Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2901951 A
Publication typeGrant
Publication dateSep 1, 1959
Filing dateApr 15, 1958
Priority dateApr 15, 1958
Publication numberUS 2901951 A, US 2901951A, US-A-2901951, US2901951 A, US2901951A
InventorsHochfeld Henry
Original AssigneeHochfeld Henry
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Process and machine for pleating pliable materials
US 2901951 A
Images(3)
Previous page
Next page
Description  (OCR text may contain errors)

Sept. 1, 1959 2,901,951

PROCESS AND MACHINE FOR PLEATING PLIABLE MATERIALS Filed April 15, 1958 I l H. HOCHFELD I5 Sheets-Sheet l IVVLNI'OR: HEN/FY HOCHFELD AGENT Sept. 1, 1959 H. HOCHFELD 2,901,951

PROCESS AND MACHINE FOR PLEATING PLIABLE MATERIALS Filed April 15, 1958 3 Sheets-Sheet 2 INVENTOR: HENRY HOCHFELD AGENT Sept. 1, 1959 H. HOCHFELD 2,

PROCESS AND MACHINE FOR PLEATING PLIABLE MATERIALS Filed April 15, 1958 3 Sheets-Sheet 3 I NVENTOR: HENRY HOCHFELD AGENT United States Patent 6 PROCESS AND MACHINE FORPLEATING PLIABLE MATERIALS Henry Hochfeld, New York, NY.

Application -April15, 1958, Serial No. 728,713

18,.Claims. (21. 93-84)' present invention relates to an automatic machine for pleating pliable materials and to an improved process for making complex pleated patterns in such materials.

The .art .of making complex. pleated patterns in pliable materials such as paper, plastics, metal screen and foil, and textiles has utility in various industries for products, for example, in the garment industryfor pleated fabrics for skirts and blouses, in the production of novelties and toys such as Chinese lanterns, andin filtration devices forthe removal of particles from liquids and gases. These patterns are often quite difficult to make,

for their execution requires a high orderof skill when the folding is performed entirely by hand or withtheaid of hand-operatedjigs and fixtures, as is the casein including, first, a formation of; a seriesof longitudinal;

corrugations in the sheetand, second, an intermittent reversalpf these corrugations ,along transverse sections or zones ,of limited width. Advantageously, the width of;

the reversed sections equals the width of the non-reversed sections separating. ,themwhereby the finishedpleat material can be convertedby longitudinal pressure into a chevroned struc ure with .the corrugations of-adjacent sections interleaved.

According to another feature of my invention, the corrugations. are formed in'the sheet by a succession of pleatingoperations producing folds of progressively in creasing depth wh ereby, tears and breaks incidental to.

rapid cr m n w b de According to a further feature of my invention 1 provide-a machine having a preliminary. folding section with. a series of alignedtdies, preferably in theformof rollers, which are successively traversed by the sheet. ma-. terial and produce therein .the. corrugations of. gradually increasing depth. Av main, folding section comprises other dies, preferably inuthe. formof split blocks form.- ing pairsaof serrated-clamp jaws, whichv grasp sections of the pre-foldedrsheet and reverse the. corrugations of other sections thereof. Advantageously, one of these diesis reciprocated to actas-a means for advancing the sheet-material, the stroke of -reciprocation-being preferably equal to the combined width of two sheet sections.-

The invention willbe further described with reference tothe accompanying drawing, in which:

Fig. 1' isaside elevation of a; machine embodying the invention;

Fig. 2 is a partial top plan view of the machine shown in Fig, 1;

Fig. 3 isa fragmentary cross-sectionalview, taken along line IIIIII of Fig. 2;

Figs. 4, 5 and 6 are side views of-a set of folding and reversing blocks forming part of the machine, at successive stages of the pleating cycle;-

Fig, 7,. is an exploded view in perspective showing part of the folding and reversing blocks together with the sheet material pleated thereby;-

Fig. 8 is a perspective view of -the movable blocks and their associated driving mechanism;

Fig. 9 is a perspective view of'thepleated-sheet material; and

Fig. 10 is a fragmentary perspective view of a chevronedstructure produced: from theymaterial of- Fig. 9;

In Fig. 1a strip ofsheet material 1 is show as being. unwound from a supply roll Zicarried: on a shasft la'; This material travelsaround guideroller 3: and tension roller 4 to the preforming dies having theform of roller pairs 5, 6, 7 and .8. Each of these pairs-consists of an.

upper forming roller 5a, 6a, 7a, 8a-anda lower form'-- ing roller 5b, 6b, 7b, 8b; the strip- 1 passes between these rollersarid-receives preliminary impressions thatflead'up to the final required angle of fold.

