Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2919692 A
Publication typeGrant
Publication dateJan 5, 1960
Filing dateFeb 23, 1956
Priority dateFeb 23, 1956
Publication numberUS 2919692 A, US 2919692A, US-A-2919692, US2919692 A, US2919692A
InventorsWolfgang Ackermann
Original AssigneeWolfgang Ackermann
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Vertebral trephine biopsy instruments
US 2919692 A
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

Jn. 5, 1960 w. ACKERMANN VERTEBRAL TREPHINE BIOPSY INSTRUMENTS 2 Sheets-Sheet 1 Filed Feb. 23, 1956 A m M Illlllll INVENTO R Woman/m HCKEPMHA/N ATTORNEY Jan. 5, 1960 w. ACKERMANN 2,919,692

VERTEBRAL TREPHINE BIOPSY INSTRUMENTS Filed Feb. 23, 1956 2 Sheets'-Sheet 2 INVENTOR WOAFMA/G flcA mMeA/N ZBY ATTORNEY United States Pate Wolfgang Ackermann, New York,-N.Y.

Application February 23,1956, Serial No. 567,284

1 Claim. (Cl. 128-2 This invention relates to instruments employed pri-' marily in vertebral trephine biopsies.

Bone'biopsy involves, generally speaking, the removal of the external or'cortical portion of a bone and the sampling or the internal or deeper part of the marrow of such bone by extracting therefrom a' relatively'small portionof the bone'and a larger portion of the marrow therein'for"the"deterrnination of the presence or absence" of pathology by microscopic analysis.

The procedure has heretofore been carried out essentially'th'r'oug'h'the employment of a hollow instrument,

, ability andflexibility in handling, noinjury would result scribedrmethods hasbeen generally accepted by the medi-- TREPHINE BIOPSY cal profession for this highly important diagnostic procedure because the various sets of instruments available were not consideerd safe enough for common use. Needless to say; many-futile operations-could have been avoided if this procedure-could have been universally carried out without damageto the patient.

Exhaustive experimentation and research have-convinced me that it is possible to avoid injury to,the patient through the use of-proper instruments, utilizing, I

generally speaking, the essential instrumental elements so employed, but so constituting them that, when introduced throughvthe -soft tissues to the -bone: structure, because of their simplicity in construction, greater adapt- I to the patient and the diagnosis would be readily established,.a factor which is of vital-importance in the treatment of cancer.

whichfo'riginally had a square end. Later it was pointed; like a' needle, but more recently was made into what is -I have found that it :is essential. to the carrying out of safe-vertebral biopsies to. employ instruments of mini- 1 mum-dimensions." My research has shown that, in order to microscopically analyze a biopsy specimen obtained,

by rotationof .the trephine and subsequently expelled from 'th'e'operating end of the latter by a solid extruder passed'through the interior of the instrumenn This specimen is then subjected to sectioning, embedding, stainin'g'and other appropriate treatment well understood in the profession and utilized for the determination of the Into this so i soft tissues until the sharp point of the needle contacts the bone to be sampled or bisopsied. The stylet is then removedfrom the hollow instrument and in its place a trephineis 'insertedand passed through and brought in contact'with the bone and manually driven into the bone to a predetermineddepth to finally extract a specimen as.

hereinbefore described.

The operations and technic hereinbefore described do not raise any serious problems in the practice of biopsy on the exposed or superficial parts of the bones, but are fraughfwith manydifficulties and dangers to the patient? when performed upon deeper seated bones, especially upon 'the bodies of the vertebrae. The reason for this is that the vertebral bodies are in very close proximity to largearteries and veins, nerve roots, nerves, spinal cord,

and other vital'parts which, if punctured or torn, are apt to result in serious consequences to the patient, such as inter'rial" hemorrhages, severing of nerves, tearing of. meninges and piercing the spinal cord, resulting inpartial paralysis, puncturing of the intestines, kidneys, lungs and even the heart. portant in vertebral biopsy to conduct the same'with great care and with such instruments as will permit of the operations described wtihout perforation or other. damage to the vital organs and structures-named; in:.the:.:

path of the operating field.

It therefore becomes extremely imit does not need to have a diameter. larger than 1.5 mm., irrespective of its length. ,That is the proper size re quired forv effective examination and. diagnosis.

