Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2906340 A
Publication typeGrant
Publication dateSep 29, 1959
Filing dateApr 5, 1956
Priority dateApr 5, 1956
Publication numberUS 2906340 A, US 2906340A, US-A-2906340, US2906340 A, US2906340A
InventorsGerhard Herzog
Original AssigneeTexaco Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method of treating a petroleum producing formation
US 2906340 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

G. HERZOG Sept. 29, 1959 METHOD OF TREATING A PETROLEUM PRODUCING FORMATION vFiled April 5, 1956 Tlzll.

M//M/g United States Patent Oce Patented Sept. 29, 19,512

METHOD F TREATIN G A PETROLEUM PRODUCING FORMATION Gerhard Herzog, Houston, Tex., assigner to Texac'o Inc., a corporation of Delaware Application April 5, 1956, Serial No. '576,486

7 Claims. (Cl. 16639) This invention relates to the production of petroleum from underground petroleum producing form-ations. More particularly, this invention relates to the treatment of underground petroleum producingformations.

Various techniques have been proposed for the recovery of petroleum from underground formations and for the treatment of petroleum producing formations. For the recovery of petroleum from petroleum producing formations secondary recovery operations which involve water ooding o-r thermal recovery methods, in situ combustion, involving at least one injection well and at least one production well have been proposed. Further, it has also been proposed to increase the productivity of a given well by blasting, acidizing or hydraulically fracturing the petroleum producing formation traversed by the well bore. Various other methods have also been proposed to improve the oil permeability of underground petroleum producing formations. In general, however, all these proposed methods have not always yielded the sought for results.

Many petroleum producing formations are not satisfactorily treated by acidizin-g or by hydraulic fracturing. Blasting an underground producing formation to increase its porosity and/ or permeability in the vicinity of the well bore is a relatively dangerous operation. Secondary recovery methods employing water flooding or thermal recovery methods employing in situ combustion in combination with an injection well and a production well involve at least two or more wells as well as the expenditure of co-nsiderable capital, equipment, material and time before appreciable tangible results are observable.

In accordance with the practice o-f this invention that portion of a petroleum producing formation inv the vicinity of or surrounding a well bore is treated to effect in situ combustion of a combustible material therein. Subsequently petroleum is produced via the -Well bore through that portion of the petroleum producing formation wherein in situ combustion was effected.

Explanatory of in situ combustion as employed in the practice of this invention, a high temperature zone is established in the petroleum producing formation `in vthe vicinity of the well bore by suitable heating means. -Suitable heating means may comprise an electrical heating device or a `gas red bottom hole igniter or heater;r` A suitable device for initiating in situ combustion withina bore hole is described in U.S. 2,722,278. Upon introducing a combustion-supporting or an oxygen-containing gas such as air into the petroleum producing formation vi-a the well bore a high temperature combustion orireaction zone created by the reaction between ythe oxygen and combustible residues within the formation, such-as combustible residues resulting from the distillation and/ or thermal cracking of crude oil originally in place or introduced therein, will commence to move into the formation outwardly from the well bore.

Leaving this high temperature zone is a relatively high temperature gas stream which, as it moves outwardly into the formation, losses heat to the formation. By this method the high temperature reaction zone is moved for a considerable distance, for example a distance in the range 3'-25 feet, more or less, radially outwardly from the well bore without further direct application of heat to the area immediately surrounding the Accordingly, it is an object of this invention to prol vide an improved method for the treatment of underground petroleum producing formations to enhance or otherwise improve -the recovery of petroleum therefrom.

It is another object of this invention to provide a generally applicable method for the treatment ofv underground petroleum producing formations.

I t is still another object of this invention to provide a method for increasing the oil permeability of anundergroundproducing formation in that portion of the producing formation surrounding a well bore.

f Still another object of this invention is vto provide a method for dissipating or removing a lwater block and for otherwise improving the petroleuminormally gaseous and/or normally liquid hydrocarbons) permeability of that portion of thepetroleum producing formation surrounding a well bore through which petroleum is produced.- Y

How these and other objects of this invention are achieved will become apparent inthe light of the accompanying disclosure and drawings wherein Fig. 1 schematically illustrates a method in accordance with the practice of this invention as applied to an underground petroleum producing formation and Fig. 2 is anexplana-` well bore. Continued direct application of heat to the area immediately surrounding the well bore may be desirable however. The distance the high temperature reaction zone moves radially outwardly and as a result the volume of the petroleum producing formation swept by or comprised within the in situ combustion zone is determined by the relative magnitude of the rate of heat generation (combustion of combustible residues) and the rate of heat loss to the surrounding formations.

It has been postulated that the following mechanisms are important in the movement of the high temperature reaction zone radially outwardly from a well bore into the petroleum producing formation during in situ cornbustion. Although 4the exact mechanism of in situr'combustion is not definitely known, the following sequence of events in an underground in situ combustion operation are postulated and are presented hereinv for the purpose of enabling one skilled in the art'to better lunder'- stand this invention and are not to be construed as limiting this invention in any way.

As the high temperature reaction zone approaches any.` given volume of the petroleum producing formation the temperature of this volume of formation rises. This results in first a reduction in the viscosity ofthe formation liquids due to their temperature increase. These liquids may then be moved more readily under the influence of the gas stream continuously emanating from the high temperature reaction zone. As the temperature continues to rise, distillations of the formation liquids begins. The

. products of these distillations condense in cooler regions of the formation removed from the high temperature reaction zone. The distillations continue as 'the 'tern-l perature continues to rise until the heavier componentsv remaining from the crude toil originally in place within the formation or introduced thereinto prior 'to effecting in situ'combustion begin to crack yielding hydrocarbon gases, hydrogen and :the like'and coke-'or similar solid'l carbonaceous residues. As the tempearture continues to rise and the oxygen content of the incoming gas vincreases due to depletion ofrvcombustibleresidues ,in preceding.

regions of the formation, a point will be reached at which the coke or other combustible residue will begin to react with oxygen with the resulting release of heat to the formation and the gas stream. This heat is carried away by the on-moving gas stream and also to some extent by conduction to adjoining regions of the formation. When the coke or combustible residue has been burned away there remains a volume of liquid-free formation which, unless otherwise treated, is gradually cooled by the relatively cool combustion supporting gas entering the formation via the well bore.

