Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2979528 A
Publication typeGrant
Publication dateApr 11, 1961
Filing dateDec 30, 1957
Priority dateOct 19, 1953
Publication numberUS 2979528 A, US 2979528A, US-A-2979528, US2979528 A, US2979528A
InventorsLester G Lundsted
Original AssigneeWyandotte Chemicals Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Nitrogen-containing polyoxyalkylene detergent compositions
US 2979528 A
Abstract  available in
Images(5)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent NITROGEN-CONTAINING POLYOXYALKYLENE 1 DETERGENT COMPOSITIONS Lester G. Lnndsted, Grosse lle, Mich., assignor to Wyantlotte Chemicals Corporation, Wyandotte, Mich., a corporation of Michigan I No Drawing. Filed Dec. 30, 1957, Ser. No. 705,730

Claims. c1. 260-584) ice known alkylarylsulfonates. Thus, it is desirable that compositions be found which have the highest detergency effectiveness and, particularly, it is desirable that compositions be found which are superior to other synthetic detergents with respect to detergency effectiveness.

In industrial laundering practice, two general temperature ranges are employed depending on the type of fabric and dyes involved. For white cottons and fast-colored cotton, the temperature of the detergent solution is usually'about 140-160 F. On the other hand, for woolens, delicate synthetic fabrics and fabrics containing dyes which tend to run at 140-160 F., the laundering process is usually carried out at about 90-95 F. It is under the tion Serial No. 316,984 was a continuation-in-part of my application Serial No. 153,946, filed April 4, 1950, now abandoned.

A basically new approach for the chemical structure of a polyoxyalkylene nonionic surface active agent is dis- 1 closed in U.S. 2,674,619. Prior to the disclosure of U.S. 2,674,619, polyoxyalkylene nonionic surface active agents were known which were composed of a long hydrocarbon chain or alkyl-substituted ring compound, e.g., nonylphenol, and a water-solubilizing polyoxyethylene chain.

The compositions disclosed in U.S. 2,674,619 depart from of ethylene oxide condensed with the polyoxypropylene chain. The compositions of US. 2,674,619 are initially prepared by condensing the required amount of propylene oxide with a lower molecular weight reactive hydrogen compound, followed by condensation with ethylene oxide so as to produce water solubility and introduce surface active properties. The disclosure of U.S. 2,674,619 teaches thatany of a broad group of reactive hydrogen compounds can be used which have at least two reactive hydrogen atoms and are relatively low molecular weight materials which arenot hydrophobic in and of themselves. It is indicated that, ordinarily, the reactive hydrogen compound constitutes such a relatively small proportion of the block polymer surfactant composition that the reactive hydrogen compound has little or no material effect on the properties of the final detergent composition.

Although such nonionic surface active agents have important "and unique chemical and physical properties,

many uses of these compounds are based on their effective- 1 ness as detergents and in many cases the polyoxyalkylene nonionic surface active agents are in direct competition with Other different synthetic detergents, such as the welllatter condition that the compositions of this invention,

as aspecifal class, are unusually superior to those generally disclosed'in U.S. 2,674,619.

An object of this invention is, therefore, to provide polyoxyalkylene nonionic surface active agents which have improved effectiveness as detergents.

which is, therefore, a specific improvement over the general' class of such detergents disclosed in U.S. 2,674,619.

I'have found that the foregoing objectives and others to be indicated herein are attained by polyoxyalkylene nonionic surface active agents of the general class disclosed in U.S. 2,674,619 but where the reactive hydrogen compound employed is one of a specific class of reactive hydrogen compounds, i.e., nitrogen-containing reactive hydrogen compounds. The polyoxyalkylene nonionic detergent compositions of this invention constitute a superior classof detergents in several respects when compared to the polyoxyalkylene nonionic detergent compositions of U.S. 2,674,619 as exemplified by those prepared with propylene glycol as the reactive hydrogen compound. Specifically, nitrogen-containing polyoxyalkylene nonionic detergent compositions of this invention can be prepared which produce higher detergency effectiveness than that of other propylene glycol-based compositions disclosed in U.S. 2,674,619 regardless of the proportions of propylene oxide and ethylene oxide employed in preparing the latter. The nitrogen-containing compositions of this invention have unusually superior detergency effectiveness in relatively cold water, i.e., at F. Thus, nitrogen-containing polyoxyalkylene compositions of this invention can be and have been prepared which are better detergents "at 90 F. than can be prepared using propylene'glycol or other reactive hydrogen compounds disclosed in U.S. 2,674,619 regardless of the proportions of propylene oxide and ethylene oxide used inthe latter. Furthermore, the compositions of this invention are at least as efiective at F., and usually more effective, detergents than are such compositions of U.S. 2,674,619.

Thus, the compositions of this invention constitute a specific class of compositions within the scope of the disclosure of U.S. 2,674,619 but possessing unusually superior detergency properties when compared to other compositions of the broad class disclosed in the patent.

The compositions of this invention possess a still further unique and characterizing feature when compared to the glycol-based surfactants disclosed in U.S. 2,674,619

of this invention and which greatly reduce undesirable lime soap formation by maintaining the lime soap curds in a dispersed condition.

