Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3036388 A
Publication typeGrant
Publication dateMay 29, 1962
Filing dateOct 27, 1961
Priority dateOct 27, 1961
Publication numberUS 3036388 A, US 3036388A, US-A-3036388, US3036388 A, US3036388A
InventorsTate Clarence R
Original AssigneeTate Clarence R
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Magnetic writing materials set
US 3036388 A
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

May 29, 1962 c. R. TATE 3,036,388

MAGNETIC WRITING MATERIALS SET Filed Oct. 27, 1961 INVENTOR: CLARENCE Fl. TATE ATTORNEY Unite States The history of writing materials begins with the stylus and clay tablets. It has progressed through the developments of art to the use of a wide variety of media, instruments and tools. Lithography, in which the artist works directly upon the stone was invented in the last century, as a development branching off from the etching plate upon which early artists worked directly with needles or gravers.

Modern lithography received its great impetus with the invention of the half-tone screen, by means of which areas of colors can be reproduced as composites of three primary colors, each printed as a series of dots of varying sizes. The use of the dots and holes of modern lithography has been necessary to define the resolution with which reproduction can be attained.

I have invented a set of magnetic writing materials, and a method of Writing therewith, which is related to the reproduction of linework by means of dots.

The principal object of my invention is to produce a completely magnetic set of Writing materials. The writing surface is composed of magnetic particles or granules, the writing instrument is composed of a magnetized tool, and the writing eraser is also composed of a magnetized instrument.

A further object of my invention is to produce a dustfree and clean set of writing materials, with none of the many disadvantages inherent in the use of chalk with a blackboard, and the traditional chalk eraser which only serves to smear chalklines into grey smudges, while spreading great amounts of chalkdust in the air.

An additional object of my invention is to produce a set of writing materials which will not dirty or otherwise affect the hands and clothing of the individual writer, such as is common with ink and pencil in combination with the ordinary paper.

A still further object of my invention is to provide a set of writing materials in which no drying fluid will form a part of the combination, in which permanence or stability of the writing is inherent in the materials them selves.

The above and other objects of my invention will be apparent to those skilled in the art from a study of the accompanying drawings forming a part of this specification and illustrating in the different figures several views of the particular embodiment of the invention.

In the drawings:

FIGURE 1 is a cross-section view through the writing surface, together with a portion of the writing instrument involved;

FIGURE 2 is a plan view of a portion of the writing surface as it appears to the writer;

FIGURE 3 is a side view of the magnetic eraser; and

FIGURE 4 is an end view of an alternative eraser.

Referring now particularly to FIG. 1, the numeral 1 is given to the Writing surface or sheet. The surface 1 is seen to consist of a front surface 2 and a rear surface 3, which together form a hollow cavity, which is fluid tight. I prefer to have both the front surface 2 and the rear surface 3 made of a plastic material such as plexiglas, or other acrylics, which are either transparent or translucent, to light in the visible wavelengths.

Front surface 2 is molded on its inner side with a series of pockets or foraminations as shown in FIG. 1. In the embodiment shown the pockets 4, 4 consist of in dentations made in the form of sections of the surface of a sphere, all identical.

Disposed between the front surface 2 and the rear atnt surface 3 are a number of particles. I have chosen to illustrate theseas spheres although they may be granules, pellets, and indeed may be irregular in form. In the preferred form these particles are spheres of a slightly smaller diameter than the diameter of the pockets on the inner side of the front surface 2. The spheres are numbered 5, 5. In the preferred embodiment there are two vertical rows of these spheres, and they are posi tioned in staggered relationship. In fact I prefer to restrain them in a condition such that the distance between the inside of the front surface 2 and the inside of the rear surface 3 is less than two times the diameter of the particles. Thus the particles are not only staggered but crowded.

Also filling the cavity between the front surface 2 and the rear surface is a solution in the form of a liquid 6. In the complete writing surface or sheet, I prefer to have the cavity filled entirely with this solution and to have no air bublbes.

