Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2942223 A
Publication typeGrant
Publication dateJun 21, 1960
Filing dateAug 9, 1957
Priority dateAug 9, 1957
Publication numberUS 2942223 A, US 2942223A, US-A-2942223, US2942223 A, US2942223A
InventorsAloi Anthony J, Lennox Thomas H
Original AssigneeGen Electric
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Electrical resistance heater
US 2942223 A
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

June 21, 1960 T. H. LENNQX ETAL 2,942,223

ELECTRICAL RESISTANCE HEATER Filed Aug. 9, 1957 lnvenhrs: Thomas H. Lennox Anfhony J. Aloi i Their Ahornay United States Patent-O ELECTRICAL RESISTANCE HEATER Thomas H. Lennox, Redondo Beach, Calif., and Anthony J. Aloi, Shelbyville, Ind., assignors to General Electric Company, a corporation of New York Filed Aug. 9, 1957, Ser. No. 677,343

4 Claims. (Cl. 338-246 This is a continuation-in-part of the co-pending application,-Serial No. 441,808, filed July 7, 1954, now abandoned, and assigned to the same assignee as the present invention.

This invention relates to electrical resistance heaters and has particular application to sheathed heaters of the type wherein an electrical resistance heating element is imbedded in a compacted mass of heat-conducting and electrically insulating material which is in turn enclosed by an outer metallic sheath.

It will be appreciated that in general the sheath configuration of such a heater is fixed within relatively narrow limits dictated by performance and cost considerations and also, in many cases, by specified physical size limits. By reason of these relatively narrow limits, serious problems have been encountered in connection with the accompanying limitations on the freedom and ver satility of design of resistance heating elements for such heaters and on the selection of materials to be used in these elements. Such problems have been particularly pressing in both the relatively high and the relatively low resistance ranges.

For instance, it will be realized that in providing increasingly higher resistance elements within configurations already fixed by other design criteria, the point is eventually reached where the wire diameter is so small that it lacks sufficient mechanical rigidity for the usual handling and manufacturing techniques. Moreover, as this point is approached, the choice of materials becomes increasingly limited to those having the higher resistivity values.

A problem is also encountered in providing relatively low resistance elements within certain sheath configurations already established by the various design considerations involved. It is well known that the resistance of a conventional helically wound resistance element can be decreased by increasing the cross-sectional area thereof and by decreasing its length. The maximum diameter of a wire which is to be helically wound to fit a given sheath configuration is of course limited by various design and manufacturing considerations such as the fact that as the diameter increases, the wire becomes increasingly stiff and more difficult to form into a helical shape. Sheathed heater constructions of the type wherein the heating element consists of a straight length of solid resistance wire extending concentrically within the sheath have been employed, and it has been found that constructions of this type are well adapted to heaters in the low resistance ranges since the use of both a minimum length of wire and a relatively large wire diameter is permitted.

However, it has been found that, in most designs employing this construction, the diameter of the wire required is still relatively small compared to the diameter of the sheath required to achieve the desired heat flow density; and for this reason, the radial distance between the resistance element and the sheath is in most cases excessively large from the standpoint of temperature Patented June 21, 1960 drop through the heat-conducting, electrically insulating material packed between the resistance element and the sheath. The net result is that the heater element in such a design must operate at a correspondingly higher temperature in order to provide a given desired sheath temperature, a condition which, of course, tends to reduce the operating life of the resistance element.

Thus it can be appreciated from the foregoing discussion that with sheathed heater constructions and configurations heretofore employed, the freedom and versatility of design has long been hampered and limited by reason of the foregoing and other considerations, particularly in the higher and lower resistance ranges.

It is accordingly one object of this invention to provide an improved sheathed heater construction which permits a greater freedom and versatility of design both as to the configurations that may be employed and as to the selection of materials for the resistance heating elements therein. I

It is another object of this invention to provide a sheathed heater having an improved resistance heating element which is not subject to the aforementioned disadvantages in the upper and lower resistance ranges.

