Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3007521 A
Publication typeGrant
Publication dateNov 7, 1961
Filing dateOct 28, 1957
Priority dateOct 28, 1957
Publication numberUS 3007521 A, US 3007521A, US-A-3007521, US3007521 A, US3007521A
InventorsParker Harry W, Trantham Joseph C
Original AssigneePhillips Petroleum Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Recovery of oil by in situ combustion
US 3007521 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

1951 J. c. TRANTHAM ETAL 3,007,521

RECOVERY OF OIL BY IN SI'FU COMBUSTION Filed Oct. 28, 1957 I OIL FUELGAS as on.

AIR 0R FUELGAS AIR OR 0 AIR OR 0 n v I INVENTORS J.C. TRANTHAM H.W. PARKER A T TORNEYS Unite S This invention relates to a process for initiating in situ combustion in a stratum containing hydrocarbon material and producing hydrocarbons therefrom.

The recovery of oil from underground strata containing the same by in situ combustion techniques has recently come into prominence in the petroleum industry. One of the problems in this type of operation is in the initiation and establishment of in situ combustion of the in-place oil to such an extent that the combustion can be driven into the formation by merely feeding air to the combustion zone. In accordance with one technique a'mixture of fuel gas and air is burned in a borehole in the hydrocarbon-containing stratum so as to heat up the adjacent formation. After a substantial burning period, the fuel gas content of the mixture is reduced and finally eliminated so that the combustion is driven into the formation and feeds solely on the air injected into the borehole. In the application of this technique to various formations the initial burning period is in ordinately extended and often it is extremely difficult to maintain a sufiicient heat reservoir around the ignition borehole to permit extension of the combustion zone into the formation and driving of same through the formation to a series of surrounding boreholes. It is particularly ditlicult to utilize this technique successfully where the combustion zone or front is to be advanced laterally through the formation by inverse air injection through surrounding boreholes. When utilizing inverse air injection technique a substantial period of time is generally required for the passage of air from the injection boreholes to the ignition borehole and the heat reservoir established during the initial phase of the combustion process cools appreciably and frequently is at a temperature below combustion supporting temperature when the inverse air arrives.

Accordingly it is an object of the invention to provide an improved process for the production of hydrocarbons from a hydrocarbon-bearing stratum by in situ combustion. Another object is to provide an improved process for initiating in situ combustion in a hydrocarbon-bearing stratum. A further object is to provide a process for initiating in situ combustion in a hydrocarbonbearing stratum which establishes a substantial heat reservoir of high temperature which provides time for inverse air to reach the heated area before the temperature drops below ignition temperature. Other objects of the invention will become apparent upon consideration of the accompanying disclosure. A broad aspect of the invention comprises heating the wall of a borehole in a hydrocarbon-bearing stratum to combustion supporting temperature by any suitable means and then injecting substantially pure oxygen or oxygen-enriched air into the heated formation so as to promote rapid combustion of the in-place hydrocarbon and raise the temperature of the formation, thereby establishing a substantial heat reservoir at a temperature at least about 1,000 F. above combustion supporting temperature; and then injecting air into the hot stratum so as tocontinue the combustion of in-place hydrocarbons and drive the combustion zone or front through the formation.

Contacting the hot formation in this manner with oxygen-enriched air or with substantially pure oxygen raises tes atent the temperature thereof to the range of about 1500 to 2500 F., depending upon the oxygen concentration.

A minimum oxygen concentration of is desired. Heating the formation to the temperature of 1500 to 2500 F. over a substantial section of the stratum around the ignition borehole builds up a sufficient heat reservoir to permit the flow of inverse air from surrounding boreholes used as injection points before the temperature of the reservoir drops below ignition temperature, which is usually in the range of 500 to 600 F. when using air as the oxidizing medium.

In a preferred embodiment of the invention the wall of the ignition borehole is heated up by injecting a mixture of fuel gas and air into the stratum at one or more points spaced radially a few feet, such as l to 10 feet, from the ignition borehole and burning the combustible mixture on the walls of the borehole so as to heat same to combustion supporting temperature of the in-place hydrocarbon in an oxygen containing ambient of at least 30% oxygen concentration. When the wall of the borehole has reached a temperature of at least500 F., the flow of the combustible mixture is terminated and the heated stratum adjacent the borehole is contacted with pure 0 or O -enriched air so as to initiate combustion of the hydrocarbon in the formation and raise the temperature of the formation to at least 1500 F, whereupon the concentration of O in the combustion supporting gas is decreased to that of air, either gradually or suddenly, so that air is then utilized as the combustion supporting gas. It is preferred to inject the oxygen or oxygen-enriched airin the same manner as the mixture of fuel gas and air, i.e., through the formation from one or more boreholes spaced a short distance from the ignition borehole; however, the injection of oxygen or oxygen-enriched air through the ignition bore-hole may be utilized to establish the heat reservoir necessary to facilitate the driving of the combustion zone through the formation by injection of air either directly through the ignition borehole or from boreholes spaced apart from the ignition borehole.

