Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2974937 A
Publication typeGrant
Publication dateMar 14, 1961
Filing dateNov 3, 1958
Priority dateNov 3, 1958
Publication numberUS 2974937 A, US 2974937A, US-A-2974937, US2974937 A, US2974937A
InventorsKiel Othar M
Original AssigneeJersey Prod Res Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Petroleum recovery from carbonaceous formations
US 2974937 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

March 14, 1961 o. M. KIEL 2,974,937

PETROLEUM RECOVERY FROM CARBONACEOUS FORMATIONS Filed NOV. 5, 1958 PRODUCED S OIL SHALE HOT GASESVK INJECTED Orhor M. Kiel lnveniop By M Q. Attorney United States Patent O PETROLEUM RECOVERY FROM CARBONACEOUS FORMATIONS Othar M. Kiel, Tulsa, Okla., assignor to Jersey Production Research Company, a corporation of Delaware Filed Nov. 3, 1958, Ser. No. 771,435

2 Claims. c1. 262-3) This invention relates to a method for recovering petroleum oil from earthen formations containing hydrocarbons. The invention is specifically adapted to the production of petroleum from subterranean formations of low permeability and those formations in which the petroleum oil is closely bound to the formation material.

Large reserves of crude oil in the form of shale oil are potentially available in large deposits in both this country and abroad. Present methods of recovering this oil have rendered shale oil as a source of additional oil completely infeasible from the present economic viewpoint. It is known in the art that the conventional methods of obtaining petroleum oil from oil shale usually involve the minfrom such retorts then must be disposed of. Even though potential recovery of the oil may approximate 25-75 gallons per ton of shale processed, the aggregate m-imng and processing costs impose such aneconomic burden that shale oil is not at present a commercially feasible source of supply for petroleum.

Accordingly, it is an objective of the present invention to provide an oil recovery method wherein crude oil is readily recovered from oil bearing sub-strata. More specifically, this invention is a process for the in situ dissooiation of petroleum oil within oil shale deposits whereby the petroleum is readily removed and high recovery of oil in place is obtained. It is especially an object of the invention to provide a method for petroleum recovery which is rapid and efiicient. These and related objects of this invention will become more apparent from the ensumg description.

In the operation according to this invention, petroleum oil is separated from oil-bearing shale so that its recovery is readily realized. The first step in the process lies in providing a direct application of heat to an exposed surface of virgin strata. The heat and the application thereof are always applied directly to the surface of untreated strata. Treated strata or an oil-bearing formation is caused to disintegrate and fall away from the untreated oil-bearing formation. That is, the process may be called a selfstoping process which leaves a continuous face of virgin oil shale available for the application of heat to extract the oil therefrom. More particularly, the invention accomplishes in situ decomposition of the oil shale and induces the separation of the oil from the strata in a manner which permits the oil to be produced by a practical thermal activated oil recovery method.

In the process 'of this invention, oil shaleis heated in situ at a temperature above 600 F. and generally withr I expansion of the oil and its dissociation from the stratum the stratum to disintegrate. Thus the earthen 2,974,937. Patented Mar. 14, 1961 ICC 2 material contained in the stratum will separate and fall away from the oil-bearing formation. This leaves a fresh oil-bearing surface exposed to the hot gases.- 7

The process of this invention may be controlled in various ways. In general, the rate of injection of the hot gases may be readily adjusted and controlled by simply regulating the flow and temperature of hot gases onto the face of the shale deposit containing oil. High volumes of high temperature gases will tend to accelerate the rate of production; and, conversely, low volumes and temperatures will tend to retard the process.

In carrying out the present process, drifts or tunnels are made into an oil-containing shale wherein conduits 'or tubing containing perforations are placed along the base of an oil stratum. Well bores laterally spaced from an entrance of the drifts are also drilled as necessary. Tubing which has been placed along the base of the oil shale terminates at these well bores, with oil being produced through these boreholes. Tubing or pipes which are placed along the base of the oil strata are perforated along their lengths to disperse the hot gases onto the face of an oil shale. Further, drifts through which this perforated pipe or tubing is placed are made of sufficient size so that as the oil in the roof is extracted, the roof will stope or fall into the drift, exposing new formations t be treated. The invention may be better understood by reference to the attached figures which schematically depict the em-. bodiment of the invention contemplated to illustrate the best mode of carrying out the invention. a

Figure 1 illustrates a vertical crosssection through an oil-bearing stratum; and

iF-lglllB 2 illustrates avertical cross-section across Figure 1 along the lines I I'II and'further depicts steps in installation of the apparatus and operation of 'this'oilproducing process.

With reference to the drawings, especially to Figure 1,

the numeral 1' designates an oil-bearing formation above which is a relatively non oil-bearing impervious shale stratum 2 and below which is another relatively impervious stratum 3. Further, this deposit is shown outcrop material in a conventional manner. The casing placed in.

this manner leaves a borehole within the oil stratum which is completely uncased and will allow unrestricted flow of vapor from theupper part of the drift into the borehole.

As in conventional oil field practice, the casing may also be extended through the oil-bearing formation and, after being sealed in place, perforated by conventional means whereby produced fluid will pass through the perforations into the borehole to be produced to the surface. By using this technique of placing the casing and then per forating the casing at desired points, control of the production points for fluids from the formation may be effected.

As beforementioned, drifts or tunnels 12 are made into the oil-bearing stratum 1. These tunnels are directed to terminate at the well bore 10. Tubing 11 is then placed in the tunnel, the tubing containing perforations 14 and a pipe cap 16. A cap 15-which fits snugly around tubing 11is placed against the outcropping face of strata 1 and 3. Although not shown, cap 15 may be made of a size to extend over the outcropping face of the shale to seal on both formations 2 and 3 as well as caps of laterally spaced drifts preventing escape of gases therefrom. In the usual 3 case such a large cap is not necessary as oil shale is essentially impermeable to flow of fluids.

To better describe installation of the equipment and the operation of the process in this invention, attention is now directed to Figure 2. First referring to the portion of the figure above letter A, it can be seen that the producing well has been drilled to the top of stratum 3. A drift or tunnel 12 has been completed to the base of this production well 10. Now referring to the figure above the letter B, it can be seen that perforated tubing 11 has been placed in the tunnel 12. Thence looking at the drawing above the letter C, hot gases are being injected through tubing 11. Stoping or disintegration of the shale has started. The stoped shale is shown in the bottom of the drift 12 and is designated by numeral 20. Then on this same figure the illustration above the letter D shows the tunnel or drift 12 becoming larger, and more stoped formation material 20 gathering in this drift. Although material 20 is not shown in Figure 2 to cover tubing 11, it will do so except for perforations 14.

The 'stoped material falling from the roofs of the tunnels or drifts serves as direction batfies for the hot gases. That is, the stoped material falls around the upwardly directed hot gas jets which are injected from the perfora- "tions in the pipe. This stoped material will cover the tubing 11 between perforations 14 but not the perforations themselves, as the force of the upwardly directed hot gases will direct material 28 away from the perforations. There is adequate space for the spent shale in the drifts without covering perforations 14, since for each volume of oil shale that is treated 15 to 50 percent of shale oil will be removed leaving from 85 to 50 percent spent shale. These percentages correspond to the recoveries of oil from oil shale described earlier. The spent shale falling around perforations 14 will form baffles to direct the hot gases upward. These stoped material battles thus direct the hot gases onto the face of the shale and -.prevent the hot gas bypassing from the perforations of the pipe directly through the drift to a production well.