It is a further object of this invention to provide an improved construction for a resistance heating element, which construction provides a high degree of mechanical rigidity and ruggedness, particularly advantageous in the high-resistance ranges.

It is still a further object of this invention to provide an improved construction for a resistance heating element in a sheathed heater, which construction permits the temperature drop between the heater element and the sheath to be minimized with particular effectiveness in the lower resistance ranges.

Briefly stated, in accordance with one aspect of this invention, a sheathed heater is provided with a resistance heating element having a tubular cross-section defining a core space running through the element. The heating element is embedded in a mass of electrically insulating, heat-conducting material which is in turn enclosed by the outer metallic sheath of the heater. In the preferred embodiment, the core of the tubular resistance heating element is filled with a compacted electrically insulating material which may or may not have good heat-conducting properties and the embedding mass of insulant is likewise compacted material but has good heat-conductingproperties.

For very low resistances, the heating element is preferably formed of a straight length of tubular electrical resistance material extending concentrically within the sheath.v Since the diameter of the sheath for a given heater application is already fixed within relatively narrow limits by other-design considerations, it will be appreciated that the arrangement just described provides, among other advantages, a lower temperature drop between the heating element and the sheath than would be realized with a straight solid conductor heating element since the heat-emitting surfaces of the heating element can be located radially closer to the sheath than would be the case with a solid conductor. Consequently, the tubular element can operate at a correspondingly lower temperature with an accompanying increase in operating life.

er resistance values, the diameter of the resistance Wire becomes so small that its mechanical rigidity falls below that required for the normal handling and manufacturing procedures.

By employing the tubular element construction of this invention, however, a greater mechanical rigidity is obtained for any given cross-sectional area and, hence, higher resistance heaters can be manufactured with the normal manufacturing and handling processes than heretofore practicable.

This invention will be better understood and other objects and advantages will be apparent from the following description taken in connection with the accompanying drawing, and its scope will be pointed out in the appended claims. 7

With "reference to the drawing, Fig. l is an elevational view, partly in cross-section, of one embodiment of a sheathed heater embodying this invention and having particular application to the lower resistance ranges;

Fig. 2 is a fragmentary view, also partly in cross-section, of a sheathed heater illustrating another embodiment of this invention in which the resistance heating element is formed into a helical shape particularly suitable for the medium and higher resistance applications;

Fig. 3 is an enlarged fragmentary view of the heating element of the heater illustrated in Fig. 2;

Fig. 4 is an elevational view, partly in cross-section, of

another form of a sheathed heater having particular ap- I plication to the lower resistance ranges; and

Fig. '5 is a cross-section of the heater of Fig. 4 taken along line 55 of Fig. 4. 7

Referring to the drawing, Fig. l discloses one form of a heater comprising an outer metallic sheath 1, a tubular resistance heating element 2 which extends concentrically within the sheath '1, and a pair of terminals 3 and 4which are electrically connected to the opposite ends of the heating element 2 in any suitable manner.

In the embodiment illustrated, the tubular heating element 2 is embedded in a densely compacted mass of electrically insulating, heat-conducting material 6 such as magnesium oxide, aluminum oxide, 'or other material having suitable electrical insulating and heat-conducting properties. The insulating-material 6 is normally loaded into the sheath in powdered or granular form and then compacted to a'dense mass in any suitable manner, preferably by elongating and reducing the diameter of the sheath '1 by swaging or rolling. It will 'be understood that other heat-conducting and electrically insulating materials, which may not require compacting, may be em- "ployed such as, for instance, alumina or magnesia cements and the like.