After the formation around the ignition borehole has been heated up by the injection of oxygen or oxygenenriched air, the flow of this combustion supporting gas is terminated and air is injected through a plurality of boreholes surrounding the ignition borehole, and when the injection air arrives at the combustion area the combustion of in situ hydrocarbon is reestablished since the heated area is still at combustion supporting temperatures. The inverse injection of air may be eifected through the boreholes through which the combustible mixture is injected or it may be injected through boreholes spaced farther from the ignition borehole, as in a typical S-spot well pattern. It is also feasible to first inject air through the boreholes spaced close to the ignition borehole, i.e.,

those through which the combustible mixture is injected, and then close off these boreholes and inject air through the more remote boreholes.

A more complete understanding of the invention may be obtained upon consideration of the accompanying drawing of which FIGURE 1 is a plan view of boreholes spaced around an ignition borehole in accordance with the invention; and FIGURE 2 is an elevation through a formation showing the arrangement of boreholes and equipment for effecting the process of the invention.

Referring to FIGURE 1, an ignition borehole 10 is surrounded by a series of injection boreholes 12 spaced from about 1 to 10 feet from the ignition borehole. Boreholes 1 are spaced considerably farther from borehole formation 16 and is provided with a casing 18 and a tubing string 20 for the recovery of oil when utilizing inverse air injection. Conduit 22 provides means for introducing air, oxygen, oxygen-enriched air, and fuel gas. Borehole 12 is provided with conduit means 24 which connects with a tubing string 26 for the introduction of fuel gas through conduit 28 and air and oxygen through conduit 30. Borehole 14 is provided with a tubing string 32 for recovery of oil when utilizing direct air injection and with conduit 34 for inverse injection of air or other oxygen-containing gas.

Typical operation comprises injecting a combustible (preferably stoichiometric) mixture of fuel gas and air through conduits 28 and 30, respectively, into conduit 24 so that the mixture is delivered to borehole 12 via conduit 26 and to stratum 16. Boreholes 14 are sealed off by closing the valves in the conduits connecting with the casinghead so that the combustible mixture passes through the short space in stratum 16 between boreholes 12 and borehole 10. The mixture is ignited in borehole 10 by any suitable means, such as an electric spark or squib or other igniter, and the flow of the iixture is adjusted so that the combustion takes place on the Wall of the formation within the borehole. Several days or even several weeks of this initial phase of the process may be required to heat the wall of the borehole to a temperature of at least 500 F., because of the loss of heat to the surrounding formation and the relatively high heat capacity thereof.

When suitable temperature in the formation around the borehole 10 is reached, the flow of combustible gas through conduit 26 is shut off and pure or O -enriched air is passed through conduits 30, 24, and 26 so that rapid burning of hydrocarbon in the formation around the wall of the borehole takes place and the temperature of the section of the stratum adjacent the borehole is raised to the range of 1500 to- 2500 F. Generally, a period in the range of hours to several days of oxygen injection heats up a suflicient section of the stratum adjacent ignition borehole 10 to provide ample time for passing inverse air through the formation either from boreholes 14 or 12 before the temperature of the heated section drops below combustion supporting temperature in the presence of the inverse air. By first injecting in verse air through borehole 12 until the combustion zone reaches the vicinity of this borehole and then sealing boreholes 12 and injecting air through boreholes 14, the inverse air injection technique moves the combustion front through the formation until it reaches the outer ring of boreholes. Injection of air first thru boreholes 12 consumes minimum time for passage of inverse air to the combustion zone.

It is also feasible to move the combustion front through the stratum 16 by injection of air through conduit 22 to borehole 10 in strata of a type in which direct air injection does not build up a wall of heavy hydrocarbon beyond the advancing combustion zone which blocks off the flow of gas through the formation.

Of course it is to be understood that the objective of in situ combustion is to produce hydrocarbons from the formation in which the operation takes place. When utilizing the preferred method of inverse air injection the oil driven from the formation passes to borehole 10- from which it is recovered through production string 20 by conventional means. Because of the intense heat in borehole 10 during the injection of pure oxygen or oxygen-enriched air, it is advisable to lower production string 20 into the borehole after the high temperature phase of the process and after the combustion zone has moved into the formation sufficiently that the wall of the borehole has cooled down to a temperature which is not injurious to the production string. In applications of the invention which utilize direct air injection through the ignition borehole, oil and other hydrocarbons are produced through production string 32 in boreholes 14.

It is to be understood that the initial heating of the stratum 16 around ignition borehole 10 may be effected by any suitable means, such as by an electric or gas heater positioned adjacent the stratum, after which the formation is contacted with pure oxygen or oxygen-enriched air in accordance with the invention described herein.

A number of tests have been performed to find methods for the ignition of tar sand formations which are practicable in the field. The oxygen slug technique of this invention has been the most successful thus far. First premixed air and propane in substantially stoichiometric proportions were injected into the tar sand and the flow was adjusted to burn the mixture on the surface thereof. After a period of preheating by this means, the air-propane mixture was replaced with pure oxygen for a brief time interval. resulted in intense burning on and beneath the surface of the tar sand during which time the tar sand became red hot. The oxygen was then replaced by air, alone, and the combustion front propagated through the sand.