The specific gravity of the solution 6 and the density of the particles 5 is quite close, by choice, so that the particles tend to float without appreciable friction, either from other particles or from the inner walls of the surfaces. As a consequence the particles 5 are free to rotate in their restrained positions, that is they are free to rotate but they cannot move translationally. Each particle is constrained to remain always next to its immediately adjacent neighbors in touching abutment.

The particles are made by mixing an aggregateof equal parts of barium ferrite, a magnetic material of highre tentivity, and plaster of Paris or some other such filler and binder. Another possible combination is barium ferrite together with wood flour and glue. The aggregate is in the former case, mixed thoroughly together and then mixed with water. It is then molded into balls or spheres and allowed to harden, whether by the addition of heat or the passage of time. v I

The purpose of mixing equal parts of the barium ferrite with a filler is to lower the unit volumetric ma netization of the spheres below the point at which they will stick together with magnetization. At this point, I magnetize the spheres so that there is a north pole'at one point on the sphere surface and a south pole situated 180 degrees away from the north pole, that is, on the opposite side of the sphere. I then paint one pole, for instance the north pole a dark color such as a black and the opposite pole a light color or I may leave the latter unpainted in which case it is the color of the mixture of plaster and barium ferrite, which is a chalky mixture and equivalent to white.

The outer surfaces of the spheres may be painted in two equal areas of color, but I prefer to have a dominating" color. For this purpose, in the illustration of FIG; 1, I have used white as the dominating color. This means that the white area is approximately 55% of the total area of a given sphere, whereas the remaining color, black is allowed to cover only 45% of the total area.

For writing on the sheet v1, I use a bar magnet in the shape of a pencil and having a Writing tip between two and three times as wide as the diameter of the spheres 5, 5. The tip is numbered 7 and is magnetized in the illustration of FIG. 1 with a south pole. The tip 7 is covered with a thin film of plastic 8.

Wrapped around the magnet, outside the plastic film is a conical shell 9 made of soft iron which extends past the tip of the magnet 7. The purpose of this shell construction is to restrict the field of the magnet so that while the field extends beyond the tip, horizonally in FIG. 1

to influence the balls, it will not extend sidewise of the soft iron shell 9, that is, vertically in FIG. 1. This means that the field can only affect the positions of two balls at one time.;-

The entire assembly, including the extending soft iron 1 consists of a magnet .12.

As the tip 7 of the writing instrument is brought close to the front surface 2, the two spheres immediately adjacent the tip 7 will rotate in their pockets or sockets 4, 4

so that these two spheres numbered L1, 11 will present their north sides, the black sides to the right of FIG. 1, that is to the front surface. If the magnetized tip 7 has a strong enough field,'a ball or two located behind the first column will also rotate, although I have not illustrated this in FIG. 1. a

Thus in Writing the tip 7 is merely rubbed lightly over the front surface 2 and a re-orientation of the spheres occurs. Whereas at'the beginning all the spheres were aligned so that their white sides, that is, the south poles were at the right in FIG. 1, now those spheres or particles nearest the tip 7 have been rotated so that they are oppcsitely aligned. The result is' shown in FIG. 2, where the numeral seven is shown, written in a two column Wilde stroke in black, as it appears on a background of w ite.

In FIG. 3 I illustrate the eraser of the writing set, which The erasing magnet is a rectangular shape. On one side, the black, 16, it is magnetized north, whereas on the opposite side it is magnetized south, 14. The entire eraser magnet is encased in a covering 15 of thin plastic which is soft and will not mar .or ruin the writing sheet by being rubbed against it.

The eraser is used in the following way. The side which is magnetized north, :13, is laid against the front surface of the sheet 1, and then patted against that sheet. This action causes the south poles of the spheres, to be attracted to the north poles of the eraser. All the spheres are thus aligned with their south sides, the white ones, to the right in FIG. 1. The numeral seven of FIG. 2 has been-erased, and the spheres 11, 11 of FIG 1 have rotated to their original positions.

For a blackboard-sized sheet I prefer to use spheres or particles having a diameter of approximately to 35 mils, that is approximately one-thirt -second of an inch. 7 Thus the tip of the writing instrument is approximately onesixteenth of an inch wide,'and the resulting line drawn by the writing instrument is the same width as that of the writing tip.

