Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3010513 A
Publication typeGrant
Publication dateNov 28, 1961
Filing dateJun 12, 1958
Priority dateJun 12, 1958
Publication numberUS 3010513 A, US 3010513A, US-A-3010513, US3010513 A, US3010513A
InventorsGerner Robert V
Original AssigneePhillips Petroleum Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Initiation of in situ combustion in carbonaceous stratum
US 3010513 A
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

Nov. 28, 1961 R. v. GERNER 3,010,513

INITIATION OF IN SITU COMBUSTION IN CARBONACEQUS STRATUM 2 SheetsSheet 1 Filed June 12, 1958 1 ifPRODUCTION OVERBURDENI BUSHING MATERIAL j l TAR SAND TAR SAND F/G. FIG. 2

INVENTOR. R.V. GERNER BY mow/w ATTORNEYS Nov. 28, 1961 R. v. GERNER 3,010,513

INITIATION OF IN SITU COMBUSTION IN CARBONACEQUS STRATUM Filed June 12, 1958 2 Sheets-Sheet 2 PRODUCTION TAR SAND BUSHING MATERIAL INVENTOR. R.V.GERNER BY KZ A TTORNEYS United States Patent 3,010,513 INITIATION OF IN SITU COMBUSTION IN CARBONACEOUS STRATUM Robert V. Gerner, Bartlesville, Ok1a., assignor to Phillips Petroleum Company, a corporation of Delaware Filed June 12, 1958, Ser. No. 741,589 7 Claims. (Cl. 166-11) This invention relates to a process or method for initiating in situ combustion in a permeable carbonaceous stratum.

In situ combustion in the recovery of hydrocarbons from underground strata containing carbonaceous material is becoming more prevalent in the petroleum industry. In this technique of production, combustion is initiated in the carbonaceous stratum and the resulting combustion zone is caused to move through the stratum by either inverse or direct air drive whereby the heat of combustion of a substantial proportion of the hydrocarbon in the stratum drives out and, in the case of inverse drive, upgrades a substantial proportion of the unburned hydrocarbon material.

The ignition of carbonaceous material in a stratum around a borehole therein, followed by injection of air through the ignition borehole in the stratum, constitutes a direct air drive process for effecting in situ combustion and recovery of hydrocarbons from the Stratum. In this type of operation the stratum frequently plugs in front of the combustion zone because a heavy viscous liquid bank of hydrocarbon collects in the stratum in advance of the combustion zone which prevents movement of air to the combustion process. To overcome this difficulty and to permit the continued progress of the combustion zone through the stratum, inverse air injection has been resorted to. By this technique, a combustion zone is established around an ignition borehole by any suitable means and air is fed through the stratum to the combustion zone from one or more surrounding boreholes. Most of the techniques utilized are also being applied to the gasification of coal veins.

Whether using a direct'air drive or an inverse air injection in situ combustion process it is first necessary to ignite the carbonaceous stratum around a borehole therein before a combustion front can be caused to move thru the stratum. It has been found diflicult to establish a selfsustaining combustion in many carbonaceous strata and in establishing such a combustion zone certain problems have arisen. One method of initiating combustion heretofore utilized comprises heating the Well bore using downhole equipment, such as an electric or gas-fired heater, to raise the temperature of the stratum around the borehole to the ignition point and contacting the hot stratum with air or other O -containing gas so as to ignite the carbonaceous material in the stratum and thereby establish a combustion zone therein. In operating with this method, tar fluidized by the heating frequency flows into the production well and burns therein thereby overheating and damaging the downhole equipment. In other instances the heating of the Walls of the borehole by conventional means has resulted in sealing off the sand face within the borehole by a combination of fluid tar and back pressure built up in the ignition well by expansion of the air and combustion gases therein. In order to establish a self-sustaining combustion zone which can be moved thru a stratum by inverse air injection the initial combustion zone must be established to a sufficient depth to provide a reasonably large heat reservoir to assure sustained combustion with inverse air flow.

The process of the invention is concerned with a method if initiating self-sustaining in situ combustion in a car bonaceous stratum which avoids the above-mentioned difliculties.

ice

It is accordingly an object of the invention to provide a process for initiating and establishing in situ combustion in a carbonaceous stratum. Another object is to provide a process for initiating combustion in a carbonaceous stratum around a borehole therein which prevents burning of released liquid hydrocarbons in the open borehole. A further object is to avoid sealing the face of an ignition borehole during establishment of in situ combustion in the stratum around the borehole. A further object is to provide a process which establishes a deep and substantial self-sustaining combustion front around an ignition borehole. Other objects of the invention will become apparent upon consideration of the accompanying disclosure.

A broad aspect of the process comprises forming a plurality of fractures in a carbonaceous stratum around a borehole therein, placing within said fractures a mixture of particulate combustible solids and propping material, initiating combustion of said solids and burning same in the fractures so as to heat the adjacent stratum at least to combustion supporting temperature of the carbonaceous material, and injecting air thru the stratum to said borehole to ignite the in-place carbonaceous material and establish in situ combustion therein. The fractures are preferably made in a generally horizontal plane or along the plane of the stratum but they may also be made along generally vertical planes extending radially from the borehole. Fracturing in either manner is conventional in the art for opening up a stratum to greater flow of fluid hydrocarbons into a production borehole. The horizontal fractures in accordance with the invention are positioned at regular intervals in the stratum with from one to two feet of stratum between each pair of fractures. The fractures are filled with a particulate combustible material admixed with a propping agent, such as sand, crushed rock, small ceramic pebbles, etc., conventionally used in propping. Suitable combustion materials comprise particulate coal, charcoal, magnesium, aluminum and any other readily combustible material in the presence of freeoxygen. The use of charcoal in both the fractures and in the well bore packing will be described, but other suitable readily combustible materials may be utilized in lieu thereof.