It will be recognized from the foregoing that the significant and characterizing feature of the compositions of this invention is the class of reactive hydrogen compounds that is employed. The reactive hydrogen compound must contain at least one nitrogen atom and contain at least two reactive hydrogen atoms and not more than about six reactive hydrogen atoms. Usually, at least one of the reactive hydrogen atoms is attached to a nitrogen atom. An exception is in the case where the reactive hydrogen compound is derived from a reactive hydrogen compound in which one or more reactive hydrogen atoms were attached to a nitrogen atom. Triisopropanolamine, derived from ammonia and propylene oxide, is an example of the latter. The expression reactive hydrogen atom is well known to those skilled in the art of alkylene oxide chemistry. It may be stated, however, that the expression reactive hydrogen atom. is used in this application to mean that the compound contains a hydrogen atom which is sufiiciently labile to open the epoxide ring of 1,2-propylene oxide and will react with methyl magnesium iodide to liberate methane in the classical Zerewitinofii reaction (see Niederl and Niederl, Micromethods of Quantitative Organic Analysis, page 263, John Wiley & Sons, New York City, 1946).

An equally important characteristic of the class of nitrogen-cntaining reactive hydrogen compounds is that the compounds used must be relatively lower molecular weight compounds which are not essentially hydrophobic in and of themselves. By this is meant that the condensation product of the reactive hydrogen compound with ethylene oxide alone would not yield a detergent having a carbon soil removal value of 100 by the procedure for determining the carbon soil removal value set forth in U.S. 2,674,619, column-6, lines 11-75 and column 7, lines 1-49. Thus, the nitrogen-containing reactive hydrogen compound used is one which is not sufliciently hydrophobic so that it could serve as the hydrophobic element of a nonionic surfactant and the latter must be provided by the defined oxypropylene chains in the compositions. Generally, the nitrogen-containing reactive hydrogen compound has up to about six, in-- elusive, carbon atoms. When the nitrogen-containing reactive hydrogen compound is so defined, there still remains a reasonably broad group of such compounds which can be used. Ammonia, primary amines, alkylene polyamines, alkanolamines, heterocyclic nitrogen compounds are examples of the classes of nitrogen-containing reactive hydrogen compounds which can be used.

Thus, primary amines having not over six carbon atoms such as methylamine, ethylamine, propylamine, butylamine, amylamine, hexylamine and aniline are satisfactory. Alkylene polyamines, especially aliphatic primary diamines, having not over six carbon atoms are the preferred reactive hydrogen compounds since the highest detergency values have been obtained when these were used. These include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, hexamethylenediamine, phenylenediamine and the like. Alkanolamines having not over six carbon atoms can be used such as monoethanolarnine, diethanolamine, triethanolamine, isopropanolamine, tri(2-propanol)a mine, Z-aminol-butanol, N-butyl-di(2-propanol)amine and the like. Furthermore, heterocyclic nitrogen compounds containing a hetero N atom can be employed, such as piperazine, Z-methylpiperazine, 2,5-dimethylpiperazine, imidazimidazole, pyrazolidine, pyrazolidone, hydantoin, dimethylhydantoin and the like. Hydroxyl amine and the hydroxylamine derivatives and aminophenol and aminophenol derivatives can also be used.

The compositions of this invention are surface active mixtures of conjugated polyoxypropylene-polyoxyethylene compounds based on the nitrogen-containing reactive 5 harness a p ,--.a

hydrogen compound wherein chains of oxypropylene groups having a defined molecular weight are attached to the nucleus of the reactive hydrogen compound at the sites of the reactive hydrogen atoms and wherein chains of oxyethylene groups are attached to the ends of the oxypropylene chains. The compositions are prepared by condensing propylene oxide with the nitrogen-containing reactive hydrogen compound and subsequentlycondensing ethylene oxide with the propylene oxide-reactive hydrogen compound condensate.

The collective molecular weight of the oxypropylene chains attached to the nitrogen-containing reactive hydrogen compound must be at least about 900 and can range up to about 25,000 or higher. Since the reactive hydrogen compound employed is one having not more than about six carbon atoms, it is not sufficiently hydrophobic in and of itself so that a detergent would be obtained by simply condensing ethylene oxide with the reactive hydrogen compound. Therefore, the hydrophobic element of the surface active compositions of the invention necessarily is found in the defined oxypropylene chains. This significant feature distinguishes the compositions from those known in the art prior to U.S. 2,674,619 wherein propylene oxide and ethylene oxide were treated as comparable materials and condensed with long carbon chain reactive hydrogen compounds in order to introduce water solubility. The compositions of this invention rely on the hydrophobic oxypropylene chain just as do the compositions of U.S. 2,674,619, but distinguish over the general broad class of compositions disclosed in U.S. 2,674,619 by virtue of the specific class of reactive hydrogen compounds here employed. The advantages for the compositions of this invention set forth hereinabove are obtained when the compositions have oxypropylene chains having a molecular weight of at least about 900 and up to 25,000. The best detergent compositions are obtained, however, when the molecular weight of the oxypropylene chains is in the range of about 1000 to 15,000. The molecular weight stated and that reported in the examples to follow is for the molecular weight of the oxypropylene chains themselves and does not include the molecular weight of the particular reactive hydrogen compound employed.