From the above considerations it is obvious that the rate of heat energy released within the formation should be some function of the quantity of the fuel present therein, which is dependent upon the type and quantity of crude originally in place and/ or combustible material or fuel caused to be deposited therein, and that the rate of release should also be dependent upon the rate at which oxygen is supplied to the combustion zone. The rate at which heat can be transferred ahead of the high temperature reaction or combustion zone should be dependent on the rate at which combustion gas leaves the reaction zone and should be to some extent dependent upon conduction through the formation itself. Accordingly, some control of the in situ combustion process can be exercised by controlling the composition, such as oxygen content, of the injected combustion supporting oxygencontaining gas.

The physical characteristics and properties of the formation swept by the high temperature reaction or combustion zone and other portions of the formation otherwise influenced by the high temperature gas stream emanating from the reaction zone will probably be favorably altered with respect to oil permeability. That portion of the petroleum producing formation swept by the high temperature combustion zone will exhibit improved porosity and/or permeability values with respect to the production of petroleum therethrough. It is believed that the high temperature developed within the reaction zone will cause clays subjected thereto to lose water and otherwise become dehydrated with resulting volume shrinkage. It is also believed that some thermal fracturing of the formation swept or otherwise influenced by the high temperature reaction zone will also be accomplished, e.g., by sheer expansion of the formation along formation discontinuities and the like, leading to fractures and fissures and increasing the porosity of the formation in the portion swept by in situ combustion. Further, it is believed that the high temperatures generated at the high temperature reaction zone in the range 70D-2500a F., usually in the range 800-1500 F., will eventually effect calcination or thermal decomposition of many of the minerals, such as limestone or dolomite, present within the formation exposed to these high temperatures, with the resultant production of gaseous or water-soluble decomposition products. Accordingly, when the formation is again produced through that portion swept by the high temperature reaction zone the resulting gaseous and/or water-soluble decomposition products, such as CO2 or CaO, are swept out, dissolved and otherwise removed by the return 'of liquid water accompanying the produced petroleum.

Referring now to the drawing which schematically illustrates one embodiment of the practice of this invention, there is illustrated a well bore 11 penetrating substantially impermeable formations 12 and 14 which, respectively, adjoin the upper and lower boundaries of petroleum producing formation 15. A casing 16 is positoned Within well bore 11 and is provided with perforations 17 adjacent the petroleum producing formation 15. A packer 13 is provided in the lower part of casing 16 such as at aboutA the lower portion of petroleum Vproducing formation 15.

As previously indicated, the practice of this invention is particularly applicable to the treatment of petroleum producing formations which evidence a substantially reduced oil permeability in the vicinity of the well bore through which the formation is produced. The reduced oil permeability of the formation in a zone surrounding the well bore may be caused by the deposition of detritus or solid hydrocarbonaceous material (paraffin) within the interstices of the formation surrounding the well bore. Particularly adaptable for treatment in accordance with the practice of this invention is a petroleum producing formation which evidences or has experienced a water block in the vicinity of the producing well bore. This water block or zone of reduced oil permeability may have been brought about, after the well has `been shut in, by the dumping of a water column back into the producing formation. In which event a producing formation in the zone immediately adjacent or surrounding the well bore will contain a substantial amount of water or will be substantially saturated therewith, and will evidence a low oil permeability.

In accordance with one practice of this invention, especially if the amount of petroleum originally in place in the zone immediately surrounding the well bore within the petroleum producing formation, is insuicient to support in situ combustion therein, there is introduced into the formation via production casing 16 and perforations 17 an amount of a combustible fluid, preferably a liquid, such as a crude oil or fraction thereof, which when subjected to a relatively elevated temperature or upon thermal cracking tends to deposit a solid combustible carbonaceous residue, such as asphalt or coke and the like. The amount of liquid thus introduced into the petroleum producing formation usually is equivalent to at least about the pore volume of that portion of the petroleum producing formation undergoing treatment extending for a distance in the range l-Sfeet, more or less, radially outwardly from well bore 11. The limit of that zone of the petroleum producing formation surrounding the well bore and into which the combustible liquid is injected or otherwise occupied by a combustible liquid such as crude oil originally in place or injected thereinto is indicated by dashed line 18.

After a suitable amount of combustible liquid is present within zone 18 of petroleum producing formation 16 the liquid is ignited in situ in the region immediately adjacent the well bore 11 by suitable means, such as by radiant heating and/or by the injection of a high temperature oxygen-containing stream of air or by means of hot combustion gases introduced via casing 16 and perforations 17.

After in situ combustion in the area of the producing formation immediately adjacent Well bore 11 has been initiated there is introduced via casing 16 and the perforations 17 a combustion supporting stream such as an oxygen-containing stream, oxygen content in the range 1.5-20%, for example in the range 3-10% by vol., more or less, to effect continued in situ combustion of the injected combustible liquid and/or petroleum originally in place within the producing formation. The introduction of the oxygen-containing stream is continued until the in situ combustion Within the petroleum producing formation has been carried out to the desired extent. The forward limit of the in situ combustion zone or high temperature combustion zone is indicated by dashed line 19. Generally, effective results will be obtained by carrying out in situ combustion within the petroleum producing formation within that volume of the formation encompassed by about 5-50, more or less, radial feet from well bore 11.

