll in cooperation with roll 80.

With a smooth sheet intimately adhered to one or both of the surfaces of the distorted sheets, the cells or groups of cells tend to be sealed to provide a seriesof air pockets serving as heat'insulation. Somewhat improved insulating capabilities are attained by applying flat sheets to both surfaces of the distorted material, and an appropriate bonding material (such as sheet polyethylene) may be selected to provide a vapor barrier.

It is also contemplated that one or more .of the inner or outer surfaces of the article of Fig. 8, or modified forms thereof, be coated with a reflective material to further enhance-its insulating capabilities. Thus, one of the surfaces, advantageously an inner surface to protect the coating, may be sprayed or roll-coated with aluminum paint. It is further contemplated that the flat sheet .be supplied in a width sufliciently greater than the width of the resultant distorted sheets to provide side flaps to permit the insulating pad to be conveniently tacked or stapled to the studs, joists or rafters vof a building.

It will be appreciated that the type of raw stock sheet material which is employed, the thickness or number of layers thereof, and the type and quantity of bonding material which is applied thereto will be determined by the use to which the final article is to be placed. Thus, the rigidity of the final article may be increased by increasing the percentage of solid binding material. If a highly resilientstructure is required, then, normally, reduced quantities of bonding material will be applied. If it is desiredthat the article be quite rigid, even to the extent that a sheet be free standing in the nature of wallboard, then the percentage of solid bonding material must be substantially increased. Similarly, the amount of liquid employed in a mixture of a bonding. agent and a liquid or the amount of fusible .solid bonding agent which is employed may 'be controlled by the amount of wetting which is required to impart the requisite ductility to the raw sheet stock. The test, particularly in the latter case, is functional. If in passing the co'ated stock material between the rolls 16 and 18, ruptures are discovered at any of the cups or'protuberances on the finished surface, then it is an indication .that the liquid must be increased, or that the percentage of moisture in the raw stock material must be increased in some other fashion, such as by passing the material through a steam chest. Similarly, if the finished article is insufficiently rigid or if its shape is not adequately permeaning of the subjoined claims.

11 manized for the use to which the article is being placed, then additional bondingagent should be utilized.

It will be perceived that articles constructed in accordance with the principles of the present invention have great diversity of possible use. Thus, it is contemplated that sheets of stock having either a deformed or a smooth outer face (but a deformed inner construction) may be further reduced by employing softer material as the outer sheet. Thus, an'article similar to that represented in Fig. 8 may be formed in which the outer smooth surface is constructed of paper of the softness of facial tissue, as presently available on the market. In practice, five-pound facial tissue has been applied to a distorted one-hundred-pound kraft paper by applying a small amount of polyethylene film between the two and fusing the polyethylene film only suificiently to secure adherence without penetration. The soft superficial covering may also be distorted as an element of the forming operation in which case the outer surface of the board is provided with protuberances and cups rather than having a smooth surface.

While it will be apparent that the embodiment of the inventionherein disclosed arewell calculated to fulfill the objects of the invention, it will be appreciated that the invention is susceptible to modification, variation and change without departing from the proper scope or fair What is claimed is:

1. An article 'of manufacture comprising a matted fiber web in sheet form having a plurality of indentations on each of two surfaces, the depth of each indentation being greater than one-half of the thickness of the article, the indentations in said sheet being resiliently fixed by the presence of a solid binder material on at least one of said surfaces, a portion of said fibrous material at the interior of said sheet being free of said solid binder material, said solid binder material being present only in sufficient quantity to resiliently fix the shape of said web and being of insuflicient quantity to form a continuous coating on said surface.

2. An article of manufacture comprising a matted fiber web in sheet form adapted to serve as a rug pad disposable between a rug and a floor and having a plurality of indentations on each of two surfaces, each of said indentations having a base, the depth of each indentation being greater than one-half of the total thickness of the article, each indentation on one of said surfaces, being separated from an indentation on the other surface by a wall, the shape of said web being resiliently fixed by the presence of a solid binder material on at least a part of the fibers on at least one of said surfaces, said web being formed from material from about one-eighth to about one-quarter inch in thickness, said bases being substantially compressed and being more dense than said Walls, the thickness of said web being greater than the initial thickness of the material, the indentations on one of said surfaces-cooperating with the floor to establish pockets of cushioning air, the indentations on the other one of said surfaces cooperating with the rug to establish pockets of cushioning air.

3. An article of manufacture comprising a matted fiber web in sheet form havinga plurality of cups and protuberances on each face surface, each of said cups having a base, the depth of each of said cups being greater than one-half of the total thickness of the article, each cup on one of said surfaces being separated from a cup on the other'surface by a wall extending at an angle to the bases of said cups, said cups, protuberances and walls being resiliently fixed in shape by the presence of solid binder material on both face surfaces thereof, a portion of said fibrous material at the interior of said sheet being free of said solid binder material.

