Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3032102 A
Publication typeGrant
Publication dateMay 1, 1962
Filing dateMar 17, 1958
Priority dateMar 17, 1958
Publication numberUS 3032102 A, US 3032102A, US-A-3032102, US3032102 A, US3032102A
InventorsParker Harry W
Original AssigneePhillips Petroleum Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
In situ combustion method
US 3032102 A
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

y 1, 1962 H. w. PARKER 3,032,102

IN SITU COMBUSTION METHOD Filed March 1?, 195a AUTOMATIC KCONTROLLER AIR AIR

OVERBURDEN NO AIR FLOW FIG. 3

l o 40 so I20 I40 TIME (MIN) FIG. 2

e. INVENTOR.

H.W. PARKER BY A ATTORNEYS rates This invention relates to an improved process for initiating in situ combustion in a carbonaceous stratum.

In situ combustion in the recovery of hydrocarbons from underground strata containing carbonaceous material is becoming more prevalent in the petroleum industry. In this technique of production, combustion is initiated in the carbonaceous stratum and the resulting combustion zone is caused to move thru the stratum by either inverse or direct air drive whereby the heat of combustion of a substantial proportion of the hydrocarbon in the stratum drives out and usually upgrades a substantial proportion of the remaining hydrocarbon material.

The ignition of carbonaceous material in a stratum around a borehole therein followed by injection of air thru the ignition borehole and recovery of product hydrocarbons and combustion gas thru another borehole in the stratum is a direct air drive process for effecting in situ combustion and recovery of hydrocarbons from the stratum. In this type of operation the stratum usually plugs in front of the combustion zone because a heavy viscous fluid bank collects in the stratum in advance of the combustion zone which prevents movement of air to the combustion process. To overcome this difliculty and permit the continued progress of the combustion zone thru the stratum, inverse air injection has been resorted to. By this technique, a combustion zone is established around an ignition borehole by any suitable means and air is fed thru the stratum to the combustion zone from one or more surrounding boreholes.

In operating With either direct or indirect air injection to produce hydrocarbons from a carbonaceous stratum by in situ combustion, it is necessary to first ignite the carbonaceous material in the stratum around a borehole therein. One method of ignition utilizes a downhole heater of either the electric or gas fired type to heat the wall of the ignition borehole and an annular section of the stratum surrounding the borehole. Another technique comprises placing charcoal in the ignition borehole adjacent the stratum to be ignited and burning the charcoal therein by igniting same while feeding O -cOntaining gas thereto. In any of these processes for igniting the carbonaceous stratum, a long preheating period is necessary to bring the temperature thereof up to ignition temperature, which is usually in the range of about 550 to 700 F. when contacting the hot stratum with air as the O containing gas. This invention is concerned with a method whereby the preheating period is substantially reduced.

Accordingly, the principal object of the invention is to provide an improved process for initiating combustion in a carbonaceous stratum. Another object is to reduce the preheating period required prior to the ignition of a carbonaceous stratum. A further object is to provide an improved method of controlling the ignition of a carbonaceous stratum to be produced by in situ combustion. Other objects of the invention will become apparent upon consideration of the accompanying disclosure.

A broad aspect of the invention comprises heating a section of a stratum containing combustible carbonaceous material to bring the same to ignition temperature and, while preheating said section, contacting the same with a stream of O -containing gas under controlled flow conditions.

'Air or other o -containing gas is passed to the section of stratum being heated during the heating step, at a slow rate during the initial phases of the preheating and at a faster rate during the later phases thereof. The floW of air to the preheated area is regulated by analyzing the effluent therefrom for either 0 or CO and by controlling the rate of air flow so as to maintain the 0 concentration in the range of about 0.10 to about 10% by volume; or, when analyzed for CO concentration, regulating the flow to maintain the concentration of CO in the range of about 6 to 13 or 14% by volume. If the O concentration in the effluent exceeds the desired upper limit in the range of 0.10 to 10% by volume or if the concentration of CO in the efiiuent gas falls below a minimum in the range of 6 to 14% by volume, the fiow rate of air thru the stratum is decreased to bring the concentration of 0 or CO to a level in the preceding ranges. Conversely, if the 0 concentration in the efl iuent gas falls below a minimum in the range of 0.10 to 10% by volume, or if the CO concentration in the efiiuent gas exceeds a maximum in the range of 6 to 14% by volume. then the rate of how of air thru the heated stratum is increased. In other words, the concentration of either 0 or CO in the effluent gas is determined and the fiow rate of air is controlled so as to maintain the concentration of these constituents in the above ranges.