After a sufficient volume of producing formation 15 has been swept by in situ combustion the supply of oxygencontaining gas is stopped and production from the thustreated producing formation can be resumed. At first, it is postulated, as the liquid-produced petroleum and accompanying Water invades the zone of in situ combustion the water and the more volatile constituents of the protending to thermally decompose the thus-produced petro' leum leading to the deposition of carbonaceous, preferentially oil-wettable materials or otherwise coat the interstices Yof the formation with preferentially oil-wettable carbonaceous material. This deposition of solid carbonaceous, preferentially oil-wettable material will tend to.

enhance or otherwise improve the oil permeability of the formation surrounding the well bore.

In accordance with one feature of this invention, in order to further enhance the permeability and/ or porosity of the producing formation in the vicinity ofthe well bore after termination of the in situ combustion, there is introduced linto the zone wherein in situ combustion was carried out a relatively cool liquid stream, such as a LPG fraction, a liquid naphtha fraction or a relatively refrac tory gas oil or high boilingV petroleum fractionor crude so as to subject the hot portions Yof the zone swept by in situ combustion to thermal shock, leading to thermal fracturing.

AIn accordance with still another feature of this invention, particularly in the case of a formation wherein prior to treatment by in situ combustion the area immediately surrounding the well 'bore is water blocked, the water block is dissipated from the immediate vicinity of the well bore by injection of a gas such as natural gas, ethane, methane, propane, butane, or a liquid hydrocarbon such as naphtha,v kerosene, gas oil or lube oil fraction, or a hydrocarbon fraction containing finely divided solid combustible material (carbon black) dispersed therein, preferably a hydrocarbon fraction containing dissolved or dispersed therein a surface active agent eifective to reduce the interfacial tension between water and oil, so as to substantially reduce the Water saturation, eg. to a value below about 50% of the pore volume in that portion of the formation immediately surrounding the .well bore. Then there is injected into the formation vvia the well bore the desired combustible material or combustible petroleum fraction to provide the desired fuel for effecting subsequent in situ combustion within that portion of the producing formation.

Any suitable combustible fluid may be employed in the practice of this invention such as a liquid petroleum fraction, e.g. a heavy asphaltic fuel oil or residium orcrude oil previously produced from the formation undergoing treatment. Desirably the injected combustible liquid is an .asphaltic hydrocarbon fraction or one which tends' to deposit a solid carbonaceous material or coke when subjected to thermal cracking or an elevated temperature of about 1000 F., more or less.

As already indicated, the rate and extent of in situ combustion can be altered or controlled by adjusting the oxygen content of the combustible gases being supplied to the in situ combustion zone. Although air is satisfactory, it may be desirable to employ a combustion supporting gas having an oxygen content substantially greater than or substantially less than 20% by Volume, for example, a combustion supporting gas having an oxygen content in the range l-%, such as in the range 1.5- 5% by volume. A suitable combustion supporting gas having the desired oxygen content may be obtained from the exhaust of an internal combustion engine or from hot combustion or ilue gases admixed with varying amounts of air or substantially pure oxygen to obtain the desired oxygen content in the resulting admixture.

In accordance with still another feature of this invention that portion of the formation swept by in situ combustion is suitably treated other than by the deposition of preferentially oil-wettable Ycarbonaceousl material therein to render the formation preferentially oilfwettable.

A vsuitable treatment to render that portion of the forma-v tion preferentially oil-wettable would be to introduce 'into the formation a halosilane such as an aryl, alkaryl or alkyl halosilane, e.g. monomethyl dichloro-monosilane, dimethyl dichloromonosilane, and the like, which readily hydro-A lyzes upon contact with water to form a hydrophobic lm Within the interstices of the formation. f f

The following is explanatory of the practice of this jinvention. Referring now to Fig. 2 of the drawing there is schematically illustrated thereinka brine-free Berea sand? stone core containing a relatively high saturation of a 20 A.P.I. crude. 13% long with a diameter of 1%6". j The core surface was sealed with several brushedcoats of a Plexiglas solution. Sections ofthe core 7zv' long were marked oiiz and, as indicated in Fig. 2, numbered consecutively start-- ing from the end where in situV `combustion was started.v

Sections I-1 yand O-Z were cut from the core for determination of original nitrogen permeability and porosity.

The results are set forth in Table I below.

A 20 A.P.I. crude was obtained from the Hogg Lease, West lColumbia Field, Texas and injected into the core. A gas permeability of 27 md. was established by applying avacuum to section O-1. Sections L2 and O-l were then removed from the core and initial loil saturations of these sections were determined, see Table l.

Thermocouples were wired to the surface ofthe core at the centers of the sections 1-10. A length of stainless steel tubing was placed over the core and the annular space between the tubing and the core was packed with magnesium oxide as an insulator. Air was drawn through the core by placing a vacuum on section 11.

Temperaturedistributions within the core approximating those expected during an in situ combustionY operation` an indication of liquid saturation present in the sectionsA after the simulated in situ combustion. Oil permeabilities were determined using a reiined white oil.` The v.o il.

permeabilities in all sections remained constant after 10 pore volumes of oil were passed through the section being tested and it is these steady-state values which are reported in Table I.

Table I Ng Relative Max. N1 Oil permeoil satn tempermeperme- Core Porosity, ability before perature ability ability section percent before comduring after after combustion, comcomcombnstion percent bustion bustion bustion (md.) F.) (md.)1 (md.)

I1 19. 3 610 I- 19.8 66 i 445 1- l, 000 670 2- 0 536 483 3- 930 568 450 4 880 570 490 780 508 430 690 492 432 520 428 430 350 332 400 9 250 264 340 10 170 165 420 11 49 380 0-1- 19. 9 75 2 466 Ow 19. 6 628 1 Demeasing values indicate increasing liquid saturation.y 2 Cores not subjected to combustion. l Crushed and lost.