In these tests, tar sand cores were used which were 4 /2 long sections of 2 /2 diameter. The individual cores were mounted in a section of 2%" ID. brass tubing by means of talc packed around the core. Provision was made at the bottom of the tube to admit either oxygen, air, or premixed air and propane. The top end of the core was exposed and premixed propane and air injected at the bottom end was burned as close as possible to the top surface of the core. The core and its holder were heated for about one hour by burning the air and propane mixture before the oxygen was injected. Oxygen alone flowed from 70 to 220 seconds at about the same rate as that used for the air in each test. When the oxygen was first applied, flames leaped 2 or 3 inches above the core and then sank into the sand surface and the surface of the core became red hot. At this point the flow of oxygen was cut off and air was injected and the combustion continued completely through the sand.

When air rates of 700 to 1,000 s.c.f.h./ft. were employed, the cores burned through by inverse injection and then back to the end of initial burning as a thermal echo or by reflection burning. The resulting cores were very fragile and light gray in color. There were many cracks throughout the cores and the sand was substantially totally depleted of hydrocarbon. In cases where air rates of 400 to 500 s.c.f.h./ft. were used, the core burned through from one end to the other but no thermal echo occurred and these cores were black from coke remaining on them.

Thermal echo or reflection burning when utilizing the inverse air injection technique is disclosed and claimed in application, Serial No. 529,916, filed August 22, 1955.

While the invention has been described in certain preferred embodiments, it will be appreciated that variations beyond the exact details set forth herein are possible without departing from the invention in its broadest aspects.

We claim:

1. A process for initiating in situ combustion in a hydrocarbon-bearing stratum which comprises injecting a combustible mixture of fuel gas and air into said stratum thru at least one injection borehole therein spaced from an ignition borehole therein a distance in the range of 1 to 10 feet so as to pass said mixture thru and permeate a substantial portion of the annular section of stratum adjacent said ignition borehole; igniting and burning said mixture on and in said annular section to heat same to combustion supporting temperature; while said section is at said temperature, contacting same with a free-oxygen-containing gas of at least 30% 0 concentration so as to ignite in-place hydrocarbon and establish an in situ combustion zone in said stratum having a temperature in the range of 1500 to 2500 F., thereby providing a high temperature heat reservoir for permitting flow of inverse air thru the stratum to the combustion zone from at least one remote borehole in said stratum spaced farther from said ignition borehole than first said injection borehole, before the temperature of said zone drops below combustion-temperature; and injecting air thru said at least one remote injection borehole so as to continue in situ combustion in said stratum.

2. The process of claim 1 wherein injection of said mixture is terminated after said combustion supporting temperature is reached and said oxygen-containing gas consists essentially of O and is injected thru said stratum from a plurality of injection boreholes radially outside of said ignition borehole a distance in the range of 1 to 10 feet to establish in situ combustion in said stratum.

3. A process for initiating in situ combustion in a hydrocarbon-bearing stratum which comprises injecting a combustible mixture of fuel gas and oxygen into said stratum thru a plurality of boreholes therein spaced around an ignition borehole in the range of 1 to 10 feet therefrom so as to cause said mixture to flow thru and permeate an annular forming the wall of said ignition borehole; igniting and burning said mixture on said wall so as to heat said annulus to a temperature of at least 500 F.; while said annulus is at said temperature, discontinuing the flow of said mixture and contacting said annulus with an oxidizing gas containing at least 30 percent free oxygen so as to initiate in situ combustion of said hydrocarbon; and after a substantial heat reservoir at a temperature of 1500 to 2500 F. has been established in said annulus, passing air to the combustion area so as to continue in situ combustion in said stratum.

4. The process of claim 3 wherein said air is passed to the combustion area thru said formation from a plurality of boreholes surrounding said ignition borehole and spaced iarther from. same than first said plurality of boreholes; and a mixture of combustion gas and produced hydrocarbons is recovered from said ignition borehole.

5. The process of claim 3 wherein said oxidizing gas consists essentially of O 6. The process of claim 3 wherein air is injected into said stratum thru said igition borehole to drive the combustionzone radially outwardly and a mixture of combustion gas and produced hydrocarbons is recovered from boreholes surrounding said igition borehole.

References Cited in the file of this patent UNITED STATES PATENTS 2,642,943 Smith June 23, 1953 2,793,696 Morse May 28, 1957 2,818,117 Koch Dec. 31, 1957 2,880,803 Parker Apr. 7, 1959