As'may be noted, the surface equipment which would normally be employed for producing and injecting the hot gases as well as the separation equipment for separating the injected gas from the produced oil vapors are not shown. Such equipment would be conventional, and its inclusion here is not considered essential for the purposes of this description.

The underground or in-place separation of the earthen material from the oil as carried out in accordance with the instant process reduces the large mining, crushing, and retorting costs involved in the methods presently used at the earths surface.

While the foregoing description has been directed toward an embodiment of the invention which is considered to constitute the best mode of carrying out the invention, it will be recognized that numerous modifications, additions, and subtractions may be made to the illustrated embodiment without departing from the spirit or scope of this invention.

The invention claimed is:

l. A method for producing oil from a stratum of oil shale comprising driving a drift along the lower portion of the stratum and placing a perforated conduit therein which is capped at its inner end, said drift terminating at a substantially vertical hole drilled from the ground surface, passing hot gases through the conduit toward said borehole at a temperature above 600 F. to vaporize at least a portion of the oil within the shale whereby stoping of the stratum occurs, and recovering oil from said borehole.

2. A method for producing oil from oil-bearing shale formation which :comprises driving a drift at the base of a formation and placing a perforated conduit therein, said drift terminating at a substantially vertical borehole drilled from the ground surface, passing hot gases at a temperature above 600 F. through the perforated conduit to the face of the oil-bearing shale so as to vaporize oil from said shale whereby said shale will stope into the drift leaving virgin oil-bearing shale continuously eX- posed to the hotgases, and producing oil fromv said borehole.

References (Jited in the file of this patent UNITED STATES PATENTS 2,813,583 Marx et al Nov. 19, 1957 2,876,838 Williams Mar. 10, 1959 FOREIGN PATENTS 164,551 Australia Aug. 11, 1955