I employ a shortaand a long trephine both of tubular cylindrical form having an internal. diameter of 1.5 mm. in which the specimen may be-collected.- in lieu of a stylet, I employ a locator .which is 2 mm. indiameter and the external. diameterof the trephine is also 2 mm. -Thus the wall of the trephine is made relatively light and is adapted to have aclose sliding fit within the interior of a tubular trephine guide, which also has a wall of minimum thickness, so-that the overall diame-...

ter of the instrument, as intrcducedinto the tissue, is

at the very minimum. This isin pronounced contra distinction to prior biopsy instruments. which have been and are universally. made of so much greater overall...

diameterthat, when introduced through the, tissue, it

,is practically impossiblefor them topass by nerves and I i 7 blood. vessels: without causing .serious. trauma.

Furthermore, prior instruments are,in many instances,

vtheir ends have .needle .points. :The- .operating. ends of my trephine guide and locator are, in contradistinction, so; constituted that they push aside these vital parts of the body and. enter between them without damage. to them. For this purpose, the locator is made with a pointed tip; sufliciently sharp to pass through muscle tissue and fasciae, but not so sharp as to puncture. bloodvessels .or,

nerves and the wall atthe outer. end ofthet'rephinqguide is externally thinned or tapered to merge into the..o,uter. surface of the locator without providing'a cuttingedge or shoplder at: the juncture where-the-two' surfaceswmerge,

Thus,;when the trephine guide and locator are simulta-t :f'

neously introducedwith the latter within the. former, thetip at the end of the locator forms. awpath for the trephine guideand in which path the guide'follows between-athetj bloodvessels'and nerves-until that guide 'engage'sbthehm bone surface.

One important feature of the invention therefore residesin 'a tubulartrephine having bore 'o-f=unifor1n' ical strength. 7 Such instrumentsmay bev utilized t'QQsafely described and hereafter referred to.

sperform wertebral biopsies; for the reas011s;.hereipbiefgre.

Features of the invention, other than those adverted to, will be apparent from the hereinafter detailed description and appended claims, when read in conjunction with the accompanying drawings.

The accompanying drawings illustrate one practical embodiment of the invention, but the construction therein shown is to be understood as illustrative, only, and not as defining the limits of the invention.

Sheet 1 of the drawings, embodying Figures l-7A inclusive, shows the instruments of this invention separated from one another. In these views:

Fig. l is a side elevation of a perforator.

Fig. 2 is a side elevation of a trephine guide embodying this invention.

Fig. 3 is a side elevation of a locator.

Fig. 4 is a side elevation of a short trephine.

Fig. 5 is a side elevation of a short extruder.

Fig. 6 is a side elevation of a long trephine.

Fig. 7 is a side elevation of a long extruder.

Fig. 1A through 7A, inclusive, are fragmental end views on greatly enlarged scale of the parts shown in Figs. 1-7, respectively, with certain parts of Figs. 2A, 4A and 6A shown in central section.

Sheet 2 of the drawings shows the manner in which the several instruments of Sheet 1 are utilized in conjunction with one method and the steps performed in 0b raining a biopsy specimen. In these views, all of which are on greatly enlarged scale:

Fig. 8 shows the operating end of the perforator.

Fig. 9 shows the locator positioned in the trephine guide ready for insertion into the body tissues.

Fig. 10 shows the trephine guide as having been introduced so that its operating end contacts the bone to be biopsied and with the locator removed.

Fig. 11 shows the trephine in the trephine guide and in the act of being introduced into the marrow of a bone.

Fig. 12 shows the trephine guide remaining in place against the bone but with the trephine removed.

Fig. 13 shows the trephine after it has been removed from the trephine guide and with a specimen therein.

Fig. 14 shows the extruder in the act of removing the specimen from the trephine.

The various instruments which enter into the present invention will next be described in detail. In describing these instruments, I will set forth the instruments as they have been actually made and used and will give the dimensions which have been employed in the related parts. I wish it understood that the diameters of these parts are critical within very close dimensions, but the length of the respective instruments may be changed within reasonable limits without departing from this invention, provided that the relation of the length of the trephines to the length of the trephine guide remains constant.

Perforalor.The perforator is shown in Figs. 1, 1A and 8. It has an overall length of 4.5 cm. It has a solid shank 1 with a diameter of 2.5 mm. and ends in a 1 cm. long three edged sharp pointed cutting tip which serves to cut the skin and dense fasciae down to the muscles. It does this with ease, causing hardly any bleeding, unlike the knife customarily used. The shank 1 is provided with a solid knurled head 2 by which it may be manually manipulated.