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2642943 *May 20, 1949Jun 23, 1953Sinclair Oil & Gas CoOil recovery process
US2793696 *Jul 22, 1954May 28, 1957Pan American Petroleum CorpOil recovery by underground combustion
US2818117 *Mar 9, 1953Dec 31, 1957Socony Mobil Oil Co IncInitiation of combustion in a subterranean petroleum oil reservoir
US2880803 *Jan 16, 1958Apr 7, 1959Phillips Petroleum CoInitiating in situ combustion in a stratum
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3126956 *Mar 17, 1960Mar 31, 1964 Method of forming underground combustion front
US3208516 *May 13, 1963Sep 28, 1965Shell Oil CoControl method in underground combustion drives
US3208519 *Jul 17, 1961Sep 28, 1965Exxon Production Research CoCombined in situ combustion-water injection oil recovery process
US3221811 *Mar 11, 1963Dec 7, 1965Shell Oil CoMobile in-situ heating of formations
US3375871 *Jun 15, 1966Apr 2, 1968Phillips Petroleum CoEstablishing an inverse burning front without spontaneous ignition
US3905422 *Sep 23, 1974Sep 16, 1975Texaco IncMethod for recovering viscous petroleum
US4120357 *Oct 11, 1977Oct 17, 1978Chevron Research CompanyMethod and apparatus for recovering viscous petroleum from thick tar sand
US6581684Apr 24, 2001Jun 24, 2003Shell Oil CompanyIn Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US6588504Apr 24, 2001Jul 8, 2003Shell Oil CompanyConversion of hydrocarbons to produce hydrocarbons, hydrogen, and/or novel product streams from underground coal formations; pyrolysis
US6591906Apr 24, 2001Jul 15, 2003Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US6591907Apr 24, 2001Jul 15, 2003Shell Oil CompanyPyrolysis
US6607033Apr 24, 2001Aug 19, 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to produce a condensate
US6609570Apr 24, 2001Aug 26, 2003Shell Oil CompanyIn situ thermal processing of a coal formation and ammonia production
US6688387Apr 24, 2001Feb 10, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6698515Apr 24, 2001Mar 2, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a relatively slow heating rate
US6702016Apr 24, 2001Mar 9, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US6708758Apr 24, 2001Mar 23, 2004Shell Oil CompanyIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US6712135Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation in reducing environment
US6712136Apr 24, 2001Mar 30, 2004Shell Oil CompanyProviding heat to the formation; controlling the heat from the heat source such that an average temperature within at least a majority of the selected section of the formation is less than about 375 degrees c.
US6712137Apr 24, 2001Mar 30, 2004Shell Oil CompanyHeat exchanging to superimpose heat
US6715546Apr 24, 2001Apr 6, 2004Shell Oil CompanyChemical and/or physical properties of hydrocarbon material within a subterranean formation may need to be changed to allow hydrocarbon material to be more easily removed
US6715547Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US6715548Apr 24, 2001Apr 6, 2004Shell Oil CompanyElectrical heaters may be used to heat the subterranean formation by radiation and/or conduction
US6715549Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6719047Apr 24, 2001Apr 13, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US6722429Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6722430Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US6722431Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of hydrocarbons within a relatively permeable formation
US6725920Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US6725921Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation by controlling a pressure of the formation
US6725928Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a distributed combustor
US6729395Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US6729396Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6729397Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729401Apr 24, 2001May 4, 2004Shell Oil CompanySynthesis gas may be produced from the formation. synthesis gas may be used as a feed stream in an ammonia synthesis process. ammonia may be used as a feed stream in a urea synthesis process.
US6732794Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6732795Apr 24, 2001May 11, 2004Shell Oil CompanyProviding heat from one or more heat sources to at least one portion of formation; allowing heat to transfer from the one or more heat sources to a selected section of the formation; controlling the heat; producing a mixture from the formation
US6732796Apr 24, 2001May 11, 2004Shell Oil CompanyHeating section of formation with heat sources to temperature allowing generation of synthesis gas, providing synthesis gas generating fluid to section, removing synthesis gas generated, repeating for second section, blending for desired ratio
US6736215Apr 24, 2001May 18, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US6739393Apr 24, 2001May 25, 2004Shell Oil CompanyIn situ thermal processing of a coal formation and tuning production
US6739394Apr 24, 2001May 25, 2004Shell Oil CompanyProviding heat and a synthesis gas generating fluid to the section to generate synthesis gas
US6742587Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6742588Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US6742589Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US6742593Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US6745831Apr 24, 2001Jun 8, 2004Shell Oil CompanyMixture of hydrocarbons, h2, and/or other formation fluids may be produced from the formation. heat may be applied to the formation to raise a temperature of a portion of the formation to a pyrolysis temperature.
US6745832Apr 24, 2001Jun 8, 2004Shell Oil CompanySitu thermal processing of a hydrocarbon containing formation to control product composition