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2813583 *Dec 6, 1954Nov 19, 1957Phillips Petroleum CoProcess for recovery of petroleum from sands and shale
US2876838 *May 23, 1956Mar 10, 1959Jersey Prod Res CoSecondary recovery process
AU164551B * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3241611 *Apr 10, 1963Mar 22, 1966Equity Oil CompanyRecovery of petroleum products from oil shale
US3358756 *Mar 12, 1965Dec 19, 1967Shell Oil CoMethod for in situ recovery of solid or semi-solid petroleum deposits
US3362751 *Feb 28, 1966Jan 9, 1968Tinlin WilliamMethod and system for recovering shale oil and gas
US3468376 *Feb 10, 1967Sep 23, 1969Mobil Oil CorpThermal conversion of oil shale into recoverable hydrocarbons
US3601193 *Apr 2, 1968Aug 24, 1971Cities Service Oil CoIn situ retorting of oil shale
US3838738 *May 4, 1973Oct 1, 1974Allen JMethod for recovering petroleum from viscous petroleum containing formations including tar sands
US3986557 *Jun 6, 1975Oct 19, 1976Atlantic Richfield CompanyProduction of bitumen from tar sands
US4007788 *Jun 6, 1975Feb 15, 1977Atlantic Richfield CompanyRecovery of bitumen from tar sands
US4158638 *Mar 27, 1978Jun 19, 1979Gulf Research & Development CompanyRecovery of oil from oil shale
US4384613 *Oct 24, 1980May 24, 1983Terra Tek, Inc.Method of in-situ retorting of carbonaceous material for recovery of organic liquids and gases
US4384614 *May 11, 1981May 24, 1983Justheim Pertroleum CompanyMethod of retorting oil shale by velocity flow of super-heated air
US4446921 *Mar 16, 1982May 8, 1984Fried. Krupp Gesellschaft Mit Beschrankter HaftungMethod for underground gasification of solid fuels
US4501326 *Jan 17, 1983Feb 26, 1985Gulf Canada LimitedIn-situ recovery of viscous hydrocarbonaceous crude oil
US4856587 *Oct 27, 1988Aug 15, 1989Nielson Jay PRecovery of oil from oil-bearing formation by continually flowing pressurized heated gas through channel alongside matrix
US4878539 *Aug 2, 1988Nov 7, 1989Anders Energy CorporationMethod and system for maintaining and producing horizontal well bores
US6581684Apr 24, 2001Jun 24, 2003Shell Oil CompanyIn Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US6588504Apr 24, 2001Jul 8, 2003Shell Oil CompanyIn situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US6591906Apr 24, 2001Jul 15, 2003Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US6591907Apr 24, 2001Jul 15, 2003Shell Oil CompanyIn situ thermal processing of a coal formation with a selected vitrinite reflectance
US6607033Apr 24, 2001Aug 19, 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to produce a condensate
US6609570Apr 24, 2001Aug 26, 2003Shell Oil CompanyIn situ thermal processing of a coal formation and ammonia production
US6688387Apr 24, 2001Feb 10, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6698515Apr 24, 2001Mar 2, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a relatively slow heating rate
US6702016Apr 24, 2001Mar 9, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US6708758Apr 24, 2001Mar 23, 2004Shell Oil CompanyIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US6712135Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation in reducing environment
US6712136Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US6712137Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US6715546Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6715547Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US6715548Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6715549Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6719047Apr 24, 2001Apr 13, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US6722429Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6722430Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US6722431Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of hydrocarbons within a relatively permeable formation
US6725920Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US6725921Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation by controlling a pressure of the formation
US6725928Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a distributed combustor
US6729395Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US6729396Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6729397Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729401Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation and ammonia production
US6732794Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6732795Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US6732796Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US6736215Apr 24, 2001May 18, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US6739393Apr 24, 2001May 25, 2004Shell Oil CompanyIn situ thermal processing of a coal formation and tuning production
US6739394Apr 24, 2001May 25, 2004Shell Oil CompanyProduction of synthesis gas from a hydrocarbon containing formation
US6742587Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6742588Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US6742589Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US6742593Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US6745831Apr 24, 2001Jun 8, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US6745832Apr 24, 2001Jun 8, 2004Shell Oil CompanySitu thermal processing of a hydrocarbon containing formation to control product composition
US6745837Apr 24, 2001Jun 8, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US6749021Apr 24, 2001Jun 15, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a controlled heating rate
US6752210Apr 24, 2001Jun 22, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US6758268Apr 24, 2001Jul 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US6761216Apr 24, 2001Jul 13, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US6763886Apr 24, 2001Jul 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with carbon dioxide sequestration
US6769483Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6769485Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ production of synthesis gas from a coal formation through a heat source wellbore
US6789625Apr 24, 2001Sep 14, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US6805195Apr 24, 2001Oct 19, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US6820688Apr 24, 2001Nov 23, 2004Shell Oil CompanyIn situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio
US6866097Apr 24, 2001Mar 15, 2005Shell Oil CompanyIn situ thermal processing of a coal formation to increase a permeability/porosity of the formation
US6871707Apr 24, 2001Mar 29, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US6877554Apr 24, 2001Apr 12, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control
US6877555Apr 24, 2002Apr 12, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation while inhibiting coking
US6880633Apr 24, 2002Apr 19, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce a desired product
US6880635Apr 24, 2001Apr 19, 2005Shell Oil CompanyIn situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio
US6889769Apr 24, 2001May 10, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US6896053Apr 24, 2001May 24, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US6902003Apr 24, 2001Jun 7, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content
US6902004Apr 24, 2001Jun 7, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a movable heating element
US6910536Apr 24, 2001Jun 28, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US6913078Apr 24, 2001Jul 5, 2005Shell Oil CompanyIn Situ thermal processing of hydrocarbons within a relatively impermeable formation
US6915850Apr 24, 2002Jul 12, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation having permeable and impermeable sections
US6918442Apr 24, 2002Jul 19, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation in a reducing environment
US6918443Apr 24, 2002Jul 19, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US6923257Apr 24, 2002Aug 2, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce a condensate
US6923258Jun 12, 2003Aug 2, 2005Shell Oil CompanyIn situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6929067Apr 24, 2002Aug 16, 2005Shell Oil CompanyHeat sources with conductive material for in situ thermal processing of an oil shale formation
US6932155Oct 24, 2002Aug 23, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US6948562Apr 24, 2002Sep 27, 2005Shell Oil CompanyProduction of a blending agent using an in situ thermal process in a relatively permeable formation