The heating element 2-is of an annular or other tubular cross-section defining a core'spa'ce 5 which extends longitudinally within the element. The core space '5 is filled with a core packing 7 formed by compacting a suitable electrically insulating material, such as MgO. In this manner, the core packing 7 serves to protect the inner surface of the heating element 2 from the deleterious 'efie'cts of atmospheric oxygen an'd other gases to which it might otherwisefbe exposed and further serves to improve the structural rigidity and ruggedness of the heating element. While it has been found convenient to uti- 'lize magnesium-oxide for the corepackingV, it Will be -=1indcistood that other electrically insulating materials ma be employed forthis purpose, such as those stated above in connection with the material 6, although'it is not necessary that the core packing 7 have good heat- -'rangement *will be "preferred for advantages already stated. embodiment of a-sh'eathed "heater'where core 'space"5 is left unfilled is illustrated in "Figs. 4 and 5 where tubular element 2 is'embedded in a thermallycon- "ducting compacted masso'felectrical insulant 6'such as imagn'esium -oxide although *ot'ner suitable materials not 4 necessarily requiring compacting, such as alumina or magnesia cements, may be satisfactorily used. As in the embodiment of Fig. 1, electrical energy is supplied to element 2 via terminals 3 and 4; however, in the embodiment illustrated in Fig. 4, the terminals 3 and 4 are con nected to element 2 preferably by welding the ends thereof within the core space 5 proximate the ends of element 2. Of course, it can be appreciated that it may be desirable to utilize alumina cement or other like materials as mass 6 for embedding tubular elemetn 2 where the exigencies of satisfactory heater design require a resistance element for generating suitable quantities of heat having dimensions such that compacting of mass 6 is not practical or is likely to result in the collapse of element 2.

As has been previously set forth, the final diameter of the sheath 1 is usually fixed within relatively narrow limits by the various design considerations for the particular application in which the heater is to be employed. Some of these considerations are the desired operating temperature of the sheath, the heat fiow density per unit of the sheath and the overall length limitations.

It can be seen therefore that with a given design wherein it is desired to employ a relatively low resistance heating element, the heat-emittingsurface of the resistance heating element will be located closer to the sheath with the tubular heating element arrangement of Figs. '1, 4, and 5 than with a solid straight conductor of the type which has heretofore been employed in this range. As a result, with the construction of Figs. 1, 4, and 5, :the temperature drop between the heating element and the sheath is lower than would be the case if a solid conductor construction'were employed, since the radial distance through the heat-conducting material 6 between the heating element 2 and the sheath 1 is less with the tubular construction just described.

It will be understood that while it may be preferable from the manufacturing standpoint to employthe cylindrical shape illustrated for the heating element '2, other shapes such as those defined by elliptical, rectangular, triangular, or other tubular cross-sections may be employed with the attendant advantages of this invention discussed herein, so long as the heating element is provided with a hollow core space extending therein.

The construction of 'Figs. -1 and 4 also has an advantags in certain configurations in the higher resistant ranges wherein it might :be found that the design considerations involved ipermit the tubular element of the general type shown in Fig. l to be employed in place of a helically wound element which might otherwise be employed. In the case of sheathed heaters in general, the electrically insulating, heat-conducting :material .in the sheath is normally compacted by rolling ornswaging .01 some similar operation which involves elongating the sheath and reducing .its diameter. The eifects of Ethis operationon ahelicaily wound heating element arc'not only extremely 1difficult :to calculate, but vary :to-a certain degree from one operation vto-thenext by reason-of the ments make it desirableto employ a heating element Wound into a helical shape or other serpentine form.