It has been found that by contacting the heated section of stratum during the preheating step with O and controlling the flow of 0 so as to maintain a low oxygen concentration (and high CO concentration) in the efiiuent from the heated section, the time required for establishing ignition of the stratum can be reduced at least in half. By this method the allowable rate of flow of O continuously increases during the preheating thus permitting self-sustaining ignition to start without the sudden shock of operating the ignition well after a long period of being shut in and the associated problems of flashing water to steam or a sudden rush of cold tar and water into the heated zone, particularly, when the inverse air injection method is utilized, with the ignition well serving as a production well.

It has been found that slow oxidation occurs during the early phases of the preheating step when air is fed to the heated area and, as the temperature of the stratum rises, the rate of oxidation increases. For this reason, it is feasible to preheat the section of stratum around an ignition borehole therein to raise the temperature thereof to about 200 to 300 P. (such as 250 F.) before contacting the same with a stream of air. However, air may be flowed to the section of stratum during the entire preheating period at increasing rates, as required to maintain the proper oxygen concentration in the eifiuent, so that when the ignition temperature is reached, ignition is automatically effected. In cases where a heating device is utilized for the preheating step, the same is removed when ignition is established.

Control of the 0 or CO concentration in the efiiuent from the section of stratum being heated automatically determines the air flow rate at any given time. Flow rates will vary widely during the preheating period probably because of the changing rate of oxidation of carbonaceous matter.

A rate as low as l or 2 standard cubic feet per hour per square foot of well bore area in the carbonaceous stratum comes within the scope of the process and rates will go as high as 200 s.c.f.h. per square foot of borehole area and higher, depending upon the permeability of the stratum and the character of the carbonaceous deposit therein.

A more complete understanding of the invention may be had by reference to the accompanying schematic drawing of which FIGURE 1 is an elevation showing an arrangement of apparatus in association with a carbona- 3 ceous stratum for effecting the process of the invention; FIGURE 2 shows a typical S-spot well pattern adapted to the process of the invention; and FIGURE 3 is a graph showing the relation between time and preheat temperature in preheating a section of carbonaceous stratum with and without air flow.

Referring to FIGURE 1, a carbonaceous stratum 10 is penetrated by an ignition borehole 12 and a number of injection boreholes 14 two of which are shown. Boreholes 14 are spaced, as shown in FIGURE 2, around borehole 12 in a generally annular pattern and spaced therefrom any suitable distance within the range of a few feet to several hundred feet, depending upon the permeability of the carbonaceous stratum and other factors. It is to be understood that, where the permeability is low, the stratum may be horizontally fractured in known manner.

Each well is provided with a casing '16 and a well head 18. A heater 20 is positioned in borehole 12 within stratum 10 so as to heat the wall of the borehole Within the carbonaceous stratum. Heater 20 may be of any type such as a gas fired heater, an electric heater, or a mass of incandescent charcoal. One type of gas fired heater which has been found particularly effective is that disclosed and claimed in the US application of A. S. Rogers et al., Serial No. 719,890, filed March 7, 1958. Charcoal has also been found to be very effective in preheating a carbonaceous stratum surrounding a borehole for in situ combustion purposes.

Air lines 22 connect with each injection well head 18 and with a source of air supply, such as blower 24, thru line 26. An automatic controller 28 is positioned in the air line circuit between line 26 and lines 22 to control the amount of air passing to the air injection wells. An effluent line 30 from well head 18 of ignition well 12 connects with an analyzer 32 which is provided with an exhaust line 35. Analyzer 32 is operatively connected with automatic controller 28 vial line 36. Tubing 34 serves as an exhaust and as production tubing.

Analyzer 32 may be any oxygen analyzer or CO analyzer of any construction or design which satisfactorily analyzes the effluent gas for or CO concentration. The analyzer may be of the paramagnetic, conductive bridge type, or of the well known absorbent type. A Beckmann paramagnetic oxygen analyzer has been found very satisfactory in field tests in in situ combustion. It is also feasible to periodically analyze the effluent gas by well known laboratory methods to determine either the 0 content or the CO content and periodically regulate the flow of air or other O -containing gas to the injection wells so as to maintain the 0 or CO concentration in the effluent within the desired ranges or at a substantially constant value within said ranges. However, automatic continuous analyzers and controllers are available from commercial sources for effecting the controls of the process.