For a portable hand toy or ordinary letter-sized writing sheet, I prefer to use particles of a size between 5 and 10 mils though they can of course be made smaller or larger as preferred. Smaller particles have been made by spraying or forcing the aggregate of barium ferrite and plaster through a spray gun so that they dry and harden before they land, in the manner of shot dropped through a layer of heated air. These smaller particles are then laid on a sheet of aluminum and passed through'a magnetizing field, and'painted in any of the customary manner-s for small particles. The S mil particle results in a line 10 mils wide on the Writing sheet. a

In FIG. 4 I show an end view of an alternative eraser magnet which is formed of a sheet of iron. This sheet is magnetized oppositely on its fiat sides and then bent into the form of a cylinder. Thus an inner and outer surface is formed, 16 and 17. This cylinder magnet eraser can then be rolled across the writing surface to erase the writing. The north polar surface 17 attracts the south poles of the spheres and rotates the spheresdl, 11 of FIG. 1 it their original positions. If desired, the cylinder magnet eraser can be provided with a handle, so that it resembles a rolling pin, if the handle is on the end, or it can be made like a paint roller, in which case the handle is set perpendicular to a. wire running down the center of the cylindrical magnet.

It is possible to vary the above proportions between wide margins. I have used a mixture of one-third barium ferrite with two-thirds plaster. In this case it was necessary to change the density of the solution 6 in order to keep the particles buoyant and lower their friction against each other. To vary the density, common table salt, in varying proportions, may be used; it is added simply 'by dissolving in water. Many water-soluble salts can be used alternatively, and even organic salts may be used in connection with an alcohol or other organic solvent. As little as one-tenth barium ferrite may be used, in which case the magnetic forces are very weak. Again the solution may be omitted when a writing tip of relatively stronger magnetization is'employed. The stronger magnetization will provide greater magnetic forces to turn the spheres. In this case the buoyancy forces of the solution are not required, to overcome the friction forces between the particles.

Also it will be obvious to those practicing the invention that more than two vertical columns may be employed and that the dimensions of the tip with respect to the diameter of the particles may 'be greater or lesser. Similarly the back surface may be used as the front surface, so long as it is transparent like the front surface 2. Also another possible modification is to leave out. the pockets and use a writing tip with relatively stronger magnetization, which can itself overcome the friction forces between the particles holding them in position.

Various other modifications and alterations may be made in the combination as will be apparent to those skilled in the art. The scope of the invention therefore should not be considered as limited to these specific details but is to be ascertained from the appended claims.

Iclaim:

1. A set of writing materials consisting of a writing sheet in the form of a front surface and a rear surface, a series of magnetized balls disposed between said front surface and said rear surface in columns, pockets formed on the inside of said front surface and one column of said balls disposed in said pockets, and a friction-lessening solution filling the spaces between said surfaces and said balls, each ball magnetized with a north and a south pole, .said north poles being painted one color and said south poles painted with a contrasting color, a writing instrument consisting of a magnet formed with a pole at one tip and a covering for said pole in the form of a plastic film, a surrounding shell of soft iron which eX- tends beyond the writing tip of said magnet, and a plastic boot covering said writing tip.

2. The combination of claim 1, wherein the writing instrument is provided with a magnetized tip approximately twice as wide as the diameter of the magnetized balls.

References Cited in the file of this patent UNITED STATES PATENTS 1,074,533 Schowalter Sept. 20, 1913 1,549,197 Hanback Aug. 11, 1925 2,530,013 Hanback Nov. 14, 1950 2,589,601 Burnett Mar 18, 1952