. Referringparticularly s to :Fig. 2, :aresistanceheating I element 8 is embedded in almassof heat conducting and electrically insulating material 9 which is tfurther enclosed by an outer metallic sheath "16. T he heating element 8, 'shownin the cnIargedfragmentary View of-l ig. 3 for convenience of illustration is formed of a length of hollow nsistence-wire having a tubular -.cross-section defining a core space 11 extending within the wire. The core space 11 is filled with an electrically insulating material 12v which is preferably compacted into a dense mass by a suitable process such as by rolling or swagtng. It has been found convenient to carry out this cornpacting process while the tubular conductor 8 is still in a straight form prior to bending it into the helical shape illustrated, although other methods may be found to be satisfactory. Although in some cases, it may be found unnecessary to compact the insulating material 12 which fills the core 11 of the heating element 8, it will be found preferable in most instances to compact this core material to a dense mass since, as pointed out in connection with the description of Fig. 1, the compacted core further adds to the mechanical rigidity and ruggedness of the heating element without undesirably affecting the suitability of the wire for being readily bent into various shapes and forms. In certain instances, however, as pointed out above in connection with Figs. 1, 4, and 5, it may be found unnecessary to provide the core packing 12 although, for reasons just set forth, the embodiment wherein a dense core of insulating material is provided will generally be preferred.

After the heating element 8 is formed into the desired shape and inserted into the sheath the electrically insulating and heat-conducting material 9, which may be a material such as magnesium oxide or aluminum oxide in powdered or granular form, is loaded into the sheath to fill the sheath and enclose the heating element. The insulating material 9 is then compacted to a dense mass preferably by elongating and reducing the diameter of the sheath 10 by swaging, rolling, or some similar process.

It will be appreciated that the arrangement just described permits the construction of higher resistance heating elements for any given wire diameter, and for any given desired resistance, permits a wire having a larger outside diameter to be used if desired, thus allowing a more rugged and mechanically rigid heating element to be constructed. This advantage is particularly important as the higher resistance ranges are approached wherein, by reason of the necessity for decreasing the wire diameter to achieve the higher resistance values, the structural rigidity of the heating element becomes reduced and the wire becomes increasingly difficult and tedious to handle during the various manufacturing operations with the usual techniques and procedures.

In addition, this invention permits a greater flexibility in the choice of materials to be used in the resistance heating element, since for any given wire diameter and resistance value, materials having lower resistivity values can be employed without the necessity for reducing the outside diameter of the wire and without substantially affecting the mechanical rigidity of the structure.

It will be understood that the embodiments of this invention set forth herein are of a descriptive rather than of a limiting nature and that various modifications, substitutions and combinations may be employed in accordance with these teachings without departing from the scope of this invention in its broader aspects.

What we claim as new and desire to secure by Letters Patent of the United States is:

1. An electrical resistance sheath heater comprising a hollow elongated outer sheath, a resistance heating element disposed within the sheath and extending longitudinally thereof in laterally spaced relation, the heating element comprising an elongated hollow tube member of electrically resistive material, a quantity of compact electrically insulating heat conducting material disposed between the sheath and heating element for conducting heat from the heating element to the sheath, and a pair of terminal means at least partially received within the sheath and connected respectively to the opposite ends of the heating element.

2. An electrical resistance sheath heater comprising a rigid hollow elongated metal sheath, a resistance heating element disposed within the sheath and extending longitudinally thereof in laterally spaced relation, the heating element consisting of a hollow metal tube member of electrically resistive material, a quantity of heat conducting electrically insulating material disposed between the heating element and sheath for conducting heat between the same, and a pair of terminals connected respectively to the opposite ends of the heating element.

3. An electric resistance sheath heater comprising an elongated rigid hollow outer sheath, a helical metal wire resistance heating element disposed within the sheath in laterally spaced relation thereto, the wire forming the heating element being in the form of a hollow tubular member, a quantity of compact electrically insulating heat conducting material disposed between the heating element and sheath for conducting heat between the same, and a pair of terminals disposed at least partially within the sheath and connected respectively to the opposite ends of the heating element.

4. An electric resistance sheath heater comprising an elongated rigid hollow outer sheath, a helical metal wire resistance heating element disposed within the sheath in laterally spaced relation thereto, the wire forming the heating element being in the form of a hollow metallic tube member, a quantity of compact electrically insulating material filling the core space within the wire, a quantity of compacted electrically insulating heat conducting material disposed between the heating element and sheath for conducting heat between the same, a quantity of electrically insulating material forming a core filling for said hollow metallic tube member, and a pair of terminals disposed at least partially within the sheath and connected respectively to the opposite ends of the heating element.