FIGURE 3 shows curves plotted from laboratory tests on igniting tar sand on a small scale oil well arrangement. In the tests, a section of tar sand 4 /2 inches thick and 7 inches in diameter was clamped between two flanges so that air could be forced into the sides of the cylinder thru the cylindrical surface and produced from a well drilled along its axis. This gave a system of radial fiow similar to that employed in field operations. The rock or sand was heated by means of an electric heater in the well bore. In tests in which the well bore was preheated without flow of air thru the rock during the preheating operation, the time for heating to ignition temperautre was of the order of 40 minutes. In another test with the same arrangement of apparatus and tar sand, air was fiowed thru the sand during the preheating operation and the effluent gas from the well bore was analyzed for carbon dioxide. (A continuous oxygen analyzer was not available in the laboratory at the time.) The flow of air was controlled to maintain a carbon dioxide concentration in the range of 6 to 13 percent in the effluent gas from the well bore. A temperature of 600 F. (the approximate ignition temperature) was reached approximately 2 /2 times as rapidly as in the tests without air flow, as measured by a thermocouple one-half inch from the well bore. runs are plotted and shown in FIGURE 3.

Certain modifications of the invention will become apparent to those skilled in the art and the illustrative details disclosed are not to be construed as imposing unnecessary limitations on the invention.

I claim:

1. A process for initiating in situ combustion in a carbonaceous stratum comprising preheating a section of said stratum around a borehole therein to raise same to ignition temperature; during said preheating, passing O -containing gas thru said section at gradually increasing fiow rate from a low flow rate to a substantially higher flow rate at the time when said temperature is reached; analyzing gaseous efiiuent from said section to determine the concentration of a constituent thereof selected from the group consisting of O and CO regulating the flow rate of said gas to said section in accordance with the resulting concentration to maintain a desired concentration of said constituent in said efiiuent, said range being 0.10 to 10% by volume when regulating in response to 0 concentration and 6 to 14 percent by volume when regulating in response to CO concentration; continuing the preheating step until the ignition temperature of the carbonaceous material in said stratum is reached; and continuing the flow of said gas to said section so as to ignite carbonaceous material therein.

2. The process of claim 1 wherein the concentration of O is used to regulate the fiow of O -containing gas.

3. The process of claim 1 wherein the concentration of CO is used to regulate the flow of O -containing gas.

4. A process for initiating in situ combustion in a stratum containing carbonaceous material comprising preheating a section of said stratum around a borehole therein to raise the temperature of said material to the ignition point; while the temperature of the wall of the borehole is rising thru the range of about 250 F. to about 600 F., passing a stream of air thru said section; analyzing gaseous effluent from said section to determine the concentration of a constituent thereof selected from the group consisting of O and CO regulating the flow of air to said section in response to said concentration to maintain same in a seleced range, said range being 0.10 to 10% by volume when regulating in response to 0 concentration and 6 to 14 percent by volume when regulating in response to CO concentration; and continuing the preheating and flow of air until ignition of said material is effected.

5. The process of claim 4 wherein said air is passed thru said stratum into said borehole.

6. The process of claim 5 wherein said air is supplied to said section thru a series of air-injection boreholes surrounding said borehole.

7. The process of claim 4 wherein 0 concentration is used to regulate the flow of air.

8. The process of claim 4 wherein CO concentration is used to regulate the flow of air.

9. The process of claim 4 wherein the O concentration is determined and same is maintained in the range of 0.10 to 5.0% by volume.

10. A process for igniting a combustible carbonaceous stratum around an ignition borehole therein comprising preheating to ignition temperature a section of stratum adjacent said borehole; during the preheating, passing air into said section at a very low flow rate in the range of 1 to 200 standard cubic feet per hour per square foot of area of said borehole thru which gas is passing, during the initial phase of said preheating, and increasing the flow rate of air as the temperature of said section increases so as to reach a very higher flow rate of air in said range when said temperature is reached, thereby igniting said The test data for the two types of section in a short period of time; and continuing the feeding of air to the hot stratum so as to initiate in situ combustion of said stratum.

11. The process of claim 10 including the steps of measuring the 0 concentration in the gaseous efiiuent and regulating the flow rate of air so as to maintain said concentration of O in the range of 0.10 to 10% by volume of said efiiuent.

12. The process of claim 10 including the steps of measuring the CO concentration in the gaseous efiiuent and regulating the flow rate of air so as to maintain said concentration of CO in the range of 6 to 14% by volume of said effluent.

13. The process of claim 10 wherein air is injected thru at least one offset borehole thru said stratum to said section during preheating and thereafter to sustain combustion and initiate an inverse drive combustion.