The Berea sandstone core used was' If the white oil employed in the permeability test can dissolve out carbonaceous residues not soluble in the inplace crude there would be some question as to the validity of the determination of oil permeability. In order to demonstrate the validity of these tests and to further demonstrate the practicality of this invention as a remedial well treatment operation a rough determination of the coking characteristics of the West Columbia crude employed in the test indicated that 12% by weight of the crude remained as residue after heating in an open vessel at a temperature of 750 F. Core sections I-2 and O-Z whichv were not previously subjected to high temperatures were saturated with a 20 A.P.I. West Columbia crude. Core section I2 was held at 40G-450 F, for 35 minutes and core section O-Z was held at 695-740" F. for minutes. Permeability data obtained on the thus-treated core sections using both West Columbia crude and a refined white oil are listed in Table 1I.

Table II Permeability to Core section Treatment West Columbia crude (md.)

I-2 None.- 490 I-2 400-450 F. (35 min.) 510 O2 None-- 362 0-2 695-740 F. (10 min.) 470 As Table II indicates, there is no reason to believe that the use of a refined white oil rendered the results reported in Table I anomalous.

As will be apparent to those skilled in the art in the light of the foregoing disclosure, many changes, substitutions and alterations are possible without departing from the spirit and scope of this invention.

I claim:

l. A process for treating an underground petroleum producing formation penetrated by a well bore which comprises introducing via said well bore into a petroleum producing formation -a liquid petroleum oil which uponl 2. A method of treating a petroleum producing forma-l tion traversed by a well bore which comprises introducing via said Well bore into said petroleum producing formation a combustible liquid which when subjected to thermal cracking tends to deposit a solid carbonaceous material, subsequently introducing via said well bore a combustion supporting gas via said well bore into that portion of said petroleum producing formation containing said liquid, effecting combustion of said liquid within said petroleum producing formation, discontinuing the introduction of said combustion supporting gas into said formation so as to terminate the in situ combustion process therein and subsequently producing petroleum from said formation via said well bore.

3. A method in accordance with claim 2 wherein said combustible liquid comprises a liquid petroleum fraction recovered from said petroleum producing formation.

4. A method in accordance with claim 2 wherein said combustible liquid comprises an asphaltic petroleum oil.

5. A method of treating a petroleum producing formation traversed by a well bore which comprises introducing into said petroleum producing formation via said well bore a combustible liquid which, when subjected to thermal cracking, tends to deposit a solid carbonaceous maten'al such as coke, subsequently introducing via said well bore an oxygen-containing gas into that portion of said petroleum producing formation containing said liquid, effecting in situ combustion of said liquid within said lpetroleum producing formation, terminating the combustion of said liquid within said petroleum producing formation by discontinuing the introduction of said oxygen-containing gas into said petroleum producing formation, introducing a relatively cool hydrocarbon stream via said well bore into that portion of said petroleum producing formation wherein combustion of said liquid was effected and subsequently producing petroleum from said formation via said well bore.

6. A method in accordance with claim 5 wherein said combustible liquid comprises an asphaltic petroleum fraction.

7. A method in accordance with claim 5 wherein said relatively cool hydrocarbon stream comprises a hydrocarbon liquid which when subjected to thermal cracking tends to deposit a solid carbonaceous, preferentially oilwettable material within the interstices of the formation.

References Cited in the file of this patent UNITED STATES PATENTS 1,457,479 Wolcott June 5, 1923 2,642,943 Smith June 23, 1953 2,685,930 Albaugh Aug. 10, 1954 2,761,512 Bond Sept. 4, 1956 2,793,696 Morse May 28, 1957