References Cited in the file of this patent UNITED STATES PATENTS 703,970 Quain July 1, 1902 1,196,254 McCormick Aug. 29, 1916 2,261,350 Epstein Nov. 4, 1941 2,354,809 Goldstine Aug. 1, 1944 2,459,086 Miller Jan. 11, 1949 2,472,930 Wilkes June 14, 1949 2,508,512 Grinde May 23, 1950 2,568,600 Wirk Sept. 18, 1951 2,680,771 Kistler June 8, 1954 2,790,053 Peterson Apr. 23, 1957

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US703970 *Mar 10, 1902Jul 1, 1902John Robert QuainElectrical heating apparatus.
US1196254 *Feb 21, 1912Aug 29, 1916Allis Chalmers Mfg CoStarting device for electric motors.
US2261350 *May 8, 1940Nov 4, 1941Ind Engineering & Equipment CoElectric resistance heating unit
US2354809 *Sep 18, 1942Aug 1, 1944Rca CorpTransmission line load for high frequencies
US2459086 *Apr 16, 1948Jan 11, 1949Nat Union Radio CorpElectron tube and heater type cathode therefor
US2472930 *Aug 23, 1945Jun 14, 1949Western Electric CoElectrical heating unit
US2508512 *Jan 13, 1949May 23, 1950Phillips Mfg Company IncImmersion-type heater
US2568600 *Aug 12, 1950Sep 18, 1951Siemens AgLow-ohmic electrical resistance
US2680771 *Sep 15, 1950Jun 8, 1954Norton CompanyHigh-temperature resistor for
US2790053 *Dec 27, 1951Apr 23, 1957Peterson Thomas FShielded ignition cable and resistors
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3061808 *Jul 24, 1959Oct 30, 1962Wiegand Co Edwin LElectric heaters
US3225321 *Jun 30, 1961Dec 21, 1965Thermo Electric Co IncElectrical connection for a resistance heater
US7121341Oct 24, 2003Oct 17, 2006Shell Oil CompanyConductor-in-conduit temperature limited heaters
US7202448 *Jun 18, 2003Apr 10, 2007Dentsply International Inc.Device for firing ceramic for dental prostheses
US7219734Oct 24, 2003May 22, 2007Shell Oil CompanyInhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US7225866Jan 31, 2006Jun 5, 2007Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US7320364Apr 22, 2005Jan 22, 2008Shell Oil CompanyInhibiting reflux in a heated well of an in situ conversion system
US7353872Apr 22, 2005Apr 8, 2008Shell Oil CompanyStart-up of temperature limited heaters using direct current (DC)
US7357180Apr 22, 2005Apr 15, 2008Shell Oil CompanyInhibiting effects of sloughing in wellbores
US7370704Apr 22, 2005May 13, 2008Shell Oil CompanyTriaxial temperature limited heater
US7383877Apr 22, 2005Jun 10, 2008Shell Oil CompanyTemperature limited heaters with thermally conductive fluid used to heat subsurface formations
US7431076Apr 22, 2005Oct 7, 2008Shell Oil CompanyTemperature limited heaters using modulated DC power
US7435037Apr 21, 2006Oct 14, 2008Shell Oil CompanyLow temperature barriers with heat interceptor wells for in situ processes
US7461691Jan 23, 2007Dec 9, 2008Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7481274Apr 22, 2005Jan 27, 2009Shell Oil CompanyTemperature limited heaters with relatively constant current
US7490665Apr 22, 2005Feb 17, 2009Shell Oil CompanyVariable frequency temperature limited heaters
US7500528Apr 21, 2006Mar 10, 2009Shell Oil CompanyLow temperature barrier wellbores formed using water flushing
US7510000Apr 22, 2005Mar 31, 2009Shell Oil CompanyReducing viscosity of oil for production from a hydrocarbon containing formation
US7527094Apr 21, 2006May 5, 2009Shell Oil CompanyDouble barrier system for an in situ conversion process
US7533719Apr 20, 2007May 19, 2009Shell Oil CompanyWellhead with non-ferromagnetic materials
US7540324Oct 19, 2007Jun 2, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a checkerboard pattern staged process
US7546873Apr 21, 2006Jun 16, 2009Shell Oil CompanyLow temperature barriers for use with in situ processes
US7549470Oct 20, 2006Jun 23, 2009Shell Oil CompanySolution mining and heating by oxidation for treating hydrocarbon containing formations
US7556095Oct 20, 2006Jul 7, 2009Shell Oil CompanySolution mining dawsonite from hydrocarbon containing formations with a chelating agent