It is to be noted that it is not necessary to use pure propylene oxide in producing the oxypropylene chains of the detergent compositions, although this is preferred. Small amounts, for example up to about 5 weight percent, of ethylene oxide can be included in the propylene oxide employed to prepare the hydrophobic reactive hydrogen compound-propylene oxide condensate without significant alteration of the detergent properties of the final composition. In this connection, the ethylene oxide subsequently condensed with the hydrophobic propylene oxide-reactive hydrogen compound condensate can also contain small amounts, such as up to about 5 weight percent, of propylene oxide without significant alteration of the detergent properties of the compositions of the invention.

It is further to be noted that when molecular weight is stated in this specification and claims, unless otherwise noted, there is meant the average theoretical molecular weight which equals the total of the grams of the propylene oxide employed per mol of reactive hydrogen compound. It is well recognized in the field of alkylene oxide chemistry that the polyoxyalkylene compositions one obtains by condensing an alkylene oxide with a reactive hydrogen compound are actually mixtures of compounds rather than a single molecular compound. The mixture contains closely related homologues wherein the statistical average number of oxyalkylene groups equals the number of mols of the alkylene oxide employed and the individual members in the mixture contain varying numbers of oxyalkylene groups. Thus, the compositions of this invention are mixtures of compounds which are defined by molecular weight of the polyoxypropylene chains and weight percent of oxyethylene groups.

As has been noted above, the compositions of the invention contain chains of oxyethylene groups attached to the oxypropylene chains. formed by condensing ethylene oxide with the propylene oxide-reactive hydrogen compound condensate. The ;amount of ethylene oxide employed is such that the oxyethylene groups constituteabout 20 to 90weight percent of the final composition. Compositions having outstanding detergent properties are obtained when the weight percent of oxyethylene groups falls within this range. The very highest detergency values at 90 F." have been obtained in compositions of the invention having from about 25 to 55 weight percent of oxyethylene groups. The condensation of propylene oxide with the nitrogencontaining reactive hydrogen compound and the subse- .quent condensation of ethylene oxide therewith are carried out in the known manner for condensing alkylene oxides with reactive hydrogen compounds. The process is normally carried out at elevated temperatures and pressures in the presence of alkaline catalysts, such as sodium hydroxide, potassium hydroxide, sodium alkoxide, qua- Zternary ammonium bases, and thelike. The condensation reactions can also be carried out in the presence of acidcatalysts. The manipulative steps will vary to some extent depending'upon the normal'physical state of the reactive hydrogen compound. Certain of these compounds are normally gases, e.g., ammonia and methylamine, and propylene oxide can be condensed with these compounds by carrying out the reaction under sufficient pressure to liquefy the nitrogen-containing reactive hydrogen compound, or the normally gaseous nitrogencontaining reactive hydrogen compound can be dissolved in an inert solvent. Similarly, if the reactive hydrogen compound is a solid at reaction temperatures, ,it is normally dissolved in an inert solvent. After a few mols of propylene oxide havebeen condensed with the reactive Yhydrogen compound, the adduct becomes a liquid and the inert solvent can be removed by distillation. Thereafter, it is preferred to simply add the propylene oxide to ,the liquid reaction mixture without the use of a solvent. Although the reaction of propylene oxide with the reactive hydrogen compound can be carried out by simply heating a mixture of the reactants under pressure at a sufiiciently high temperature, this method is not ordifnarily used as the temperatures and pressure required are excessive and control of the reaction is difiicult. The preferred method is to add the propylene oxide to' a stirred and heated mixture of the desired nitrogen-containing reactive hydrogen compound and an alkaline catalyst'in' a sealed reaction vessel. By adding the propylene oxide "to the reaction vessel at such a rate that it reacts as rapidly, as added, an excess of propylene oxide is avoided and control of the reaction is simplified. The condensation of ethylene oxide with the propylene oxide-reactive hydrogen compound condensateis carried out in an analogousmanner.

" l EXAMPLES A series of compositions according to this invention was prepared using exemplary nitrogen-containing reacgive". hydrogen compounds and varying amounts of propylene oxide and ethylene oxide. The procedure by .which these compositions were made is that generallyset forthin U.S. 2,674,619. The initial reaction of the The oxyethylene chains are I.

nitrogen-containing reactive hydrogen compound with propylene oxide was carried out in two or three stages ,due to volume limitations imposedby the reactors employed. Due to the basic nature of the nitrogen-conitaining reactive hydrogen compounds, the first stage re- ,action. with propylene oxide was carried out in the presence of about 10 weight percent of water and sub- ;Seqirhtcondensations with propylene oxide and ethylene [oxide were carried out with added potassium or sodium "hydroxide as the catalyst. I

1. Ethylenediamine...;

Each composition was thus prepared by condensin g propylene oxide with the indicated reactive hydrogen compound and subsequently condensing ethylenev oxide with the previously formed reactive hydrogen compoundpropylene oxide condensate. a 1

These compositions are summarized below in Table I together with the results of detergency tests in terms of carbon soil removal values at F. The compositions are characterized by the molecular weight of the oxypropylene chains and weight percent or the oxyethylene chains. The molecular weight of the oxypropylene chains is the theoretical molecular weight based on the weight in grams of propylene oxide used per mol of reactiveihy- 'drogen compound and the weight percent of oxyethylene chains is based on the weight of the total composition.