US6745837Apr 24, 2001Jun 8, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US6749021Apr 24, 2001Jun 15, 2004Shell Oil CompanyPyrolysis
US6752210Apr 24, 2001Jun 22, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US6758268Apr 24, 2001Jul 6, 2004Shell Oil CompanyHeat exchanging, pyrolysis; monitoring temperature
US6761216Apr 24, 2001Jul 13, 2004Shell Oil CompanyPyrolysis temperature
US6763886Apr 24, 2001Jul 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with carbon dioxide sequestration
US6769483Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6769485Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ production of synthesis gas from a coal formation through a heat source wellbore
US6789625Apr 24, 2001Sep 14, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US6805195Apr 24, 2001Oct 19, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US6820688Apr 24, 2001Nov 23, 2004Shell Oil CompanyHeat exchanging after pyrolyzation to support synthesis gas generation
US6866097Apr 24, 2001Mar 15, 2005Shell Oil CompanySuperpositioning of heaters for pyrolysis to form mixture of hydrocarbons and hydrogen; controlling pressure; heat exchanging
US6871707Apr 24, 2001Mar 29, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US6877554Apr 24, 2001Apr 12, 2005Shell Oil CompanyPyrolysis
US6877555Apr 24, 2002Apr 12, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation while inhibiting coking
US6880633Apr 24, 2002Apr 19, 2005Shell Oil CompanyIncludes shutting-in an in situ treatment process in an oil shale formation may include terminating heating from heat sources providing heat to a portion of the formation; hydrocarbon vapor may be produced
US6880635Apr 24, 2001Apr 19, 2005Shell Oil CompanyMethods and systems for production of hydrocarbons, hydrogen, and/or other products from underground coal formations
US6889769Apr 24, 2001May 10, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US6896053Apr 24, 2001May 24, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US6902003Apr 24, 2001Jun 7, 2005Shell Oil CompanyAllowing heat to transfer from heaters to a formation selected for heating using a total organic matter weight percentage of > 5% and recirculating hydrogen
US6902004Apr 24, 2001Jun 7, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a movable heating element
US6910536Apr 24, 2001Jun 28, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US6913078Apr 24, 2001Jul 5, 2005Shell Oil CompanyIn Situ thermal processing of hydrocarbons within a relatively impermeable formation
US6915850Apr 24, 2002Jul 12, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation having permeable and impermeable sections
US6918442Apr 24, 2002Jul 19, 2005Shell Oil CompanyIn situ conversion of hydrocarbons to produce hydrocarbons, hydrogen, and/or novel product streams from underground oil shale formations
US6918443Apr 24, 2002Jul 19, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US6923257Apr 24, 2002Aug 2, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce a condensate
US6923258Jun 12, 2003Aug 2, 2005Shell Oil CompanyIn situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6929067Apr 24, 2002Aug 16, 2005Shell Oil CompanyHeat sources with conductive material for in situ thermal processing of an oil shale formation
US6932155Oct 24, 2002Aug 23, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US6948562Apr 24, 2002Sep 27, 2005Shell Oil CompanyProduction of a blending agent using an in situ thermal process in a relatively permeable formation
US6948563Apr 24, 2001Sep 27, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US6951247Apr 24, 2002Oct 4, 2005Shell Oil CompanyControl the heat exchanging, pyrolyzing hydrocarbons, enhancing oil recovery
US6953087Apr 24, 2001Oct 11, 2005Shell Oil CompanyThermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US6959761Apr 24, 2001Nov 1, 2005Shell Oil CompanyIn situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US6964300Apr 24, 2002Nov 15, 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US6966372Apr 24, 2001Nov 22, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US6966374Apr 24, 2002Nov 22, 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation using gas to increase mobility
US6969123Oct 24, 2002Nov 29, 2005Shell Oil CompanyUpgrading and mining of coal
US6973967Apr 24, 2001Dec 13, 2005Shell Oil Companyhydrocarbons within a coal formation are converted in situ within the formation to yield a mixture of relatively high quality hydrocarbon products, hydrogen, and other products; the coal is heated to to temperatures that allow pyrolysis
US6981548Apr 24, 2002Jan 3, 2006Shell Oil Companyheating and pyrolysis of heavy hydrocarbon sections in subterranean wells to produce light hydrocarbons; reduced viscosity improves movement; fluid removal in liquid and/or vapor phase
US6991031Apr 24, 2001Jan 31, 2006Shell Oil CompanyIn situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US6991032Apr 24, 2002Jan 31, 2006Shell Oil CompanyHeat sources positioned within the formation in a selected pattern raise a temperature of a portion of the formation to a pyrolysis temperature.
US6991033Apr 24, 2002Jan 31, 2006Shell Oil CompanyIn situ thermal processing while controlling pressure in an oil shale formation
US6991036Apr 24, 2002Jan 31, 2006Shell Oil CompanyThermal processing of a relatively permeable formation
US6991045Oct 24, 2002Jan 31, 2006Shell Oil CompanyForming openings in a hydrocarbon containing formation using magnetic tracking
US6994160Apr 24, 2001Feb 7, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US6994161Apr 24, 2001Feb 7, 2006Kevin Albert MaherIn situ thermal processing of a coal formation with a selected moisture content
US6994168 *Apr 24, 2001Feb 7, 2006Scott Lee WellingtonIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US6994169Apr 24, 2002Feb 7, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation with a selected property