The operation 'of'the preliminary folding section of the machine including the preforming dies--58"will be clarified by reference to Fig. 3, which shows the strip! 1 passing betweenzrollers 8a. and 8b. Each section 811'," 8b of a particular roller :isshaped in the form of a trun cated double cone, with the truncations occurring close to the common base so that the complete roller has the configuration of a series .of circular ridges and-.'depres-;.

sionsv The upperandlowerrollers'are so;positionedw that the ridges fit into the depressions, and the material passing between them is longitudinally prefolded according to this pattern,-i.e. the-furrows and ridgesof the. fold extend parallel to theedges of: the strip; ItrWill" be noted that, lest the sheet materialwbe ruptured bya single deep-pleating operation, the initial set of'preforming rollers 5a, 5b have relatively 'lowrridges and shallow furrows, the angle subtended by the flanksof the conical sections of successive'pairs becorning pro-. gressively more acute While their axial .length is reduced from one roller pair to the next so that the depth of'fold 7 gradually increases, reaching its desired ultimate value at the last pair 8a, 8b. It. will be noted thatthe length of eachfiank is the same for all the rollers but that the spacing s between adjacent ridges (or troughs) of each roller progressively decreases .fromroller pair 5 to roller pair 8.

The next stepofthe pleating process is performed 'by' a feeding block 9-comprising upper and lower jaws 9a and 9b,'each ofuwhichihas a settof:mating..triangnlar' serrations -x on its. inner surface, as shown in Figs. 7 and 8. depth, width and. flank inclination/to .the sectionshsai,

8b of the preforming rollers. 8a, 3b. The number of serrations, of course, is equal; to.the number of pre.- formed longitudinal folds'and these serrations are positioned accurately aligned with thecorresponding. formathe chain and drivinga cam-lth a cam follower-11011 3.

These serrations substantially correspond in."

shaft 12, and a pair of levers 14, 14' on the extremities of this shaft, these levers having bifurcate ends straddling two pins 14b (only one shown) on the lower jaw 9b. Chain 13 is set in'motion by a sprocket 20 whose shaft 20a carries a pulley 20b, the latter being driven by a motor 40 (Fig. 1) via a belt .41.

The reverse-pleating operation is accomplished by the remaining blocks 30 and 32 which also consist of upper and lower jaws, in this case die members 30a, 30b and 32a, 3211, respectively. Each of these jaws is equipped with serrations x and x", which are coextensive with the serrations x of block 9; but, in addition, upper jaw 30a and lower jaw 32b are equipped with reversing serrations y and y, respectively, which are dimensionally equal to the other serrations but are in phase opposition thereto, i.e. they produce ridges where the latter produce furrows and vice versa. Lower jaw 33% is permanently positioned beyond the forward limit of the stroke of feeding block 9, the length of this stroke being double the Width w of the serrated face y of die member 30a; this width, in turn, equals that of the serrated faces x" of die members 32a, 32b (see Fig. 7). Jaws 30a and 30b constituting the supporting block 30 are maintained in vertical alignment by means of posts 31 and 31, so that member 30a can be lifted from its seat on member 30b along these posts. Similarly, jaws 32a and 3212 which constitute the reversing block 32 (Fig. 2) are aligned by means of posts 33 and 33', which also accommodate springs 26 and 26', respectively, tending to close the jaws. Blocks 9 and 30 are controlled by a common pair of levers 16, 16' whose pivotal shaft 16a is journaled in bearings 220 (only one shown); an arm 22 on shaft 22b carries a roller 22a co-acting with a cam 21 on shaft 20a to open block 9 and to close block 30 against the force of a pair of springs 42, 42.

Pivoted on die member 3017 by means of a pin 24b is a bell-crank lever 24 whose lower extremity carries a roller 24a co-operating with a cam 23; this cam is fixed to the same shaft 20a as cam 21 and is driven by the sprocket 20. Shaft 20a also carries a second sprocket 20c connected through a chain 13' with a sprocket 44 on a shaft 44a, the latter carrying a cam 27. A further bell-crank lever 28 has a fixed fulcrum 28b and bears a roller 28a, the roller being pressed against the periphery of cam 27 by the weight of the block 32 with Whose lower jaw 32a the free end of lever 28 is connected through a rod 29. Upper jaw 32a carries a roller 25 resting on the bifiurcate upper extremity 24s of lever 24.