Another aspect of the invention comprises packing in an ignition borehole a substantial mass of combustible particulate material alone or in admixture with particulate refractory material, or the borehole may be packed with an absorptive bed of solid particles which are absorptive per se or form a bed which absorbs and retains hydrocarbons in liquid form fluidized by the heating process in the Well bore. Here again particulate charcoal, alone, or in admixture with crushed firebrick, coarse sand, crushed rock, porous alumina pebbles, etc., or a bed of these refractory materials without combustible material is packed into the well bore to form an absorptive bed which retains liquid hydrocarbon material driven from the walls of the borehole during the heating thereof.

The combustible solids in the fractures are ignited by any suitable means and air is supplied to the ignited material either by injection thru the ignition borehole or thru boreholes in the stratum closely spaced from the ignition borehole. The combustion of the fuel in the fractures heats the carbonaceous stratum, not only adjacent the borehole wall, but also to a substantial depth of at least several feet from the borehole. As the heating progresses, the ignition temperature of the in-place carbonaceous material is reached and injection of air thru the stratum from surrounding boreholes ignites the carbonaceous material and initiates in situ combustion in the stratum. When the ignition borehole is packed with an absorptive bed of material, heating in the fractures fluidizes and releases inplace carbonaceous material which flows into the absorptive bed of material where it is retained and burned by the injected air, so as to hasten the heating of the stratum and more quickly bring the same to ignition temperature. This prevents burning of the liquid hydrocarbon material in the open borehole and prevents damage to the borehole wall andalso to downhole equipment utilized in the process.

A more complete understanding of the invention may be had by reference to the accompanying schematic drawing of which FIGURE 1 is an elevation in partial section of an arrangement of apparatus and material in an ignition borehole in accordance with one embodiment of the invention; FIGURE 2 is a similar view illustrating another form of apparatus and arrangement for elfecting the invention; and FIGURE 3 is a similar View showing an additional arrangement for effecting the invention.

Referring to FIGURE 1, a carbonaceous stratum such as a tar sand is penetrated by a borehole 12 in which is positioned a casing 14 extending almost to the upper level of stratum v10. A tubing string 16 extends from the .weil head 17 to a lower level in the stratum and is provided with a perforate or slotted section 18, provided with slots 19 on its lower end, substantially co-extensive with stratum 10. A conduit 20 connects with tubing 16 for injection of air or fuel gas as explained hereinafter. A

conduit 21 connects with casing 12 for exhausting gases from the annulus. Borehole 12 is expanded within stratum 10 as at 22, by under-reaming or other method, to provide space for an annular bed of absorptive material 24 around tubing section 18.

Referring to FIGURE 2 a large borehole 12 such as approximately two feet in diameter is drilled thru stratum 1t? and is provided with a casing 14. Regular size casing 26 of about eight inch diameter is positioned axially Within casing 14 and extends to the bottom of stratum 10. The section of casing 26 within stratum 10 is perforated by holes 28 at frequent intervals as shown and an absorptive bed of particulate solids 24 is packed around the perforate section of the casing. Holes 28 are smaller in size than the particulate material in bed 24. Before positioning casing 26 and bed '24 in stratum 10. the stratum is fractured in conventional manner to position fractures 30 at regular intervals thruout the stratum and extending outwardly from the borehole a distance in the range of 10 to 25 feet or more and as each fracture is formed, it is propped and filled with a mixture of particulate combustible solid and propping material. A tubing string 16 extends axially within casing 26 to the upper level of stratum 10 and a conduit 32 connects with casing 26 for injection of air and/ or fuel gas thereto. Conduit 21 connects with casing 12 and the outer annulus.

FIGURE 3 shows an arrangement wherein a borehole 12 is filled with an absorptive bed of particulate material 24 without any axial tubing or casing within the stratum. Here again fractures 30 are filled with a mixture of propping material and particulate combustible solids. Tubing string 16 extends from the well head into the bed of absorptive material or to the upper level thereof. Casing 14 extends from the well head to the top of stratum 10 or thereabouts. Air injection boreholes 36 extend thru the stratum and intersect fractures '30. These air injection boreholes are provided with casing 38 which extends to the upper level of stratum 10 and with tubing 40 extending to a lower level thereof. A heating coil 41, connected to a current source not shown, provides an ignition means.

Operating with the apparatus and arrangement illustrated in FIGURE 1, a bed of charcoal preferably in the form of small briquettes an inch or two in diameter is ignited in any suitable manner as by injecting a mixture of air and gaseous fuel thru tubing 16 and slots 19 into the charcoal mass and igniting the combustible mixture within the mass by a fusee, an electric spark, an electric heating element, or other suitable means (not shown). After ignition of the charcoal, the supply of fuel gas is preferably cut off and the charcoal is burned by injection of air thru tubing section 18 until the whole mass of charcoal is burning by injection of air thru tubing section 18 until the whole mass of charcoal is burning at which time additional air is slowly passed into the charcoal bed from stratum 10 by injection thru one or more surrounding boreholes. As the stratum around borehole 22 is raised substantially in temperature, carbonaceous material is fiuidized therein and passes into the bed of charcoal where it is consumed along with the burning charcoal. During this time, combustion gas is vented thru line 21. As the combustion temperature of stratum :10 is reached, passage of air therethru at an increased rate into borehole 22 ignites the same and establishes in situ combustion therein. After the heating process is well under way and stratum 1t) approaches ignition temperature, the injection of air thru tubing section 18 is preferably terminated and conduit 21 is closed so that tubing 16 can be utilized as an exhaust conduit with combustion products and produced hydrocarbons passing thru slots 19 and into tubing 16 as the combustion front established around borehole 22 is moved outwardly therefrom by the inversely injected air.