T rephine guide.This guide 3 is shown in Figs. 2, 2A and 9-12 inclusive. It is a tube of uniform external and internal diameter throughout and has an overall length of 14 cm. At its outer end it is provided with a 15 mm. long Luer needle hub 4 which may be used to manually manipulate it and to connect to it a syringe for the introduction of an anesthetic if desired. Its gauge is 2.5 mm. and its inner diameter readily admits both the locator shown in Fig. 3 and the trephine shown in Fig. 4. Its operating end is externally reduced to substantially intersect with its inner surface and the outer surface of the tube beginning at 4 cm. from its operating end is provided with graduations at intervals of 1 cm. up to 10 cm. These graduations are designated 5.

L0cat0r.The locator 6 is shown in Figs. 3, 3A and 9. It has a solid shaft 2 mm. in diameter, provided at its outer end with a knurled finger piece 7 and at its operating end it has a 1 cm. long smooth tip 8, which gradually narrows down to a dull point. The purpose of the locator 6 is to direct the trephine guide 3 to the area to be biopsied. The locator is adapted to be inserted within the trephine guide, as shown in Fig. 9, the length of these two parts being such, as shown in Figs. 2 and 3, that when assembled as shown in Fig. 9, the finger piece 7 of the locator will butt against the outer end of the hub 4 of the trephine guide and so position the operating parts that the reduced end of the trephine guide will merge into the reduced pointed end of the locator, as shown in Fig. 9. While thus assembled, the parts are inserted into the opening made in the skin by the perforator and can be easily advanced through the thin fasciae and muscles. Experience has demonstrated that when thus inserted and moved forwardly into contact with the bone to be biopsied, the nerves and blood vessels will be pushed aside, so that the instruments may pass between them into contact with the bone without injury to the named structures, provided, of course, reasonable limited force is applied without attempt to unduly hurry the insertion.

Short treplzirze.This trephine 9 is shown in Figs. 4, 4A, 11, 13 and 14. It comprises a cylindrical tube of uniform inner and outer diameter and of an overall length of 16.75 cm. At its outer end it has a Luer needle hub 10 for vertebral bone marrow aspiration and adjacent this hub is a knurled finger piece 11 by which this trephine may be manually rotated to cause its end to cut into the bone. The gauge of the trephine is 2 mm. and its inner diameter is 1.5 mm. Its operating end has a serrated edge 12 shown as provided with six very fine sharp teeth undercut on their leading edges for sawing purposes. The length of this short trephine is sufficiently greater than the length of the trephine guide 3 to permit the operating end of the trephine to project a distance beyond the operating end of the trephine guide sufficiently to project into the marrow of the bone the distance desired for the specimen to be obtained.

While the trephine guide is in place, as shown in Fig. 10, with its operating end in contact with the bone B, the trephine 9 is passed through the trephine guide 3 and rotated so that the saw toothed end 12 thereof saws its way into the bone B, as shown in Fig. 11. This procedure is carried out by rotating the finger piece 11 with slight pressure until the finger piece 11 engages the hub 4 of the trephine guide by which time the desired length of specimen has accumulated within the trephine. A few additional turns of the trephine will break loose the distal end of the specimen from the bone structure, so that the trephine may be Withdrawn with the sample therein, leaving the trephine guide 3 in contact with the bone, as shown in Fig. 12, and the specimen within the withdrawn trephine, as indicated at S in Fig. 13.

Long trephine.The long trephine 9a, shown in Figs. 6 and 6a, is exactly the same as the short trephine, except that it is 1.25 cm. longer. It thus has an overall length of 18 cm. and is used for the obtaining of a deeper biopsy specimen.

Short extruder.-This extruder is designated 13 and is shown in Figs. 5, 5A and 14. It is, in effect, a straight solid stylet of uniform diameter provided at one end with a finger piece 14 by which it may be manipulated and it is of a length sufficient to extend entirely through the interior of the short trephine. Its diameter is such as to provide a close sliding fit with the bore of the short trephine.

Long extrudez-.-This extruder is indicated at 13a in Figs. 7 and 7A and is identical with the extruder 13 except that it is 1.25 cm. longer.