The carbon soil removal values were obtained by the procedure set forth in U.S. 2,674,619, previouslycited, except that the test solutions were 0.10% oncentration instead of 0.25% concentration as set' forth in U.S. 2,674,619.

I Table I COMPOSITIONS OF INVENTION a Carbon Soil Weight Removal. Weight of Percent of Value, Oxypropyl- Oxyethyl- 0.1% Conene Chains ene Chains centration at 90. F.

. Molecular Ex. Reactive Hydrogen No. Compound The foregoing results show how very effective the compositions of this invention are as detergents at 90 F. Higher carbon soil removal values at 90 F. canbe obtained when a nitrogen-containing reactive hydrogen .compound is employed in accordance with this invention than can be obtained when other reactive hydrogen compounds of the classes disclosed in U.S. 2,674,619 are used. For example, when propylene glycol is employed as the reactive hydrogen compound, the highest carbon soil removal value at 90 F. that has been obtained is Ireported in U.S. 2,674,619, column 8, Table II, run No.

4, where a propylene g1ycol-polyoxypropylene-polyoxyjethylene condensate having a molecular weight, based on the hydroxyl number test, in the oxypropylene chains of 2320 and having 44 weight percent of oxyethylene chains 7 hainsins'uch compositions. 'ComparisoneXamples which bear-this outare set 'forth below. It should be .noted tha'tExample No. 37 having o'xypr'opylene chains with a "molecular weight ersrso has the highest oxypropylen'e chain molecular weight which has been made and tested.

Table II COMPOSITIONS F us. 2,674,619

Carbon Soil Molecular Weight Ex 1 'ReaetlveHydrogen Weightof Percent of '.Particular attention is called to Examples 1, 2, 5, 6, 9,

l0, 13, 14,18 and '19 in Table I wherein compositions employinga nitrogen-containing reactive hydrogen com- :pound which far exceed the best thatcan beobtained at this temperature when other reactive hydrogen compounds, such as propylene glycol, are used. Furthermore, it will be observed that thehighest carbon soil .removal values at F. were obtained when theweight percent ofoxyethylenechains was "in therange of'2'5 55. Compositions of thisinvention-having this proportion of oxyethylene chains are speciallypreferred, therefore.

Reactive hydrogen compounds 'of the general classes "disclosed in U.S. 2,674,619 otherthan those of this invention and other than propylene glycol haveshown similar carbon soil removal values at 90 F. Those which have been prepared and tested are set forth below in Table III.

. Table III fooMP'osrmoNs or-Us. 2,674,619

Carbon Soil 1 Molecular Weight Removal -Ex. Reactive Hydrogen Weight of Percent 01 Value, No. Compound Oxypropyl- Oxyethyl- 0.10% Conene Chains ene Chains 'centration at 90F.

Glycerl.ue.-.-.. 4, 000 46. 0 172 Trimeth ylolpropaneu -'5, 000 66.1 Pentserythritoln 9, 500' 33. 2, 33. 0 144 1,5-Pentanedl0l 6, 000

Table IV A Molecular Weight Ex.'No. Reactive'Hydrogen Weight Percent Compound Oxypropyl- 0xyethylone Chains eno Chains .42 Ethylenediamiue 1,860 '43. 1,860 44 1, 860i 3, 965 64 Triisopropanolaminc 1, 716 65- .1, 716. 66 do 1, 716 75. 67 n-Butylamine 2. 969 25. B8 .2. 069 50. 69- do 2, 969 75.

, 1 Based on hydroxyl number procedure, OGG ct 211, Industrial and Engineering Chemistry, Analytical Edition, vol. 17,1). 395 (1945).

In testing the compositions of the invention set forth in'Table IV asExamriles 42 69, dilute solutions (03%) of-afformulate'd medium titer alkali metal fatty acid'soap wierepreparedin 180 p.p.m. hard water (as CaCO and coritainingafZ/l mol ratio of Ca to'Mg'). The formulatedtsoap was a proprietary ,product comprising 60% medium titer .soap,.approximately 30% builders .(phosphates, silicates and sodaash) and 10% moisture. The soap ingredient was asodium soap, 38 C. titer, having anacid number of 227 and being derived from a mixture'of approximately-10 parts tallow and 1 part coconut oil. A smalLproportion (0.02%) of the lime soap 'clispersant Wasadded-tO the above prepared soap solutions. .T his quantity of lime soap dispersant constituted 10 Weight percent of' the actual soap present in the proprietary formulation. One .part of each of the soap .solutions containinga lime soap dispersant .was then diluted with nine parts of 180 ppm. hard water. The resulting solutions ,were maintained at 120 .F. for twenty minutes and werestirred with-a mechanical stirrer at 80..r.p.m. After this period of time, the. solutions wereexamined visually fortthe ipresencetof lime soapcurds.