4. An article of manufacture comprising a matted fiber web in sheet form having a plurality of cups and protuberances on each surface, each of said cups having a base, the depth of each of said cups being greater than one-half of the total thickness of the article, each cup on one of said surfaces being separated from a cup on the other surface by a wall extending at an angle to the bases of said cups, said bases and walls being resiliently fixed in shape by the presence of a solid binder material on all surfaces thereof, said solid binder material being inthe form of a coating upon at least a part of the fibers upon both surfaces of said bases, said solid binder material being in the form of a coating on only a part of the fibers adjacent all surfaces of said walls, said walls being more pervious to the passage of air therethrough than said bases.

5. An article of manufacture comprising a matted fiber web in sheet form having a plurality of cups and protuberances on each surface, each of said cups having a base, the depth of each of said cups being greater than one-half of the total thickness of the article, each cup on one of said surfaces being separated from a cup on the other surface by a wall extending at an angle to the bases of said cups, said bases and walls being resiliently fixed in shape by the presence of a solid binder material on the surfaces thereof, the major portion of the thickness of said matted fiber web being free of said solid binder material, said solid binder material being in the form of a coherent, substantially continuous layer upon both surfaces of said bases, said solid binder material being in the form of a coating on only a part of the fibers adjacent the surfaces of said walls.

6. An article of manufacture comprising a matted fiber web in sheet form having a plurality of cups and protuberances on each surface, each of said cups having a base, the depth of each of said cups being greater than one-half of the total thickness of the article, each cup on one of said surfaces being separated from a cup on the other surface by a wall extending at an angle to the bases of said cups, the density of said bases being substantially greater than the density of said walls, the shape of said article being resiliently fixed by the presence of a solid binder material on at least a part of the fibers on at least one of the surfaces of the article, said walls "permitting air slowly to pass therethrough upon the application of force to said web and upon the resilient return of said web to shape upon removal of that force.

References Cited in the file of this patent UNITED STATES PATENTS Gerard Sept. 22,