If desired, fracturing and burning of fuel in the fractures may be practiced with the arrangement shown in FIGURE 1.

Operation with the arrangement of FIGURE 2 is similar in many respects to that described in FIGURE 1. Ignition of the charcoal or other fuel in bed 24 and in fractures 30 is effected in any suitable manner. One method comprises dropping a substantial mass of burning charcoal on top of bed 24 through the well head by means of a conduit therein (not shown) and injecting air thru lines 21, 32, or 16. .By injecting air thru either conduit 16 or 32 and venting thru conduit 21 the combustion zone migrates from the already ignited charcoal downwardly countercurrently to the flow of air. A preferred. method comprises injecting a combustible premix of fuel gas and air into bed 24 from a ring of surrounding injection boreholes and igniting the mixture as it passes into casing 26 thru perforations 28 by means of a spark, an electric heating element, or a fusee (railroad flare) in conventional manner. The premix burns back thru the charcoal or other solid fuel in bed 24 and in the fractures so as to substantially simultaneously ignite the whole mass of fuel. Thereafter, ignition air is injected thru either conduit 16 or conduit 32 and also thru the surrounding injection boreholes with combustion gas being vented thru line 21. Injection of air thru conduits 16 and 32 serves as a coolant to casing 26 as well as supplying 0 for combustion. As the bed of fuel in the borehole and in the fractures is consumed and the temperature of the adjacent structure reaches the ignition point, injection of air from surrounding boreholes supplies the necessary oxygen for ignition of in-place carbonaceous material thereby starting the in situ combustion process in a deep section of the stratum around borehole 12. During the preheating of the stratum to ignition temperature, hydrocarbon material fluidized in stratum 10 and driven into bed 24 is consumed in the bed along with the solid fuel to aid in the preheating step.

Operation with the arrangement shown in FIGURE 3 comprises igniting the fuel mass in borehole 24 and in fractures 30 as before. One method comprises injecting a combustible premix of propane and air thru tubing 40 in boreholes 36 whereby the combustible mixture passes thru fractures 30 into the bed 24 in borehole 12 and passes either up the annulus or thru tubing 16. By igniting the fuel gas and air mixture by means of igniter 41 as it reaches the upper section of bed 24 the ignited area soon expands thru the bed and thru the fractures so as to initiate combustion in the entire fuel mass. After ignition has been effected, the flow of fuel gas is terminated and the combustion is supported by air injection either thru tubing 16, the annulus surrounding this tubing, or thru tubing 40. In this manner, the combustion of the fuel continues until the temperature of the stratum between borehole 12 and boreholes 36 is raised to ignition temperature at which time the in-place carbonaceous material automatically ignites in the presence of excess air injecte into the stratum.

It is preferable to inject air for the in situ combustion thru tubing 4% thereby establishing combustion in the entire' area between adjacent fractures and between boreholes 12 and boreholes 36. When this has been accomplished, injection of air thru a ring of boreholes more remote from borehole 12 than boreholes 36 is initiated so as to move the combustion zone outwardly toward the injection boreholes. During this phase of the in situ combustion process, produced gases may be vented thru tubing 40, tubing 16, or thru both.

In the arrangement shown in FIGURE 3 injection boreholes 36 are within a few feet of borehole 12 such as 2 to 8 or 10 feet. These boreholes intersect the fractures and there is no danger of blocking of the stratum and shutting off the how of combustion supporting air when utilizing direct injection thru borehole 12; hence, either inverse or direct air injection may be utilized to initiate combustion in the section of stratum comprising the annulus intermediate boreholes 36 and borehole 12. In the arrangement shown in FIGURE 2 or FIGURE 3, bed 24 may be made up entirely of particulate refractory solid material with all of the fuel for the process being provided in fractures 30 supplemented by the hot fluidized tar or other hydrocarbon material driven out of the stratum into the bed of refractory material.

It is to be understood that thermocouples positioned adjacent the wall of the ignition borehole or located at any suitable position within the ignition borehole may be utilized to determine combustion conditions downhole. Pressure sensing means within the production and ignition boreholes are also conventional equipment utilized in this type of process.

I claim:

l. A process for initiating combustion in and producing a permeable carbonaceous stratum which comprises forming a plurality of fractures around an ignition borehole in said stratum extending radially therefrom at least several feet; placing within said fractures to said depth a mixture of particulate combustible solids and propping material; filling said ignition borehole substantially to the top of said stratum with an absorptive bed of particulate solids; injecting combustion-supporting gas into said stratum thru at least one ofiset borehole so as to pass same to said combustible solids; igniting said solids and burning same with said gas so as to heat the adjacent stratum and drive liquid hydrocarbons into said absorptive bed; burning said liquid hydrocarbons in said bed with said injected gas so as to heat the surrounding stratum to combustion supporting temperature whereby sintering of the stratum in the wall of the ignition borehole is avoided; continuing the injection of said gas so as to ignite the surrounding stratum and advance the resulting combustion front generally horizontally thru said stratum toward said injection borehole countercurrently to the flow of gas; and recovering produced hydrocarbons thru said ignition borehole.

2. The process of claim 1 wherein said stratum is fractured horizontally around said borehole at intervals of about 1 to 2 feet.

3. The process of claim 1 wherein air is injected thru a ring of surrounding offset boreholes to sustain the burning of said solids, to ignite the carbonaceous material in said stratum after ignition temperature thereof is reached and to move said combustion front thru said stratum.