.All of. the solutions containing the lime soapdispersant -were r essentially free of insoluble soap curds, -or at .most contained only a slight trace .of.flocculated material. Moreover,xthe:solutions :were opalescent, thus indicating thatzthe .lime .soap was highly dispersed throughout the solutionrasza colloid. .In contrast to these results, acontrol solution prepared as stated above but containing .no'lime soap dispersant contained copious quantities of lime soap curds.

'Similarlresults were obtained when theiproportion of .lime soap dispersant was varied from 4 to 25 Weight percent of..the soap present in the ,properietary formulation.

Thus, the compositions of'this invention have thesignificant property offdispersinglime soaps as Well as'outstanding. detergencyin relatively cold water,i'.e., at 90F.

I claim:

.1. A.surface active mixture of conjugatedpolyoxyalkylene compounds consisting of oxypropylenegroups, oxye'thylene ggroups and'thenucleus of a nitrogen-cont-aining .-reactive hydrogen compound having notmore than 6 carbon atoms ,per molecule and being selected from :the group consisting of ammonia, primary Zalkyl .75 amines, alkylene polyamines, alkanolamines, piperaiirie CRT and aminophenol, the structure of the compounds being such that all of the oxypropylene groups are present in oxypropylene chains that are attached to the reactive hydrogen compound at the sites of the reactive hydrogen atoms, and all of the oxyethylene groups are present in oxyethylene chains that are attached to the ends of the oxypropylene chains, the average molecular weight of the oxypropylene chains being at least about 900 and to about 25,000, and the oxyethylene groups being present in an amount so as to constitute from 20 to 90 weight percent of the mixture of compounds.

2. A surface active mixture of conjugated polyoxyalkylene compounds according to claim 1 wherein said reactive hydrogen compound is ammonia.

3. A surface active mixture of conjugated polyoxyalkylene compounds ac-cording to claim 1 wherein said reactive hydrogen compound is a primary alkyl amine.

4. A surface active mixture of conjugated polyoxyalkylene compounds according to claim 1 wherein said reactive hydrogen compound is an alkylene polyamine.

' 5. A surface active mixture of conjugated polyoxyalkylene compounds according to claim 1 wherein said reactive hydrogen compound is an alkanolamine.

6. A surface active mixture of conjugated polyoxyalkylene compounds according to claim 1 wherein the molecular weight of the oxypropylene chains is in the range of 1000 to 10,000.

7. A surface active mixture of conjugated polyoxyalkylene compounds according to claim 1 wherein the weight percent of oxyethylene groups is in the range of 25-55.

8. A surface active mixture of conjugated polyoxyalkylene compounds consisting of oxypropylene groups, oxyethylene groups and the nucleus of ethylenediamine as a reactive hydrogen compound, the structure of the compounds being such that all of the oxypropylene groups are present in oxypropylene chains that are attached to the nucleus of the ethylenediamine at the sites of its reactive hydrogen atoms and all of the oxyethylene groups are present in oxyethylene chains that are attached to the ends of the oxypropylene chains, the molecular weight of the oxypropylene chains being at least about 900 and up to about 25,000 and the oxyethylene groups being present in an amount so as to constitute 20-90 weight percent of the mixture of compounds.

9. A surface active mixture of conjugated polyoxyalkylene compounds consisting of oxypropylene groups, oxyethylene groups and the nucleus of triethylenetetramine as a reactive hydrogen compound, the structure of the compounds being such'that all of the oxypropylene groups are present in oxypropylene chains that are attached to the nucleus of the triethylenetetramine at the sites of its reactive hydrogen atoms and all of the oxyethylene groups are present in oxyethylene chains that are attached to the ends of the oxypropylene chains, the molecular weight of the oxypropylene chains being at least about 900 and up to about 25,000 and the oxyethylene groups being present in an amount so as to constitute 20-90 weight percent of the mixture of compounds.

10. A surface active mixture of conjugated polyoxyalkylene-compounds consisting of oxypropylene groups, oxyethylene groups and the nucleus of n-butylamine as a reactive hydrogen compound, the structure of the compounds being such that all of the oxypropylene groups are present in oxypropylene chains that are attached to the nucleus of the n-butylamine at the sites of its reactive hydrogen atoms and all of the oxyethylene groups are present in oxyethylene chains that are attached to the ends of the oxypropylene chains, the molecular weight of the oxypropylene chains being at least about 900 and up to about 25,000 and the oxyethylene groups being present in an amount so as to constitute 20-90 weight percent of the mixture of compounds.

References Cited in the file of this patent UNITED STATES PATENTS 2,174,762 Schuette et al. Oct. 3, 1939 2,220,147 Dreyfus Nov. 5, 1940 2,552,530 De Groote May 15, 1951 2,552,534 De Groote May 15, 1951 2,589,199 Monson Mar. 11, 1952 2,674,619 Lundstead Apr. 6, 1954 2,677,700 Jackson May 4, 1954 2,742,455 Sundberg Apr. 17, 1956 2,786,080 Patton Mar. 19, 1957 2,792,367 De Groote et al. Mar. 14, 1957 2,792,369 Dickson May 14, 1957 FOREIGN PATENTS 297,484 Great Britain Sept. 24, 1924