The main folding section of the machine, illustrated in Figs. 4-8, operates in the following fashion: The longitudinal folds of the preformed sheet material 1, coming from roller dies 5, 6, 7 and 8 (Fig. 2), are engaged by the serrations x of feeding block 9 and carried forward a distance 2w by this block as the latter is displaced along the rods 90 and 9c. Just before this engagement of the material 1 occurs, block 9 is located at an extreme position close to the last-stage preforming rollers 8, with jaws 9a and 9b open to receive the prefolded material. This is illustrated in Figs. 4 and showing the cam 21 so positioned that counterclockwise rotation of arm 22 will occur only after the hump 10a of cam 10 has raised the roller 11 against the action of its restoring spring 11a. The resulting counterclockwise tilting of levers 16 and 16 reduces the compression of cushioning springs 19, 19 upon a pair of sliding rails 17, 17 bearing upon two rollers 18 (only one shown) on jaw 9a, thereby enabling a pair of compression springs 43 located in posts and 15' to raise upper jaw 9a from its seat on lower jaw 91). The dwell 21a of cam 21 is wide enough to keep jaws 9a, 911 open until spring 11a has returned the block 9 to its rear position (Figs. 1, 6 and 8). Thereupon, another lowering of jaw 9a causes the feeding block 9 to engage tightly the strip 1 of prefolded material in the interlocking serrations x ata location spaced by the stroke length 2w from the point of previous engagement. At the same time the block 30 opens to release the sheet 1 from its serrations x, preparatorily to another forward move of the sheet on the next leftward stroke of block 9 under the control of cam 10.

The sheet 1, stifi'ened by virtue of its longitudinal corrugations, advances between the open jaws 30a, 30b and 32a, 32b as feeding block 9 moves toward the left. As soon as block 9 has reached its foremost position as illustrated in Fig. 5, roller 24a drops from the high point of its cam 23 to the lower peripheral portion of the cam so that lever '24, yielding to the pressure of springs 26 and 26', allows the jaws 32a, 32b to close. Shortly thereafter, as seen in Fig. 5, the dwell 21a of cam 21 acts upon the linkage 22, 16, 16' to close the jaws 30a, 30b and to open the jaws 9a, 9b preparatorily to the return stroke of the jaws 9a, 9b preparatorily to the return stroke of the block 9. Thus, the sheet 1 is now clamped by blocks 30 and 32 at two locations longitudinally separated by a zone of length w (measured in the direction of advance of advance of the sheet).

At this instant, the reverse-pleating operation begins as cam 27, engaging roller 28a, rotates to a position shown in Fig. 6 so that bell-crank lever 28 pivots in a counterclockwise direction about its fulcrum 28b and rod 29, connected to it at 28c, tends to move reversing block 32 horizontally to the right. At the same time, link 35 pivots about pins 35a and 35b, rotating'from a horizontal to a vertical position and thus translating the horizontal motion of reversing block 32 into a climbing curve which combines both horizontal and vertical motion. During this operation, the portion of sheet material of length w immediately to the left of supporting block 30 is being carried upwards in such fashion that its corrugations are between serrations y of jaws 30a and y of jaw 32b, i.e. the furrows of the original folded material are transformed into ridges and vice versa. Simultaneously, the interlocking of these serrations produces transverse folds F, P (Fig. 9) across the width of the material, separating successive sections X and Y of length w whose corrugations are in phase opposition to each other.

The pleated material shown in Fig. 9 may be subjected to longitudinal pressure to cause an interleaving of the corrugations of adjacent sections X, Y so as to form a chevroned structure 1, as illustrated in Fig. 10. This chevroned structure may also be bent along an axis to form a pleated cylinder 1 as shown in Fig. 1 where a cylindrical casing 34, of radius w, is positioned to re ceive the oncoming sheet material 1 through a peripheral slot 34a; the material then abuts a stop 34b within the casing so that, as more and more pleated sections are fed into the casing, the sheet folds itself along crease lines F, P (Fig. 9) into the cylindrical body 1". After this body has reached a predetermined density, e.g. after the completion of a certain number of operating cycles by the mechanism of Fig. 8, the sheet may be cut by suitable means not shown and removed (e.g. by an air blast) from the casing 34 whereupon the production of another pleated cylindrical body may be started. It may be mentioned that the angle of fold at the crease lines F, F" of the uncompressed structure 1' may be modified by making the die members 30a, 32a, 32b of generally rhombic, rather than square or rectangular, cross-section so that the toothed faces x," and y, y thereof will lie in planes that are not exactly perpendicular to each other.