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1074533 *Nov 20, 1912Sep 30, 1913Edward J SchowalterPuzzle or toy.
US1549197 *Sep 9, 1924Aug 11, 1925Hanback Frank GMagnetic toy
US2530013 *Feb 19, 1946Nov 14, 1950Hanback Frank GMagnetic toy
US2589601 *Sep 26, 1950Mar 18, 1952Edward N BurnettMagnetic slate
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3238643 *Mar 27, 1964Mar 8, 1966O'connor Martin FKinesthetic teaching device and method
US3460248 *Feb 26, 1968Aug 12, 1969Tate Clarence RMethod for making micromagnets
US3460276 *Sep 16, 1968Aug 12, 1969Peripheral Data Machines IncBistable visual display device
US3724110 *May 22, 1972Apr 3, 1973Worthington CorpVisual display board
US3825927 *Jun 14, 1972Jul 23, 1974Passien RMagnetic discboard
US3940135 *Mar 25, 1974Feb 24, 1976Cohen Samuel WHockey game
US3982334 *Jun 24, 1975Sep 28, 1976Thalatta, Inc.Compartmentalized micromagnet display device
US4457723 *Jun 11, 1981Jul 3, 1984Thalatta, Inc.Color changeable fabric
US4659619 *Feb 21, 1986Apr 21, 1987Thalatta, Inc.Visual display; rotating color-coded electromagnets in hollow transparent filaments
US5018979 *Nov 16, 1989May 28, 1991The Ohio Art CompanyMagnetic visual display
US5112229 *Mar 13, 1991May 12, 1992The Ohio Art CompanyMagnetic visual display
US5295837 *May 7, 1992Mar 22, 1994The Ohio Art CompanyMagnetic visual display
US5930026 *Oct 25, 1996Jul 27, 1999Massachusetts Institute Of TechnologyNonemissive displays and piezoelectric power supplies therefor
US5961804 *Mar 18, 1997Oct 5, 1999Massachusetts Institute Of TechnologyMicroencapsulated electrophoretic display
US6017584 *Aug 27, 1998Jan 25, 2000E Ink CorporationEncapsulated displays are disclosed; particles encapsulated therein are dispersed within a suspending or electrophoretic fluid
US6067185 *Aug 27, 1998May 23, 2000E Ink CorporationCuring binder; deformation with mechanical force; suspending, or electrophoretic, fluid; electro-osmotic displays
US6097531 *Nov 25, 1998Aug 1, 2000Xerox CorporationMethod of making uniformly magnetized elements for a gyricon display
US6110538 *Nov 25, 1998Aug 29, 2000Xerox CorporationMethod of making a gyricon display using magnetic latching
US6120588 *Sep 23, 1997Sep 19, 2000E Ink CorporationElectronically addressable microencapsulated ink and display thereof
US6120839 *Aug 27, 1998Sep 19, 2000E Ink CorporationElectro-osmotic displays and materials for making the same
US6124851 *Jul 20, 1995Sep 26, 2000E Ink CorporationElectronic book with multiple page displays
US6130773 *Nov 10, 1998Oct 10, 2000Massachusetts Institute Of TechnologyNonemissive displays and piezoelectric power supplies therefor
US6147791 *Nov 25, 1998Nov 14, 2000Xerox CorporationGyricon displays utilizing rotating elements and magnetic latching
US6174153Nov 25, 1998Jan 16, 2001Xerox CorporationApparatus for making uniformly magnetized elements for a gyricon display
US6197228Nov 25, 1998Mar 6, 2001Xerox CorporationPlurality of rotating elements, each element having a magnetized segment, are mixed with an elastomer and magnetic particles, a magnetic field is applied to orient the elements in a common direction, elastomer is then cured
US6211998Nov 25, 1998Apr 3, 2001Xerox CorporationMagnetic unlatching and addressing of a gyricon display
US6249271Feb 25, 2000Jun 19, 2001E Ink CorporationRetroreflective electrophoretic displays and materials for making the same
US6251329Nov 25, 1998Jun 26, 2001Xerox CorporationRotation of sheets, removal of magnetic particles, mixing, forming a layer, molecular orientation, solidification and dispersion
US6262706Aug 27, 1998Jul 17, 2001E Ink CorporationRetroreflective electrophoretic displays and materials for making the same
US6262707Nov 25, 1998Jul 17, 2001Xerox CorporationGyricon displays utilizing magnetic addressing and latching mechanism