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1457479 *Jan 12, 1920Jun 5, 1923Wolcott Edson RMethod of increasing the yield of oil wells
US2642943 *May 20, 1949Jun 23, 1953Sinclair Oil & Gas CoOil recovery process
US2685930 *Aug 12, 1948Aug 10, 1954Union Oil CoOil well production process
US2761512 *Nov 8, 1954Sep 4, 1956Pure Oil CoCombustion and halosilane reaction treatment of a formation to increase production
US2793696 *Jul 22, 1954May 28, 1957Pan American Petroleum CorpOil recovery by underground combustion
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3003555 *Sep 18, 1956Oct 10, 1961Jersey Prod Res CoOil production from unconsolidated formations
US3024840 *Jun 16, 1958Mar 13, 1962Texaco IncIn situ combustion
US3026937 *May 17, 1957Mar 27, 1962California Research CorpMethod of controlling an underground combustion zone
US3032103 *Aug 11, 1958May 1, 1962Phillips Petroleum CoIncreasing fluid flow thru an injection borehole
US3057403 *Oct 17, 1958Oct 9, 1962Gulf Research Development CoIn-situ combustion process for the recovery of oil
US3080919 *Sep 16, 1960Mar 12, 1963Texaco IncMethod for closing down an injection well during thermal recovery operations
US3104705 *Feb 8, 1960Sep 24, 1963Jersey Prod Res CoStabilizing a formation
US3113619 *Mar 30, 1959Dec 10, 1963Phillips Petroleum CoLine drive counterflow in situ combustion process
US3155161 *Nov 1, 1960Nov 3, 1964Shell Oil CoMethod of fracturing a formation traversed by a well
US3163218 *Mar 14, 1960Dec 29, 1964Jersey Prod Res CoMethod of consolidating a formation using a heater within a liner which is thereafter destroyed
US3163745 *Feb 29, 1960Dec 29, 1964Socony Mobil Oil Co IncHeating of an earth formation penetrated by a well borehole
US3171482 *Jul 31, 1961Mar 2, 1965California Research CorpMethod of increasing the production of petroleum from subterranean formations
US3208527 *Jul 10, 1961Sep 28, 1965Exxon Production Research CoMethod and apparatus for controlling flow of well fluids
US3233671 *Dec 18, 1962Feb 8, 1966Sinclair Research IncRecovery of heavy crude oils by in situ combustion
US3250329 *May 13, 1963May 10, 1966Shell Oil CoConsolidation using free radicals
US3332482 *Nov 2, 1964Jul 25, 1967Phillips Petroleum CoHuff and puff fire flood process
US3349847 *Jul 28, 1964Oct 31, 1967Gulf Research Development CoProcess for recovering oil by in situ combustion
US3379254 *Aug 25, 1966Apr 23, 1968Mobil Oil CorpMethod for initiating in situ combustion within a subterranean formation
US3457995 *Jan 3, 1967Jul 29, 1969Phillips Petroleum CoIgniting an underground formation
US4397352 *May 4, 1981Aug 9, 1983Mobil Oil CorporationIn situ combustion of tar sands with injection of gases
US6581684Apr 24, 2001Jun 24, 2003Shell Oil CompanyIn Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US6588503Apr 24, 2001Jul 8, 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to control product composition
US6588504Apr 24, 2001Jul 8, 2003Shell Oil CompanyIn situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US6591906Apr 24, 2001Jul 15, 2003Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US6591907Apr 24, 2001Jul 15, 2003Shell Oil CompanyIn situ thermal processing of a coal formation with a selected vitrinite reflectance
US6607033Apr 24, 2001Aug 19, 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to produce a condensate
US6609570Apr 24, 2001Aug 26, 2003Shell Oil CompanyIn situ thermal processing of a coal formation and ammonia production
US6688387Apr 24, 2001Feb 10, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6698515Apr 24, 2001Mar 2, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a relatively slow heating rate
US6702016Apr 24, 2001Mar 9, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US6708758Apr 24, 2001Mar 23, 2004Shell Oil CompanyIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US6712135Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation in reducing environment
US6712136Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US6712137Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US6715546Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6715547Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US6715548Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6715549Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6719047Apr 24, 2001Apr 13, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US6722429Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6722430Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US6722431Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of hydrocarbons within a relatively permeable formation
US6725920Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US6725921Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation by controlling a pressure of the formation
US6725928Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a distributed combustor
US6729395Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US6729396Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6729397Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729401Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation and ammonia production
US6732794Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6732795Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US6732796Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US6736215Apr 24, 2001May 18, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US6739393Apr 24, 2001May 25, 2004Shell Oil CompanyIn situ thermal processing of a coal formation and tuning production
US6739394Apr 24, 2001May 25, 2004Shell Oil CompanyProduction of synthesis gas from a hydrocarbon containing formation
US6742587Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6742588Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US6742589Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US6742593Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US6745831Apr 24, 2001Jun 8, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US6745832Apr 24, 2001Jun 8, 2004Shell Oil CompanySitu thermal processing of a hydrocarbon containing formation to control product composition
US6745837Apr 24, 2001Jun 8, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US6749021Apr 24, 2001Jun 15, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a controlled heating rate
US6752210Apr 24, 2001Jun 22, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US6758268Apr 24, 2001Jul 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US6761216Apr 24, 2001Jul 13, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US6763886Apr 24, 2001Jul 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with carbon dioxide sequestration
US6769483Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6769485Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ production of synthesis gas from a coal formation through a heat source wellbore
US6789625Apr 24, 2001Sep 14, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US6805195Apr 24, 2001Oct 19, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US6820688Apr 24, 2001Nov 23, 2004Shell Oil CompanyIn situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio
US6866097Apr 24, 2001Mar 15, 2005Shell Oil CompanyIn situ thermal processing of a coal formation to increase a permeability/porosity of the formation
US6871707Apr 24, 2001Mar 29, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US6877554Apr 24, 2001Apr 12, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control
US6877555Apr 24, 2002Apr 12, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation while inhibiting coking
US6880633Apr 24, 2002Apr 19, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce a desired product
US6880635Apr 24, 2001Apr 19, 2005Shell Oil CompanyIn situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio
US6889769Apr 24, 2001May 10, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US6896053Apr 24, 2001May 24, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US6902003Apr 24, 2001Jun 7, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content
US6902004Apr 24, 2001Jun 7, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a movable heating element
US6910536Apr 24, 2001Jun 28, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US6913078Apr 24, 2001Jul 5, 2005Shell Oil CompanyIn Situ thermal processing of hydrocarbons within a relatively impermeable formation
US6915850Apr 24, 2002Jul 12, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation having permeable and impermeable sections
US6918442Apr 24, 2002Jul 19, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation in a reducing environment
US6918443Apr 24, 2002Jul 19, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US6923257Apr 24, 2002Aug 2, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce a condensate
US6923258Jun 12, 2003Aug 2, 2005Shell Oil CompanyIn situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6929067Apr 24, 2002Aug 16, 2005Shell Oil CompanyHeat sources with conductive material for in situ thermal processing of an oil shale formation
US6932155Oct 24, 2002Aug 23, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US6948562Apr 24, 2002Sep 27, 2005Shell Oil CompanyProduction of a blending agent using an in situ thermal process in a relatively permeable formation
US6948563Apr 24, 2001Sep 27, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US6951247Apr 24, 2002Oct 4, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation using horizontal heat sources
US6953087Apr 24, 2001Oct 11, 2005Shell Oil CompanyThermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US6959761Apr 24, 2001Nov 1, 2005Shell Oil CompanyIn situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US6964300Apr 24, 2002Nov 15, 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US6966372Apr 24, 2001Nov 22, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US6966374Apr 24, 2002Nov 22, 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation using gas to increase mobility
US6969123Oct 24, 2002Nov 29, 2005Shell Oil CompanyUpgrading and mining of coal
US6973967Apr 24, 2001Dec 13, 2005Shell Oil CompanySitu thermal processing of a coal formation using pressure and/or temperature control
US6981548Apr 24, 2002Jan 3, 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation
US6991031Apr 24, 2001Jan 31, 2006Shell Oil CompanyIn situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US6991032Apr 24, 2002Jan 31, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US6991033Apr 24, 2002Jan 31, 2006Shell Oil CompanyIn situ thermal processing while controlling pressure in an oil shale formation
US6991036Apr 24, 2002Jan 31, 2006Shell Oil CompanyThermal processing of a relatively permeable formation
US6991045Oct 24, 2002Jan 31, 2006Shell Oil CompanyForming openings in a hydrocarbon containing formation using magnetic tracking
US6994160Apr 24, 2001Feb 7, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US6994161Apr 24, 2001Feb 7, 2006Kevin Albert MaherIn situ thermal processing of a coal formation with a selected moisture content
US6994168Apr 24, 2001Feb 7, 2006Scott Lee WellingtonIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US6994169Apr 24, 2002Feb 7, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation with a selected property
US6997255Apr 24, 2001Feb 14, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a reducing environment
US6997518Apr 24, 2002Feb 14, 2006Shell Oil CompanyIn situ thermal processing and solution mining of an oil shale formation
US7004247Apr 24, 2002Feb 28, 2006Shell Oil CompanyConductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US7004251Apr 24, 2002Feb 28, 2006Shell Oil CompanyIn situ thermal processing and remediation of an oil shale formation
US7011154Oct 24, 2002Mar 14, 2006Shell Oil CompanyIn situ recovery from a kerogen and liquid hydrocarbon containing formation
US7013972Apr 24, 2002Mar 21, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a natural distributed combustor
US7017661Apr 24, 2001Mar 28, 2006Shell Oil CompanyProduction of synthesis gas from a coal formation
US7032660Apr 24, 2002Apr 25, 2006Shell Oil CompanyIn situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US7036583 *Sep 24, 2001May 2, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US7040398Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation in a reducing environment
US7040399Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a controlled heating rate
US7040400Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of a relatively impermeable formation using an open wellbore
US7051807Apr 24, 2002May 30, 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with quality control
US7051808Oct 24, 2002May 30, 2006Shell Oil CompanySeismic monitoring of in situ conversion in a hydrocarbon containing formation
US7051811Apr 24, 2002May 30, 2006Shell Oil CompanyIn situ thermal processing through an open wellbore in an oil shale formation
US7055600Apr 24, 2002Jun 6, 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with controlled production rate
US7063145Oct 24, 2002Jun 20, 2006Shell Oil CompanyMethods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US7066254Oct 24, 2002Jun 27, 2006Shell Oil CompanyIn situ thermal processing of a tar sands formation
US7066257Oct 24, 2002Jun 27, 2006Shell Oil CompanyIn situ recovery from lean and rich zones in a hydrocarbon containing formation
US7073578Oct 24, 2003Jul 11, 2006Shell Oil CompanyStaged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US7077198Oct 24, 2002Jul 18, 2006Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using barriers
US7077199Oct 24, 2002Jul 18, 2006Shell Oil CompanyIn situ thermal processing of an oil reservoir formation
US7086465Oct 24, 2002Aug 8, 2006Shell Oil CompanyIn situ production of a blending agent from a hydrocarbon containing formation
US7086468Apr 24, 2001Aug 8, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US7090013Oct 24, 2002Aug 15, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US7096941Apr 24, 2001Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US7096942Apr 24, 2002Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation while controlling pressure
US7096953Apr 24, 2001Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a coal formation using a movable heating element