US6948563Apr 24, 2001Sep 27, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US6951247Apr 24, 2002Oct 4, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation using horizontal heat sources
US6953087Apr 24, 2001Oct 11, 2005Shell Oil CompanyThermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US6959761Apr 24, 2001Nov 1, 2005Shell Oil CompanyIn situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US6964300Apr 24, 2002Nov 15, 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US6966372Apr 24, 2001Nov 22, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US6966374Apr 24, 2002Nov 22, 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation using gas to increase mobility
US6969123Oct 24, 2002Nov 29, 2005Shell Oil CompanyUpgrading and mining of coal
US6973967Apr 24, 2001Dec 13, 2005Shell Oil CompanySitu thermal processing of a coal formation using pressure and/or temperature control
US6981548Apr 24, 2002Jan 3, 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation
US6991031Apr 24, 2001Jan 31, 2006Shell Oil CompanyIn situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US6991032Apr 24, 2002Jan 31, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US6991033Apr 24, 2002Jan 31, 2006Shell Oil CompanyIn situ thermal processing while controlling pressure in an oil shale formation
US6991036Apr 24, 2002Jan 31, 2006Shell Oil CompanyThermal processing of a relatively permeable formation
US6991045Oct 24, 2002Jan 31, 2006Shell Oil CompanyForming openings in a hydrocarbon containing formation using magnetic tracking
US6994160Apr 24, 2001Feb 7, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US6994161Apr 24, 2001Feb 7, 2006Kevin Albert MaherIn situ thermal processing of a coal formation with a selected moisture content
US6994168 *Apr 24, 2001Feb 7, 2006Scott Lee WellingtonIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US6994169Apr 24, 2002Feb 7, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation with a selected property
US6997255Apr 24, 2001Feb 14, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a reducing environment
US6997518Apr 24, 2002Feb 14, 2006Shell Oil CompanyIn situ thermal processing and solution mining of an oil shale formation
US7004247Apr 24, 2002Feb 28, 2006Shell Oil CompanyConductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US7004251Apr 24, 2002Feb 28, 2006Shell Oil CompanyIn situ thermal processing and remediation of an oil shale formation
US7011154Oct 24, 2002Mar 14, 2006Shell Oil CompanyIn situ recovery from a kerogen and liquid hydrocarbon containing formation
US7013972Apr 24, 2002Mar 21, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a natural distributed combustor
US7017661Apr 24, 2001Mar 28, 2006Shell Oil CompanyProduction of synthesis gas from a coal formation
US7032660 *Apr 24, 2002Apr 25, 2006Shell Oil CompanyIn situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US7036583Sep 24, 2001May 2, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US7040398Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation in a reducing environment
US7040399Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a controlled heating rate
US7040400Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of a relatively impermeable formation using an open wellbore
US7051807Apr 24, 2002May 30, 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with quality control
US7051808Oct 24, 2002May 30, 2006Shell Oil CompanySeismic monitoring of in situ conversion in a hydrocarbon containing formation
US7051811Apr 24, 2002May 30, 2006Shell Oil CompanyIn situ thermal processing through an open wellbore in an oil shale formation
US7055600Apr 24, 2002Jun 6, 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with controlled production rate
US7063145Oct 24, 2002Jun 20, 2006Shell Oil CompanyMethods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US7066254Oct 24, 2002Jun 27, 2006Shell Oil CompanyIn situ thermal processing of a tar sands formation
US7066257Oct 24, 2002Jun 27, 2006Shell Oil CompanyIn situ recovery from lean and rich zones in a hydrocarbon containing formation
US7073578Oct 24, 2003Jul 11, 2006Shell Oil CompanyStaged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US7077198Oct 24, 2002Jul 18, 2006Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using barriers
US7077199Oct 24, 2002Jul 18, 2006Shell Oil CompanyIn situ thermal processing of an oil reservoir formation
US7086465Oct 24, 2002Aug 8, 2006Shell Oil CompanyIn situ production of a blending agent from a hydrocarbon containing formation
US7086468Apr 24, 2001Aug 8, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US7090013Oct 24, 2002Aug 15, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US7096941Apr 24, 2001Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US7096942Apr 24, 2002Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation while controlling pressure
US7096953Apr 24, 2001Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a coal formation using a movable heating element
US7100994Oct 24, 2002Sep 5, 2006Shell Oil CompanyProducing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation
US7104319Oct 24, 2002Sep 12, 2006Shell Oil CompanyIn situ thermal processing of a heavy oil diatomite formation
US7114566Oct 24, 2002Oct 3, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US7121341Oct 24, 2003Oct 17, 2006Shell Oil CompanyConductor-in-conduit temperature limited heaters
US7121342Apr 23, 2004Oct 17, 2006Shell Oil CompanyThermal processes for subsurface formations
US7128153Oct 24, 2002Oct 31, 2006Shell Oil CompanyTreatment of a hydrocarbon containing formation after heating
US7156176Oct 24, 2002Jan 2, 2007Shell Oil CompanyInstallation and use of removable heaters in a hydrocarbon containing formation
US7165615Oct 24, 2002Jan 23, 2007Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US7219734Oct 24, 2003May 22, 2007Shell Oil CompanyInhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US7225866Jan 31, 2006Jun 5, 2007Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US7320364Apr 22, 2005Jan 22, 2008Shell Oil CompanyInhibiting reflux in a heated well of an in situ conversion system
US7353872Apr 22, 2005Apr 8, 2008Shell Oil CompanyStart-up of temperature limited heaters using direct current (DC)
US7357180Apr 22, 2005Apr 15, 2008Shell Oil CompanyInhibiting effects of sloughing in wellbores
US7360588Oct 17, 2006Apr 22, 2008Shell Oil CompanyThermal processes for subsurface formations
US7370704Apr 22, 2005May 13, 2008Shell Oil CompanyTriaxial temperature limited heater
US7383877Apr 22, 2005Jun 10, 2008Shell Oil CompanyTemperature limited heaters with thermally conductive fluid used to heat subsurface formations
US7424915Apr 22, 2005Sep 16, 2008Shell Oil CompanyVacuum pumping of conductor-in-conduit heaters
US7431076Apr 22, 2005Oct 7, 2008Shell Oil CompanyTemperature limited heaters using modulated DC power
US7435037Apr 21, 2006Oct 14, 2008Shell Oil CompanyLow temperature barriers with heat interceptor wells for in situ processes
US7441603Jul 30, 2004Oct 28, 2008Exxonmobil Upstream Research CompanyHydrocarbon recovery from impermeable oil shales
US7461691Jan 23, 2007Dec 9, 2008Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7481274Apr 22, 2005Jan 27, 2009Shell Oil CompanyTemperature limited heaters with relatively constant current
US7490665Apr 22, 2005Feb 17, 2009Shell Oil CompanyVariable frequency temperature limited heaters
US7500528Apr 21, 2006Mar 10, 2009Shell Oil CompanyLow temperature barrier wellbores formed using water flushing
US7510000Apr 22, 2005Mar 31, 2009Shell Oil CompanyReducing viscosity of oil for production from a hydrocarbon containing formation
US7527094Apr 21, 2006May 5, 2009Shell Oil CompanyDouble barrier system for an in situ conversion process
US7533719Apr 20, 2007May 19, 2009Shell Oil CompanyWellhead with non-ferromagnetic materials
US7540324Oct 19, 2007Jun 2, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a checkerboard pattern staged process
US7546873Apr 21, 2006Jun 16, 2009Shell Oil CompanyLow temperature barriers for use with in situ processes
US7549470Oct 20, 2006Jun 23, 2009Shell Oil CompanySolution mining and heating by oxidation for treating hydrocarbon containing formations
US7556095Oct 20, 2006Jul 7, 2009Shell Oil CompanySolution mining dawsonite from hydrocarbon containing formations with a chelating agent