US6262833Oct 6, 1999Jul 17, 2001E Ink CorporationCapsules for electrophoretic displays and methods for making the same
US6312304Dec 14, 1999Nov 6, 2001E Ink CorporationAssembly of microencapsulated electronic displays
US6323989May 5, 2000Nov 27, 2001E Ink CorporationElectrophoretic displays using nanoparticles
US6376828Oct 7, 1999Apr 23, 2002E Ink CorporationIllumination system for nonemissive electronic displays
US6377387Apr 6, 2000Apr 23, 2002E Ink CorporationMethods for producing droplets for use in capsule-based electrophoretic displays
US6392785Jan 28, 2000May 21, 2002E Ink CorporationNon-spherical cavity electrophoretic displays and materials for making the same
US6422687Dec 23, 1999Jul 23, 2002E Ink CorporationElectronically addressable microencapsulated ink and display thereof
US6440252Dec 17, 1999Aug 27, 2002Xerox CorporationMethod for rotatable element assembly
US6445489Mar 18, 1999Sep 3, 2002E Ink CorporationElectrophoretic displays and systems for addressing such displays
US6473072May 12, 1999Oct 29, 2002E Ink CorporationMicroencapsulated electrophoretic electrostatically-addressed media for drawing device applications
US6480182Jul 20, 2001Nov 12, 2002Massachusetts Institute Of TechnologyPrintable electronic display
US6498114Aug 31, 2000Dec 24, 2002E Ink CorporationMethod for forming a patterned semiconductor film
US6498674Apr 14, 2000Dec 24, 2002Xerox CorporationRotating element sheet material with generalized containment structure
US6504524Mar 8, 2000Jan 7, 2003E Ink CorporationAddressing methods for displays having zero time-average field
US6504525May 3, 2000Jan 7, 2003Xerox CorporationRotating element sheet material with microstructured substrate and method of use
US6515649Aug 27, 1998Feb 4, 2003E Ink CorporationSuspended particle displays and materials for making the same
US6518949Apr 9, 1999Feb 11, 2003E Ink CorporationElectronic displays using organic-based field effect transistors
US6531997Apr 28, 2000Mar 11, 2003E Ink CorporationMethods for addressing electrophoretic displays
US6538801Nov 12, 2001Mar 25, 2003E Ink CorporationElectrophoretic displays using nanoparticles
US6542283Nov 25, 1998Apr 1, 2003Xerox CorporationGyricon displays utilizing magnetic elements and magnetic trapping
US6545671Mar 2, 2000Apr 8, 2003Xerox CorporationRotating element sheet material with reversible highlighting
US6652075Jul 22, 2002Nov 25, 2003E Ink CorporationElectronically addressable microencapsulated ink and display thereof
US6680725Oct 14, 1998Jan 20, 2004E Ink CorporationMethods of manufacturing electronically addressable displays
US6683333Jul 12, 2001Jan 27, 2004E Ink CorporationFabrication of electronic circuit elements using unpatterned semiconductor layers
US6690350Jan 11, 2001Feb 10, 2004Xerox CorporationRotating element sheet material with dual vector field addressing
US6693620May 3, 2000Feb 17, 2004E Ink CorporationThreshold addressing of electrophoretic displays
US6704133Aug 30, 2002Mar 9, 2004E-Ink CorporationReflective display in optical communication with emissive display comprising electrooptic and photoconductive layers, electrodes, synchronization module receiving signals indicating emissive display output, controlling electric field
US6727881Aug 27, 1998Apr 27, 2004E Ink CorporationLongterm image quality
US6738050Sep 16, 2002May 18, 2004E Ink CorporationMicroencapsulated electrophoretic electrostatically addressed media for drawing device applications
US6753999May 31, 2002Jun 22, 2004E Ink CorporationElectrophoretic displays in portable devices and systems for addressing such displays
US6825068Apr 17, 2001Nov 30, 2004E Ink CorporationProcess for fabricating thin film transistors