A cylinder such as the one shown at 1", made from paper or similar sheet material, is particularly useful as a filter for oil and other fluids.

The invention, accordingly, is not limited to the specific embodiments described and illustrated but may be realized in numerous adaptations and modifications without departing from the spirit and scope of the appended claims.

For example, hydraulic, magnetic, or electrical means may be used in place of or in combination with the actuating mechanism specifically disclosed.

I claim:

1. A process for pleating a sheet of pliable material, comprising the steps of forming a series of longitudinal corrugations in said sheet and intermittently reversing said corrugations along transverse sections of limited width.

2. A process according to claim 1 wherein said sections are all of the same width.

3. A process according to claim 2, comprising the further step of zig-zag-folding said sheet about transverse lines separating said sections from one another.

4. A process according to claim 3, comprising the further step of exerting suificient longitudinal pressure upon the folded sheet to interleave the corrugations of adjacent sections.

5. A process according to claim 1 wherein said corrugations are produced by the formation of progressively deepening longitudinal creases in said sheet.

6. An apparatus for converting a flat sheet of pliable material into a chevroned structure, comprising profiled first die means adapted to form longitudinal corrugations in said sheet, profiled second die means positioned beyond said first die means and in alignment therewith, said second die means having a profile substantially reversed with respect to that of said first die means, feed means for advancing said sheet successively past said first and second die means, and operating means for actuating said first and second die means in timed relation to the operation of said feed means so that longitudinally adjoining sections of said sheet will be formed with relatively inverted corrugations.

7. An apparatus according to claim 6 wherein said first die means comprises a plurality of roller pairs positioned transversely to the direction of advance of said sheet, said roller pairs being provided with peripheral ridges and depressions of progressively increasing depth.

8. An apparatus according to claim 7 wherein the spacing of said ridges from one another is progressively smaller for successive roller pairs.

9. An apparatus according to claim 7 wherein said first die means further includes a pair of co-operating feeding blocks positioned beyond the last of said roller pairs and having ridges and depressions substantially coextensive with those of said last roller pair.

10. An apparatus according to claim 9 wherein said operating means includes mechanism for reciprocating said feeding blocks in the direction of advance of the sheet, said mechanism including means for clamping the sheet between said blocks during the forward stroke thereof and releasing the sheet during the return stroke.

11. An apparatus according to claim 10 wherein said second die means comprises a pair of co-operating reversing elements positioned beyond the forward limit of the stroke of said blocks, said operating means including mechanism for bringing said reversing elements close together against the sheet in the released position of said feeding blocks.

12. An apparatus according to claim 11 wherein the width of said reversing elements is substantially half the length of the stroke of said feeding blocks.

13. An apparatus according to claim 11 wherein said first die means further comprises a pair of retaining blocks positioned adjacent the forward end of the stroke of said feeding blocks, said retaining blocks having profiled faces aligned parallel to the direction of advance of the sheet, said reversing elements including a further profiled face on one of said retaining blocks extending at as angle to said direction of advance, and an additional profiled block swingably mounted adjacent said further face for clamping said sheet between the latter and itself.

14. An apparatus according to claim 6, further comprising a hollow cylinder positioned beyond said die means for receiving the corrugated sheet, said cylinder having a radius exceeding the width of said sections and being provided with an internal abutment for arresting the oncoming sheet and zig-zag-folding the sections of said sheet within said cylinder.

15. In a corrugating machine, in combination, a first die comprising a pair of jaws having flat faces with mating teeth defining a serrated profile, a second die comprising a pair of jaws having flat faces with mating teeth defining a serrated profile in phase opposition to that of said first die, and mechanism for intermittently urging one of the jaws of each die toward the associated jaw of the same die and against adjacent sections of a pliable sheet inserted therebetwcen.

16. The combination according to claim 15 wherein said dies include a common block, one of the faces of said first die and one of the faces of said second die being provided on adjacent sides of said block.

17. The combination according to claim 15, further comprising pre-folding means including a pair of forming elements provided with teeth forming a profile substantially coextensive with that of said first die, said elements being positioned forwardly of said first die for imparting continuous longitudinal corrugations to said sheet.

18. The combination according to claim 15, comprising a third die including a further pair of jaws positioned beyond said second die, said further pair having mating serrations defining a profile corresponding to that of said first die, and operating means for advancing a sheet section previously engaged by said first die past said second die and into operative engagement with said third die.