References Cited in the file of this patent UNITED STATES PATENTS

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2545732 *Mar 2, 1949Mar 20, 1951Hamilton James WCombustion control
US2793696 *Jul 22, 1954May 28, 1957Pan American Petroleum CorpOil recovery by underground combustion
US2818117 *Mar 9, 1953Dec 31, 1957Socony Mobil Oil Co IncInitiation of combustion in a subterranean petroleum oil reservoir
US2862557 *Sep 12, 1955Dec 2, 1958Shell DevPetroleum production by underground combustion
US2917112 *Nov 13, 1956Dec 15, 1959Phillips Petroleum CoInverse air injection technique
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3221809 *Jun 14, 1963Dec 7, 1965Socony Mobil Oil Co IncMethod of heating a subterranean reservoir containing hydrocarbon material
US3298434 *May 27, 1964Jan 17, 1967Graham Thomas TGasification of coal
US3470954 *Oct 16, 1968Oct 7, 1969Mobil Oil CorpTemperature control in an in situ combustion production well
US3775073 *Aug 27, 1971Nov 27, 1973Cities Service Oil CoIn situ gasification of coal by gas fracturing
US3892270 *Jun 6, 1974Jul 1, 1975Chevron ResProduction of hydrocarbons from underground formations
US3905422 *Sep 23, 1974Sep 16, 1975Texaco IncMethod for recovering viscous petroleum
US3964545 *Jun 10, 1974Jun 22, 1976Esorco CorporationProcesses for secondarily recovering oil
US3997005 *Oct 23, 1975Dec 14, 1976The United States Of America As Represented By The United States Energy Research And Development AdministrationMethod for control of subsurface coal gasification
US4151877 *May 13, 1977May 1, 1979Occidental Oil Shale, Inc.Determining the locus of a processing zone in a retort through channels
US4163475 *Apr 21, 1978Aug 7, 1979Occidental Oil Shale, Inc.Determining the locus of a processing zone in an in situ oil shale retort
US4296809 *Jul 21, 1980Oct 27, 1981Gulf Research & Development CompanyInjection of air
US4299285 *Jul 21, 1980Nov 10, 1981Gulf Research & Development CompanyUnderground gasification of bituminous coal
US4344484 *Dec 18, 1980Aug 17, 1982Occidental Oil Shale, Inc.Determining the locus of a processing zone in an in situ oil shale retort through a well in the formation adjacent the retort
US4369841 *Dec 29, 1980Jan 25, 1983Occidental Oil Shale, Inc.Method for igniting an in situ oil shale retort
US4369842 *Feb 9, 1981Jan 25, 1983Occidental Oil Shale, Inc.Analyzing oil shale retort off-gas for carbon dioxide to determine the combustion zone temperature
US4415031 *Mar 12, 1982Nov 15, 1983Mobil Oil CorporationUse of recycled combustion gas during termination of an in-situ combustion oil recovery method
US4448249 *Jun 18, 1982May 15, 1984Occidental Research CorporationMethod of in situ oil shale retort ignition with oxygen control
US4683947 *Sep 5, 1985Aug 4, 1987Air Products And Chemicals Inc.Process and apparatus for monitoring and controlling the flammability of gas from an in-situ combustion oil recovery project
US6877555Apr 24, 2002Apr 12, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation while inhibiting coking
US6896053Apr 24, 2001May 24, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US6902004Apr 24, 2001Jun 7, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a movable heating element
US6913078Apr 24, 2001Jul 5, 2005Shell Oil CompanyIn Situ thermal processing of hydrocarbons within a relatively impermeable formation
US6915850Apr 24, 2002Jul 12, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation having permeable and impermeable sections
US6918442Apr 24, 2002Jul 19, 2005Shell Oil CompanyIn situ conversion of hydrocarbons to produce hydrocarbons, hydrogen, and/or novel product streams from underground oil shale formations
US6918443Apr 24, 2002Jul 19, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US6923257Apr 24, 2002Aug 2, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce a condensate
US6923258Jun 12, 2003Aug 2, 2005Shell Oil CompanyIn situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6929067Apr 24, 2002Aug 16, 2005Shell Oil CompanyHeat sources with conductive material for in situ thermal processing of an oil shale formation
US6932155Oct 24, 2002Aug 23, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US6948562Apr 24, 2002Sep 27, 2005Shell Oil CompanyProduction of a blending agent using an in situ thermal process in a relatively permeable formation
US6951247Apr 24, 2002Oct 4, 2005Shell Oil CompanyControl the heat exchanging, pyrolyzing hydrocarbons, enhancing oil recovery
US6953087Apr 24, 2001Oct 11, 2005Shell Oil CompanyThermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US6959761Apr 24, 2001Nov 1, 2005Shell Oil CompanyIn situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US6964300Apr 24, 2002Nov 15, 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US6966372Apr 24, 2001Nov 22, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US6966374Apr 24, 2002Nov 22, 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation using gas to increase mobility