US7100994Oct 24, 2002Sep 5, 2006Shell Oil CompanyProducing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation
US7104319Oct 24, 2002Sep 12, 2006Shell Oil CompanyIn situ thermal processing of a heavy oil diatomite formation
US7114566Oct 24, 2002Oct 3, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US7121341Oct 24, 2003Oct 17, 2006Shell Oil CompanyConductor-in-conduit temperature limited heaters
US7121342Apr 23, 2004Oct 17, 2006Shell Oil CompanyThermal processes for subsurface formations
US7128153Oct 24, 2002Oct 31, 2006Shell Oil CompanyTreatment of a hydrocarbon containing formation after heating
US7156176Oct 24, 2002Jan 2, 2007Shell Oil CompanyInstallation and use of removable heaters in a hydrocarbon containing formation
US7165615Oct 24, 2002Jan 23, 2007Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US7219734Oct 24, 2003May 22, 2007Shell Oil CompanyInhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US7225866Jan 31, 2006Jun 5, 2007Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US7320364Apr 22, 2005Jan 22, 2008Shell Oil CompanyInhibiting reflux in a heated well of an in situ conversion system
US7353872Apr 22, 2005Apr 8, 2008Shell Oil CompanyStart-up of temperature limited heaters using direct current (DC)
US7357180Apr 22, 2005Apr 15, 2008Shell Oil CompanyInhibiting effects of sloughing in wellbores
US7360588Oct 17, 2006Apr 22, 2008Shell Oil CompanyThermal processes for subsurface formations
US7370704Apr 22, 2005May 13, 2008Shell Oil CompanyTriaxial temperature limited heater
US7383877Apr 22, 2005Jun 10, 2008Shell Oil CompanyTemperature limited heaters with thermally conductive fluid used to heat subsurface formations
US7424915Apr 22, 2005Sep 16, 2008Shell Oil CompanyVacuum pumping of conductor-in-conduit heaters
US7431076Apr 22, 2005Oct 7, 2008Shell Oil CompanyTemperature limited heaters using modulated DC power
US7435037Apr 21, 2006Oct 14, 2008Shell Oil CompanyLow temperature barriers with heat interceptor wells for in situ processes
US7461691Jan 23, 2007Dec 9, 2008Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7481274Apr 22, 2005Jan 27, 2009Shell Oil CompanyTemperature limited heaters with relatively constant current
US7490665Apr 22, 2005Feb 17, 2009Shell Oil CompanyVariable frequency temperature limited heaters
US7500528Apr 21, 2006Mar 10, 2009Shell Oil CompanyLow temperature barrier wellbores formed using water flushing
US7510000Apr 22, 2005Mar 31, 2009Shell Oil CompanyReducing viscosity of oil for production from a hydrocarbon containing formation
US7527094Apr 21, 2006May 5, 2009Shell Oil CompanyDouble barrier system for an in situ conversion process
US7533719Apr 20, 2007May 19, 2009Shell Oil CompanyWellhead with non-ferromagnetic materials
US7540324Oct 19, 2007Jun 2, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a checkerboard pattern staged process
US7546873Apr 21, 2006Jun 16, 2009Shell Oil CompanyLow temperature barriers for use with in situ processes
US7549470Oct 20, 2006Jun 23, 2009Shell Oil CompanySolution mining and heating by oxidation for treating hydrocarbon containing formations
US7556095Oct 20, 2006Jul 7, 2009Shell Oil CompanySolution mining dawsonite from hydrocarbon containing formations with a chelating agent
US7556096Oct 20, 2006Jul 7, 2009Shell Oil CompanyVarying heating in dawsonite zones in hydrocarbon containing formations
US7559367Oct 20, 2006Jul 14, 2009Shell Oil CompanyTemperature limited heater with a conduit substantially electrically isolated from the formation
US7559368Oct 20, 2006Jul 14, 2009Shell Oil CompanySolution mining systems and methods for treating hydrocarbon containing formations
US7562706Oct 20, 2006Jul 21, 2009Shell Oil CompanySystems and methods for producing hydrocarbons from tar sands formations
US7562707Oct 19, 2007Jul 21, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a line drive staged process
US7575052Apr 21, 2006Aug 18, 2009Shell Oil CompanyIn situ conversion process utilizing a closed loop heating system
US7575053Apr 21, 2006Aug 18, 2009Shell Oil CompanyLow temperature monitoring system for subsurface barriers
US7581589Oct 20, 2006Sep 1, 2009Shell Oil CompanyMethods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US7584789Oct 20, 2006Sep 8, 2009Shell Oil CompanyMethods of cracking a crude product to produce additional crude products
US7591310Oct 20, 2006Sep 22, 2009Shell Oil CompanyMethods of hydrotreating a liquid stream to remove clogging compounds
US7597147Apr 20, 2007Oct 6, 2009Shell Oil CompanyTemperature limited heaters using phase transformation of ferromagnetic material
US7604052Apr 20, 2007Oct 20, 2009Shell Oil CompanyCompositions produced using an in situ heat treatment process
US7610962Apr 20, 2007Nov 3, 2009Shell Oil CompanySour gas injection for use with in situ heat treatment
US7631689Apr 20, 2007Dec 15, 2009Shell Oil CompanySulfur barrier for use with in situ processes for treating formations
US7631690Oct 19, 2007Dec 15, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a spiral startup staged sequence
US7635023Apr 20, 2007Dec 22, 2009Shell Oil CompanyTime sequenced heating of multiple layers in a hydrocarbon containing formation
US7635024Oct 19, 2007Dec 22, 2009Shell Oil CompanyHeating tar sands formations to visbreaking temperatures
US7635025Oct 20, 2006Dec 22, 2009Shell Oil CompanyCogeneration systems and processes for treating hydrocarbon containing formations
US7640980Apr 7, 2008Jan 5, 2010Shell Oil CompanyThermal processes for subsurface formations
US7644765Oct 19, 2007Jan 12, 2010Shell Oil CompanyHeating tar sands formations while controlling pressure
US7673681Oct 19, 2007Mar 9, 2010Shell Oil CompanyTreating tar sands formations with karsted zones
US7673786Apr 20, 2007Mar 9, 2010Shell Oil CompanyWelding shield for coupling heaters
US7677310Oct 19, 2007Mar 16, 2010Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US7677314Oct 19, 2007Mar 16, 2010Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US7681647Oct 19, 2007Mar 23, 2010Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US7683296Apr 20, 2007Mar 23, 2010Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US7703513Oct 19, 2007Apr 27, 2010Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US7717171Oct 19, 2007May 18, 2010Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US7730945Oct 19, 2007Jun 8, 2010Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730946Oct 19, 2007Jun 8, 2010Shell Oil CompanyTreating tar sands formations with dolomite
US7730947Oct 19, 2007Jun 8, 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US7735935Jun 1, 2007Jun 15, 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US7785427Apr 20, 2007Aug 31, 2010Shell Oil CompanyHigh strength alloys
US7793722Apr 20, 2007Sep 14, 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US7798220Apr 18, 2008Sep 21, 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US7798221May 31, 2007Sep 21, 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7831133Apr 21, 2006Nov 9, 2010Shell Oil CompanyInsulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration
US7831134Apr 21, 2006Nov 9, 2010Shell Oil CompanyGrouped exposed metal heaters