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2174762 *Feb 15, 1939Oct 3, 1939Ig Farbenindustrie AgCondensation products derived from amines and method of producing them
US2220147 *Aug 27, 1937Nov 5, 1940Dreyfus HenryManufacture of alkylolamines
US2552530 *Jul 28, 1949May 15, 1951Petrolite CorpProcess for breaking petroleum emulsions
US2552534 *Mar 4, 1950May 15, 1951Petrolite CorpProcesses for breaking petroleum emulsions
US2589199 *Aug 26, 1950Mar 11, 1952Petrolite CorpProcess for breaking emulsions of the oil-in-water class
US2674619 *Oct 19, 1953Apr 6, 1954Wyandotte Chemicals CorpPolyoxyalkylene compounds
US2677700 *May 31, 1951May 4, 1954Wyandotte Chemicals CorpPolyoxyalkylene surface active agents
US2742455 *Sep 24, 1951Apr 17, 1956Gen Aniline & Film CorpProduction of n, n-polyoxyethylated rosin amines
US2786080 *Nov 25, 1953Mar 19, 1957Wyandotte Chemicals CorpStabilized polyoxyalkylene compositions
US2792367 *Oct 5, 1953May 14, 1957Petrolite CorpProcess for breaking petroleum emulsions employing certain oxyalkylation products derived in turn from reactive nitrogen containing compounds
US2792369 *Sep 15, 1954May 14, 1957Petrolite CorpProcess for breaking petroleum emulsions employing certain oxyalkylated diethylene triamines
GB297484A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3123559 *Jan 17, 1961Mar 3, 1964 Hccjhio
US3239381 *May 21, 1962Mar 8, 1966Monsanto CoBattery separator impregnated with a phenol-aldehyde resin composition
US3287145 *Aug 10, 1965Nov 22, 1966Union Carbide CorpChemical admixture for hydraulic cementitious mixtures
US3337463 *Oct 18, 1963Aug 22, 1967Wyandotte Chemicals CorpFoaming detergent compositions
US3905932 *Mar 19, 1974Sep 16, 1975Toyo Soda Mfg Co LtdProcess for preparing polychloroprene latex
US3923707 *Jun 18, 1974Dec 2, 1975Huels Chemische Werke AgProcess for the production of pourable, pulverulent rubbers
US3929707 *Jun 27, 1974Dec 30, 1975Huels Chemische Werke AgProcess for the production of pourable, pulverulent rubber-filler mixtures
US3932659 *Feb 25, 1974Jan 13, 1976Beecham Group LimitedBiologically active substance
US3945978 *May 10, 1974Mar 23, 1976Chemische Werke Huels AktiengesellschaftRubbers, precipitation from aqueous emulsions
US4043972 *Oct 6, 1975Aug 23, 1977Phillips Fibers CorporationStabilizing polyamide antistatic compositions
US4049557 *Oct 23, 1974Sep 20, 1977Colgate-Palmolive CompanyFabric conditioning compositions
US4075130 *Aug 30, 1976Feb 21, 1978Texaco Development CorporationPolyoxypropylene polyamine derivatives as defoamers
US4218218 *Oct 4, 1978Aug 19, 1980Basf AktiengesellschaftStable finely dispersed aqueous formulations of disperse dyes and optical brighteners, and their use
US4244832 *Jul 27, 1979Jan 13, 1981Basf Wyandotte CorporationPhosphate-free machine dishwashing detergents useful at low temperatures
US4294581 *Nov 16, 1979Oct 13, 1981Basf AktiengesellschaftUniformly dyed water-swellable cellulosic fibers
US4305834 *Dec 8, 1980Dec 15, 1981Ethyl CorporationLubricating composition containing emulsion-sludge inhibitors
US4305835 *Dec 8, 1980Dec 15, 1981Ethyl CorporationOxyalkylated phenolic resins and oxyalkylated trimethylolalkane oil additives
US4351753 *Oct 24, 1980Sep 28, 1982Basf Wyandotte CorporationEthylene glycol, pesticides, carriers
US4445908 *Dec 2, 1981May 1, 1984The United States Of America As Represented By The United States Department Of EnergyExtracting alcohols from aqueous solutions
US4456543 *Jun 17, 1982Jun 26, 1984The Buckeye Cellulose CorporationNonionic surfactant
US4464193 *Aug 3, 1981Aug 7, 1984Basf Wyandotte CorporationAnionic biocide emulsions in aqueous solutions of strongly ionizable salts
US4474751 *May 16, 1983Oct 2, 1984Merck & Co., Inc.Ophthalmic drug delivery system utilizing thermosetting gels
US4474752 *May 16, 1983Oct 2, 1984Merck & Co., Inc.Drug delivery system utilizing thermosetting gels
US4474753 *May 16, 1983Oct 2, 1984Merck & Co., Inc.Topical drug delivery system utilizing thermosetting gels
US4478602 *Feb 12, 1982Oct 23, 1984Diamond Shamrock Chemicals CompanyCarbonaceous oil slurries stabilized by binary surfactant mixtures
US4478822 *May 16, 1983Oct 23, 1984Merck & Co., Inc.Drug delivery system utilizing thermosetting gels
US4534959 *Aug 22, 1983Aug 13, 1985Basf Wyandotte CorporationAerosol gel