The purpose of these extruders is to remove the specimens S from the respective trephines by passing the extruder through the trephine, as indicated in Fig. 14. By making the internal surface of both trephines cylindrical throughout I find that the specimen may be readily removed therefrom without crushing it or otherwise damaging the same, so that the specimen may be sent to the laboratory in the best possible condition for analysis.

In employing the instruments of this invention for obtaining vertebral biopsy specimens, the perforator 1 with its triangular tip is introduced through the skin and fasciae into the first underlying muscle. This provides a perforation. The assembled locator and trephine guide are then inserted as a unit at an angle of about 45 until the body of the vertebra is encountered, usually at a depth of 89 cm., as observed on the graduated scale 5, although in emaciated people the distance may be 6-7 cm. The point of the locator is bored or impressed into the cortex of the vertebra, so that it will stay in place and, while thus located, X-rays are taken and the position of the instruments checked, in relation to the exact area to be biopsied, in wet films. If their position does not appear satisfactory, the necessary adjustment is made by swinging the locator up or down anteriorly or posteriorly to obtain optimum angular relation. The trephine guide is then advanced 1 cm. to the point of the cator and thus brought in contact with the vertebral body and is manually held fast in this position.

The locator is then removed and replaced by the short trephine 9 which is brought into contact with the vertebral body and rotated under gentle pressure, so that it cuts its way through the periosteum and cortex into the marrow spaces of the bone until the finger piece of the short trephine engages the hub of the trephine guide. X-rays are then taken in two views for a second time and the wet films checked for the exact location as well as for the angulation of the trephine. The trephine is then rotated several times without advancing or dislodging it, in order to break off the distal end of the core-like specimen and when this has been accomplished, the trephine is withdrawn with continuous slow rotating motions leaving the trephine guide in contact with the vertebral body.

The long trephine is then introduced through and beyond the guide into the bone through the track cut out by the short trephine through the cortex and is thereupon rotated under gentle pressure to bore deeper into the vertebrae and until the finger piece of said long trephine contacts the head 4 of the trephine guide. Since the long trephine cuts more deeply into the vertebral marrow than a short trephine, it obtains a specimen of the marrow at a greater depth and this specimen contains hardly any cortical bone but practically all marrow. The long trephine is then rotated, while its position is fixed, to break the specimen from the remaining portion of the marrow, after which the long trephine is withdrawn, carrying with it the second specimen which has been thereby obtained.

By the use of the short and long extruders, the specimens are expelled from the respective short and long trephines, observed as to color and general appearance and placed in Zenkers solution for fixation prior to processing in the pathological laboratory for diagnosis.

The procedure described for obtaining two specimens may, if desired, be repeated once or twice on the same vertebra, either above or below the area previously biopsied, thus providing pathological speciments from different depths and also at difierent levels. Since metastases in bones are nearly always multiple, it may be desirable to biopsy more than one vertebra. If the second vertebra to be biopsied is adjacent the first one, the procedure is carried out through the same entrance channel leading to the vertebrae by merely directing the instruments upwardly or downwardly at an appropriate angle in relation to the midline.

It will of course be understood that before starting the biopsy, a paravertebral nerve block is carried out and, if one or more additional biopsies are to be performed through the same track, additional nerve blocks will routinely be efiected. After the specimens have been obtained, the trephine guide is removed and the exceedingly small wound which has been made is covered with a dry dressing.

A great number of biopsies have been performed through the employment of the instruments of this invention. Highly satisfactory specimens have been obtained and in no case has there been excessive bleeding or injury to any of the vital parts of the body. I attribute these facts largely to the critical dimensions of the instrumenhts which, as hereinbefore pointed out, provide for the obtaining of a specimen sufficiently large for accurate pathological examination and no larger than necessary to obtain such results.

This is in marked contradistinction to all instruments of the prior art, most of which have complicated parts, such as hooks, notches, screws, shoulders, springs, wrenches and tissue retaining means and other expedients. These instruments, in addition to all these enumerated complications, have been invariably made of much greater diameter and of a size which makes it practically impossible for the vital structures to be displaced without damage thereto. Moreover, in many instances,

the instruments heretofore used have embodied cutting,

or tearing edges which, because of their construction and/or sharpness, actually cut their way into or through the blood vessels and nerves and thus initiate internal bleeding, severing of nerves leading to partial paralysis, puncture of the peritoneal cavity with resulting peritonitis, puncture of the pleural cavity and lungs resulting in pleurisy, pneumonia, etc.