4. The process of claim -1 wherein said combustible solid comprises charcoal.

5. The process of claim 4 wherein charcoal is packed into said borehole to form said absorptive bed therein.

6. A process for initiating in situ combustion in a permeable carbonaceous stratum comprising forming a plurality of fractures in said stratum around an ignition borehole therein to a depth of at least several feet; placing within said fractures to said depth a mixture of particulate combustible solids and propping material; packing said borehole with an absorptive bed of particulate solids; burning said combustible solids in said fractures by igniting same and passing air between said ignition borehole and at least one offset borehole spaced within about 2 to 10 feet of said ignition borehole and penetrating said fractures, whereby liquid hydrocarbon flows into said bed and is burned therein and sintering of the stratum adjacent said bed is avoided; continuing the passage of air until said stratum intermediate said boreholes and intermediate said fractures is ignited; and thereafter passing air thru said stratum to the combustion zone from at least one borehole beyond said otfset borehole so as to advance the combustion zone thru said stratum outwardly from the ignition borehole.

7. The process of claim 6 wherein air passing between the boreholes is injected thru a ring of injection boreholes around said ignition borehole including said ofiset borehole; and, after in situ combustion is established, air for advancing the combustion zone is injected thru an outer ring of boreholes.

References ilited in the file of this patent UNITED STATES PATENTS 2,670,047 Mayes et al Feb. 23, 1954 2,818,118 Dixon Dec. 31, 1957 2,734,579 Elkins Feb. 14, 1959 2,901,043 Campion et al Aug. 25, 1-959