US4548744 *Jul 22, 1983Oct 22, 1985Connor Daniel SEthoxylated amine oxides having clay soil removal/anti-redeposition properties useful in detergent compositions
US4551506 *Dec 23, 1982Nov 5, 1985The Procter & Gamble CompanyCationic polymers having clay soil removal/anti-redeposition properties useful in detergent compositions
US4659802 *Nov 22, 1983Apr 21, 1987The Procter & Gamble CompanyCationic compounds having clay soil removal/anti-redeposition properties useful in detergent compositions
US4661275 *Jul 29, 1985Apr 28, 1987The Lubrizol CorporationShear-stable
US4661288 *Mar 8, 1985Apr 28, 1987The Procter & Gamble CompanyZwitterionic compounds having clay soil removal/anti/redeposition properties useful in detergent compositions
US4664834 *Jul 29, 1985May 12, 1987The Lubrizol CorporationThickeners
US4664848 *Nov 22, 1983May 12, 1987The Procter & Gamble CompanyDetergent compositions containing cationic compounds having clay soil removal/anti-redeposition properties
US4676921 *Dec 23, 1982Jun 30, 1987The Procter & Gamble CompanyDetergent compositions containing ethoxylated amine polymers having clay soil removal/anti-redeposition properties
US4726909 *Dec 23, 1985Feb 23, 1988Basf CorporationPolyoxypropylene group terminated polyoxyalkylene polyether polyol
US4859358 *Jun 9, 1988Aug 22, 1989The Procter & Gamble CompanyLiquid automatic dishwashing compositions containing metal salts of hydroxy fatty acids providing silver protection
US4861583 *Nov 20, 1987Aug 29, 1989S. C. Johnson & Son, Inc.Hot curling hair treatment
US4988452 *Jun 9, 1988Jan 29, 1991The Procter & Gamble CompanyLiquid automatic dishwashing detergent compositions containing bleach-stable nonionic surfactant
US4995944 *Aug 9, 1990Feb 26, 1991Dearborn Chemical Company Ltd.Antideposit agents for recycled papers; release agents
US5034508 *Aug 24, 1989Jul 23, 1991Dai-Ichi Kogyo Seiyaku Co., Ltd.Dispersant for nonaqueous systems
US5082498 *May 29, 1990Jan 21, 1992Basf AktiengesellschaftHighly concentrated solid pigment formulations
US5116897 *Jun 27, 1990May 26, 1992Basf CorporationAntistatic composition
US5126068 *Feb 13, 1991Jun 30, 1992Burke John JHard surface cleaning composition containing polyacrylate copolymers as performance boosters
US5130043 *May 9, 1990Jul 14, 1992The Procter & Gamble CompanyLiquid automatic dishwashing compositions having enhanced stability
US5298260 *Jun 9, 1992Mar 29, 1994Mediventures, Inc.Topical drug delivery with polyoxyalkylene polymer thermoreversible gels adjustable for pH and osmolality
US5346703 *Aug 31, 1992Sep 13, 1994Mediventures, Inc.Body cavity drug delivery with thermo-irreversible polyoxyalkylene and ionic polysaccharide gels
US5366735 *Nov 17, 1992Nov 22, 1994Mediventures, Inc.Method and composition for post-surgical adhesion reduction
US5426258 *Oct 22, 1993Jun 20, 1995Institut Francais Du PetroleProcess for reducing the agglomeration tendency of hydrates in the production effluent
US5466445 *Jul 21, 1993Nov 14, 1995Emory UniversityOrally administering ethylenediamine modified ethylene oxide-propylene oxide octablock copolymer
US5494660 *Feb 9, 1994Feb 27, 1996Emory UniversityTreating surfaces with biologically active block polymer of ethylene glycol, propylene glycol, and ethylenediamine
US5498355 *Sep 20, 1994Mar 12, 1996Ethyl CorporationLubricant compositions of enhanced performance capabilities
US5505878 *May 18, 1994Apr 9, 1996Exxon Chemical Patents Inc.Demulsifying agent comprising adduct of high molecular weight polyalkylene glycol and ethylene oxide further reacted with diglycidyl ether
US5554372 *Apr 11, 1995Sep 10, 1996Emory UniversityMethods and vaccines comprising surface-active copolymers
US5612305 *Jan 12, 1995Mar 18, 1997Huntsman Petrochemical CorporationMixed surfactant systems for low foam applications
US5622649 *Aug 16, 1994Apr 22, 1997Emory UniversityMultiple emulsions and methods of preparation
US5648071 *Mar 24, 1995Jul 15, 1997Emory UniversityMethod of treating tumors
US5674911 *Jun 6, 1995Oct 7, 1997Cytrx CorporationAdministering therapeutic drug dispersed in polyoxyethylene-polyoxypropylene copolymer surfactant
US5696298 *Jun 2, 1995Dec 9, 1997Cytrx CorporationPolyoxypropylene/polyoxyethylene copolymers with improved biological activity
US5800711 *Oct 18, 1996Sep 1, 1998Mdv Technologies, Inc.Process for the fractionation of polyoxyalkylene block copolymers