US6973967Apr 24, 2001Dec 13, 2005Shell Oil Companyhydrocarbons within a coal formation are converted in situ within the formation to yield a mixture of relatively high quality hydrocarbon products, hydrogen, and other products; the coal is heated to to temperatures that allow pyrolysis
US6981548Apr 24, 2002Jan 3, 2006Shell Oil Companyheating and pyrolysis of heavy hydrocarbon sections in subterranean wells to produce light hydrocarbons; reduced viscosity improves movement; fluid removal in liquid and/or vapor phase
US6991032Apr 24, 2002Jan 31, 2006Shell Oil CompanyHeat sources positioned within the formation in a selected pattern raise a temperature of a portion of the formation to a pyrolysis temperature.
US6991033Apr 24, 2002Jan 31, 2006Shell Oil CompanyIn situ thermal processing while controlling pressure in an oil shale formation
US6991036Apr 24, 2002Jan 31, 2006Shell Oil CompanyThermal processing of a relatively permeable formation
US6991045Oct 24, 2002Jan 31, 2006Shell Oil CompanyForming openings in a hydrocarbon containing formation using magnetic tracking
US6994160Apr 24, 2001Feb 7, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US6994169Apr 24, 2002Feb 7, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation with a selected property
US6997255Apr 24, 2001Feb 14, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a reducing environment
US6997518Apr 24, 2002Feb 14, 2006Shell Oil CompanyIn situ thermal processing and solution mining of an oil shale formation
US7004251Apr 24, 2002Feb 28, 2006Shell Oil CompanyIn situ thermal processing and remediation of an oil shale formation
US7011154Oct 24, 2002Mar 14, 2006Shell Oil CompanyIn situ recovery from a kerogen and liquid hydrocarbon containing formation
US7013972Apr 24, 2002Mar 21, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a natural distributed combustor
US7017661Apr 24, 2001Mar 28, 2006Shell Oil CompanyProduction of synthesis gas from a coal formation
US7032660Apr 24, 2002Apr 25, 2006Shell Oil CompanyIn situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US7040397Apr 24, 2002May 9, 2006Shell Oil CompanyThermal processing of an oil shale formation to increase permeability of the formation
US7040398Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation in a reducing environment
US7040399Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a controlled heating rate
US7040400Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of a relatively impermeable formation using an open wellbore
US7051807Apr 24, 2002May 30, 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with quality control
US7051808Oct 24, 2002May 30, 2006Shell Oil CompanySeismic monitoring of in situ conversion in a hydrocarbon containing formation
US7051811Apr 24, 2002May 30, 2006Shell Oil CompanyIn situ thermal processing through an open wellbore in an oil shale formation
US7055600 *Apr 24, 2002Jun 6, 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with controlled production rate
US7063145Oct 24, 2002Jun 20, 2006Shell Oil CompanyMethods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US7066254Oct 24, 2002Jun 27, 2006Shell Oil CompanyIn situ thermal processing of a tar sands formation
US7066257Oct 24, 2002Jun 27, 2006Shell Oil CompanyIn situ recovery from lean and rich zones in a hydrocarbon containing formation
US7073578Oct 24, 2003Jul 11, 2006Shell Oil CompanyStaged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US7077198Oct 24, 2002Jul 18, 2006Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using barriers
US7077199Oct 24, 2002Jul 18, 2006Shell Oil CompanyIn situ thermal processing of an oil reservoir formation
US7086465Oct 24, 2002Aug 8, 2006Shell Oil CompanyIn situ production of a blending agent from a hydrocarbon containing formation
US7086468Apr 24, 2001Aug 8, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US7090013Oct 24, 2002Aug 15, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US7096942Apr 24, 2002Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation while controlling pressure
US7096953Apr 24, 2001Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a coal formation using a movable heating element
US7100994Oct 24, 2002Sep 5, 2006Shell Oil Companyinjecting a heated fluid into the well bore, producing a second fluid from the formation, conducting an in situ conversion process in the selected section.
US7104319Oct 24, 2002Sep 12, 2006Shell Oil CompanyIn situ thermal processing of a heavy oil diatomite formation
US7114566Oct 24, 2002Oct 3, 2006Shell Oil CompanyHeat treatment using natural distributed combustor; oxidation of hydrocarbons to generate heat; pyrolysis