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2670047 *Apr 22, 1949Feb 23, 1954Socony Vacuum Oil Co IncMethod of initiating subterranean combustion
US2734579 *Jun 28, 1952Feb 14, 1956 Production from bituminous sands
US2818118 *Dec 19, 1955Dec 31, 1957Phillips Petroleum CoProduction of oil by in situ combustion
US2901043 *Jul 29, 1955Aug 25, 1959Pan American Petroleum CorpHeavy oil recovery
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3072190 *Mar 30, 1959Jan 8, 1963Phillips Petroleum CoIgnition for in situ combustion
US3205946 *Mar 12, 1962Sep 14, 1965Shell Oil CoConsolidation by silica coalescence
US3227211 *Dec 17, 1962Jan 4, 1966Phillips Petroleum CoHeat stimulation of fractured wells
US3417818 *Jan 9, 1967Dec 24, 1968Chevron ResMethod for initiating underground combustion
US3638727 *Sep 27, 1968Feb 1, 1972Texaco IncMethod of treating a subterranean hydrocarbon-bearing formation
US3952802 *Dec 11, 1974Apr 27, 1976In Situ Technology, Inc.Method and apparatus for in situ gasification of coal and the commercial products derived therefrom
US3981362 *Mar 17, 1975Sep 21, 1976Texaco Inc.Fracturing
US4615391 *Aug 13, 1984Oct 7, 1986Tenneco Oil CompanyUsing colloidally sized magnesium particles
US6581684Apr 24, 2001Jun 24, 2003Shell Oil CompanyIn Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US6588503Apr 24, 2001Jul 8, 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to control product composition
US6588504Apr 24, 2001Jul 8, 2003Shell Oil CompanyConversion of hydrocarbons to produce hydrocarbons, hydrogen, and/or novel product streams from underground coal formations; pyrolysis
US6591906Apr 24, 2001Jul 15, 2003Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US6591907Apr 24, 2001Jul 15, 2003Shell Oil CompanyPyrolysis
US6607033Apr 24, 2001Aug 19, 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to produce a condensate
US6609570Apr 24, 2001Aug 26, 2003Shell Oil CompanyIn situ thermal processing of a coal formation and ammonia production
US6688387Apr 24, 2001Feb 10, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6698515Apr 24, 2001Mar 2, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a relatively slow heating rate
US6702016Apr 24, 2001Mar 9, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US6708758Apr 24, 2001Mar 23, 2004Shell Oil CompanyIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US6712135Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation in reducing environment
US6712136Apr 24, 2001Mar 30, 2004Shell Oil CompanyProviding heat to the formation; controlling the heat from the heat source such that an average temperature within at least a majority of the selected section of the formation is less than about 375 degrees c.
US6712137Apr 24, 2001Mar 30, 2004Shell Oil CompanyHeat exchanging to superimpose heat
US6715546Apr 24, 2001Apr 6, 2004Shell Oil CompanyChemical and/or physical properties of hydrocarbon material within a subterranean formation may need to be changed to allow hydrocarbon material to be more easily removed
US6715547Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US6715548Apr 24, 2001Apr 6, 2004Shell Oil CompanyElectrical heaters may be used to heat the subterranean formation by radiation and/or conduction
US6715549Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6719047Apr 24, 2001Apr 13, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US6722429Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6722430Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US6722431Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of hydrocarbons within a relatively permeable formation
US6725920Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US6725921Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation by controlling a pressure of the formation
US6725928Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a distributed combustor
US6729395Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US6729396Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6729397Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729401Apr 24, 2001May 4, 2004Shell Oil CompanySynthesis gas may be produced from the formation. synthesis gas may be used as a feed stream in an ammonia synthesis process. ammonia may be used as a feed stream in a urea synthesis process.
US6732794Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6732795Apr 24, 2001May 11, 2004Shell Oil CompanyProviding heat from one or more heat sources to at least one portion of formation; allowing heat to transfer from the one or more heat sources to a selected section of the formation; controlling the heat; producing a mixture from the formation
US6732796Apr 24, 2001May 11, 2004Shell Oil CompanyHeating section of formation with heat sources to temperature allowing generation of synthesis gas, providing synthesis gas generating fluid to section, removing synthesis gas generated, repeating for second section, blending for desired ratio
US6736215Apr 24, 2001May 18, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US6739393Apr 24, 2001May 25, 2004Shell Oil CompanyIn situ thermal processing of a coal formation and tuning production
US6739394Apr 24, 2001May 25, 2004Shell Oil CompanyProviding heat and a synthesis gas generating fluid to the section to generate synthesis gas
US6742587Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6742588Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US6742589Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US6742593Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US6745831Apr 24, 2001Jun 8, 2004Shell Oil CompanyMixture of hydrocarbons, h2, and/or other formation fluids may be produced from the formation. heat may be applied to the formation to raise a temperature of a portion of the formation to a pyrolysis temperature.
US6745832Apr 24, 2001Jun 8, 2004Shell Oil CompanySitu thermal processing of a hydrocarbon containing formation to control product composition
US6745837Apr 24, 2001Jun 8, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US6749021Apr 24, 2001Jun 15, 2004Shell Oil CompanyPyrolysis
US6752210Apr 24, 2001Jun 22, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US6758268Apr 24, 2001Jul 6, 2004Shell Oil CompanyHeat exchanging, pyrolysis; monitoring temperature
US6761216Apr 24, 2001Jul 13, 2004Shell Oil CompanyPyrolysis temperature
US6763886Apr 24, 2001Jul 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with carbon dioxide sequestration
US6769483Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6769485Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ production of synthesis gas from a coal formation through a heat source wellbore
US6789625Apr 24, 2001Sep 14, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US6805195Apr 24, 2001Oct 19, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US6820688Apr 24, 2001Nov 23, 2004Shell Oil CompanyHeat exchanging after pyrolyzation to support synthesis gas generation
US6866097Apr 24, 2001Mar 15, 2005Shell Oil CompanySuperpositioning of heaters for pyrolysis to form mixture of hydrocarbons and hydrogen; controlling pressure; heat exchanging
US6871707Apr 24, 2001Mar 29, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US6877554Apr 24, 2001Apr 12, 2005Shell Oil CompanyPyrolysis