In the many biopsies which have been performed according to this invention, no patient has experienced any discomfort or injury and the resulting wound is so minute that it heals in twenty-four hours.

The foregoing detailed description sets forth the invention and its uses in its preferred forms, but the invention is to be understood as fully commensurate with the appended claim.

Having thus fully described the invention, what I claim as new and desire to secure by Letters Patent is:

Means for performing bone biopsies comprising: a tubular trephine guide having an internal diameter of approximately 2 mm. andprovided on its exterior with a longitudinally disposed graduated dimensional scale to indicate when the desired depth of penetration has been attained to reach the predetermined bone structure, the free end of said guide being externally tapered, a solid rod locator projectable through said trephine guide to and beyond the tapered end of the latter with the projecting end of the locator of greatly elongated conical shape terminating in a point of such degree of sharpness as to pass through fascia and muscles but not so sharp as to puncture blood vessels and nerves, the tapered surface of the guide forming substantially a continuation of the conical end surface of the locator, whereby the assembled guide and locator push aside nerves and blood vessels without damage thereto until they arrive at the predetermined point of the bone to be biopsied.

References Cited in the file of this patent UNITED STATES PATENTS 1,014,128 Crowe Jan. 9, 1912 1,123,730 Greenfield Jan. 5, 1915 1,867,624 Hoffman July 19, 1932 2,426,535 Turkel Aug. 26, 1947 2,496,111 Turkel Jan. 31, 1950 2,642,872 Parker June 23, 1953 FOREIGN PATENTS 9,732 Great Britain May 10, 1901