US7121341Oct 24, 2003Oct 17, 2006Shell Oil CompanyConductor-in-conduit temperature limited heaters
US7121342Apr 23, 2004Oct 17, 2006Shell Oil CompanyThermal processes for subsurface formations
US7128153Oct 24, 2002Oct 31, 2006Shell Oil CompanyTreatment of a hydrocarbon containing formation after heating
US7156176Oct 24, 2002Jan 2, 2007Shell Oil CompanyInstallation and use of removable heaters in a hydrocarbon containing formation
US7165615Oct 24, 2002Jan 23, 2007Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US7219734Oct 24, 2003May 22, 2007Shell Oil CompanyInhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US7225866Jan 31, 2006Jun 5, 2007Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US7320364Apr 22, 2005Jan 22, 2008Shell Oil CompanyInhibiting reflux in a heated well of an in situ conversion system
US7353872Apr 22, 2005Apr 8, 2008Shell Oil CompanyStart-up of temperature limited heaters using direct current (DC)
US7357180Apr 22, 2005Apr 15, 2008Shell Oil CompanyInhibiting effects of sloughing in wellbores
US7360588Oct 17, 2006Apr 22, 2008Shell Oil CompanyThermal processes for subsurface formations
US7370704Apr 22, 2005May 13, 2008Shell Oil CompanyTriaxial temperature limited heater
US7383877Apr 22, 2005Jun 10, 2008Shell Oil CompanyTemperature limited heaters with thermally conductive fluid used to heat subsurface formations
US7424915Apr 22, 2005Sep 16, 2008Shell Oil CompanyVacuum pumping of conductor-in-conduit heaters
US7431076Apr 22, 2005Oct 7, 2008Shell Oil CompanyTemperature limited heaters using modulated DC power
US7435037Apr 21, 2006Oct 14, 2008Shell Oil CompanyLow temperature barriers with heat interceptor wells for in situ processes
US7461691Jan 23, 2007Dec 9, 2008Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7481274Apr 22, 2005Jan 27, 2009Shell Oil CompanyTemperature limited heaters with relatively constant current
US7490665Apr 22, 2005Feb 17, 2009Shell Oil CompanyVariable frequency temperature limited heaters
US7500528Apr 21, 2006Mar 10, 2009Shell Oil CompanyLow temperature barrier wellbores formed using water flushing
US7510000Apr 22, 2005Mar 31, 2009Shell Oil CompanyReducing viscosity of oil for production from a hydrocarbon containing formation
US7527094Apr 21, 2006May 5, 2009Shell Oil CompanyDouble barrier system for an in situ conversion process
US7533719Apr 20, 2007May 19, 2009Shell Oil CompanyWellhead with non-ferromagnetic materials
US7540324Oct 19, 2007Jun 2, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a checkerboard pattern staged process
US7546873Apr 21, 2006Jun 16, 2009Shell Oil CompanyLow temperature barriers for use with in situ processes
US7549470Oct 20, 2006Jun 23, 2009Shell Oil CompanySolution mining and heating by oxidation for treating hydrocarbon containing formations
US7556095Oct 20, 2006Jul 7, 2009Shell Oil CompanySolution mining dawsonite from hydrocarbon containing formations with a chelating agent
US7556096Oct 20, 2006Jul 7, 2009Shell Oil CompanyVarying heating in dawsonite zones in hydrocarbon containing formations
US7559367Oct 20, 2006Jul 14, 2009Shell Oil CompanyTemperature limited heater with a conduit substantially electrically isolated from the formation
US7559368Oct 20, 2006Jul 14, 2009Shell Oil CompanySolution mining systems and methods for treating hydrocarbon containing formations
US7562706Oct 20, 2006Jul 21, 2009Shell Oil CompanySystems and methods for producing hydrocarbons from tar sands formations
US7562707Oct 19, 2007Jul 21, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a line drive staged process
US7575052Apr 21, 2006Aug 18, 2009Shell Oil CompanyIn situ conversion process utilizing a closed loop heating system
US7575053Apr 21, 2006Aug 18, 2009Shell Oil CompanyLow temperature monitoring system for subsurface barriers
US7581589Oct 20, 2006Sep 1, 2009Shell Oil CompanyMethods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US7584789Oct 20, 2006Sep 8, 2009Shell Oil CompanyMethods of cracking a crude product to produce additional crude products
US7591310Oct 20, 2006Sep 22, 2009Shell Oil CompanyMethods of hydrotreating a liquid stream to remove clogging compounds
US7597147Apr 20, 2007Oct 6, 2009Shell Oil CompanyTemperature limited heaters using phase transformation of ferromagnetic material
US7604052Apr 20, 2007Oct 20, 2009Shell Oil CompanyCompositions produced using an in situ heat treatment process
US7610962Apr 20, 2007Nov 3, 2009Shell Oil CompanyProviding acidic gas to a subterrean formation, such as oil shale, by heating from an electrical heater and injecting through an oil wellbore; one of the acidic acids includes hydrogen sulfide and is introduced at a pressure below the lithostatic pressure of the formation to produce fluids; efficiency