US6839158Oct 6, 1999Jan 4, 2005E Ink CorporationEncapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
US6842657Jul 21, 2000Jan 11, 2005E Ink CorporationReactive formation of dielectric layers and protection of organic layers in organic semiconductor device fabrication
US6846377Jul 8, 2002Jan 25, 2005Xerox CorporationSystem and method for rotatable element assembly and laminate substrate assembly
US6847347Aug 17, 2000Jan 25, 2005Xerox CorporationElectromagnetophoretic display system and method
US6864875May 13, 2002Mar 8, 2005E Ink CorporationFull color reflective display with multichromatic sub-pixels
US6865010Dec 13, 2002Mar 8, 2005E Ink CorporationElectrophoretic electronic displays with low-index films
US6870661May 7, 2002Mar 22, 2005E Ink CorporationElectrophoretic displays containing magnetic particles
US6894677Apr 19, 2004May 17, 2005Xerox CorporationElectromagnetophoretic display system and method
US6897848Jan 11, 2001May 24, 2005Xerox CorporationRotating element sheet material and stylus with gradient field addressing
US6900851Feb 8, 2002May 31, 2005E Ink CorporationElectro-optic displays and optical systems for addressing such displays
US6943772 *Feb 24, 1999Sep 13, 2005The Pilot Ink Co., Ltd.Magnetic display device
US6967640Jul 27, 2001Nov 22, 2005E Ink CorporationMicroencapsulated electrophoretic display with integrated driver
US6970154Jan 11, 2001Nov 29, 2005Jpmorgan Chase BankFringe-field filter for addressable displays
US6980196Mar 18, 1997Dec 27, 2005Massachusetts Institute Of TechnologyPrintable electronic display
US7002728Feb 9, 2004Feb 21, 2006E Ink CorporationElectrophoretic particles, and processes for the production thereof
US7030412May 5, 2000Apr 18, 2006E Ink CorporationMinimally-patterned semiconductor devices for display applications
US7038655Nov 18, 2002May 2, 2006E Ink CorporationElectrophoretic ink composed of particles with field dependent mobilities
US7071913Jun 29, 2001Jul 4, 2006E Ink CorporationRetroreflective electrophoretic displays and materials for making the same
US7075502Apr 9, 1999Jul 11, 2006E Ink CorporationFull color reflective display with multichromatic sub-pixels
US7106296Jul 19, 1996Sep 12, 2006E Ink CorporationElectronic book with multiple page displays
US7109968Dec 24, 2002Sep 19, 2006E Ink CorporationNon-spherical cavity electrophoretic displays and methods and materials for making the same
US7119759Oct 29, 2004Oct 10, 2006E Ink CorporationMachine-readable displays
US7148128Aug 29, 2003Dec 12, 2006E Ink CorporationElectronically addressable microencapsulated ink and display thereof
US7167155Aug 27, 1998Jan 23, 2007E Ink CorporationColor electrophoretic displays
US7176880Jul 8, 2004Feb 13, 2007E Ink CorporationUse of a storage capacitor to enhance the performance of an active matrix driven electronic display
US7230750Oct 7, 2004Jun 12, 2007E Ink CorporationElectrophoretic media and processes for the production thereof
US7242513May 20, 2004Jul 10, 2007E Ink CorporationEncapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
US7247379Sep 6, 2005Jul 24, 2007E Ink CorporationElectrophoretic particles, and processes for the production thereof
US7312916Aug 6, 2003Dec 25, 2007E Ink CorporationElectrophoretic media containing specularly reflective particles
US7365394Aug 17, 2004Apr 29, 2008E Ink CorporationProcess for fabricating thin film transistors
US7375875May 2, 2007May 20, 2008E Ink CorporationElectrically charged particle suspended in a fluid, with a polymeric shell which is incompatible with the suspending fluid, a second charged particle having optical properties differing from the first particle, with a polymer shell; for encapsulated and microcell electrophoretic displays
US7382363Feb 3, 2005Jun 3, 2008E Ink CorporationMicroencapsulated electrophoretic display with integrated driver