US7556096Oct 20, 2006Jul 7, 2009Shell Oil CompanyVarying heating in dawsonite zones in hydrocarbon containing formations
US7559367Oct 20, 2006Jul 14, 2009Shell Oil CompanyTemperature limited heater with a conduit substantially electrically isolated from the formation
US7559368Oct 20, 2006Jul 14, 2009Shell Oil CompanySolution mining systems and methods for treating hydrocarbon containing formations
US7562706Jul 21, 2009Shell Oil CompanySystems and methods for producing hydrocarbons from tar sands formations
US7562707Jul 21, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a line drive staged process
US7575052Apr 21, 2006Aug 18, 2009Shell Oil CompanyIn situ conversion process utilizing a closed loop heating system
US7575053Apr 21, 2006Aug 18, 2009Shell Oil CompanyLow temperature monitoring system for subsurface barriers
US7581589Oct 20, 2006Sep 1, 2009Shell Oil CompanyMethods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US7584789Oct 20, 2006Sep 8, 2009Shell Oil CompanyMethods of cracking a crude product to produce additional crude products
US7591310Oct 20, 2006Sep 22, 2009Shell Oil CompanyMethods of hydrotreating a liquid stream to remove clogging compounds
US7597147Apr 20, 2007Oct 6, 2009Shell Oil CompanyTemperature limited heaters using phase transformation of ferromagnetic material
US7604052Oct 20, 2009Shell Oil CompanyCompositions produced using an in situ heat treatment process
US7610962Nov 3, 2009Shell Oil CompanySour gas injection for use with in situ heat treatment
US7631689Dec 15, 2009Shell Oil CompanySulfur barrier for use with in situ processes for treating formations
US7631690Oct 19, 2007Dec 15, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a spiral startup staged sequence
US7635023Apr 20, 2007Dec 22, 2009Shell Oil CompanyTime sequenced heating of multiple layers in a hydrocarbon containing formation
US7635024Oct 19, 2007Dec 22, 2009Shell Oil CompanyHeating tar sands formations to visbreaking temperatures
US7635025Oct 20, 2006Dec 22, 2009Shell Oil CompanyCogeneration systems and processes for treating hydrocarbon containing formations
US7640980Jan 5, 2010Shell Oil CompanyThermal processes for subsurface formations
US7644765Oct 19, 2007Jan 12, 2010Shell Oil CompanyHeating tar sands formations while controlling pressure
US7673681Oct 19, 2007Mar 9, 2010Shell Oil CompanyTreating tar sands formations with karsted zones
US7673786Apr 20, 2007Mar 9, 2010Shell Oil CompanyWelding shield for coupling heaters
US7677310Oct 19, 2007Mar 16, 2010Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US7677314Oct 19, 2007Mar 16, 2010Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US7681647Mar 23, 2010Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US7683296Mar 23, 2010Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US7703513Oct 19, 2007Apr 27, 2010Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US7717171Oct 19, 2007May 18, 2010Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US7730945Oct 19, 2007Jun 8, 2010Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730946Oct 19, 2007Jun 8, 2010Shell Oil CompanyTreating tar sands formations with dolomite
US7730947Oct 19, 2007Jun 8, 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US7735935Jun 1, 2007Jun 15, 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US7785427Apr 20, 2007Aug 31, 2010Shell Oil CompanyHigh strength alloys
US7793722Apr 20, 2007Sep 14, 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US7798220Apr 18, 2008Sep 21, 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US7798221Sep 21, 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7831134Apr 21, 2006Nov 9, 2010Shell Oil CompanyGrouped exposed metal heaters
US7832484Apr 18, 2008Nov 16, 2010Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US7841401Oct 19, 2007Nov 30, 2010Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US7841408Apr 18, 2008Nov 30, 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US7841425Nov 30, 2010Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US7845411Dec 7, 2010Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US7849922Dec 14, 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US7857056Oct 15, 2008Dec 28, 2010Exxonmobil Upstream Research CompanyHydrocarbon recovery from impermeable oil shales using sets of fluid-heated fractures
US7860377Apr 21, 2006Dec 28, 2010Shell Oil CompanySubsurface connection methods for subsurface heaters
US7866385Apr 20, 2007Jan 11, 2011Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US7866386Oct 13, 2008Jan 11, 2011Shell Oil CompanyIn situ oxidation of subsurface formations
US7866388Jan 11, 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US7912358Apr 20, 2007Mar 22, 2011Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US7931086Apr 18, 2008Apr 26, 2011Shell Oil CompanyHeating systems for heating subsurface formations
US7942197Apr 21, 2006May 17, 2011Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US7942203May 17, 2011Shell Oil CompanyThermal processes for subsurface formations
US7950453Apr 18, 2008May 31, 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US7986869Apr 21, 2006Jul 26, 2011Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US8011451Sep 6, 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US8027571Sep 27, 2011Shell Oil CompanyIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US8042610Oct 25, 2011Shell Oil CompanyParallel heater system for subsurface formations
US8070840Apr 21, 2006Dec 6, 2011Shell Oil CompanyTreatment of gas from an in situ conversion process
US8082995Dec 27, 2011Exxonmobil Upstream Research CompanyOptimization of untreated oil shale geometry to control subsidence
US8083813Dec 27, 2011Shell Oil CompanyMethods of producing transportation fuel
US8087460Jan 3, 2012Exxonmobil Upstream Research CompanyGranular electrical connections for in situ formation heating
US8104537Jan 31, 2012Exxonmobil Upstream Research CompanyMethod of developing subsurface freeze zone
US8113272Oct 13, 2008Feb 14, 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US8122955Apr 18, 2008Feb 28, 2012Exxonmobil Upstream Research CompanyDownhole burners for in situ conversion of organic-rich rock formations
US8146661Oct 13, 2008Apr 3, 2012Shell Oil CompanyCryogenic treatment of gas
US8146664May 21, 2008Apr 3, 2012Exxonmobil Upstream Research CompanyUtilization of low BTU gas generated during in situ heating of organic-rich rock
US8146669Oct 13, 2008Apr 3, 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US8151877Apr 18, 2008Apr 10, 2012Exxonmobil Upstream Research CompanyDownhole burner wells for in situ conversion of organic-rich rock formations
US8151880Dec 9, 2010Apr 10, 2012Shell Oil CompanyMethods of making transportation fuel
US8151884Oct 10, 2007Apr 10, 2012Exxonmobil Upstream Research CompanyCombined development of oil shale by in situ heating with a deeper hydrocarbon resource
US8151907Apr 10, 2009Apr 10, 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8162059Apr 24, 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US8162405Apr 24, 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US8172335May 8, 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8177305Apr 10, 2009May 15, 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8191630Apr 28, 2010Jun 5, 2012Shell Oil CompanyCreating fluid injectivity in tar sands formations
US8192682Apr 26, 2010Jun 5, 2012Shell Oil CompanyHigh strength alloys
US8196658Jun 12, 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US8220539Jul 17, 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8224163Oct 24, 2003Jul 17, 2012Shell Oil CompanyVariable frequency temperature limited heaters
US8224164Oct 24, 2003Jul 17, 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US8224165Jul 17, 2012Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US8225866Jul 21, 2010Jul 24, 2012Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8230927May 16, 2011Jul 31, 2012Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US8230929Jul 31, 2012Exxonmobil Upstream Research CompanyMethods of producing hydrocarbons for substantially constant composition gas generation
US8233782Jul 31, 2012Shell Oil CompanyGrouped exposed metal heaters
US8238730Aug 7, 2012Shell Oil CompanyHigh voltage temperature limited heaters
US8240774Aug 14, 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US8256512Oct 9, 2009Sep 4, 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US8261823Sep 11, 2012Hill Gilman AIntegrated in situ retorting and refining of oil shale