US7832484Apr 18, 2008Nov 16, 2010Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US7841401Oct 19, 2007Nov 30, 2010Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US7841408Apr 18, 2008Nov 30, 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US7841425Apr 18, 2008Nov 30, 2010Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US7845411Oct 19, 2007Dec 7, 2010Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US7849922Apr 18, 2008Dec 14, 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US7860377Apr 21, 2006Dec 28, 2010Shell Oil CompanySubsurface connection methods for subsurface heaters
US7866385Apr 20, 2007Jan 11, 2011Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US7866386Oct 13, 2008Jan 11, 2011Shell Oil CompanyIn situ oxidation of subsurface formations
US7866388Oct 13, 2008Jan 11, 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US7912358Apr 20, 2007Mar 22, 2011Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US7931086Apr 18, 2008Apr 26, 2011Shell Oil CompanyHeating systems for heating subsurface formations
US7942197Apr 21, 2006May 17, 2011Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US7942203Jan 4, 2010May 17, 2011Shell Oil CompanyThermal processes for subsurface formations
US7950453Apr 18, 2008May 31, 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US7986869Apr 21, 2006Jul 26, 2011Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US8011451Oct 13, 2008Sep 6, 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US8027571Apr 21, 2006Sep 27, 2011Shell Oil CompanyIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US8042610Apr 18, 2008Oct 25, 2011Shell Oil CompanyParallel heater system for subsurface formations
US8070840Apr 21, 2006Dec 6, 2011Shell Oil CompanyTreatment of gas from an in situ conversion process
US8083813Apr 20, 2007Dec 27, 2011Shell Oil CompanyMethods of producing transportation fuel
US8113272Oct 13, 2008Feb 14, 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US8146661Oct 13, 2008Apr 3, 2012Shell Oil CompanyCryogenic treatment of gas
US8146669Oct 13, 2008Apr 3, 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US8151880Dec 9, 2010Apr 10, 2012Shell Oil CompanyMethods of making transportation fuel
US8151907Apr 10, 2009Apr 10, 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8162059Oct 13, 2008Apr 24, 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US8162405Apr 10, 2009Apr 24, 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US8172335Apr 10, 2009May 8, 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8177305Apr 10, 2009May 15, 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8191630Apr 28, 2010Jun 5, 2012Shell Oil CompanyCreating fluid injectivity in tar sands formations
US8192682Apr 26, 2010Jun 5, 2012Shell Oil CompanyHigh strength alloys
US8196658Oct 13, 2008Jun 12, 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US8220539Oct 9, 2009Jul 17, 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8224163Oct 24, 2003Jul 17, 2012Shell Oil CompanyVariable frequency temperature limited heaters
US8224164Oct 24, 2003Jul 17, 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US8224165Apr 21, 2006Jul 17, 2012Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US8225866Jul 21, 2010Jul 24, 2012Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8230927May 16, 2011Jul 31, 2012Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US8233782Sep 29, 2010Jul 31, 2012Shell Oil CompanyGrouped exposed metal heaters
US8238730Oct 24, 2003Aug 7, 2012Shell Oil CompanyHigh voltage temperature limited heaters
US8240774Oct 13, 2008Aug 14, 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US8256512Oct 9, 2009Sep 4, 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US8261832Oct 9, 2009Sep 11, 2012Shell Oil CompanyHeating subsurface formations with fluids
US8267170Oct 9, 2009Sep 18, 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US8267185Oct 9, 2009Sep 18, 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US8272455Oct 13, 2008Sep 25, 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US8276661Oct 13, 2008Oct 2, 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US8281861Oct 9, 2009Oct 9, 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US8327681Apr 18, 2008Dec 11, 2012Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US8327932Apr 9, 2010Dec 11, 2012Shell Oil CompanyRecovering energy from a subsurface formation
US8353347Oct 9, 2009Jan 15, 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US8355623Apr 22, 2005Jan 15, 2013Shell Oil CompanyTemperature limited heaters with high power factors
US8381815Apr 18, 2008Feb 26, 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US8434555Apr 9, 2010May 7, 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US8448707Apr 9, 2010May 28, 2013Shell Oil CompanyNon-conducting heater casings
US8459359Apr 18, 2008Jun 11, 2013Shell Oil CompanyTreating nahcolite containing formations and saline zones
US8485252Jul 11, 2012Jul 16, 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8536497Oct 13, 2008Sep 17, 2013Shell Oil CompanyMethods for forming long subsurface heaters
US8555971May 31, 2012Oct 15, 2013Shell Oil CompanyTreating tar sands formations with dolomite
US8562078Nov 25, 2009Oct 22, 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8579031May 17, 2011Nov 12, 2013Shell Oil CompanyThermal processes for subsurface formations
US8606091Oct 20, 2006Dec 10, 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US8627887Dec 8, 2008Jan 14, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8631866Apr 8, 2011Jan 21, 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8636323Nov 25, 2009Jan 28, 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US8662175Apr 18, 2008Mar 4, 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8701768Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US8701769Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US8739874Apr 8, 2011Jun 3, 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US8752904Apr 10, 2009Jun 17, 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8789586Jul 12, 2013Jul 29, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8791396Apr 18, 2008Jul 29, 2014Shell Oil CompanyFloating insulated conductors for heating subsurface formations
US8820406Apr 8, 2011Sep 2, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8833453Apr 8, 2011Sep 16, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US8851170Apr 9, 2010Oct 7, 2014Shell Oil CompanyHeater assisted fluid treatment of a subsurface formation
US8857506May 24, 2013Oct 14, 2014Shell Oil CompanyAlternate energy source usage methods for in situ heat treatment processes
US8875788Apr 8, 2011Nov 4, 2014Shell Oil CompanyLow temperature inductive heating of subsurface formations
US8881806Oct 9, 2009Nov 11, 2014Shell Oil CompanySystems and methods for treating a subsurface formation with electrical conductors
WO2001081239A2 *Apr 24, 2001Nov 1, 2001Shell Oil CoIn situ recovery from a hydrocarbon containing formation
Classifications
U.S. Classification166/260
International ClassificationE21B43/16, E21B43/243
Cooperative ClassificationE21B43/243
European ClassificationE21B43/243