US7391555Jun 27, 2006Jun 24, 2008E Ink CorporationNon-spherical cavity electrophoretic displays and materials for making the same
US7532388May 2, 2007May 12, 2009E Ink CorporationElectrophoretic media and processes for the production thereof
US7583251May 1, 2007Sep 1, 2009E Ink CorporationDielectrophoretic displays
US7667684Apr 2, 2004Feb 23, 2010E Ink CorporationMethods for achieving improved color in microencapsulated electrophoretic devices
US7746544Mar 31, 2008Jun 29, 2010E Ink CorporationElectro-osmotic displays and materials for making the same
US7791789May 9, 2008Sep 7, 2010E Ink CorporationMulti-color electrophoretic displays and materials for making the same
US7859637Dec 19, 2006Dec 28, 2010E Ink CorporationUse of a storage capacitor to enhance the performance of an active matrix driven electronic display
US7893435Nov 25, 2003Feb 22, 2011E Ink CorporationFlexible electronic circuits and displays including a backplane comprising a patterned metal foil having a plurality of apertures extending therethrough
US7956841Dec 21, 2007Jun 7, 2011E Ink CorporationStylus-based addressing structures for displays
US7999787Aug 31, 2005Aug 16, 2011E Ink CorporationMethods for driving electrophoretic displays using dielectrophoretic forces
US8009348Jun 9, 2006Aug 30, 2011E Ink CorporationMachine-readable displays
US8035886Nov 2, 2006Oct 11, 2011E Ink CorporationElectronically addressable microencapsulated ink and display thereof
US8040594Mar 17, 2010Oct 18, 2011E Ink CorporationMulti-color electrophoretic displays
US8089453Dec 21, 2007Jan 3, 2012E Ink CorporationStylus-based addressing structures for displays
US8115729Mar 16, 2006Feb 14, 2012E Ink CorporationElectrophoretic display element with filler particles
US8139050Jan 31, 2005Mar 20, 2012E Ink CorporationAddressing schemes for electronic displays
US8213076Jul 21, 2010Jul 3, 2012E Ink CorporationMulti-color electrophoretic displays and materials for making the same
US8305341Aug 28, 2009Nov 6, 2012E Ink CorporationDielectrophoretic displays
US8384658Jan 8, 2008Feb 26, 2013E Ink CorporationElectrostatically addressable electrophoretic display
US8441714Oct 3, 2011May 14, 2013E Ink CorporationMulti-color electrophoretic displays
US8466852Apr 20, 2004Jun 18, 2013E Ink CorporationFull color reflective display with multichromatic sub-pixels
US8593718Apr 5, 2010Nov 26, 2013E Ink CorporationElectro-osmotic displays and materials for making the same
US8593721May 2, 2012Nov 26, 2013E Ink CorporationMulti-color electrophoretic displays and materials for making the same
US20110164915 *Jan 4, 2010Jul 7, 2011Marketa International Ltd.Capsule Magnet Pen Tip and Magnet Pen
USRE37085Feb 17, 1999Mar 6, 2001Xerox CorporationSome uses of microencapsulation for electric paper
CN1333380C *Oct 16, 1999Aug 22, 2007株式会社大可乐Magnetic electrophoretic display device and its manufacturing method
DE102008060983A1 *Dec 6, 2008Jun 10, 2010Daniel KalliontzisPigment with magnetic poles that are differently colored, useful in tattoos
EP0994455A2 *Oct 15, 1999Apr 19, 2000Takara Co., Ltd.Magnetophoresis type display device and process of production of same
Classifications
U.S. Classification434/409, 446/131
International ClassificationB43L1/00
Cooperative ClassificationB43L1/008
European ClassificationB43L1/00M
Legal Events
DateCodeEventDescription
Mar 16, 1989ASAssignment
Owner name: FAIRFIELD NATIONAL BANK, SOUTHEAST 3RD AND DELAWAR
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ZZEXX, INC., FORMERLY THALATTA, INC.;REEL/FRAME:005030/0762
Effective date: 19881201
Aug 26, 1988ASAssignment
Owner name: FAIRFIELD NATIONAL BANK, FAIRFIELD, WAYNE COUNTY,
Free format text: SECURITY INTEREST;ASSIGNOR:ZYEXX, INC.,;REEL/FRAME:004932/0618
Effective date: 19860224