US5811088 *Jun 1, 1995Sep 22, 1998Emory UniversityAntiinfective compounds and methods of use
US5824322 *Aug 20, 1996Oct 20, 1998Cytrx CorporationCompositions and methods for growth promotion
US5843470 *Oct 6, 1995Dec 1, 1998Mdv Technologies, Inc.Method and composition for inhibiting post-surgical adhesions
US5958859 *Jul 29, 1997Sep 28, 1999Basf CorporationMixture of nonionic surfactants which effectively clean oils and greases from a variety of surfaces. acrylic polycarboxylates.
US5990241 *Jul 8, 1997Nov 23, 1999Cytrx, CorporationPolyoxypropylene/polyoxyethylene copolymers with improved biological activity
US6034088 *Aug 27, 1998Mar 7, 2000Mdv Technologies, Inc.Method and composition for inhibiting post-surgical adhesions
US6060531 *Sep 25, 1998May 9, 2000Basf AktiengesellschaftProduction of low-fogging polyurethane foams, and specific polyoxyalkylene-polyols which can be used for this purpose
US6123740 *Nov 18, 1997Sep 26, 2000Basf AktiengesellschaftDye preparations containing methine dyes
US6171445Jul 30, 1999Jan 9, 2001Hercules IncorporatedAntideposit agents and antisticking agents for pulp processing
US6280745Dec 23, 1997Aug 28, 2001Alliance Pharmaceutical Corp.Pharmaceutical aqueous-gel composition comprising constitutive polymer selected from polyoxyalkylene block copolymers and/or polyethers, modifier polymer selected from cellulose ethers, sodium carboxymethylcellulose and polyacrylates, soap
US6294592Jun 18, 1998Sep 25, 2001Basf AktiengesellschaftPigment preparations with radiation curable binder suitable for ink jet printing method
US6332943Jun 18, 1998Dec 25, 2001Basf AktiengesellschaftMethod of ink-jet printing with pigment preparations having a dispersant
US6346272Aug 7, 1997Feb 12, 2002Mdv Technologies, Inc.Body cavity drug delivery with thermo-irreversible polyoxyalkylene and ionic polysaccharide gels
US6359014Aug 5, 1999Mar 19, 2002Cytrx CorporationPolyoxypropylene/polyoxyethylene copolymers with improved biological activity
US6436425Feb 8, 2000Aug 20, 2002Mdv Technologies, Inc.Administering aqueous formulation comprising polyoxyalkylene block cpolymer and water to tissues of mammal for inhibiting the formation/reformation of internal adhesions
US6537331Nov 21, 1998Mar 25, 2003Basf AktiengesellschaftDye preparations containing azo dyes
US6607565Nov 6, 1998Aug 19, 2003Basf AktiengesellschaftColorant preparations
US6669740Nov 6, 2002Dec 30, 2003Basf AktiengesellschaftDye preparations comprising azo dyes
US6747064Dec 14, 2001Jun 8, 2004Cytrx CorporationPolyoxypropylene/polyoxyethylene copolymers with improved biological activity
US6790816Feb 13, 2001Sep 14, 2004Bausch & Lomb IncorporatedHigh osmolyte cleaning and disinfection method and solution for contact lenses
US6872695Oct 6, 2000Mar 29, 2005Bausch & Lomb IncorporatedFlushing; rubbing to remove wastes; beads of polyhydroxyethyl methacrylate containing water
US6933286Aug 14, 2001Aug 23, 2005R. Martin EmanueleTherapeutic delivery compositions and methods of use thereof
US7202225Dec 9, 1999Apr 10, 2007Emanuele R MartinTherapeutic delivery compositions and methods of use thereof
USRE38558Dec 9, 1999Jul 20, 2004Cytrx CorporationPolyoxypropylene/polyoxyethylene copolymers with improved biological activity
DE2440531A1 *Aug 23, 1974Mar 6, 1975Cooper & Co Ltd EdwinSchmiermittelgemisch, seine verwendung als hydraulikfluessigkeit und additivkonzentrat zu seiner herstellung
EP0078483A2 *Oct 26, 1982May 11, 1983Basf Wyandotte CorporationCoal-oil slurries containing a surfactant
EP0594479A1 *Oct 13, 1993Apr 27, 1994Institut Francais Du PetroleProcess to reduce the tendency to agglomerate of hydrates in production effluents
EP0713907A2Sep 22, 1995May 29, 1996Ethyl Petroleum Additives LimitedZinc additives of enhanced performance capabilities
WO1988001272A2Aug 7, 1987Feb 25, 1988Lubrizol CorpBorated amine salts of monothiophosphoric acids
WO1988001873A1 *Aug 19, 1987Mar 24, 1988Univ EmoryVaccine and method of preparation
WO1989004653A1 *Feb 1, 1988Jun 1, 1989Johnson & Son Inc S CComposition and method for hot curling hair treatment
Classifications
U.S. Classification564/505, 516/77, 516/DIG.700, 510/499, 564/475, 510/482, 510/356, 510/486, 564/443, 510/354
International ClassificationC11D1/44, C08F2/22, C08G65/26, B01D19/04
Cooperative ClassificationC11D1/44, Y10S516/07, C08G65/26, B01D19/0413
European ClassificationB01D19/04D4, C08G65/26, C11D1/44