US6997255Apr 24, 2001Feb 14, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a reducing environment
US6997518Apr 24, 2002Feb 14, 2006Shell Oil CompanyIn situ thermal processing and solution mining of an oil shale formation
US7004247Apr 24, 2002Feb 28, 2006Shell Oil CompanyConductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US7004251Apr 24, 2002Feb 28, 2006Shell Oil CompanyIn situ thermal processing and remediation of an oil shale formation
US7011154Oct 24, 2002Mar 14, 2006Shell Oil CompanyIn situ recovery from a kerogen and liquid hydrocarbon containing formation
US7013972Apr 24, 2002Mar 21, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a natural distributed combustor
US7017661Apr 24, 2001Mar 28, 2006Shell Oil CompanyProduction of synthesis gas from a coal formation
US7032660 *Apr 24, 2002Apr 25, 2006Shell Oil CompanyIn situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US7036583Sep 24, 2001May 2, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US7040398Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation in a reducing environment
US7040399Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a controlled heating rate
US7040400Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of a relatively impermeable formation using an open wellbore
US7051807Apr 24, 2002May 30, 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with quality control
US7051808Oct 24, 2002May 30, 2006Shell Oil CompanySeismic monitoring of in situ conversion in a hydrocarbon containing formation
US7051811Apr 24, 2002May 30, 2006Shell Oil CompanyIn situ thermal processing through an open wellbore in an oil shale formation
US7055600Apr 24, 2002Jun 6, 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with controlled production rate
US7063145Oct 24, 2002Jun 20, 2006Shell Oil CompanyMethods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US7066254Oct 24, 2002Jun 27, 2006Shell Oil CompanyIn situ thermal processing of a tar sands formation
US7066257Oct 24, 2002Jun 27, 2006Shell Oil CompanyIn situ recovery from lean and rich zones in a hydrocarbon containing formation
US7073578Oct 24, 2003Jul 11, 2006Shell Oil CompanyStaged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US7077198Oct 24, 2002Jul 18, 2006Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using barriers
US7077199Oct 24, 2002Jul 18, 2006Shell Oil CompanyIn situ thermal processing of an oil reservoir formation
US7086465Oct 24, 2002Aug 8, 2006Shell Oil CompanyIn situ production of a blending agent from a hydrocarbon containing formation
US7086468Apr 24, 2001Aug 8, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US7090013Oct 24, 2002Aug 15, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US7096941Apr 24, 2001Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US7096942Apr 24, 2002Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation while controlling pressure
US7096953Apr 24, 2001Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a coal formation using a movable heating element
US7100994Oct 24, 2002Sep 5, 2006Shell Oil Companyinjecting a heated fluid into the well bore, producing a second fluid from the formation, conducting an in situ conversion process in the selected section.
US7104319Oct 24, 2002Sep 12, 2006Shell Oil CompanyIn situ thermal processing of a heavy oil diatomite formation
US7114566Oct 24, 2002Oct 3, 2006Shell Oil CompanyHeat treatment using natural distributed combustor; oxidation of hydrocarbons to generate heat; pyrolysis
US7121341Oct 24, 2003Oct 17, 2006Shell Oil CompanyConductor-in-conduit temperature limited heaters
US7121342Apr 23, 2004Oct 17, 2006Shell Oil CompanyThermal processes for subsurface formations
US7128153Oct 24, 2002Oct 31, 2006Shell Oil CompanyTreatment of a hydrocarbon containing formation after heating
US7156176Oct 24, 2002Jan 2, 2007Shell Oil CompanyInstallation and use of removable heaters in a hydrocarbon containing formation
US7165615Oct 24, 2002Jan 23, 2007Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US7219734Oct 24, 2003May 22, 2007Shell Oil CompanyInhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US7225866Jan 31, 2006Jun 5, 2007Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US7320364Apr 22, 2005Jan 22, 2008Shell Oil CompanyInhibiting reflux in a heated well of an in situ conversion system
US7353872Apr 22, 2005Apr 8, 2008Shell Oil CompanyStart-up of temperature limited heaters using direct current (DC)
US7357180Apr 22, 2005Apr 15, 2008Shell Oil CompanyInhibiting effects of sloughing in wellbores
US7360588Oct 17, 2006Apr 22, 2008Shell Oil CompanyThermal processes for subsurface formations
US7370704Apr 22, 2005May 13, 2008Shell Oil CompanyTriaxial temperature limited heater
US7383877Apr 22, 2005Jun 10, 2008Shell Oil CompanyTemperature limited heaters with thermally conductive fluid used to heat subsurface formations
US7424915Apr 22, 2005Sep 16, 2008Shell Oil CompanyVacuum pumping of conductor-in-conduit heaters
US7431076Apr 22, 2005Oct 7, 2008Shell Oil CompanyTemperature limited heaters using modulated DC power
US7435037Apr 21, 2006Oct 14, 2008Shell Oil CompanyLow temperature barriers with heat interceptor wells for in situ processes
US7461691Jan 23, 2007Dec 9, 2008Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7481274Apr 22, 2005Jan 27, 2009Shell Oil CompanyTemperature limited heaters with relatively constant current
US7490665Apr 22, 2005Feb 17, 2009Shell Oil CompanyVariable frequency temperature limited heaters
US7500528Apr 21, 2006Mar 10, 2009Shell Oil CompanyLow temperature barrier wellbores formed using water flushing
US7510000Apr 22, 2005Mar 31, 2009Shell Oil CompanyReducing viscosity of oil for production from a hydrocarbon containing formation
US7527094Apr 21, 2006May 5, 2009Shell Oil CompanyDouble barrier system for an in situ conversion process