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US728829 *Jul 21, 1902May 26, 1903Sarah Hall ArkellRolls for compound indenting of sheet fabrics.
US1000694 *Apr 16, 1908Aug 15, 1911Frederic SchaeferRemovable egg-case partition.
US1192890 *Jul 1, 1915Aug 1, 1916Edmund A GulickSheet material.
US2021095 *Oct 6, 1932Nov 12, 1935Briggs Mfg CoMethod of making vehicle body panels
US2062469 *Jun 25, 1932Dec 1, 1936Du PontAuto top material
US2154940 *Nov 9, 1937Apr 18, 1939Sherman Paper Products CorpApparatus for the manufacture of indented corrugated paper products
US2173797 *Aug 2, 1935Sep 19, 1939Johns ManvilleVibration-damping element and the method of making the same
US2215973 *Nov 11, 1936Sep 24, 1940Murray CorpMethod of forming trim panels
US2541868 *Oct 22, 1948Feb 13, 1951Allen IndEmbossed rug cushion
US2572470 *Sep 15, 1949Oct 23, 1951Allen IndGrid and waffle design rug cushion
US2652878 *Nov 30, 1951Sep 22, 1953Cottonwood Products IncMethod of making shock absorbing and insulation material
USRE19301 *Dec 19, 1930Sep 4, 1934 Indented paper
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3014829 *Jun 24, 1958Dec 26, 1961Ernest CurtinAdhesived carpet blocks
US3018015 *Oct 2, 1957Jan 23, 1962Agriss NortonResilient packing sheet
US3026231 *Dec 23, 1957Mar 20, 1962Sealed Air CorpMethod of making an embossed laminated structure
US3086899 *May 4, 1956Apr 23, 1963Dow Chemical CoConstructional lamina
US3094188 *Dec 13, 1962Jun 18, 1963Pittsburgh Corning CorpSound absorbers
US3141913 *Dec 10, 1959Jul 21, 1964Illinois Tool WorksMethod of making a container
US3142599 *Nov 27, 1959Jul 28, 1964Sealed Air CorpMethod for making laminated cushioning material
US3179551 *Jun 1, 1960Apr 20, 1965Gen Felt Ind IncSurface-covering cushion and method for making the same
US3207258 *Mar 17, 1964Sep 21, 1965Pittsburgh Corning CorpSound absorbing systems
US3214319 *Mar 17, 1959Oct 26, 1965Robert N WilliamsHollow plastic structure method and apparatus for the same
US3227598 *Dec 2, 1960Jan 4, 1966Robb Wayne FCore structure
US3255064 *Jul 17, 1961Jun 7, 1966Du PontProcess for mechanical crimping of fibers in sheet form
US3307994 *Jun 30, 1964Mar 7, 1967Waldorf Paper Prod CoCorrugated paperboard and method of making the same
US3419459 *Jul 20, 1964Dec 31, 1968Walker Mfg CoPackaging material
US3696187 *Nov 23, 1970Oct 3, 1972Glassman Jacob AMethod of forming catamenial napkins
US3717532 *Dec 24, 1970Feb 20, 1973Kamp EMethod and apparatus for producing controllably oriented fibrous product
US4324749 *Jun 18, 1980Apr 13, 1982Akzona IncorporatedThree-dimensional exchange element for liquid guidance in liquid-gas contact systems
US4615090 *Mar 4, 1985Oct 7, 1986Baus Heinz GeorgForming tool for producing an engraved motif on a sheet
US5269983 *Jan 9, 1992Dec 14, 1993James River Corporation Of VirginiaRubber-to-steel mated embossing
US6162309 *Apr 21, 1998Dec 19, 2000Burlington Industries, Inc.Reinforced foam backed carpet
US6173496Sep 29, 1998Jan 16, 2001Fort James CorporationEmbossing system including sleeved rolls
US6794009Aug 16, 2000Sep 21, 2004Mohawk Brands, Inc.Reinforced foam backed carpet
US6832547Oct 16, 1996Dec 21, 2004Fort James CorporationEmbossing system including sleeved rolls
US7022058Feb 21, 2002Apr 4, 2006Tilia International, Inc.Method for preparing air channel-equipped film for use in vacuum package
US7087130Mar 4, 2004Aug 8, 2006Tilia International, Inc.Method for manufacturing a sealable bag having an integrated zipper for use in vacuum packaging
US7138025Mar 4, 2004Nov 21, 2006Tilia International, Inc.Method for manufacturing a sealable bag having an integrated tray for use in vacuum packaging
US7147453 *Mar 13, 2002Dec 12, 2006Boegli-Gravures SaDevice for treating flat material
US7220053Dec 14, 2004May 22, 2007Sunbeam Products, Inc.Flexible composite bag for vacuum sealing
US7517484Mar 15, 2004Apr 14, 2009Sunbeam Products, Inc.Forming evacuation channels during single and multi-layer extrusion process
US7534039Jul 19, 2005May 19, 2009Sunbeam Products, Inc.Vacuum packaging films patterned with protruding cavernous structures
US7625459Dec 1, 2009Sunbeam Products, Inc.Method for manufacturing liquid-trapping bag for use in vacuum packaging
US7784160Jun 15, 2007Aug 31, 2010S.C. Johnson & Son, Inc.Pouch and airtight resealable closure mechanism therefor
US7857515Jun 15, 2007Dec 28, 2010S.C. Johnson Home Storage, Inc.Airtight closure mechanism for a reclosable pouch
US7874731Jun 15, 2007Jan 25, 2011S.C. Johnson Home Storage, Inc.Valve for a recloseable container
US7886412Mar 16, 2007Feb 15, 2011S.C. Johnson Home Storage, Inc.Pouch and airtight resealable closure mechanism therefor
US7887238Feb 15, 2011S.C. Johnson Home Storage, Inc.Flow channels for a pouch
US7946766May 24, 2011S.C. Johnson & Son, Inc.Offset closure mechanism for a reclosable pouch
US7967509Jun 15, 2007Jun 28, 2011S.C. Johnson & Son, Inc.Pouch with a valve
US8176604May 15, 2012S.C. Johnson & Son, Inc.Pouch and airtight resealable closure mechanism therefor
US8231273Dec 17, 2010Jul 31, 2012S.C. Johnson & Son, Inc.Flow channel profile and a complementary groove for a pouch
US8827556Dec 16, 2010Sep 9, 2014S.C. Johnson & Son, Inc.Pouch and airtight resealable closure mechanism therefor
US20040109911 *Mar 13, 2002Jun 10, 2004Charles BoegliDevice for treating flat material
US20050034806 *Mar 4, 2004Feb 17, 2005Tilia International, Inc.Method for manufacturing liquid-trapping bag for use in vacuum packaging
US20060254855 *May 16, 2005Nov 16, 2006Loftus James EFibrous material having densified surface for improved air flow resistance and method of making
Classifications
U.S. Classification428/171, 156/220, 264/284, 264/119, 181/293
International ClassificationE04C2/32, D04H1/00, B32B27/00
Cooperative ClassificationB32B27/00, D04H1/005, E04C2/32
European ClassificationB32B27/00, D04H1/00B, E04C2/32