US6877555Apr 24, 2002Apr 12, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation while inhibiting coking
US6880633Apr 24, 2002Apr 19, 2005Shell Oil CompanyIncludes shutting-in an in situ treatment process in an oil shale formation may include terminating heating from heat sources providing heat to a portion of the formation; hydrocarbon vapor may be produced
US6880635Apr 24, 2001Apr 19, 2005Shell Oil CompanyMethods and systems for production of hydrocarbons, hydrogen, and/or other products from underground coal formations
US6889769Apr 24, 2001May 10, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US6896053Apr 24, 2001May 24, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US6902003Apr 24, 2001Jun 7, 2005Shell Oil CompanyAllowing heat to transfer from heaters to a formation selected for heating using a total organic matter weight percentage of > 5% and recirculating hydrogen
US6902004Apr 24, 2001Jun 7, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a movable heating element
US6910536Apr 24, 2001Jun 28, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US6913078Apr 24, 2001Jul 5, 2005Shell Oil CompanyIn Situ thermal processing of hydrocarbons within a relatively impermeable formation
US6915850Apr 24, 2002Jul 12, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation having permeable and impermeable sections
US6918442Apr 24, 2002Jul 19, 2005Shell Oil CompanyIn situ conversion of hydrocarbons to produce hydrocarbons, hydrogen, and/or novel product streams from underground oil shale formations
US6918443Apr 24, 2002Jul 19, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US6923257Apr 24, 2002Aug 2, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce a condensate
US6923258Jun 12, 2003Aug 2, 2005Shell Oil CompanyIn situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6929067Apr 24, 2002Aug 16, 2005Shell Oil CompanyHeat sources with conductive material for in situ thermal processing of an oil shale formation
US6932155Oct 24, 2002Aug 23, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US6948562Apr 24, 2002Sep 27, 2005Shell Oil CompanyProduction of a blending agent using an in situ thermal process in a relatively permeable formation
US6948563Apr 24, 2001Sep 27, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US6951247Apr 24, 2002Oct 4, 2005Shell Oil CompanyControl the heat exchanging, pyrolyzing hydrocarbons, enhancing oil recovery
US6953087Apr 24, 2001Oct 11, 2005Shell Oil CompanyThermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US6959761Apr 24, 2001Nov 1, 2005Shell Oil CompanyIn situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US6964300Apr 24, 2002Nov 15, 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US6966372Apr 24, 2001Nov 22, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US6966374Apr 24, 2002Nov 22, 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation using gas to increase mobility
US6969123Oct 24, 2002Nov 29, 2005Shell Oil CompanyUpgrading and mining of coal
US6973967Apr 24, 2001Dec 13, 2005Shell Oil Companyhydrocarbons within a coal formation are converted in situ within the formation to yield a mixture of relatively high quality hydrocarbon products, hydrogen, and other products; the coal is heated to to temperatures that allow pyrolysis
US6981548Apr 24, 2002Jan 3, 2006Shell Oil Companyheating and pyrolysis of heavy hydrocarbon sections in subterranean wells to produce light hydrocarbons; reduced viscosity improves movement; fluid removal in liquid and/or vapor phase
US6991031Apr 24, 2001Jan 31, 2006Shell Oil CompanyIn situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US6991032Apr 24, 2002Jan 31, 2006Shell Oil CompanyHeat sources positioned within the formation in a selected pattern raise a temperature of a portion of the formation to a pyrolysis temperature.
US6991033Apr 24, 2002Jan 31, 2006Shell Oil CompanyIn situ thermal processing while controlling pressure in an oil shale formation
US6991036Apr 24, 2002Jan 31, 2006Shell Oil CompanyThermal processing of a relatively permeable formation
US6991045Oct 24, 2002Jan 31, 2006Shell Oil CompanyForming openings in a hydrocarbon containing formation using magnetic tracking
US6994160Apr 24, 2001Feb 7, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US6994161Apr 24, 2001Feb 7, 2006Kevin Albert MaherIn situ thermal processing of a coal formation with a selected moisture content
US6994168Apr 24, 2001Feb 7, 2006Scott Lee WellingtonIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US6994169Apr 24, 2002Feb 7, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation with a selected property
US6997255Apr 24, 2001Feb 14, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a reducing environment
US6997518Apr 24, 2002Feb 14, 2006Shell Oil CompanyIn situ thermal processing and solution mining of an oil shale formation
US7004247Apr 24, 2002Feb 28, 2006Shell Oil CompanyConductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US7004251Apr 24, 2002Feb 28, 2006Shell Oil CompanyIn situ thermal processing and remediation of an oil shale formation
US7011154Oct 24, 2002Mar 14, 2006Shell Oil CompanyIn situ recovery from a kerogen and liquid hydrocarbon containing formation
US7013972Apr 24, 2002Mar 21, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a natural distributed combustor
US7017661Apr 24, 2001Mar 28, 2006Shell Oil CompanyProduction of synthesis gas from a coal formation
US7032660Apr 24, 2002Apr 25, 2006Shell Oil CompanyIn situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US7036583Sep 24, 2001May 2, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US7040398Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation in a reducing environment
US7040399Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a controlled heating rate
US7040400Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of a relatively impermeable formation using an open wellbore
US7051807Apr 24, 2002May 30, 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with quality control
US7051808Oct 24, 2002May 30, 2006Shell Oil CompanySeismic monitoring of in situ conversion in a hydrocarbon containing formation
US7051811Apr 24, 2002May 30, 2006Shell Oil CompanyIn situ thermal processing through an open wellbore in an oil shale formation
US7055600Apr 24, 2002Jun 6, 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with controlled production rate
US7063145Oct 24, 2002Jun 20, 2006Shell Oil CompanyMethods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US7066254Oct 24, 2002Jun 27, 2006Shell Oil CompanyIn situ thermal processing of a tar sands formation
US7066257Oct 24, 2002Jun 27, 2006Shell Oil CompanyIn situ recovery from lean and rich zones in a hydrocarbon containing formation
US7073578Oct 24, 2003Jul 11, 2006Shell Oil CompanyStaged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US7077198Oct 24, 2002Jul 18, 2006Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using barriers
US7077199Oct 24, 2002Jul 18, 2006Shell Oil CompanyIn situ thermal processing of an oil reservoir formation
US7086465Oct 24, 2002Aug 8, 2006Shell Oil CompanyIn situ production of a blending agent from a hydrocarbon containing formation