US7556096Oct 20, 2006Jul 7, 2009Shell Oil CompanyVarying heating in dawsonite zones in hydrocarbon containing formations
US7559367Oct 20, 2006Jul 14, 2009Shell Oil CompanyTemperature limited heater with a conduit substantially electrically isolated from the formation
US7559368Oct 20, 2006Jul 14, 2009Shell Oil CompanySolution mining systems and methods for treating hydrocarbon containing formations
US7562706Oct 20, 2006Jul 21, 2009Shell Oil CompanySystems and methods for producing hydrocarbons from tar sands formations
US7562707Oct 19, 2007Jul 21, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a line drive staged process
US7575052Apr 21, 2006Aug 18, 2009Shell Oil CompanyIn situ conversion process utilizing a closed loop heating system
US7575053Apr 21, 2006Aug 18, 2009Shell Oil CompanyLow temperature monitoring system for subsurface barriers
US7581589Oct 20, 2006Sep 1, 2009Shell Oil CompanyMethods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US7584789Oct 20, 2006Sep 8, 2009Shell Oil CompanyMethods of cracking a crude product to produce additional crude products
US7591310Oct 20, 2006Sep 22, 2009Shell Oil CompanyMethods of hydrotreating a liquid stream to remove clogging compounds
US7597147Apr 20, 2007Oct 6, 2009Shell Oil CompanyTemperature limited heaters using phase transformation of ferromagnetic material
US7604052Apr 20, 2007Oct 20, 2009Shell Oil CompanyCompositions produced using an in situ heat treatment process
US7610962Apr 20, 2007Nov 3, 2009Shell Oil CompanyProviding acidic gas to a subterrean formation, such as oil shale, by heating from an electrical heater and injecting through an oil wellbore; one of the acidic acids includes hydrogen sulfide and is introduced at a pressure below the lithostatic pressure of the formation to produce fluids; efficiency
US7631689Apr 20, 2007Dec 15, 2009Shell Oil CompanySulfur barrier for use with in situ processes for treating formations
US7631690Oct 19, 2007Dec 15, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a spiral startup staged sequence
US7635023Apr 20, 2007Dec 22, 2009Shell Oil CompanyTime sequenced heating of multiple layers in a hydrocarbon containing formation
US7635024Oct 19, 2007Dec 22, 2009Shell Oil CompanyHeating tar sands formations to visbreaking temperatures
US7635025Oct 20, 2006Dec 22, 2009Shell Oil CompanyCogeneration systems and processes for treating hydrocarbon containing formations
US7640980Apr 7, 2008Jan 5, 2010Shell Oil CompanyThermal processes for subsurface formations
US7644765Oct 19, 2007Jan 12, 2010Shell Oil CompanyHeating tar sands formations while controlling pressure
US7673681Oct 19, 2007Mar 9, 2010Shell Oil CompanyTreating tar sands formations with karsted zones
US7673786Apr 20, 2007Mar 9, 2010Shell Oil CompanyWelding shield for coupling heaters
US7677310Oct 19, 2007Mar 16, 2010Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US7677314Oct 19, 2007Mar 16, 2010Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US7681647Oct 19, 2007Mar 23, 2010Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US7683296Apr 20, 2007Mar 23, 2010Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US7703513Oct 19, 2007Apr 27, 2010Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US7717171Oct 19, 2007May 18, 2010Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US7730945Oct 19, 2007Jun 8, 2010Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730946Oct 19, 2007Jun 8, 2010Shell Oil CompanyTreating tar sands formations with dolomite
US7730947Oct 19, 2007Jun 8, 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US7735935Jun 1, 2007Jun 15, 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US7785427Apr 20, 2007Aug 31, 2010Shell Oil CompanyChromium, nickel, copper; niobium, iron manganese, nitrogen; nanonitrides; system for heating a subterranean formation;