US7631689Apr 20, 2007Dec 15, 2009Shell Oil CompanySulfur barrier for use with in situ processes for treating formations
US7631690Oct 19, 2007Dec 15, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a spiral startup staged sequence
US7635023Apr 20, 2007Dec 22, 2009Shell Oil CompanyTime sequenced heating of multiple layers in a hydrocarbon containing formation
US7635024Oct 19, 2007Dec 22, 2009Shell Oil CompanyHeating tar sands formations to visbreaking temperatures
US7635025Oct 20, 2006Dec 22, 2009Shell Oil CompanyCogeneration systems and processes for treating hydrocarbon containing formations
US7640980Apr 7, 2008Jan 5, 2010Shell Oil CompanyThermal processes for subsurface formations
US7644765Oct 19, 2007Jan 12, 2010Shell Oil CompanyHeating tar sands formations while controlling pressure
US7673681Oct 19, 2007Mar 9, 2010Shell Oil CompanyTreating tar sands formations with karsted zones
US7673786Apr 20, 2007Mar 9, 2010Shell Oil CompanyWelding shield for coupling heaters
US7677310Oct 19, 2007Mar 16, 2010Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US7677314Oct 19, 2007Mar 16, 2010Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US7681647Oct 19, 2007Mar 23, 2010Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US7683296Apr 20, 2007Mar 23, 2010Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US7703513Oct 19, 2007Apr 27, 2010Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US7717171Oct 19, 2007May 18, 2010Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US7730945Oct 19, 2007Jun 8, 2010Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730946Oct 19, 2007Jun 8, 2010Shell Oil CompanyTreating tar sands formations with dolomite
US7730947Oct 19, 2007Jun 8, 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US7735935Jun 1, 2007Jun 15, 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US7785427Apr 20, 2007Aug 31, 2010Shell Oil CompanyChromium, nickel, copper; niobium, iron manganese, nitrogen; nanonitrides; system for heating a subterranean formation;
US7793722Apr 20, 2007Sep 14, 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US7798220Apr 18, 2008Sep 21, 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US7798221May 31, 2007Sep 21, 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7831134Apr 21, 2006Nov 9, 2010Shell Oil CompanyGrouped exposed metal heaters
US7832484Apr 18, 2008Nov 16, 2010Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US7841401Oct 19, 2007Nov 30, 2010Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US7841408Apr 18, 2008Nov 30, 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US7841425Apr 18, 2008Nov 30, 2010Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US7845411Oct 19, 2007Dec 7, 2010Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US7849922Apr 18, 2008Dec 14, 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US7860377Apr 21, 2006Dec 28, 2010Shell Oil CompanySubsurface connection methods for subsurface heaters
US7866385Apr 20, 2007Jan 11, 2011Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US7866386Oct 13, 2008Jan 11, 2011Shell Oil Companyproduction of hydrocarbons, hydrogen, and/or other products from various subsurface formations such as hydrocarbon containing formations through use of oxidizing fluids and heat
US7866388Oct 13, 2008Jan 11, 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US7900701 *Jan 13, 2006Mar 8, 2011Encana CorporationIn situ combustion in gas over bitumen formations
US7912358Apr 20, 2007Mar 22, 2011Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US7931086Apr 18, 2008Apr 26, 2011Shell Oil CompanyHeating systems for heating subsurface formations
US7942197Apr 21, 2006May 17, 2011Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US7942203Jan 4, 2010May 17, 2011Shell Oil CompanyThermal processes for subsurface formations
US7950453Apr 18, 2008May 31, 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US7986869Apr 21, 2006Jul 26, 2011Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US8011451Oct 13, 2008Sep 6, 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US8027571Apr 21, 2006Sep 27, 2011Shell Oil CompanyIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US8042610Apr 18, 2008Oct 25, 2011Shell Oil CompanyParallel heater system for subsurface formations
US8070840Apr 21, 2006Dec 6, 2011Shell Oil CompanyTreatment of gas from an in situ conversion process
US8083813Apr 20, 2007Dec 27, 2011Shell Oil CompanyMethods of producing transportation fuel
US8113272Oct 13, 2008Feb 14, 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US8146661Oct 13, 2008Apr 3, 2012Shell Oil CompanyCryogenic treatment of gas
US8146669Oct 13, 2008Apr 3, 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US8151880Dec 9, 2010Apr 10, 2012Shell Oil CompanyMethods of making transportation fuel