References Cited in the file of this patent UNITED STATES PATENTS Smith Feb. 3, 1914 Disclaimer 2,901,951.-Hem"y H ochfelol, New York, N.Y. PROCESS AND MACHINE FOR PLEATING PLIABLE MATERIALS. Patent dated Sept. 1, 1959. Disclaimer filed Sept. 7, 1962, by the inventor. Hereby enters this disclaimer to claims 4:, and 6 to 18, inclusive, of said patent.

[Oficz'al Gazette October 16, 1.962.]

Notice of Adverse Decision in Interference In Interference No. 92,500 involving Patent No. 2,901,951, H. Hochfeld, Process and machine for pleating pliable materials, final judgment adverse to the patentee was rendered Nov. 14, 1962, as to claims 1, 2, 3 and. 5.

[Ofiicial Gazette February 5, 1963.]

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1085948 *Oct 8, 1912Feb 3, 1914Warren D SmithMachine for making packing.
US1546195 *Apr 4, 1922Jul 14, 1925Briskin Joseph HForming machine
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3135174 *Mar 1, 1960Jun 2, 1964Wood Marc SaMethod and means for the formation of herring-bone structures
US3351441 *Nov 1, 1963Nov 7, 1967Wood Marc SaShape, constitution and processes for manufacturing materials derived from developable chevroned configurations
US3433692 *Aug 8, 1962Mar 18, 1969Marc Wood Materials Sa Pour LaMethod for forming herringbone configurations for sandwich structures
US3434400 *May 11, 1967Mar 25, 1969American Fiber Velope Mfg CoApparatus for bending accordion pleated strips
US4012932 *Jun 5, 1975Mar 22, 1977Marc Wood S.A.Machine for manufacturing herringbone-pleated structures
US4179253 *Apr 10, 1978Dec 18, 1979Domtar Inc.Linear corrugating roll deflection control
US4250728 *May 4, 1978Feb 17, 1981King Eric GApparatus and method for forming steps in profiled sheets of material
US4320648 *Dec 24, 1980Mar 23, 1982Bo EkmarkMethod for making roofing
US4410316 *Mar 18, 1982Oct 18, 1983Yoke James HMethod for production of corrugated paper
US4528835 *Mar 9, 1984Jul 16, 1985Techtrans Company, Ltd.Roofing for building and method and apparatus for making the roofing
US4619638 *Sep 30, 1982Oct 28, 1986Mobil Oil CorporationSplayed roll folder for adhesive application
US4938739 *Jul 27, 1987Jul 3, 1990Sundstrom Safety AbEquipment for folding paper webs and the like
US5100496 *Nov 19, 1990Mar 31, 1992Mark MitchellSystem for fabricating a convolutely wound tube
US5273605 *Jan 30, 1992Dec 28, 1993Mark MitchellRolling a paperboard sheet to make edges pliable and conformable, applying adhesive and winding
US5419796 *Mar 3, 1994May 30, 1995Miller; Ray R.Method of fluting a corrugating medium
US5554145 *Feb 28, 1994Sep 10, 1996The Procter & Gamble CompanyAbsorbent article with multiple zone structural elastic-like film web extensible waist feature
US5650214 *May 31, 1996Jul 22, 1997The Procter & Gamble CompanyWeb materials exhibiting elastic-like behavior and soft, cloth-like texture
US5691035 *Jun 25, 1996Nov 25, 1997The Procter & Gamble CompanyWeb materials exhibiting elastic-like behavior
US5723087 *Aug 7, 1996Mar 3, 1998The Procter & Gamble CompanyWeb materials exhibiting elastic-like behavior
US5749866 *Sep 27, 1996May 12, 1998The Procter & Gamble CompanyAbsorbent article with multiple zone structural elastic-like film web extensible waist feature
US5876391 *Oct 10, 1996Mar 2, 1999The Procter & Gamble CompanyAbsorbent article with structural elastic-like film web waist belt
US5891544 *Sep 30, 1997Apr 6, 1999The Procter & Gamble CompanyWeb materials exhibiting elastic-like behavior
US5899842 *Aug 15, 1995May 4, 1999Ancan S.R.L.Method for folding plane surfaces
US5904673 *Dec 3, 1996May 18, 1999The Procter & Gamble CompanyAbsorbent article with structural elastic-like film web waist belt
US5916663 *Sep 30, 1997Jun 29, 1999Chappell; Charles W.Web materials exhibiting elastic-like behavior