US7793722Apr 20, 2007Sep 14, 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US7798220Apr 18, 2008Sep 21, 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US7798221May 31, 2007Sep 21, 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7831133Apr 21, 2006Nov 9, 2010Shell Oil CompanyInsulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration
US7831134Apr 21, 2006Nov 9, 2010Shell Oil CompanyGrouped exposed metal heaters
US7832484Apr 18, 2008Nov 16, 2010Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US7841401Oct 19, 2007Nov 30, 2010Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US7841408Apr 18, 2008Nov 30, 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US7841425Apr 18, 2008Nov 30, 2010Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US7845411Oct 19, 2007Dec 7, 2010Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US7849922Apr 18, 2008Dec 14, 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US7860377Apr 21, 2006Dec 28, 2010Shell Oil CompanySubsurface connection methods for subsurface heaters
US7866385Apr 20, 2007Jan 11, 2011Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US7866386Oct 13, 2008Jan 11, 2011Shell Oil Companyproduction of hydrocarbons, hydrogen, and/or other products from various subsurface formations such as hydrocarbon containing formations through use of oxidizing fluids and heat
US7866388Oct 13, 2008Jan 11, 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US7912358Apr 20, 2007Mar 22, 2011Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US7931086Apr 18, 2008Apr 26, 2011Shell Oil CompanyHeating systems for heating subsurface formations
US7942197Apr 21, 2006May 17, 2011Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US7942203Jan 4, 2010May 17, 2011Shell Oil CompanyThermal processes for subsurface formations
US7950453Apr 18, 2008May 31, 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US7986869Apr 21, 2006Jul 26, 2011Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US8011451Oct 13, 2008Sep 6, 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US8027571Apr 21, 2006Sep 27, 2011Shell Oil CompanyIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US8042610Apr 18, 2008Oct 25, 2011Shell Oil CompanyParallel heater system for subsurface formations
US8070840Apr 21, 2006Dec 6, 2011Shell Oil CompanyTreatment of gas from an in situ conversion process
US8083813Apr 20, 2007Dec 27, 2011Shell Oil CompanyMethods of producing transportation fuel
US8113272Oct 13, 2008Feb 14, 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US8146661Oct 13, 2008Apr 3, 2012Shell Oil CompanyCryogenic treatment of gas
US8146669Oct 13, 2008Apr 3, 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US8151880Dec 9, 2010Apr 10, 2012Shell Oil CompanyMethods of making transportation fuel
US8151907Apr 10, 2009Apr 10, 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8162059Oct 13, 2008Apr 24, 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US8162405Apr 10, 2009Apr 24, 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US8172335Apr 10, 2009May 8, 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8177305Apr 10, 2009May 15, 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8191630Apr 28, 2010Jun 5, 2012Shell Oil CompanyCreating fluid injectivity in tar sands formations
US8192682Apr 26, 2010Jun 5, 2012Shell Oil CompanyHigh strength alloys
US8196658Oct 13, 2008Jun 12, 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US8200072Oct 24, 2003Jun 12, 2012Shell Oil CompanyTemperature limited heaters for heating subsurface formations or wellbores
US8220539Oct 9, 2009Jul 17, 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8224163Oct 24, 2003Jul 17, 2012Shell Oil CompanyVariable frequency temperature limited heaters
US8224164 *Oct 24, 2003Jul 17, 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US8224165Apr 21, 2006Jul 17, 2012Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US8225866Jul 21, 2010Jul 24, 2012Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8233782Sep 29, 2010Jul 31, 2012Shell Oil CompanyGrouped exposed metal heaters