US8151907Apr 10, 2009Apr 10, 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8162059Oct 13, 2008Apr 24, 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US8162405Apr 10, 2009Apr 24, 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US8167040Mar 7, 2011May 1, 2012Encana CorporationIn situ combustion in gas over bitumen formations
US8172335Apr 10, 2009May 8, 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8177305Apr 10, 2009May 15, 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8191630Apr 28, 2010Jun 5, 2012Shell Oil CompanyCreating fluid injectivity in tar sands formations
US8192682Apr 26, 2010Jun 5, 2012Shell Oil CompanyHigh strength alloys
US8196658Oct 13, 2008Jun 12, 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US8200072Oct 24, 2003Jun 12, 2012Shell Oil CompanyTemperature limited heaters for heating subsurface formations or wellbores
US8215387 *Mar 22, 2012Jul 10, 2012Encana CorporationIn situ combustion in gas over bitumen formations
US8220539Oct 9, 2009Jul 17, 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8224163Oct 24, 2003Jul 17, 2012Shell Oil CompanyVariable frequency temperature limited heaters
US8224164Oct 24, 2003Jul 17, 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US8224165Apr 21, 2006Jul 17, 2012Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US8230927May 16, 2011Jul 31, 2012Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US8233782Sep 29, 2010Jul 31, 2012Shell Oil CompanyGrouped exposed metal heaters
US8238730Oct 24, 2003Aug 7, 2012Shell Oil CompanyHigh voltage temperature limited heaters
US8240774Oct 13, 2008Aug 14, 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US8256512Oct 9, 2009Sep 4, 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US8261832Oct 9, 2009Sep 11, 2012Shell Oil CompanyHeating subsurface formations with fluids
US8267170Oct 9, 2009Sep 18, 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US8267185Oct 9, 2009Sep 18, 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US8272455Oct 13, 2008Sep 25, 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US8276661Oct 13, 2008Oct 2, 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US8281861Oct 9, 2009Oct 9, 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US8327681Apr 18, 2008Dec 11, 2012Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US8327932Apr 9, 2010Dec 11, 2012Shell Oil CompanyRecovering energy from a subsurface formation
US8353347Oct 9, 2009Jan 15, 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US8355623Apr 22, 2005Jan 15, 2013Shell Oil CompanyTemperature limited heaters with high power factors
US8381815Apr 18, 2008Feb 26, 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US8434555Apr 9, 2010May 7, 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US8448707Apr 9, 2010May 28, 2013Shell Oil CompanyNon-conducting heater casings
US8459359Apr 18, 2008Jun 11, 2013Shell Oil CompanyTreating nahcolite containing formations and saline zones
US8485252Jul 11, 2012Jul 16, 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8536497Oct 13, 2008Sep 17, 2013Shell Oil CompanyMethods for forming long subsurface heaters
US8555971May 31, 2012Oct 15, 2013Shell Oil CompanyTreating tar sands formations with dolomite
US8562078Nov 25, 2009Oct 22, 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8579031May 17, 2011Nov 12, 2013Shell Oil CompanyThermal processes for subsurface formations
US8606091Oct 20, 2006Dec 10, 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US8608249Apr 26, 2010Dec 17, 2013Shell Oil CompanyIn situ thermal processing of an oil shale formation
US8627887Dec 8, 2008Jan 14, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8631866Apr 8, 2011Jan 21, 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8636323Nov 25, 2009Jan 28, 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US8662175Apr 18, 2008Mar 4, 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8701768Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US8701769Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US8739874Apr 8, 2011Jun 3, 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US8752904Apr 10, 2009Jun 17, 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8789586Jul 12, 2013Jul 29, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8791396Apr 18, 2008Jul 29, 2014Shell Oil CompanyFloating insulated conductors for heating subsurface formations
US20120175110 *Mar 22, 2012Jul 12, 2012Larry WeiersIn situ combustion in gas over bitumen formations
USRE30019 *Jun 30, 1977Jun 5, 1979Chevron Research CompanyProduction of hydrocarbons from underground formations
Classifications
U.S. Classification166/250.15, 166/256, 166/53
International ClassificationE21B43/16, E21B43/243
Cooperative ClassificationE21B43/243
European ClassificationE21B43/243