US5947885 *May 8, 1997Sep 7, 1999Paterson; James G. T.Method and apparatus for folding sheet materials with tessellated patterns
US5947948 *Jun 19, 1996Sep 7, 1999The Procter & Gamble CompanyAbsorbent article with multiple zone structural elastic-like film web extensible leg flap panels
US5993432 *Sep 15, 1997Nov 30, 1999The Procter & Gamble CompanyWeb materials having elastic-like and expansive zones
US6027483 *Apr 24, 1997Feb 22, 2000Chappell; Charles W.Web materials exhibiting elastic-like behavior
US6325787Jul 14, 1999Dec 4, 2001The Procter & Gamble CompanyAbsorbent article with multiple zone structural elastic-like film web extensible waist feature
US6706028Oct 24, 2001Mar 16, 2004The Procter & Gamble CompanyAbsorbent article with multiple zone structural elastic-like film web extensible waist feature
US7115089 *Jan 13, 2004Oct 3, 2006Rutgers, The State University Of New JerseyTechnology for continuous folding of sheet materials
US7527615Jan 30, 2004May 5, 2009The Procter & Gamble CompanyStructural elastic-like nonwoven web
US7691045Nov 2, 2005Apr 6, 2010Rutgers, The State University Of New JerseyTechnology for continuous folding of sheet materials
US7758487Sep 11, 2006Jul 20, 2010Rutgers, The State University Of New JerseyTechnology for continuous folding of sheet materials into a honeycomb-like configuration
US7762938Jul 24, 2006Jul 27, 2010Tessellated Group, LlcThree-dimensional support structure
US8030535Nov 24, 2003Oct 4, 2011The Procter & Gamble CompanySanitary napkin for clean body benefit
US8192341Jun 4, 2010Jun 5, 2012Tessellated Group, LlcPallet and three-dimensional support structure
US8298574 *Jan 18, 2007Oct 30, 2012Intec Pharma Ltd.Method and apparatus for forming delivery devices for oral intake of an agent
US8336356May 6, 2011Dec 25, 2012Ltc Roll & Engineering Co.Apparatus and process for reducing profile variations in sheet metal stock
US8475350Jun 15, 2009Jul 2, 2013Rutgers, The State University Of New JerseyTechnology for continuous folding of sheet materials
US8585565Jun 1, 2012Nov 19, 2013Tessellated Group, LlcMethod for forming three-dimensional support structure
US8609136Mar 13, 2013Dec 17, 2013Intec Pharma Ltd.Method and apparatus for forming delivery devices for oral intake of an agent
US8704036Aug 26, 2011Apr 22, 2014The Procter And Gamble CompanySanitary napkin for clean body benefit
US8753678 *Sep 13, 2012Jun 17, 2014Intec Pharma Ltd.Method and apparatus for forming delivery devices for oral intake of an agent
US20130101631 *Sep 13, 2012Apr 25, 2013Intec Pharma Ltd.Method and apparatus for forming delivery devices for oral intake of an agent
DE10129018B4 *Jun 8, 2001May 25, 2005Drut, Henry, Dr.Verfahren, Vorrichtung und Formelement zum Formen einer längsgewellten Bahn
DE10252941A1 *Nov 14, 2002Jun 3, 2004Airbus Deutschland GmbhVerfahren zur Herstellung einer Kernstruktur für einen Kernverbund
DE10252941B4 *Nov 14, 2002Sep 10, 2009Airbus Deutschland GmbhVerfahren zur Herstellung einer Kernstruktur für einen Kernverbund
EP0038918A2 *Feb 27, 1981Nov 4, 1981The Perkin-Elmer CorporationMeans for creasing sheets of material while conveying them
WO2007083309A2 *Jan 18, 2007Jul 26, 2007Intec Pharma LtdMethod and apparatus for forming delivery devices for oral intake of an agent
Classifications
U.S. Classification493/442, 428/604, 264/287, 210/493.5, 428/182, 493/451, 72/177, 428/603, 493/463, 428/183, 425/335, 493/448
International ClassificationB29C53/04, B29C53/26, B65H45/22, D06J1/02, B21D13/04, B21D5/16, B65H45/20
Cooperative ClassificationD06J1/02, B21D13/045, B21D5/16, B65H45/22, B29C53/04, B65H45/20, B29C53/265
European ClassificationB29C53/04, B21D13/04B, B65H45/20, B29C53/26B, D06J1/02, B65H45/22, B21D5/16