US7533719Apr 20, 2007May 19, 2009Shell Oil CompanyWellhead with non-ferromagnetic materials
US7540324Oct 19, 2007Jun 2, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a checkerboard pattern staged process
US7546873Apr 21, 2006Jun 16, 2009Shell Oil CompanyLow temperature barriers for use with in situ processes
US7549470Oct 20, 2006Jun 23, 2009Shell Oil CompanySolution mining and heating by oxidation for treating hydrocarbon containing formations
US7556095Oct 20, 2006Jul 7, 2009Shell Oil CompanySolution mining dawsonite from hydrocarbon containing formations with a chelating agent
US7556096Oct 20, 2006Jul 7, 2009Shell Oil CompanyVarying heating in dawsonite zones in hydrocarbon containing formations
US7559367Oct 20, 2006Jul 14, 2009Shell Oil CompanyTemperature limited heater with a conduit substantially electrically isolated from the formation
US7559368Oct 20, 2006Jul 14, 2009Shell Oil CompanySolution mining systems and methods for treating hydrocarbon containing formations
US7562706Oct 20, 2006Jul 21, 2009Shell Oil CompanySystems and methods for producing hydrocarbons from tar sands formations
US7562707Oct 19, 2007Jul 21, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a line drive staged process
US7575052Apr 21, 2006Aug 18, 2009Shell Oil CompanyIn situ conversion process utilizing a closed loop heating system
US7575053Apr 21, 2006Aug 18, 2009Shell Oil CompanyLow temperature monitoring system for subsurface barriers
US7581589Oct 20, 2006Sep 1, 2009Shell Oil CompanyMethods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US7584789Oct 20, 2006Sep 8, 2009Shell Oil CompanyMethods of cracking a crude product to produce additional crude products
US7591310Oct 20, 2006Sep 22, 2009Shell Oil CompanyMethods of hydrotreating a liquid stream to remove clogging compounds
US7597147Apr 20, 2007Oct 6, 2009Shell Oil CompanyTemperature limited heaters using phase transformation of ferromagnetic material
US7604052Apr 20, 2007Oct 20, 2009Shell Oil CompanyCompositions produced using an in situ heat treatment process
US7610962Apr 20, 2007Nov 3, 2009Shell Oil CompanyProviding acidic gas to a subterrean formation, such as oil shale, by heating from an electrical heater and injecting through an oil wellbore; one of the acidic acids includes hydrogen sulfide and is introduced at a pressure below the lithostatic pressure of the formation to produce fluids; efficiency
US7631689Apr 20, 2007Dec 15, 2009Shell Oil CompanySulfur barrier for use with in situ processes for treating formations
US7631690Oct 19, 2007Dec 15, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a spiral startup staged sequence
US7635023Apr 20, 2007Dec 22, 2009Shell Oil CompanyTime sequenced heating of multiple layers in a hydrocarbon containing formation
US7635024Oct 19, 2007Dec 22, 2009Shell Oil CompanyHeating tar sands formations to visbreaking temperatures
US7635025Oct 20, 2006Dec 22, 2009Shell Oil CompanyCogeneration systems and processes for treating hydrocarbon containing formations
US7640980Apr 7, 2008Jan 5, 2010Shell Oil CompanyThermal processes for subsurface formations
US7644765Oct 19, 2007Jan 12, 2010Shell Oil CompanyHeating tar sands formations while controlling pressure
US7673681Oct 19, 2007Mar 9, 2010Shell Oil CompanyTreating tar sands formations with karsted zones
US7673786Apr 20, 2007Mar 9, 2010Shell Oil CompanyWelding shield for coupling heaters
US7677310Oct 19, 2007Mar 16, 2010Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US7677314Oct 19, 2007Mar 16, 2010Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US7681647Oct 19, 2007Mar 23, 2010Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US7683296Apr 20, 2007Mar 23, 2010Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US7703513Oct 19, 2007Apr 27, 2010Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US7717171Oct 19, 2007May 18, 2010Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US7730945Oct 19, 2007Jun 8, 2010Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730946Oct 19, 2007Jun 8, 2010Shell Oil CompanyTreating tar sands formations with dolomite
US7730947Oct 19, 2007Jun 8, 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US7735935Jun 1, 2007Jun 15, 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US7785427Apr 20, 2007Aug 31, 2010Shell Oil CompanyChromium, nickel, copper; niobium, iron manganese, nitrogen; nanonitrides; system for heating a subterranean formation;
US7793722Apr 20, 2007Sep 14, 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US7798220Apr 18, 2008Sep 21, 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US7798221May 31, 2007Sep 21, 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7831134Apr 21, 2006Nov 9, 2010Shell Oil CompanyGrouped exposed metal heaters
US7832484Apr 18, 2008Nov 16, 2010Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US7841401Oct 19, 2007Nov 30, 2010Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US7841408Apr 18, 2008Nov 30, 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US7841425Apr 18, 2008Nov 30, 2010Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US7845411Oct 19, 2007Dec 7, 2010Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US7849922Apr 18, 2008Dec 14, 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US7860377Apr 21, 2006Dec 28, 2010Shell Oil CompanySubsurface connection methods for subsurface heaters
US7866385Apr 20, 2007Jan 11, 2011Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US7866386Oct 13, 2008Jan 11, 2011Shell Oil Companyproduction of hydrocarbons, hydrogen, and/or other products from various subsurface formations such as hydrocarbon containing formations through use of oxidizing fluids and heat
US7866388Oct 13, 2008Jan 11, 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US7912358Apr 20, 2007Mar 22, 2011Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US7931086Apr 18, 2008Apr 26, 2011Shell Oil CompanyHeating systems for heating subsurface formations