US8261832Sep 11, 2012Shell Oil CompanyHeating subsurface formations with fluids
US8267170Sep 18, 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US8267185Sep 18, 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US8272455Sep 25, 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US8276661Oct 2, 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US8281861Oct 9, 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US8327681Dec 11, 2012Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US8327932Apr 9, 2010Dec 11, 2012Shell Oil CompanyRecovering energy from a subsurface formation
US8353347Oct 9, 2009Jan 15, 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US8355623Jan 15, 2013Shell Oil CompanyTemperature limited heaters with high power factors
US8381815Apr 18, 2008Feb 26, 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US8434555Apr 9, 2010May 7, 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US8448707May 28, 2013Shell Oil CompanyNon-conducting heater casings
US8459359Apr 18, 2008Jun 11, 2013Shell Oil CompanyTreating nahcolite containing formations and saline zones
US8485252Jul 11, 2012Jul 16, 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8536497Oct 13, 2008Sep 17, 2013Shell Oil CompanyMethods for forming long subsurface heaters
US8540020Apr 21, 2010Sep 24, 2013Exxonmobil Upstream Research CompanyConverting organic matter from a subterranean formation into producible hydrocarbons by controlling production operations based on availability of one or more production resources
US8555971May 31, 2012Oct 15, 2013Shell Oil CompanyTreating tar sands formations with dolomite
US8562078Nov 25, 2009Oct 22, 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8579031May 17, 2011Nov 12, 2013Shell Oil CompanyThermal processes for subsurface formations
US8596355Dec 10, 2010Dec 3, 2013Exxonmobil Upstream Research CompanyOptimized well spacing for in situ shale oil development
US8606091Oct 20, 2006Dec 10, 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US8608249Apr 26, 2010Dec 17, 2013Shell Oil CompanyIn situ thermal processing of an oil shale formation
US8616279Jan 7, 2010Dec 31, 2013Exxonmobil Upstream Research CompanyWater treatment following shale oil production by in situ heating
US8616280Jun 17, 2011Dec 31, 2013Exxonmobil Upstream Research CompanyWellbore mechanical integrity for in situ pyrolysis
US8622127Jun 17, 2011Jan 7, 2014Exxonmobil Upstream Research CompanyOlefin reduction for in situ pyrolysis oil generation
US8622133Mar 7, 2008Jan 7, 2014Exxonmobil Upstream Research CompanyResistive heater for in situ formation heating
US8627887Dec 8, 2008Jan 14, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8631866Apr 8, 2011Jan 21, 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8636323Nov 25, 2009Jan 28, 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US8641150Dec 11, 2009Feb 4, 2014Exxonmobil Upstream Research CompanyIn situ co-development of oil shale with mineral recovery
US8662175Apr 18, 2008Mar 4, 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8701768Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US8701769Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US8739874Apr 8, 2011Jun 3, 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US8752904Apr 10, 2009Jun 17, 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8770284Apr 19, 2013Jul 8, 2014Exxonmobil Upstream Research CompanySystems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US8789586Jul 12, 2013Jul 29, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8791396Apr 18, 2008Jul 29, 2014Shell Oil CompanyFloating insulated conductors for heating subsurface formations
US8820406Apr 8, 2011Sep 2, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8833453Apr 8, 2011Sep 16, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US8833454 *Jul 19, 2010Sep 16, 2014Conocophillips CompanyHydrocarbon recovery method
US8851170Apr 9, 2010Oct 7, 2014Shell Oil CompanyHeater assisted fluid treatment of a subsurface formation
US8857506May 24, 2013Oct 14, 2014Shell Oil CompanyAlternate energy source usage methods for in situ heat treatment processes
US8863839Nov 15, 2010Oct 21, 2014Exxonmobil Upstream Research CompanyEnhanced convection for in situ pyrolysis of organic-rich rock formations
US8875789Aug 8, 2011Nov 4, 2014Exxonmobil Upstream Research CompanyProcess for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US8881806Oct 9, 2009Nov 11, 2014Shell Oil CompanySystems and methods for treating a subsurface formation with electrical conductors
US9016370Apr 6, 2012Apr 28, 2015Shell Oil CompanyPartial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9022109Jan 21, 2014May 5, 2015Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US9022118Oct 9, 2009May 5, 2015Shell Oil CompanyDouble insulated heaters for treating subsurface formations
US9033042Apr 8, 2011May 19, 2015Shell Oil CompanyForming bitumen barriers in subsurface hydrocarbon formations
US9051829Oct 9, 2009Jun 9, 2015Shell Oil CompanyPerforated electrical conductors for treating subsurface formations
US9080441Oct 26, 2012Jul 14, 2015Exxonmobil Upstream Research CompanyMultiple electrical connections to optimize heating for in situ pyrolysis
US9085972Aug 6, 2012Jul 21, 2015Gilman A. HillIntegrated in situ retorting and refining of heavy-oil and tar sand deposits
US9127523Apr 8, 2011Sep 8, 2015Shell Oil CompanyBarrier methods for use in subsurface hydrocarbon formations
US9127538Apr 8, 2011Sep 8, 2015Shell Oil CompanyMethodologies for treatment of hydrocarbon formations using staged pyrolyzation
US9129728Oct 9, 2009Sep 8, 2015Shell Oil CompanySystems and methods of forming subsurface wellbores
US9181780Apr 18, 2008Nov 10, 2015Shell Oil CompanyControlling and assessing pressure conditions during treatment of tar sands formations
US9309755Oct 4, 2012Apr 12, 2016Shell Oil CompanyThermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US20020027001 *Apr 24, 2001Mar 7, 2002Wellington Scott L.In situ thermal processing of a coal formation to produce a selected gas mixture
US20020040778 *Apr 24, 2001Apr 11, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US20020046883 *Apr 24, 2001Apr 25, 2002Wellington Scott LeeIn situ thermal processing of a coal formation using pressure and/or temperature control
US20020049360 *Apr 24, 2001Apr 25, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce a mixture including ammonia
US20020076212 *Apr 24, 2001Jun 20, 2002Etuan ZhangIn situ thermal processing of a hydrocarbon containing formation producing a mixture with oxygenated hydrocarbons
US20020132862 *Apr 24, 2001Sep 19, 2002Vinegar Harold J.Production of synthesis gas from a coal formation
US20030079877 *Apr 24, 2002May 1, 2003Wellington Scott LeeIn situ thermal processing of a relatively impermeable formation in a reducing environment
US20030080604 *Apr 24, 2002May 1, 2003Vinegar Harold J.In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US20030098149 *Apr 24, 2002May 29, 2003Wellington Scott LeeIn situ thermal recovery from a relatively permeable formation using gas to increase mobility
US20030098605 *Apr 24, 2002May 29, 2003Vinegar Harold J.In situ thermal recovery from a relatively permeable formation
US20030102125 *Apr 24, 2002Jun 5, 2003Wellington Scott LeeIn situ thermal processing of a relatively permeable formation in a reducing environment
US20030102126 *Apr 24, 2002Jun 5, 2003Sumnu-Dindoruk Meliha DenizIn situ thermal recovery from a relatively permeable formation with controlled production rate
US20030102130 *Apr 24, 2002Jun 5, 2003Vinegar Harold J.In situ thermal recovery from a relatively permeable formation with quality control
US20030111223 *Apr 24, 2002Jun 19, 2003Rouffignac Eric Pierre DeIn situ thermal processing of an oil shale formation using horizontal heat sources
US20030116315 *Apr 24, 2002Jun 26, 2003Wellington Scott LeeIn situ thermal processing of a relatively permeable formation
US20030131993 *Apr 24, 2002Jul 17, 2003Etuan ZhangIn situ thermal processing of an oil shale formation with a selected property
US20030131995 *Apr 24, 2002Jul 17, 2003De Rouffignac Eric PierreIn situ thermal processing of a relatively impermeable formation to increase permeability of the formation
US20030131996 *Apr 24, 2002Jul 17, 2003Vinegar Harold J.In situ thermal processing of an oil shale formation having permeable and impermeable sections