US7086468Apr 24, 2001Aug 8, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US7090013Oct 24, 2002Aug 15, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US7096941Apr 24, 2001Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US7096942Apr 24, 2002Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation while controlling pressure
US7096953Apr 24, 2001Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a coal formation using a movable heating element
US7100994Oct 24, 2002Sep 5, 2006Shell Oil CompanyProducing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation
US7104319Oct 24, 2002Sep 12, 2006Shell Oil CompanyIn situ thermal processing of a heavy oil diatomite formation
US7114566Oct 24, 2002Oct 3, 2006Shell Oil CompanyHeat treatment using natural distributed combustor; oxidation of hydrocarbons to generate heat; pyrolysis
US7121341Oct 24, 2003Oct 17, 2006Shell Oil CompanyConductor-in-conduit temperature limited heaters
US7121342Apr 23, 2004Oct 17, 2006Shell Oil CompanyThermal processes for subsurface formations
US7128153Oct 24, 2002Oct 31, 2006Shell Oil CompanyTreatment of a hydrocarbon containing formation after heating
US7156176Oct 24, 2002Jan 2, 2007Shell Oil CompanyInstallation and use of removable heaters in a hydrocarbon containing formation
US7165615Oct 24, 2002Jan 23, 2007Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US7219734Oct 24, 2003May 22, 2007Shell Oil CompanyInhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US7225866Jan 31, 2006Jun 5, 2007Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US7320364Apr 22, 2005Jan 22, 2008Shell Oil CompanyInhibiting reflux in a heated well of an in situ conversion system
US7353872Apr 22, 2005Apr 8, 2008Shell Oil CompanyStart-up of temperature limited heaters using direct current (DC)
US7357180Apr 22, 2005Apr 15, 2008Shell Oil CompanyInhibiting effects of sloughing in wellbores
US7360588Oct 17, 2006Apr 22, 2008Shell Oil CompanyThermal processes for subsurface formations
US7370704Apr 22, 2005May 13, 2008Shell Oil CompanyTriaxial temperature limited heater
US7383877Apr 22, 2005Jun 10, 2008Shell Oil CompanyTemperature limited heaters with thermally conductive fluid used to heat subsurface formations
US7424915Apr 22, 2005Sep 16, 2008Shell Oil CompanyVacuum pumping of conductor-in-conduit heaters
US7431076Apr 22, 2005Oct 7, 2008Shell Oil CompanyTemperature limited heaters using modulated DC power
US7435037Apr 21, 2006Oct 14, 2008Shell Oil CompanyLow temperature barriers with heat interceptor wells for in situ processes
US7461691Jan 23, 2007Dec 9, 2008Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7481274Apr 22, 2005Jan 27, 2009Shell Oil CompanyTemperature limited heaters with relatively constant current
US7490665Apr 22, 2005Feb 17, 2009Shell Oil CompanyVariable frequency temperature limited heaters
US7500528Apr 21, 2006Mar 10, 2009Shell Oil CompanyLow temperature barrier wellbores formed using water flushing
US7510000Apr 22, 2005Mar 31, 2009Shell Oil CompanyReducing viscosity of oil for production from a hydrocarbon containing formation
US7527094Apr 21, 2006May 5, 2009Shell Oil CompanyDouble barrier system for an in situ conversion process
US7533719Apr 20, 2007May 19, 2009Shell Oil CompanyWellhead with non-ferromagnetic materials
US7540324Oct 19, 2007Jun 2, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a checkerboard pattern staged process
US7546873Apr 21, 2006Jun 16, 2009Shell Oil CompanyLow temperature barriers for use with in situ processes
US7549470Oct 20, 2006Jun 23, 2009Shell Oil CompanySolution mining and heating by oxidation for treating hydrocarbon containing formations
US7556095Oct 20, 2006Jul 7, 2009Shell Oil CompanySolution mining dawsonite from hydrocarbon containing formations with a chelating agent
US7556096Oct 20, 2006Jul 7, 2009Shell Oil CompanyVarying heating in dawsonite zones in hydrocarbon containing formations
US7559367Oct 20, 2006Jul 14, 2009Shell Oil CompanyTemperature limited heater with a conduit substantially electrically isolated from the formation
US7559368Oct 20, 2006Jul 14, 2009Shell Oil CompanySolution mining systems and methods for treating hydrocarbon containing formations
US7562706Oct 20, 2006Jul 21, 2009Shell Oil CompanySystems and methods for producing hydrocarbons from tar sands formations
US7562707Oct 19, 2007Jul 21, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a line drive staged process
US7575052Apr 21, 2006Aug 18, 2009Shell Oil CompanyIn situ conversion process utilizing a closed loop heating system
US7575053Apr 21, 2006Aug 18, 2009Shell Oil CompanyLow temperature monitoring system for subsurface barriers
US7581589Oct 20, 2006Sep 1, 2009Shell Oil CompanyMethods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US7584789Oct 20, 2006Sep 8, 2009Shell Oil CompanyMethods of cracking a crude product to produce additional crude products
US7591310Oct 20, 2006Sep 22, 2009Shell Oil CompanyMethods of hydrotreating a liquid stream to remove clogging compounds
US7597147Apr 20, 2007Oct 6, 2009Shell Oil CompanyTemperature limited heaters using phase transformation of ferromagnetic material
US7604052Apr 20, 2007Oct 20, 2009Shell Oil CompanyCompositions produced using an in situ heat treatment process
US7610962Apr 20, 2007Nov 3, 2009Shell Oil CompanyProviding acidic gas to a subterrean formation, such as oil shale, by heating from an electrical heater and injecting through an oil wellbore; one of the acidic acids includes hydrogen sulfide and is introduced at a pressure below the lithostatic pressure of the formation to produce fluids; efficiency
US7631689Apr 20, 2007Dec 15, 2009Shell Oil CompanySulfur barrier for use with in situ processes for treating formations
US7631690Oct 19, 2007Dec 15, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a spiral startup staged sequence
US7635023Apr 20, 2007Dec 22, 2009Shell Oil CompanyTime sequenced heating of multiple layers in a hydrocarbon containing formation
US7635024Oct 19, 2007Dec 22, 2009Shell Oil CompanyHeating tar sands formations to visbreaking temperatures
US7635025Oct 20, 2006Dec 22, 2009Shell Oil CompanyCogeneration systems and processes for treating hydrocarbon containing formations
US7640980Apr 7, 2008Jan 5, 2010Shell Oil CompanyThermal processes for subsurface formations
US7644765Oct 19, 2007Jan 12, 2010Shell Oil CompanyHeating tar sands formations while controlling pressure
US7673681Oct 19, 2007Mar 9, 2010Shell Oil CompanyTreating tar sands formations with karsted zones
US7673786Apr 20, 2007Mar 9, 2010Shell Oil CompanyWelding shield for coupling heaters
US7677310Oct 19, 2007Mar 16, 2010Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US7677314Oct 19, 2007Mar 16, 2010Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US7681647Oct 19, 2007Mar 23, 2010Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US7683296Apr 20, 2007Mar 23, 2010Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US7703513Oct 19, 2007Apr 27, 2010Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US7717171Oct 19, 2007May 18, 2010Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US7730945Oct 19, 2007Jun 8, 2010Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730946Oct 19, 2007Jun 8, 2010Shell Oil CompanyTreating tar sands formations with dolomite
US7730947Oct 19, 2007Jun 8, 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US7735935Jun 1, 2007Jun 15, 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US7785427Apr 20, 2007Aug 31, 2010Shell Oil CompanyChromium, nickel, copper; niobium, iron manganese, nitrogen; nanonitrides; system for heating a subterranean formation;