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1014128 *Dec 16, 1910Jan 9, 1912Charles E CroweTrocar.
US1123730 *Sep 13, 1912Jan 5, 1915Edwin J GreenfieldAnnular bone-saw.
US1867624 *Apr 1, 1930Jul 19, 1932Memorial Hospital For The TreaDevice for obtaining biopsy specimens
US2426535 *Oct 21, 1944Aug 26, 1947Henry TurkelInfusion and biopsy needle
US2496111 *Sep 26, 1947Jan 31, 1950Turkel HenryBiopsy needle
US2642872 *Oct 7, 1950Jun 23, 1953Parker Joseph ADevice for piercing ears
GB190109732A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3577979 *Feb 6, 1968May 11, 1971Harry Van Der GaastDisposable surgical skin punch
US3608539 *Nov 6, 1968Sep 28, 1971Miller Daniel GMethod for the biopsy of subcutaneous masses
US3628524 *Feb 28, 1969Dec 21, 1971Jamshidi KhosrowBiopsy needle
US3788119 *Aug 17, 1972Jan 29, 1974Baxter Laboratories IncMethod of forming spinal needle
US3800783 *Jun 22, 1972Apr 2, 1974Jamshidi KMuscle biopsy device
US3848601 *Jun 14, 1972Nov 19, 1974G MaMethod for interbody fusion of the spine
US3850158 *Jul 9, 1973Nov 26, 1974Elias EBone biopsy instrument and method
US3893445 *Jan 9, 1974Jul 8, 1975Becton Dickinson CoBone marrow biopsy instrument
US3913566 *Jul 17, 1974Oct 21, 1975Illinois Tool WorksBiopsy tool and method
US3943932 *Jan 17, 1975Mar 16, 1976Yen Kong WooAcupuncture needles and holder
US4010737 *Jul 18, 1973Mar 8, 1977Vilaghy Miklos IBone biopsy instrument kit
US4099518 *May 10, 1976Jul 11, 1978Baylis Shelby MBiopsy apparatus
US4230123 *Oct 31, 1978Oct 28, 1980Hawkins Jr Irvin FNeedle sheath complex and process for decompression and biopsy
US4306570 *Aug 20, 1980Dec 22, 1981Matthews Larry SCounter rotating biopsy needle
US4543966 *May 16, 1984Oct 1, 1985Downs Surgical PlcFor taking bone marrow biopsies
US4559936 *Sep 29, 1983Dec 24, 1985Hill Edward BApparatus for facilitating hip arthoplasty
US4682606 *Feb 3, 1986Jul 28, 1987Decaprio Vincent HLocalizing biopsy apparatus
US4696308 *Apr 9, 1986Sep 29, 1987The Cleveland Clinic FoundationCore sampling apparatus
US4702260 *Apr 16, 1985Oct 27, 1987Ko Pen WangTo obtain tissue samples from a patient
US4712548 *Dec 19, 1985Dec 15, 1987Enstroem HansBlood lancing device
US4895146 *Dec 29, 1988Jan 23, 1990Klaus DraenertSurgical bone-grinding instrument
US4913143 *May 28, 1986Apr 3, 1990The United States Of America As Represented By The Secretary Of The Air ForceSample collecting apparatus
US5133359 *Feb 8, 1991Jul 28, 1992Du-Kedem Technologies Ltd.Hard tissue biopsy instrument with rotary drive
US5135525 *Jun 1, 1990Aug 4, 1992B. Braun Melsungen AgCatheter set for continuous spinal anaesthesia
US5152763 *Apr 2, 1991Oct 6, 1992Johnson Lanny LMethod for grafting bone
US5341816 *Dec 7, 1992Aug 30, 1994Allen William CBiopsy device
US5395317 *Oct 30, 1991Mar 7, 1995Smith & Nephew Dyonics, Inc.Unilateral biportal percutaneous surgical procedure
US5423330 *Mar 10, 1993Jun 13, 1995The University Of MiamiCapsule suction punch instrument and method of use
US5439464 *Mar 9, 1993Aug 8, 1995Shapiro Partners LimitedMethod and instruments for performing arthroscopic spinal surgery
US5476102 *Mar 1, 1995Dec 19, 1995Baxter International Inc.Biopsy needle assembly and guide
US5477862 *Mar 14, 1994Dec 26, 1995Haaga; John R.Cutting tip for biopsy needle
US5515861 *Jan 31, 1995May 14, 1996Smith; Jack V.Tissue extraction tool
US5649547 *Feb 10, 1995Jul 22, 1997Biopsys Medical, Inc.Methods and devices for automated biopsy and collection of soft tissue
US5655542 *Jan 26, 1995Aug 12, 1997Weilandt; AndersFor extracting a segment from tissue
US5762629 *May 2, 1996Jun 9, 1998Smith & Nephew, Inc.Oval cannula assembly and method of use
US5807277 *Dec 15, 1995Sep 15, 1998Swaim; William R.Biopsy hand tool for capturing tissue sample
US5928164 *Jan 9, 1998Jul 27, 1999Ethicon Endo-Surgery, Inc.Apparatus for automated biopsy and collection of soft tissue
US5980469 *Jan 9, 1998Nov 9, 1999Ethicon Endo-Surgery, Inc.Method and apparatus for automated biopsy and collection of soft tissue
US6017316 *Jun 18, 1997Jan 25, 2000Biopsys MedicalVacuum control system and method for automated biopsy device
US6267732Apr 4, 2000Jul 31, 2001Imagyn Medical Technologies, Inc.Incisional breast biopsy device
US6383145Oct 20, 2000May 7, 2002Imagyn Medical Technologies California, Inc.Incisional breast biopsy device
US6428486Dec 21, 2000Aug 6, 2002Ethicon Endo-Surgery, Inc.Methods and devices for automated biopsy and collection of soft tissue