US8238730Oct 24, 2003Aug 7, 2012Shell Oil CompanyHigh voltage temperature limited heaters
US8240774Oct 13, 2008Aug 14, 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US8256512Oct 9, 2009Sep 4, 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US8257112Oct 8, 2010Sep 4, 2012Shell Oil CompanyPress-fit coupling joint for joining insulated conductors
US8261832Oct 9, 2009Sep 11, 2012Shell Oil CompanyHeating subsurface formations with fluids
US8267170Oct 9, 2009Sep 18, 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US8267185Oct 9, 2009Sep 18, 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US8272455Oct 13, 2008Sep 25, 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US8276661Oct 13, 2008Oct 2, 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US8281861Oct 9, 2009Oct 9, 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US8327681Apr 18, 2008Dec 11, 2012Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US8327932Apr 9, 2010Dec 11, 2012Shell Oil CompanyRecovering energy from a subsurface formation
US8353347Oct 9, 2009Jan 15, 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US8356935Oct 8, 2010Jan 22, 2013Shell Oil CompanyMethods for assessing a temperature in a subsurface formation
US8381815Apr 18, 2008Feb 26, 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US8434555Apr 9, 2010May 7, 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US8448707Apr 9, 2010May 28, 2013Shell Oil CompanyNon-conducting heater casings
US8459359Apr 18, 2008Jun 11, 2013Shell Oil CompanyTreating nahcolite containing formations and saline zones
US8485252Jul 11, 2012Jul 16, 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8485256Apr 8, 2011Jul 16, 2013Shell Oil CompanyVariable thickness insulated conductors
US8485847 *Aug 30, 2012Jul 16, 2013Shell Oil CompanyPress-fit coupling joint for joining insulated conductors
US8502120Apr 8, 2011Aug 6, 2013Shell Oil CompanyInsulating blocks and methods for installation in insulated conductor heaters
US8536497Oct 13, 2008Sep 17, 2013Shell Oil CompanyMethods for forming long subsurface heaters
US8555971May 31, 2012Oct 15, 2013Shell Oil CompanyTreating tar sands formations with dolomite
US8562078Nov 25, 2009Oct 22, 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8579031May 17, 2011Nov 12, 2013Shell Oil CompanyThermal processes for subsurface formations
US8586866Oct 7, 2011Nov 19, 2013Shell Oil CompanyHydroformed splice for insulated conductors
US8586867Oct 7, 2011Nov 19, 2013Shell Oil CompanyEnd termination for three-phase insulated conductors
US8606091Oct 20, 2006Dec 10, 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US8608249Apr 26, 2010Dec 17, 2013Shell Oil CompanyIn situ thermal processing of an oil shale formation
US8627887Dec 8, 2008Jan 14, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8631866Apr 8, 2011Jan 21, 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8636323Nov 25, 2009Jan 28, 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US8662175Apr 18, 2008Mar 4, 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8701768Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US8701769Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US8732946Oct 7, 2011May 27, 2014Shell Oil CompanyMechanical compaction of insulator for insulated conductor splices
US8739874Apr 8, 2011Jun 3, 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US8752904Apr 10, 2009Jun 17, 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
EP0145060A2 *Nov 14, 1984Jun 19, 1985ThermocoaxManufacturing method for a shielded cable with mineral insulation
Classifications
U.S. Classification338/246, 338/243, 373/127, 219/544
International ClassificationH05B3/42, H05B3/48
Cooperative ClassificationH05B3/48
European ClassificationH05B3/48