US7942197Apr 21, 2006May 17, 2011Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US7942203Jan 4, 2010May 17, 2011Shell Oil CompanyThermal processes for subsurface formations
US7950453Apr 18, 2008May 31, 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US7986869Apr 21, 2006Jul 26, 2011Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US8011451Oct 13, 2008Sep 6, 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US8027571Apr 21, 2006Sep 27, 2011Shell Oil CompanyIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US8042610Apr 18, 2008Oct 25, 2011Shell Oil CompanyParallel heater system for subsurface formations
US8070840Apr 21, 2006Dec 6, 2011Shell Oil CompanyTreatment of gas from an in situ conversion process
US8083813Apr 20, 2007Dec 27, 2011Shell Oil CompanyMethods of producing transportation fuel
US8113272Oct 13, 2008Feb 14, 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US8146661Oct 13, 2008Apr 3, 2012Shell Oil CompanyCryogenic treatment of gas
US8146669Oct 13, 2008Apr 3, 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US8151880Dec 9, 2010Apr 10, 2012Shell Oil CompanyMethods of making transportation fuel
US8151907Apr 10, 2009Apr 10, 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8162059Oct 13, 2008Apr 24, 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US8162405Apr 10, 2009Apr 24, 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US8172335Apr 10, 2009May 8, 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8177305Apr 10, 2009May 15, 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8191630Apr 28, 2010Jun 5, 2012Shell Oil CompanyCreating fluid injectivity in tar sands formations
US8192682Apr 26, 2010Jun 5, 2012Shell Oil CompanyHigh strength alloys
US8196658Oct 13, 2008Jun 12, 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US8220539Oct 9, 2009Jul 17, 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8224163Oct 24, 2003Jul 17, 2012Shell Oil CompanyVariable frequency temperature limited heaters
US8224164Oct 24, 2003Jul 17, 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US8224165Apr 21, 2006Jul 17, 2012Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US8225866Jul 21, 2010Jul 24, 2012Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8230927May 16, 2011Jul 31, 2012Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US8233782Sep 29, 2010Jul 31, 2012Shell Oil CompanyGrouped exposed metal heaters
US8238730Oct 24, 2003Aug 7, 2012Shell Oil CompanyHigh voltage temperature limited heaters
US8240774Oct 13, 2008Aug 14, 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US8256512Oct 9, 2009Sep 4, 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US8261832Oct 9, 2009Sep 11, 2012Shell Oil CompanyHeating subsurface formations with fluids
US8267170Oct 9, 2009Sep 18, 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US8267185Oct 9, 2009Sep 18, 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US8272455Oct 13, 2008Sep 25, 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US8276661Oct 13, 2008Oct 2, 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US8281861Oct 9, 2009Oct 9, 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US8327681Apr 18, 2008Dec 11, 2012Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US8327932Apr 9, 2010Dec 11, 2012Shell Oil CompanyRecovering energy from a subsurface formation
US8353347Oct 9, 2009Jan 15, 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US8355623Apr 22, 2005Jan 15, 2013Shell Oil CompanyTemperature limited heaters with high power factors
US8381815Apr 18, 2008Feb 26, 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US8434555Apr 9, 2010May 7, 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US8448707Apr 9, 2010May 28, 2013Shell Oil CompanyNon-conducting heater casings
US8459359Apr 18, 2008Jun 11, 2013Shell Oil CompanyTreating nahcolite containing formations and saline zones
US8485252Jul 11, 2012Jul 16, 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8536497Oct 13, 2008Sep 17, 2013Shell Oil CompanyMethods for forming long subsurface heaters
US8555971May 31, 2012Oct 15, 2013Shell Oil CompanyTreating tar sands formations with dolomite
US8562078Nov 25, 2009Oct 22, 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8579031May 17, 2011Nov 12, 2013Shell Oil CompanyThermal processes for subsurface formations
US8606091Oct 20, 2006Dec 10, 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US8608249Apr 26, 2010Dec 17, 2013Shell Oil CompanyIn situ thermal processing of an oil shale formation
US8627887Dec 8, 2008Jan 14, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8631866Apr 8, 2011Jan 21, 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8636323Nov 25, 2009Jan 28, 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US8662175Apr 18, 2008Mar 4, 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8701768Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US8701769Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US8739874Apr 8, 2011Jun 3, 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US8752904Apr 10, 2009Jun 17, 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8789586Jul 12, 2013Jul 29, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8791396Apr 18, 2008Jul 29, 2014Shell Oil CompanyFloating insulated conductors for heating subsurface formations
US8820406Apr 8, 2011Sep 2, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8833453Apr 8, 2011Sep 16, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US20110277992 *May 14, 2010Nov 17, 2011Paul GrimesSystems and methods for enhanced recovery of hydrocarbonaceous fluids
WO2001081240A2 *Apr 24, 2001Nov 1, 2001Shell Oil CoIn-situ heating of coal formation to produce fluid
Classifications
U.S. Classification166/245, 166/256
International ClassificationE21B43/243, E21B43/16
Cooperative ClassificationE21B43/243
European ClassificationE21B43/243