US6468279Jan 27, 1998Oct 22, 2002Kyphon Inc.Slip-fit handle for hand-held instruments that access interior body regions
US6478751 *Apr 18, 2000Nov 12, 2002Allegiance CorporationBone marrow aspiration needle
US6551253Feb 2, 2001Apr 22, 2003Imagyn Medical TechnologiesIncisional breast biopsy device
US6575919Oct 24, 2000Jun 10, 2003Kyphon Inc.Hand-held instruments that access interior body regions
US6679886Aug 28, 2001Jan 20, 2004Synthes (Usa)Tools and methods for creating cavities in bone
US6712773Sep 11, 2000Mar 30, 2004Tyco Healthcare Group LpBiopsy system
US6749595 *Jun 15, 2000Jun 15, 2004Kieran P. J. MurphyCement delivery needle
US6814743Dec 26, 2001Nov 9, 2004Origin Medsystems, Inc.Temporary seal and method for facilitating anastomosis
US6860860Nov 19, 2001Mar 1, 2005Tyco Healthcare Group, LpTissue sampling and removal apparatus and method
US6942669 *Nov 21, 2001Sep 13, 2005Michel KurcDrilling device comprising a bone recuperating trephine
US7063703Aug 26, 2002Jun 20, 2006Kyphon Inc.Slip-fit handle for hand-held instruments that access interior body regions
US7081122 *Oct 19, 1999Jul 25, 2006Kyphon Inc.Hand-held instruments that access interior body regions
US7189207May 23, 2003Mar 13, 2007Tyco Healthcare Group LpBiopsy system having a single use loading unit operable with a trocar driver, a knife driver and firing module
US7226424Feb 11, 2003Jun 5, 2007Ethicon Endo-Surgery, Inc.Methods and devices for automated biopsy and collection of soft tissue
US7399306May 8, 2003Jul 15, 2008Kyphon Inc.Hand-held instruments that access interior body regions
US7476226Dec 18, 2003Jan 13, 2009Synthes (U.S.A.)Tools and methods for creating cavities in bone
US7513877Jun 3, 2004Apr 7, 2009Tyco Healthcare Group LpTissue sampling and removal apparatus and method
US7544203Sep 27, 2004Jun 9, 2009Maquet Cardiovascular LlcTemporary seal and method for facilitating anastomosis
US7572263Nov 20, 2002Aug 11, 2009Arthrocare CorporationHigh pressure applicator
US7648466Oct 24, 2007Jan 19, 2010Ethicon Endo-Surgery, Inc.Manually rotatable piercer
US7794411Oct 31, 2007Sep 14, 2010Devicor Medical Products, Inc.Methods and devices for automated biopsy and collection of soft tissue
US7918803Aug 4, 2009Apr 5, 2011Devicor Medical Products, Inc.Methods and devices for automated biopsy and collection of soft tissue
US7935122 *Dec 23, 2004May 3, 2011Arthrocare CorporationCannula having asymmetrically-shaped threads
US7947062Apr 15, 2002May 24, 2011Maquet Cardiovascular LlcTemporary anastomotic seal and method
US7981050Feb 6, 2007Jul 19, 2011Devicor Medical Products, Inc.Methods and devices for automated biopsy and collection of soft tissue
US8123756 *Mar 6, 2006Feb 28, 2012Neurotherm, Inc.High pressure delivery system
US8128577Jan 16, 2007Mar 6, 2012Tyco Healthcare Group LpBiopsy system
US8251997 *Nov 29, 2011Aug 28, 2012Warsaw Orthopedic, Inc.Method for inserting an artificial implant between two adjacent vertebrae along a coronal plane
US8372076 *Feb 2, 2011Feb 12, 2013Warsaw Orthopedic, Inc.Method for use of dilating stylet and cannula
US8591435Mar 11, 2011Nov 26, 2013Devicor Medical Products, Inc.Methods and devices for biopsy and collection of soft tissue
US8728005 *May 11, 2012May 20, 2014W. Thomas McClellanBiopsy needle system for obtaining a tissue biopsy specimen
US8758344Aug 28, 2012Jun 24, 2014Warsaw Orthopedic, Inc.Spinal implant and instruments
US20110130759 *Feb 2, 2011Jun 2, 2011Simonton T AndrewMethod for use of dilating stylet and cannula
US20120071984 *Nov 29, 2011Mar 22, 2012Michelson Gary KMethod for inserting an artificial implant between two adjacent vertebrae along a coronal plane
US20120289860 *May 11, 2012Nov 15, 2012Mcclellan W ThomasBiopsy needle system for obtaining a tissue biopsy specimen
EP1448103A1 *Oct 28, 2002Aug 25, 2004Movdice Holding, Inc.Biopsy/access tool with integrated biopsy device and access cannula and use thereof
WO1992008410A1 *Nov 12, 1991May 29, 1992Dan KedemHard tissue biopsy instrument
WO2001078590A1 *Apr 5, 2001Oct 25, 2001Allegiance CorpBone marrow aspiration needle
WO2009150554A1Apr 16, 2009Dec 17, 2009Tecres S.P.A.Surgical device
Classifications
U.S. Classification600/567, 606/184
International ClassificationA61B10/00, A61B10/02, A61B17/34, A61B17/16
Cooperative ClassificationA61B17/3421, A61B17/1637, A61B17/1671, A61B10/025
European ClassificationA61B10/02P4, A61B17/16S4