US7793722Apr 20, 2007Sep 14, 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US7798220Apr 18, 2008Sep 21, 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US7798221May 31, 2007Sep 21, 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7831134Apr 21, 2006Nov 9, 2010Shell Oil CompanyGrouped exposed metal heaters
US7832484Apr 18, 2008Nov 16, 2010Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US7841401Oct 19, 2007Nov 30, 2010Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US7841408Apr 18, 2008Nov 30, 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US7841425Apr 18, 2008Nov 30, 2010Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US7845411Oct 19, 2007Dec 7, 2010Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US7849922Apr 18, 2008Dec 14, 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US7860377Apr 21, 2006Dec 28, 2010Shell Oil CompanySubsurface connection methods for subsurface heaters
US7866385Apr 20, 2007Jan 11, 2011Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US7866386Oct 13, 2008Jan 11, 2011Shell Oil Companyproduction of hydrocarbons, hydrogen, and/or other products from various subsurface formations such as hydrocarbon containing formations through use of oxidizing fluids and heat
US7866388Oct 13, 2008Jan 11, 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US7912358Apr 20, 2007Mar 22, 2011Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US7931086Apr 18, 2008Apr 26, 2011Shell Oil CompanyHeating systems for heating subsurface formations
US7942197Apr 21, 2006May 17, 2011Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US7942203Jan 4, 2010May 17, 2011Shell Oil CompanyThermal processes for subsurface formations
US7950453Apr 18, 2008May 31, 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US7986869Apr 21, 2006Jul 26, 2011Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US8011451Oct 13, 2008Sep 6, 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US8027571Apr 21, 2006Sep 27, 2011Shell Oil CompanyIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US8042610Apr 18, 2008Oct 25, 2011Shell Oil CompanyParallel heater system for subsurface formations
US8070840Apr 21, 2006Dec 6, 2011Shell Oil CompanyTreatment of gas from an in situ conversion process
US8083813Apr 20, 2007Dec 27, 2011Shell Oil CompanyMethods of producing transportation fuel
US8113272Oct 13, 2008Feb 14, 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US8146661Oct 13, 2008Apr 3, 2012Shell Oil CompanyCryogenic treatment of gas
US8146669Oct 13, 2008Apr 3, 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US8151880Dec 9, 2010Apr 10, 2012Shell Oil CompanyMethods of making transportation fuel
US8151907Apr 10, 2009Apr 10, 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8162059Oct 13, 2008Apr 24, 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US8162405Apr 10, 2009Apr 24, 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US8172335Apr 10, 2009May 8, 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8177305Apr 10, 2009May 15, 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8191630Apr 28, 2010Jun 5, 2012Shell Oil CompanyCreating fluid injectivity in tar sands formations
US8192682Apr 26, 2010Jun 5, 2012Shell Oil CompanyHigh strength alloys
US8196658Oct 13, 2008Jun 12, 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US8220539Oct 9, 2009Jul 17, 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8224163Oct 24, 2003Jul 17, 2012Shell Oil CompanyVariable frequency temperature limited heaters
US8224164Oct 24, 2003Jul 17, 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US8224165Apr 21, 2006Jul 17, 2012Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US8225866Jul 21, 2010Jul 24, 2012Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8230927May 16, 2011Jul 31, 2012Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US8233782Sep 29, 2010Jul 31, 2012Shell Oil CompanyGrouped exposed metal heaters
US8238730Oct 24, 2003Aug 7, 2012Shell Oil CompanyHigh voltage temperature limited heaters
US8240774Oct 13, 2008Aug 14, 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US8256512Oct 9, 2009Sep 4, 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US8261832Oct 9, 2009Sep 11, 2012Shell Oil CompanyHeating subsurface formations with fluids
US8267170Oct 9, 2009Sep 18, 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US8267185Oct 9, 2009Sep 18, 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US8272455Oct 13, 2008Sep 25, 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US8276661Oct 13, 2008Oct 2, 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US8281861Oct 9, 2009Oct 9, 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US8327681Apr 18, 2008Dec 11, 2012Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US8327932Apr 9, 2010Dec 11, 2012Shell Oil CompanyRecovering energy from a subsurface formation
US8353347Oct 9, 2009Jan 15, 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US8355623Apr 22, 2005Jan 15, 2013Shell Oil CompanyTemperature limited heaters with high power factors
US8381815Apr 18, 2008Feb 26, 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US8434555Apr 9, 2010May 7, 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US8448707Apr 9, 2010May 28, 2013Shell Oil CompanyNon-conducting heater casings
US8459359Apr 18, 2008Jun 11, 2013Shell Oil CompanyTreating nahcolite containing formations and saline zones
US8485252Jul 11, 2012Jul 16, 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8536497Oct 13, 2008Sep 17, 2013Shell Oil CompanyMethods for forming long subsurface heaters
US8555971May 31, 2012Oct 15, 2013Shell Oil CompanyTreating tar sands formations with dolomite
US8562078Nov 25, 2009Oct 22, 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8579031May 17, 2011Nov 12, 2013Shell Oil CompanyThermal processes for subsurface formations
US8606091Oct 20, 2006Dec 10, 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US8608249Apr 26, 2010Dec 17, 2013Shell Oil CompanyIn situ thermal processing of an oil shale formation
US8627887Dec 8, 2008Jan 14, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8631866Apr 8, 2011Jan 21, 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8636323Nov 25, 2009Jan 28, 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US8662175Apr 18, 2008Mar 4, 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8701768Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US8701769Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US8739874Apr 8, 2011Jun 3, 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US8752904Apr 10, 2009Jun 17, 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US20090159277 *Dec 16, 2008Jun 25, 2009Grant HockingEnhanced Hydrocarbon Recovery by in Situ Combustion of Oil Sand Formations
US20140014342 *Jul 10, 2012Jan 16, 2014Argosy TechnologiesMethod of Treatment and Perforation of Near-Well Zone
WO2002086283A1 *Oct 10, 2001Oct 31, 2002Shell Int ResearchIn-situ combustion for oil recovery
Classifications
U.S. Classification166/259, 166/262
International ClassificationE21B36/02, E21B36/00
Cooperative ClassificationE21B36/02
European ClassificationE21B36/02