US20030136558 *Apr 24, 2002Jul 24, 2003Wellington Scott LeeIn situ thermal processing of an oil shale formation to produce a desired product
US20030136559 *Apr 24, 2002Jul 24, 2003Wellington Scott LeeIn situ thermal processing while controlling pressure in an oil shale formation
US20030137181 *Apr 24, 2002Jul 24, 2003Wellington Scott LeeIn situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US20030141066 *Apr 24, 2002Jul 31, 2003Karanikas John MichaelIn situ thermal processing of an oil shale formation while inhibiting coking
US20030141067 *Apr 24, 2002Jul 31, 2003Rouffignac Eric Pierre DeIn situ thermal processing of an oil shale formation to increase permeability of the formation
US20030141068 *Apr 24, 2002Jul 31, 2003Pierre De Rouffignac EricIn situ thermal processing through an open wellbore in an oil shale formation
US20030142964 *Apr 24, 2002Jul 31, 2003Wellington Scott LeeIn situ thermal processing of an oil shale formation using a controlled heating rate
US20030146002 *Apr 24, 2002Aug 7, 2003Vinegar Harold J.Removable heat sources for in situ thermal processing of an oil shale formation
US20030148894 *Apr 24, 2002Aug 7, 2003Vinegar Harold J.In situ thermal processing of an oil shale formation using a natural distributed combustor
US20030155111 *Oct 24, 2002Aug 21, 2003Shell Oil CoIn situ thermal processing of a tar sands formation
US20030164239 *Apr 24, 2002Sep 4, 2003Wellington Scott LeeIn situ thermal processing of an oil shale formation in a reducing environment
US20030173080 *Apr 24, 2002Sep 18, 2003Berchenko Ilya EmilIn situ thermal processing of an oil shale formation using a pattern of heat sources
US20030173081 *Oct 24, 2002Sep 18, 2003Vinegar Harold J.In situ thermal processing of an oil reservoir formation
US20030173085 *Oct 24, 2002Sep 18, 2003Vinegar Harold J.Upgrading and mining of coal
US20030192691 *Oct 24, 2002Oct 16, 2003Vinegar Harold J.In situ recovery from a hydrocarbon containing formation using barriers
US20030192693 *Oct 24, 2002Oct 16, 2003Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US20030196801 *Oct 24, 2002Oct 23, 2003Vinegar Harold J.In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US20030196810 *Oct 24, 2002Oct 23, 2003Vinegar Harold J.Treatment of a hydrocarbon containing formation after heating
US20030201098 *Oct 24, 2002Oct 30, 2003Karanikas John MichaelIn situ recovery from a hydrocarbon containing formation using one or more simulations
US20030205378 *Oct 24, 2002Nov 6, 2003Wellington Scott LeeIn situ recovery from lean and rich zones in a hydrocarbon containing formation
US20040040715 *Oct 24, 2002Mar 4, 2004Wellington Scott LeeIn situ production of a blending agent from a hydrocarbon containing formation
US20040144541 *Oct 24, 2003Jul 29, 2004Picha Mark GregoryForming wellbores using acoustic methods
US20040145969 *Oct 24, 2003Jul 29, 2004Taixu BaiInhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US20040211554 *Apr 24, 2002Oct 28, 2004Vinegar Harold J.Heat sources with conductive material for in situ thermal processing of an oil shale formation
US20040211557 *Apr 24, 2002Oct 28, 2004Cole Anthony ThomasConductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US20050092483 *Oct 24, 2002May 5, 2005Vinegar Harold J.In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US20050269077 *Apr 22, 2005Dec 8, 2005Sandberg Chester LStart-up of temperature limited heaters using direct current (DC)
US20050269088 *Apr 22, 2005Dec 8, 2005Vinegar Harold JInhibiting effects of sloughing in wellbores
US20050269089 *Apr 22, 2005Dec 8, 2005Sandberg Chester LTemperature limited heaters using modulated DC power
US20050269090 *Apr 22, 2005Dec 8, 2005Vinegar Harold JTemperature limited heaters with thermally conductive fluid used to heat subsurface formations
US20050269091 *Apr 22, 2005Dec 8, 2005Guillermo Pastor-SanzReducing viscosity of oil for production from a hydrocarbon containing formation
US20050269092 *Apr 22, 2005Dec 8, 2005Vinegar Harold JVacuum pumping of conductor-in-conduit heaters
US20050269093 *Apr 22, 2005Dec 8, 2005Sandberg Chester LVariable frequency temperature limited heaters
US20050269094 *Apr 22, 2005Dec 8, 2005Harris Christopher KTriaxial temperature limited heater
US20050269095 *Apr 22, 2005Dec 8, 2005Fairbanks Michael DInhibiting reflux in a heated well of an in situ conversion system
US20050269313 *Apr 22, 2005Dec 8, 2005Vinegar Harold JTemperature limited heaters with high power factors
US20060005968 *Apr 22, 2005Jan 12, 2006Vinegar Harold JTemperature limited heaters with relatively constant current
US20060289536 *Apr 22, 2005Dec 28, 2006Vinegar Harold JSubsurface electrical heaters using nitride insulation
US20070045265 *Apr 21, 2006Mar 1, 2007Mckinzie Billy J IiLow temperature barriers with heat interceptor wells for in situ processes
US20070045266 *Apr 21, 2006Mar 1, 2007Sandberg Chester LIn situ conversion process utilizing a closed loop heating system
US20070045267 *Apr 21, 2006Mar 1, 2007Vinegar Harold JSubsurface connection methods for subsurface heaters
US20070045268 *Apr 21, 2006Mar 1, 2007Vinegar Harold JVarying properties along lengths of temperature limited heaters
US20070095536 *Oct 20, 2006May 3, 2007Vinegar Harold JCogeneration systems and processes for treating hydrocarbon containing formations
US20070108200 *Apr 21, 2006May 17, 2007Mckinzie Billy J IiLow temperature barrier wellbores formed using water flushing
US20070108201 *Apr 21, 2006May 17, 2007Vinegar Harold JInsulated conductor temperature limited heater for subsurface heating coupled in a three-phase wye configuration
US20070119098 *Apr 21, 2006May 31, 2007Zaida DiazTreatment of gas from an in situ conversion process
US20070125533 *Oct 20, 2006Jun 7, 2007Minderhoud Johannes KMethods of hydrotreating a liquid stream to remove clogging compounds
US20070127897 *Oct 20, 2006Jun 7, 2007John Randy CSubsurface heaters with low sulfidation rates
US20070131419 *Oct 20, 2006Jun 14, 2007Maria Roes Augustinus WMethods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US20070131420 *Oct 20, 2006Jun 14, 2007Weijian MoMethods of cracking a crude product to produce additional crude products
US20070131427 *Oct 20, 2006Jun 14, 2007Ruijian LiSystems and methods for producing hydrocarbons from tar sands formations
US20070133960 *Apr 21, 2006Jun 14, 2007Vinegar Harold JIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US20070133961 *Apr 21, 2006Jun 14, 2007Fairbanks Michael DMethods and systems for producing fluid from an in situ conversion process
US20070137856 *Apr 21, 2006Jun 21, 2007Mckinzie Billy JDouble barrier system for an in situ conversion process
US20070144732 *Apr 21, 2006Jun 28, 2007Kim Dong SLow temperature barriers for use with in situ processes
US20070221377 *Oct 20, 2006Sep 27, 2007Vinegar Harold JSolution mining systems and methods for treating hydrocarbon containing formations
US20080035346 *Apr 20, 2007Feb 14, 2008Vijay NairMethods of producing transportation fuel
US20080035348 *Apr 20, 2007Feb 14, 2008Vitek John MTemperature limited heaters using phase transformation of ferromagnetic material
US20080035705 *Apr 20, 2007Feb 14, 2008Menotti James LWelding shield for coupling heaters
US20080038144 *Apr 20, 2007Feb 14, 2008Maziasz Phillip JHigh strength alloys
US20080087427 *Oct 10, 2007Apr 17, 2008Kaminsky Robert DCombined development of oil shale by in situ heating with a deeper hydrocarbon resource
US20080107577 *Oct 20, 2006May 8, 2008Vinegar Harold JVarying heating in dawsonite zones in hydrocarbon containing formations
US20080128134 *Oct 19, 2007Jun 5, 2008Ramesh Raju MudunuriProducing drive fluid in situ in tar sands formations
US20080135244 *Oct 19, 2007Jun 12, 2008David Scott MillerHeating hydrocarbon containing formations in a line drive staged process
US20080135253 *Oct 19, 2007Jun 12, 2008Vinegar Harold JTreating tar sands formations with karsted zones
US20080135254 *Oct 19, 2007Jun 12, 2008Vinegar Harold JIn situ heat treatment process utilizing a closed loop heating system
US20080142216 *Oct 19, 2007Jun 19, 2008Vinegar Harold JTreating tar sands formations with dolomite
US20080142217 *Oct 19, 2007Jun 19, 2008Roelof PietersonUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US20080173442 *Apr 20, 2007Jul 24, 2008Vinegar Harold JSulfur barrier for use with in situ processes for treating formations
US20080173444 *Apr 20, 2007Jul 24, 2008Francis Marion StoneAlternate energy source usage for in situ heat treatment processes
US20080173449 *Apr 20, 2007Jul 24, 2008Thomas David FowlerSour gas injection for use with in situ heat treatment
US20080173450 *Apr 20, 2007Jul 24, 2008Bernard GoldbergTime sequenced heating of multiple layers in a hydrocarbon containing formation
US20080174115 *Apr 20, 2007Jul 24, 2008Gene Richard LambirthPower systems utilizing the heat of produced formation fluid
US20080185147 *Oct 19, 2007Aug 7, 2008Vinegar Harold JWax barrier for use with in situ processes for treating formations
US20080217003 *Oct 19, 2007Sep 11, 2008Myron Ira KuhlmanGas injection to inhibit migration during an in situ heat treatment process
US20080217004 *Oct 19, 2007Sep 11, 2008De Rouffignac Eric PierreHeating hydrocarbon containing formations in a checkerboard pattern staged process
US20080217015 *Oct 19, 2007Sep 11, 2008Vinegar Harold JHeating hydrocarbon containing formations in a spiral startup staged sequence
US20080217016 *Oct 19, 2007Sep 11, 2008George Leo StegemeierCreating fluid injectivity in tar sands formations
US20080217321 *Apr 21, 2006Sep 11, 2008Vinegar Harold JTemperature limited heater utilizing non-ferromagnetic conductor
US20080277113 *Oct 19, 2007Nov 13, 2008George Leo StegemeierHeating tar sands formations while controlling pressure
US20080283241 *Apr 18, 2008Nov 20, 2008Kaminsky Robert DDownhole burner wells for in situ conversion of organic-rich rock formations
US20080283246 *Oct 19, 2007Nov 20, 2008John Michael KaranikasHeating tar sands formations to visbreaking temperatures
US20080289819 *May 21, 2008Nov 27, 2008Kaminsky Robert DUtilization of low BTU gas generated during in situ heating of organic-rich rock
US20080314593 *Jun 1, 2007Dec 25, 2008Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US20090014180 *Oct 19, 2007Jan 15, 2009George Leo StegemeierMoving hydrocarbons through portions of tar sands formations with a fluid
US20090014181 *Oct 19, 2007Jan 15, 2009Vinegar Harold JCreating and maintaining a gas cap in tar sands formations
US20090038795 *Oct 15, 2008Feb 12, 2009Kaminsky Robert DHydrocarbon Recovery From Impermeable Oil Shales Using Sets of Fluid-Heated Fractures
US20090050319 *Apr 18, 2008Feb 26, 2009Kaminsky Robert DDownhole burners for in situ conversion of organic-rich rock formations
US20090071652 *Apr 18, 2008Mar 19, 2009Vinegar Harold JIn situ heat treatment from multiple layers of a tar sands formation
US20090078461 *Apr 18, 2008Mar 26, 2009Arthur James MansureDrilling subsurface wellbores with cutting structures
US20090084547 *Apr 18, 2008Apr 2, 2009Walter Farman FarmayanDownhole burner systems and methods for heating subsurface formations
US20090090509 *Apr 18, 2008Apr 9, 2009Vinegar Harold JIn situ recovery from residually heated sections in a hydrocarbon containing formation
US20090095476 *Apr 18, 2008Apr 16, 2009Scott Vinh NguyenMolten salt as a heat transfer fluid for heating a subsurface formation
US20090095477 *Apr 18, 2008Apr 16, 2009Scott Vinh NguyenHeating systems for heating subsurface formations
US20090095479 *Apr 18, 2008Apr 16, 2009John Michael KaranikasProduction from multiple zones of a tar sands formation
US20090095480 *Apr 18, 2008Apr 16, 2009Vinegar Harold JIn situ heat treatment of a tar sands formation after drive process treatment
US20090120646 *Apr 18, 2008May 14, 2009Dong Sub KimElectrically isolating insulated conductor heater
US20090126929 *Apr 18, 2008May 21, 2009Vinegar Harold JTreating nahcolite containing formations and saline zones
US20090145598 *Nov 14, 2008Jun 11, 2009Symington William AOptimization of untreated oil shale geometry to control subsidence
US20090189617 *Jul 30, 2009David BurnsContinuous subsurface heater temperature measurement
US20090194269 *Oct 13, 2008Aug 6, 2009Vinegar Harold JThree-phase heaters with common overburden sections for heating subsurface formations
US20090194282 *Oct 13, 2008Aug 6, 2009Gary Lee BeerIn situ oxidation of subsurface formations
US20090194329 *Oct 13, 2008Aug 6, 2009Rosalvina Ramona GuimeransMethods for forming wellbores in heated formations
US20090194333 *Oct 13, 2008Aug 6, 2009Macdonald DuncanRanging methods for developing wellbores in subsurface formations
US20090194524 *Oct 13, 2008Aug 6, 2009Dong Sub KimMethods for forming long subsurface heaters
US20090200025 *Oct 13, 2008Aug 13, 2009Jose Luis BravoHigh temperature methods for forming oxidizer fuel
US20090200031 *Oct 13, 2008Aug 13, 2009David Scott MillerIrregular spacing of heat sources for treating hydrocarbon containing formations
US20090200854 *Oct 13, 2008Aug 13, 2009Vinegar Harold JSolution mining and in situ treatment of nahcolite beds
US20090260823 *Oct 22, 2009Robert George Prince-WrightMines and tunnels for use in treating subsurface hydrocarbon containing formations
US20090260824 *Oct 22, 2009David Booth BurnsHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US20090272533 *Apr 10, 2009Nov 5, 2009David Booth BurnsHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US20090272535 *Nov 5, 2009David Booth BurnsUsing tunnels for treating subsurface hydrocarbon containing formations
US20090272578 *Nov 5, 2009Macdonald Duncan CharlesDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US20090308608 *Mar 17, 2009Dec 17, 2009Kaminsky Robert DField Managment For Substantially Constant Composition Gas Generation
US20090321075 *Dec 31, 2009Christopher Kelvin HarrisParallel heater system for subsurface formations
US20100089575 *Dec 11, 2009Apr 15, 2010Kaminsky Robert DIn Situ Co-Development of Oil Shale With Mineral Recovery
US20100089584 *Oct 9, 2009Apr 15, 2010David Booth BurnsDouble insulated heaters for treating subsurface formations
US20100089585 *Dec 15, 2009Apr 15, 2010Kaminsky Robert DMethod of Developing Subsurface Freeze Zone
US20100089586 *Oct 9, 2009Apr 15, 2010John Andrew StaneckiMovable heaters for treating subsurface hydrocarbon containing formations
US20100096137 *Oct 9, 2009Apr 22, 2010Scott Vinh NguyenCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US20100101783 *Oct 9, 2009Apr 29, 2010Vinegar Harold JUsing self-regulating nuclear reactors in treating a subsurface formation
US20100101784 *Oct 9, 2009Apr 29, 2010Vinegar Harold JControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US20100108310 *Oct 9, 2009May 6, 2010Thomas David FowlerOffset barrier wells in subsurface formations
US20100108379 *Oct 9, 2009May 6, 2010David Alston EdburySystems and methods of forming subsurface wellbores
US20100147521 *Oct 9, 2009Jun 17, 2010Xueying XiePerforated electrical conductors for treating subsurface formations
US20100147522 *Oct 9, 2009Jun 17, 2010Xueying XieSystems and methods for treating a subsurface formation with electrical conductors
US20100206570 *Oct 9, 2009Aug 19, 2010Ernesto Rafael Fonseca OcamposCirculated heated transfer fluid systems used to treat a subsurface formation
US20100218946 *Sep 2, 2010Symington William AWater Treatment Following Shale Oil Production By In Situ Heating
US20100224368 *Sep 9, 2010Stanley Leroy MasonDeployment of insulated conductors for treating subsurface formations
US20100258265 *Apr 9, 2010Oct 14, 2010John Michael KaranikasRecovering energy from a subsurface formation
US20100258290 *Oct 14, 2010Ronald Marshall BassNon-conducting heater casings
US20100258291 *Apr 9, 2010Oct 14, 2010Everett De St Remey EdwardHeated liners for treating subsurface hydrocarbon containing formations
US20100258309 *Apr 9, 2010Oct 14, 2010Oluropo Rufus AyodeleHeater assisted fluid treatment of a subsurface formation
US20100270015 *Oct 28, 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation
US20100272595 *Apr 26, 2010Oct 28, 2010Shell Oil CompanyHigh strength alloys
US20100276141 *Nov 4, 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US20110017455 *Jan 27, 2011Conocophillips CompanyHydrocarbon recovery method
US20110088904 *Apr 21, 2011De Rouffignac Eric PierreIn situ recovery from a hydrocarbon containing formation
US20110132600 *Jun 9, 2011Robert D KaminskyOptimized Well Spacing For In Situ Shale Oil Development
US20110146982 *Jun 23, 2011Kaminsky Robert DEnhanced Convection For In Situ Pyrolysis of Organic-Rich Rock Formations
DE1245290B *Jan 19, 1966Jul 27, 1967Equity Oil CompanyVerfahren zur Gewinnung von Erdoel aus OElschiefer
Classifications
U.S. Classification299/2, 299/6, 166/272.7
International ClassificationE21B43/16, E21B43/24
Cooperative ClassificationE21B43/24
European ClassificationE21B43/24